
ALPS: Authenticating Live Peer-to-Peer Streams

Remo Meier, Roger Wattenhofer (Regular Submission)
{remmeier,wattenhofer}@tik.ee.ethz.ch

ETH Zurich, Switzerland

Abstract

Live streaming is one among many applica-
tions where data is continuously created and
has to be quickly distributed among a large
number of users. The peer-to-peer paradigm is
thereby attracting interest with the prospect of
overcoming scalability issues of more central-
ized approaches. Since data blocks travel along
multiple (possibly malicious) peers, authenti-
cating the origin of blocks becomes of prime
importance to guarantee safety and reliability.
The asymmetry of a single source and an ar-
bitrary number of untrusted receivers requires
the use of digital signatures and public key
cryptography in general. This paper proposes
a new signature scheme for broadcast authenti-
cation tailored towards peer-to-peer systems to
overcome limitations of traditional approaches
based on signature schemes like RSA and DSA,
most notably in terms of delays, signature size,
and computational complexity. It may further
be of practical interest for other real-time ap-
plication such as massive multiplayer peer-to-
peer gaming.

Keywords: Peer-to-Peer, Security, Signatures,
Live Streaming

1 Introduction

As everybody knows the peer-to-peer
paradigm can be applied to more than
just file sharing. Recently, there is a trend

towards peer-to-peer applications that need
to deliver data in real-time, examples of such
applications include live streaming systems
and massive multiplayer games. Due to
the possible presence of malicious peers,
it becomes vital to provide security to all
participating peers. In particular, all data
blocks of a peer-to-peer live stream need
to be authenticated by each peer such that
fraudulent blocks injected by intermediate
peers can be detected.

In applications such as file-sharing where all
data blocks to be distributed are available at
the beginning authentication is pretty straight-
forward; essentially a peer is able to authen-
ticate the data by first retrieving a signature
— normally a small list of hash values, one
for each block of the data — from the source
through a secure channel.

In contrast, real-time applications such as
multiplayer games and live streaming face the
challenge of authenticating data that is just be-
ing created. If the peer-to-peer paradigm is
used to distribute the data there is an addi-
tional catch: intermediate peers must authen-
ticate data blocks before forwarding them to
other peers, preventing a ruinous snowball ef-
fect of proliferating fraudulent packets, which
could waste precious bandwidth.

Commonly used signatures schemes are
based on mathematical problems such as the
hardness of factoring integer numbers or the
hardness of computing discrete logarithms,

1



where the factorization or the discrete loga-
rithm respectively acts as a trap-door to sign
data blocks and is kept secret as private key.
The disadvantages are a high computational
complexity and large signatures to counter
ever more sophisticated attacks. Clearly, such
schemes do not allow to sign data blocks fit-
ting into a network’s maximum transfer unit of
typically 1,500 bytes. But also amortizing the
signature costs over multiple blocks is not an
option for peer-to-peer systems. For example,
compiling and distributing signed hash lists
more than doubles delays. And a larger block
size imposes more delays with each hop. Fur-
thermore, neither of the solutions is applica-
ble to massive multiplayer peer-to-peer games
with even more stringent timing constraints.

Instead, we examine signature schemes
based on arbitrary one-way functions without
trap-doors [1, 2] that have been studied over
the past 30 years. We propose several new
techniques that extend existing one-way signa-
ture schemes such that they can be used for live
peer-to-peer applications. Existing schemes ei-
ther need a public key which is several hundred
kilobytes long, or need all available processing
power to manage authentication only, or waste
a too large part of each packet for authentica-
tion. Our signature scheme ALPS can trade-
off the three main properties public key size,
signature size, and computational delay. For
instance, signatures are between 20 to 40 bytes
in size. Signing and verification typically takes
between merely 10 and 300 µs. And a pub-
lic key a few kilobytes in size is sufficient to
authenticate a live stream. Overall, ALPS is
about two orders of magnitude more efficient
than previous schemes. We believe that these
two order of magnitude are necessary to make
low-delay and authenticated live peer-to-peer
streams practically possible.

