
Theoretical Computer Science 509 (2013) 40–50

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Symmetry breaking depending on the chromatic number or the
neighborhood growth✩

Johannes Schneider a,∗,1, Michael Elkin b, Roger Wattenhofer a
a Computer Eng. and Networks Lab., 8092 Zurich, Switzerland
b Department of Computer Science, Ben-Gurion Univ., Israel

a b s t r a c t

Wedeterministically compute a∆+1 coloring and amaximal independent set(MIS) in time
O(∆1/2+Θ(1/

√
h)

+ log∗ n) for∆1+i ≤ ∆1+i/h, where∆j is defined as themaximal number of
nodes within distance j for a node and ∆ := ∆1. Our greedy coloring and MIS algorithms
improve the state-of-the-art algorithms running inO(∆+ log∗ n) for a large class of graphs,
i.e., graphs of (moderate) neighborhood growth with h ≥ 36. We also state and analyze a
randomized coloring algorithm in terms of the chromatic number, the run time and the
used colors. Our algorithm runs in time O(logχ + log∗ n) for ∆ ∈ Ω(log1+1/ log∗ n n) and
χ ∈ O(∆/ log1+1/ log∗ n n). For graphs of polylogarithmic chromatic number the analysis
reveals an exponential gap compared to the fastest ∆ + 1 coloring algorithm running in
time O(log∆ +

√
log n). The algorithm works without knowledge of χ and uses less than

∆ colors, i.e., (1−1/O(χ))∆with high probability. To the best of our knowledge this is the
first distributed algorithm for (such) general graphs taking the chromatic number χ into
account. We also improve on the state of the art deterministic computation of (2, c)-ruling
sets.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The coloring and maximal independent set problems are typical symmetry breaking tasks. Coloring is a fundamental
problem with many applications. Unfortunately, even in a centralized setting, where the whole graph is known,
approximating the chromatic number (the minimal number of needed colors), is currently computationally infeasible for
general graphs and believed to take exponential running time. Thus, basically any reduction of the used colors below ∆ + 1
– even just to ∆ – is non-trivial in general. Looking at the problem in a distributed setting, i.e., without global knowledge of
the graph, makes the problem harder, since coloring is