We further incorporated ALPS into Pul-

sar1, an open effort for a peer-to-peer stream-
ing platform. Pulsar supports both live and
on-demand streaming, and while it is still an
ongoing research effort, an initial version is
ready for testing and real-world use. In case
of live streaming, one of the primary objec-
tives of Pulsar is to reduce propagation delays
compared to other peer-to-peer streaming sys-
tems. ALPS thereby plays a vital role as it
allows to work with small blocks of data that
can be quickly authenticated and forwarded.

The remainder of this paper is organized
as follows. After reviewing related work in
Section 2, the design of our signature scheme
ALPS is presented in Section 3, followed by
an evaluation in Section 4 and a conclusion in
Section 5.

2 Related Work

A large number of signatures schemes have
been proposed over the years. We quickly
review schemes relevant to this work. Mes-
sage authentication codes (MAC) allow to ef-
ficiently authenticate data with a secret key
shared between sender and receiver. Unfor-
tunately for our case, shared secret keys al-
low receivers to sign packets as well, render-
ing MACs unsuitable for applications where
receivers are not trustworthy. In contrast, sig-
nature schemes based on asymmetric cryptog-
raphy distribute a public key among all re-
ceivers, but keep a private key secret at the
source. RSA, DSA, and ECDSA may be the
most prominent schemes of this kind. But,
computational complexity and signature size
do not allow to sign a large number of small
data blocks, for example, 1,500 bytes in size
to fit into network packets. McEliece [11] is
an alternative signature scheme featuring sig-
natures merely 87 bits in size. Unfortunately,

1www.getpulsar.com

2



again, the computational costs of several sec-
onds to sign and verify data blocks prevent
its use in the peer-to-peer context. Similarly,
Quartz [10] creates signatures with 128 bits in
size and is simple to verify, but it also takes
seconds to sign data blocks.

For this reason, a large body of work, e.g.,
[15, 14, 13, 16], focuses on amortizing signature
costs over a number of network packets while
maintaining, for example, security in case of
packet loss. Such schemes have to either work
with large blocks or assume an offline setting
where all blocks are known from start to the
source. But as argued in the introduction, ei-
ther case is not an option for peer-to-peer live
streaming since data is continuously created
and has to be authenticated before forward-
ing. But authenticating a block also requires
the complete download of the block, which in
turn leads to more delays at each hop the larger
a blocks is.

Canetti et al. proposed in [17] a scheme
based on multiple MACs that avoids complex
signature schemes. A block is signed with all
MACs, but each receiver does not hold all, but
only a subset of the corresponding secret keys.
This way, a receiver is no longer able to sign
blocks for other receivers if subsets of secret
keys are carefully assigned to receivers. Un-
fortunately, the approach becomes impracti-
cal for a large number of receivers and pos-
sible collusions among them. A solution a long
the same line is Tesla [12]. A MAC authen-
ticates a data block, but its secret key is re-
vealed only later after the packet has been
distributed (based on commitments to secret
keys and hash chains). Unfortunately, Tesla is
incompatible with the peer-to-peer paradigm
since peers could no longer authenticate blocks
before forwarding them.

Signatures schemes like RSA, DSA, and
ECDSA make use of complex mathematical
assumptions to obtain a trap-door as private

key. Signatures based on arbitrary one-way
functions without the need for trap-doors have
been proposed by Lamport in 1979 [1]. Com-
pared to other signature schemes, less mathe-
matical assumptions are needed, which in turn
allows the use of simple and efficient func-
tions like MD5 and SHA-1. Drawbacks are
large keys and the availability of a single signa-
ture that also limits signing to a single block.
Merkle introduced the hash tree [2] to allow
the use of multiple Lamport instances to sign
more than one block. Subsequent work further
revised and generalized this idea. For exam-
ple, a generalization to directed acyclic graphs
is given in [4] and an optimal tree-based scheme
in [3]. However, the interest has mostly been
of theoretical nature as signature size and key
size, as well as the limited number signatures
generally prevented their use in practice.

A new path relevant to this work has been
taken with the introduction of the BiBa sig-
nature scheme [5] by Perrig in 2001. BiBa is
tailored towards broadcast authentication, i.e.,
verifying the origin of a sequence of packets.
A signer thereby keeps a large number of hash
chains secret, and includes in every new sig-
nature the next unused values of a few care-
fully selected chains. There are different fla-
vors of the protocol. Biba itself is based on the
birthday paradox by finding k-way collisions to
create signatures with k values. The Power-
ball signature scheme [7] generalizes Biba by
working with more general patters besides col-
lisions. And the Hors signature scheme [6] se-
lects chains directly using a secure hash func-
tion.

The problem of all three, Biba, Hors, and
Powerball is the number of chains. A large
number of chains also yields a large public key.
And, more importantly, verifiers have at all
time to be aware of how many times each chain
has been used so far. Otherwise, an attacker
is able to forge signatures for new blocks by

3



reusing parts of old signatures. In peer-to-peer
systems, where peers are inherently unreliable,
it can prove difficult to maintain this kind of
synchronization for a large number of chains.
For the same reasons, an instance can only be
used a few times during the propagation de-
lay of the overlay. Consequently, multiple in-
stances might have to be used, further increas-
ing the size of the public key. Moving forward
in all chains when signing a signature avoids
synchronization problems [5], but wastes most
items in the chains and increases the computa-
tional complexity as verifiers also have to skip
the unused items.

3 Signature Scheme

In this section, the ALPS signature scheme
is proposed to authenticate sequences of data
blocks, e.g., a peer-to-peer live streams. ALPS
produces short signatures with low computa-
tional complexity; it addresses the issues of
large public keys and synchronization problems
encountered in other protocols such as Biba [5].
The ALPS scheme is composed of three algo-
rithms, a key generation, a signing, and a ver-
ification algorithm. An evaluation along with
a few practical extensions is given in the sub-
sequent Section 4.

The private and public key generation works
as follows. Let q denote a security parameter
and H : {0, 1}q → {0, 1}q a secure hash func-
tion. The secret key consists of n uniformly
at random chosen secret values s1,1,1,. . . ,sn,1,1
with si,1,1 ∈ {0, 1}q for i = 1, . . . , n. Each se-
cret value si,1,1 is the starting point of a hash
chain of length bl+ 1 with parameters l and b.
Each chain is thereby partitioned into blocks,
we have l blocks of size b, followed by a last
block of size 1. An item si,j,k in a chain, also
referred to as seal [5], is addressed by chain
index i, block index j, and offset k within the
block. Within any chain i and block j it holds

that si,j,k+1 = H(si,j,k) for k = 1, . . . , b − 1.
Between block j and block j + 1 it holds that
si,j+1,1 = H(si,j,b). The last value of each
chain becomes the public key, i.e., si,l+1,1 for
i = 1, . . . , n. An example is given in Figure 1.

Figure 1: ALPS hash chains: Example with n = 5
chains, a signature size λ = 3, and a block size b =
3. One out of 70 possible signatures is highlighted.
Note that in general seals of a signature may use
different blocks in different chains.

A message m is signed by carefully including
seals of a subset of chains in the signature. A
signature is thereby encoded by both the seals’
chains and offsets within the blocks. Note that
the protocol is randomized and may fail with
non-negligible probability. A counter c allows
to perform multiple trials until the signature
generation succeeds. Indices u1, . . . , un are ini-
tially set to l; they determine the next avail-
able blocks of the chains 1, . . . , n. The protocol
works in three steps, chain selection, offset se-
lection, and the final signature generation, as
follows.

The number of seals included in a signature
is given by λ. In the first step, a secure hash
value of the message m and counter c is used
to select a distinct set of chains {c1, . . . , cλ}
with ci ∈ {1, . . . , n}, denoted as Hλ,distinct

{1,...,n} (m,
c). From each of the λ selected chains, a seal
will be included in the signature.

In the second step, a block offset pi ∈
{1, . . . , b} is selected for each selected chain ci.
As a security precaution, the offsets pi need

4



to sum up to a constant t = 1
2λ(1 + b). Con-

stant t corresponds to the expected value of
a sum of offsets chosen uniformly at random
and thereby maximizes the number of possi-
ble offset combinations. The first λ− 1 offsets
are again chosen by a secure hash function, de-
noted as Hλ−1

{1,...,b}(m, c, c1,. . . ,cλ). The selec-
tion {c1, . . . , cλ} from the first step is added as
input to the hash function along with the mes-
sage m and the counter c as a further security
precaution. Note that in contrast to chains,
offsets do not have to be distinct. The remain-
ing offset pλ is chosen such that the offsets sum
up to constant t. Since offsets are strictly non-
negative and smaller or equal to the block size
b, the selection may fail to sum up. In this
case, the counter c is increased by 1 and the
algorithm restarts in the first step.

In the third and last step, the signature is
created. The chains {c1, . . . , cλ} and block
offsets {p1, . . . , pλ} have been chosen in the
first and second step. The block indices are
given by the indices {uc1 , . . . , ucλ}. The corre-
sponding seals sc1,uc1 ,p1 ,. . . ,scλ,ucλ ,pλ and the
counter c constitute the signature for message
m. Each of the indices {uc1 , . . . , ucλ} is then
decremented by one to point to the next un-
used block. If any of the chains has been used
and no further blocks are available, a new pub-
lic and secret key has to be generated. The
final algorithm for signing a message is sum-
marized by Algorithm 1.

Verifying the signature of a message works
in a similar fashion as signing a message. The
message and the counter included in the signa-
ture determine a selection of chains and block
offsets. For each seal included in the signa-
ture, a verifier follows the hash chain until a
known seal is reached, either from the public
key or from previous signatures. If no known
seal is found after 2b steps or a preceding seal
is known for any of the chains, the signature is
considered to be invalid. Otherwise, the num-

Algorithm 1 ALPS
1: var u1, . . . , un := l
2:
3: function sign(m)
4: c := 0
5: while not finished do
6: {c1, . . . , cλ} := Hλ,distinct

{1,...,n} (m, c)

7: {p1, . . . , pλ−1} := Hλ−1
{1,...,b}(m, c, c1,. . . ,cλ)

8: s = sum{p1,. . . ,pλ−1}
9: t = λ∗(1+b)

2

10: if s < t and s >= t− b then
11: pλ := t− s
12: sig := {sc1,uc1 ,p1 ,. . . ,scλ,ucλ ,pλ ,c}
13: for i = 1, . . . , λ do
14: uci := uci − 1
15: od
16: return sig
17: fi
18: c = c+ 1
19: od
20: end function

ber of steps determines the block offsets of the
seals. If they match the ones selected by the
message and the counter, then the signature is
considered to be valid, and the message can be
forwarded.

4 Evaluation

In this section, the ALPS signature scheme is
evaluated in respect to security, computational
complexity, signature size, and public key size.
We further outline a few extensions that have
proven useful for the adoption in the Pulsar
streaming system.

4.1 Security

ALPS is kind of a one-time signature scheme
as can be used at most once during the propa-
gation delay of the peer-to-peer network. Once
a block is signed, the source of a stream has to
wait until the block reached all peers 2. Other-

2Multiple independent ALPS instances allow to
sign multiple blocks during the propagation delay.

5



wise, peers may not be aware of the boundary
of used and unused blocks. The security pro-
vided by ALPS stems from the fact that the
source holds all seals of all chains as secret key,
while an attacker is limited to seals from pre-
vious signatures and subsequent seals in the
respective chains. If peers are aware of the
boundary of used and unused blocks, it lim-
its an attacker further to the seals of the most
current signature and subsequent seals of the
respective blocks3. Since offsets of seals in a
signature sum up to constant t, it is not pos-
sible that, for example, an unfortunate block
selects the first seal of each block, exposing all
subsequent seals in the respective blocks and
limiting security to the selection of chains. Fur-
thermore, an attacker is not able to replace any
of the seals of the current signature by a sub-
sequent seal since it would force the use of a
preceding (secret) seal in another chain, con-
sidered to be computationally infeasible. Con-
sequently, a forged signature would have to se-
lect exactly the same chains and offsets, consid-
ered to be computationally infeasible for a suf-
ficient number of chains and a sufficient block
size if the selection is performed by secure hash
functions. Therefore, the security provided by
ALPS is given by the number of possible sig-
natures, determined by the number of chains
n, signature size λ, and block size b.

4.2 Selection of a one-way function

Critical to the security and performance of
ALPS is the selection of an appropriate one-
way function to compute the hash chains. The
function has to be one-way to provide robust-
ness against preimage attacks. Otherwise, an
attacker may simply invert the hash chains, de-
priving a signer of his advantage of being the
sole peer knowing all seals. The selected func-

3If a peer receives a signature first, an attacker has
no seals at all to work with.

tion further has to withstand second preimage
attacks. A second preimage attack would en-
able an attacker to compute a new block that
has the same signature as an given existing
block. But note that in contrast to secure hash
functions, there is no need for collision resis-
tance, which is considered to be more difficult
to achieve. In ALPS, a source could sign two
blocks with the same signature by finding a
collision, but this neither breaks authenticity
nor is it of any use to an attacker.

Pulsar currently uses MD5 because of its
low computational complexity and robust-
ness against preimage and second primage at-
tacks. While there are known attacks for MD5
speeding-up the search for second preimages in
very large messages [8] and collisions [9], it is
of no concern for Pulsar and ALPS as argued
before and because data blocks are small. The
design of ALPS allows further optimizations.
For example, when following hash chains, the
output of an iteration is used as input in the
next iteration, allowing to keep values within
CPU registers. Furthermore, it is possible to
follow different hash chains concurrently, al-
lowing the use of both multi-core processors
and special instructions like Streaming SIMD
Extensions (SSE ). SSE allows to perform 128-
bit vector operations and is readily available
in personal computers since 2001. In case of
MD5, based on 32-bit operations, SSE allows
to compute four hash values simultaneously.
This way, a C++ implementation running on
a 2.66 GHz processor is able to perform 16 mil-
lion hash operations per second with a single
processing core.

4.3 Randomized Signing

The signature generation of ALPS is random-
ized and may fails with non-negligible prob-
ability. To determine the failure probabil-
ity, a normal distribution can approximate the
distribution of the first λ − 1 offsets’ sum

6



p1 + . . . + pλ−2. Expected value µ and vari-
ance σ2 are thereby given by:

µ ≈ 1
2
b(λ− 1)

σ2 ≈ 1
12
b2(λ− 1)

In order for all offsets, including pλ−1, to
sum up to t, the sum is allowed to deviate no
more than b/2, leading to an estimate for the
failure probability pfail:

pfail ≈ 1− Φµ,σ2(µ+
b

2
) + Φµ,σ2(µ− b

2
)

Fortunately, the failure probability pfail varies
between 22% for signatures with λ = 3 seals
and 56% with λ = 10 seals. In any case, this
randomness introduces only a minor computa-
tional overhead.

4.4 Signature Size

Our parameters n, b, λ, q provide trade-offs be-
tween computational cost, public key size, sig-
nature size, and security. In case of peer-to-
peer live streaming or gaming, a moderate se-
curity level between 250 and 260 is usually suf-
ficient since data blocks expire within few sec-
onds. For example, Pulsar allows to distribute
data block in one to two seconds among mil-
lions of peers if sufficient bandwidth is avail-
able. As argued in Section 4.1, the number
of different ALPS signatures S essentially de-
termines the security level. Failure probability
pfail from the previous section thereby allows
to approximate S:

S ≈ (1− pfail)bλ−1

(
n

λ

)

For example, n = 50 chains, λ = 5 seals
in a signature, and block size b = 489 lead
to S = 256. The verification time tverify is

S λ n=25 n=50 n=100 n=200

248
4 805 306 119 47
5 96 38 16 7
6 30 12 5 4

256
4 5,111 1,943 755 297
5 383 153 63 26
6 89 36 15 7

264 5 1,533 610 250 104
6 269 110 46 19

Figure 2: ALPS: Verification time in µs for a
given security level S, number of chains n, and
signature size λ.

λ=n b tverify
5 4,656 1,455 µs
6 875 328 µs
7 287 126 µs
8 129 64 µs
9 71 40 µs

10 45 28 µs

Figure 3: ALPS: Block size b and verification time
tverify required to reach a security level of 248 if
the signature size λ matches the number of chains
n.

mainly given by the number of one-way func-
tion evaluation, i.e. the product of λ and b. In
the given example, MD5 has a verification time
tverify = 153 µs. Table 2 depicts the verifica-
tion times of more examples for fixed S, n, and
λ. In any case, the low computational com-
plexity allows to quickly authenticate a large
number of blocks.

Of special interest is the case where the num-
ber of chains n matches the signature size λ.
Figure 3 shows the block size and verification
times required to reach security level S = 248

for different signature sizes λ. Naturally, either
more seals in signatures or a larger block size
is required to compensate for the lack of flex-
ibility in selecting chains. In contrast, public
keys become small and synchronization is lim-
ited to knowing the current block index used
by all chains.

The size of signatures is given by the number
of seals λ and the seal size. While MD5 out-

7



puts 128-bit values, between 48 to 72 bits are
sufficient if data blocks expire quickly and ro-
bustness agains pre-image attacks is given. In
case of λ = 5 and S = 256, the signature size
is 35. Some care has to be taken since hash
chains have a lifetime from several minutes to
hours. Adding an additional chain, known as
salt chain, can resolve the problem. To then
compute a seal in a seal chain, the salt is added
as input, along with the previous seal in the
respective chain, to the one-way function. We
refer to [5] for a more detailed discussion about
salt chains.

Typically, only intermediate seals of each
chain are stored by the signer to save space, in-
creasing the computational complexity of sign-
ing as the signer has to follow hash chains as
well. If, for example, the seal at the beginning
of each block is stored, then the signing time
is about half the verification time4.

4.5 Comparision to other schemes

To compare ALPS with more commonly used
signature schemes, namely RSA, DSA, and
ECDSA, their computational complexity to
sign and verify messages and their signature
sizes are depicted in Figure 4. The tests have
been performed with Java 6 and the same 2.66
GHz processor. While RSA signatures are
quickly verified, signing is computationally ex-
pensive and, more importantly, the signature
size is too large to sign network packets with a
typical MTU of 1,500 bytes. In contrast, DSA
features small signatures but incurs high com-
putational costs. And finally, ECDSA, based
on elliptic curve cryptography, allows the use of
shorter keys, but is computationally the most
expensive of the three schemes.

Biba [5], Powerball [7], and Hors [6] are
signature schemes similar to ALPS. While

4It is possible to implement ALPS without fixed
blocks, also reducing the verification time by a factor
of two at the cost of a more difficult synchronization.

Key Signature tsign tverify
DSA 1024 376 4064 8875
RSA 1024 1024 6150 324

ECDSA 256 568 23006 30409

Figure 4: Key and signature size (bits) and com-
putational complexity (µs) for RSA, DSA, and
ECDSA.

these schemes allow signing of multiple data
blocks during the propagation delay, it is not
a disadvantage for ALPS for two reasons.
First, ALPS makes use of smaller public keys,
which in turn allows the use of more instances.
Second, the security of Biba, Powerball, and
Hors decreases exponentially with every signed
block. For example, signing four blocks with
λ = 6 seals each gives an attacker about 217

possibilities to select seals for its own, forged
signature. Assuming that 1, 000 chains are
used, another five seals would be needed to
maintain the same security level as the addi-
tional seals further boost the number of pos-
sibilities to 233. Taking the example from the
previous section, Biba requires the use of 6, 000
chains to maintain a security level S = 256

with λ = 5 seals if it is used once during the
propagation delay. This is highly undesirable
both for public key distribution and for keeping
peers up-to-date about the boundary of used
and unused seals. The later issue can be solved
by moving forward in all chains with every sig-
nature, as noted in Section 2, but in this case
Biba further loses its performance advantage
over ALPS while still having a large public
key. Powerball and Hors perform similar to
Biba. In any case, the performance of ALPS
is more than adequate to authenticate a large
number of small blocks.

4.6 Propagation delays

Signing times in ALPS are short. A way to
improve security at the cost of (slightly) longer
signing times is to increase the computational

8



complexity for signing blocks. While the im-
pact is small for a honest signer, it becomes
considerably harder for an attacker to forge a
signature.

A simple solution is to lower the suc-
cess probability for signing blocks. En-
forcing that a signature further satisfies
H1
{0,...,θ−1}(c,c1,. . . ,cλ) = β with θ = 1024 and

β = 0 decreases the success probability by fac-
tor θ for both signers and attackers.

A more sophicasted scheme may choose a
non-random β. Pulsar, for example, makes use
of the propagation delays. Namely, solely the
source of a live stream has all blocks in its
buffer. It takes time for blocks to reach other
peers, especially since different blocks usually
travel along different paths to avoid bottle-
necks and single point of failures. To sign a
new data block, the source hashes log(θ) pre-
ceding blocks to one bit each and sets β to their
concatentation. Other peer subsequently ver-
ify the bits for preceding data blocks they al-
ready received. There is a good chance a mali-
cious peer gets caught for sending forged blocks
because its signatures are based on incomplete
knowledge of preceding blocks.

4.7 Synchronizing peers

Peers have to be weakly synchronized with the
source in order to be aware of the boundary
of used and unused blocks. And while there
are no guarantees to receive blocks in time, a
variety of techniques help to maintain synchro-
nization. For example, while insufficient band-
width may prevent the download of blocks,
peers should retrieve the much smaller signa-
tures.

Hash lists complement ALPS in Pulsar to
both increase security and to help keeping
boundaries up-to-date. ALPS is thereby used
during the inital distribution of new blocks un-
til hash lists become available. Blocks are then
double checked and boundaries updated if nec-

essary. Eased security requirements for ALPS
and larger block sizes within hash lists offset
any additional overhead.

Hash lists further enable newly joined peers
to gain synchronization by downloading the
most recent hash lists, signatures, and either
blocks or their (small) hash values. The syn-
chronization is completed as soon as the seals
in the downloaded signatures cover all chains.
The well known coupon collector problem pro-
vides an approximation5 for the expected num-
ber of downloads as also suggested in [5]. A
peer has to download about nlog(n)

λ signatures.
Fewer chains in ALPS compared to schemes
like Biba make this approach viable in prac-
tice. Using the power of two choices [18] gives
further improvements as depicted in Figure 5.
For example, with n = 64 chains and λ = 4
seals in a signature, a peer has to download
4.6 times as many seals as there are chains to
synchronize (296 seals in total). In contrast,
getting the current boundary from the source
would only require the download of a single
seal per chain. By balancing the use of seals in
signatures, i.e., generating several signatures
and choosing the one with seals from chains
the least used, peers synchronize more quickly.
Balancing among two signatures yields a ratio
of 3.3, while 16 signatures lead to a ratio of 1.6.

5 Conclusions

Signatures schemes are ubiquitous in todays
Internet. But size and computational com-
plexity limit there use to signing larger blocks
of data. In contrast, applications like peer-
to-peer live streaming and peer-to-peer gam-
ing aim at working with small data blocks
to quickly forward new data. Otherwise, de-
lays sum up with each hop in the peer-to-

5Note that seals within a signature are from dis-
tinct chains, leading to slightly smaller expectations
compared to the coupon collector problem.

9



Figure 5: Expected number of seals required per
chain to synchronize with 8, 16, 32 and 64 chains
and balancing with 1 to 32 trials.

peer overlay. And in any case, data needs
to be authenticated before forwarding. The
ALPS signature scheme is proposed to make
low-delay and authenticated peer-to-peer live
streaming feasible. ALPS features small sig-
natures, fast signature generation and verifica-
tion, and small public keys. We further incor-
porated ALPS into Pulsar, an open and ongo-
ing research effort for a peer-to-peer streaming
platform.

References

[1] L. Lamport. Constructing digital signatures from
a one way function. Technical Report CSL-98, SRI
International, October 1979.

[2] R. Merkle. Secrecy, Authentication, and Public
Key Systems. UMI Research Press, 1982.

[3] D. Bleichenbacher, U. Maurer. Optimal Tree-
Based One-time Digital Signature Schemes.
STACS’96, LNCS, Vol. 1046, Springer-Verlag,
1996.

[4] D. Bleichenbacher, U. Maurer. Directed Acyclic
Graphs, One-way Functions and Digital Signa-
tures. In Advances in Cryptology - Crypto’94,
LNCS, Vol. 839, Springer-Verlag, 1994.

[5] A. Perrig. The BiBa one-time signature and broad-
cast authentication protocol. In Eighth ACM Con-
ference on Computer and Communication Secu-
rity. ACM, November 5–8 2001.

[6] L. Reyzin, N. Reyzin. Better than BiBa: Short
One-time Signatures with Fast Signing and Veri-

fying. In Proceedings of 7th Australasian Confer-
ence on Information Security and Privacy, LNCS,
Vol. 2384, Springer-Verlag, 2002.

[7] M. Mitzenmacher, A. Perrig. Bounds and improve-
ments for BiBa signature schemes. Technical Re-
port (TR-02-02), Harvard University, 2002.

[8] J. Kelsey, B. Schneier. Second Preimages on n-
bit Hash Functions for Much Less than 2n Work.
In Advances in Cryptology - EUROCRYPT 2005,
LNCS, Vol. 3494, Springer-Verlag, 2005.

[9] X. Wang, D. Feng, X. Lai, H. Yu. Collisions
for Hash Functions MD4, MD5, HAVAL-128 and
RIPEMD. Cryptology ePrint Archive, Report
2004/199.

[10] N. Courtois, L. Goubin, J Patarin. Quartz, 128-
bit long digital signatures. Rsa Conference 2001,
LNCS, Vol. 2020, Springer-Verlag, 2001.

[11] N. Courtois, M. Finiasz, N. Sendrier. How
to achieve a McEliece-based Digital Signature
Scheme. In Advances in Cryptology - ASI-
ACRYPT 2001, LNCS, Vol. 2248, Springer-Verlag,
2001.

[12] A. Perrig, R. Canetti, J.D. Tygar, D. Song. The
TESLA Broadcast Authentication Protocol. In
Cryptobytes, Vol. 5, No. 2, RSA Laboratories,
2002.

[13] J.M. Park, E. Chong, H. Siegel. Effcient multi-
cast packet authentication using signature amor-
tization. In Proceedings of IEEE Symposium on
Security and Privacy, 2002.

[14] S. Miner, J. Staddon. Graph-based authentication
of digital streams. In Proceedings of the IEEE
Symposium on Research in Security and Privacy,
2001.

[15] R. Gennaro, P. Rohatgi. How to sign digital
streams. In Advances in Cryptology CRYPTO97,
LNCS, Vol. 1294, Springer-Verlag, 1997.

[16] C.K. Wong, S. Lam. Digital Signatures for Flows
and Multicasts. In IEEE/ACM Transactions on
Networking, Vol. 7, 1999.

[17] R. Canetti, J. Garay, G. Itkis, D. Micciancio,
M. Naor, B. Pinkas. Multicast Security: A Taxon-
omy and Some Efficient Constructions. In IEEE
Infocom, LNCS, Vol. 1294, Springer-Verlag, 1999.

[18] Y. Azar, A. Z. Broder, A. R. Karlin, E. Upfal.
Balanced allocations. In SIAM Journal on Com-
puting, Vol. 29, 2000.

10


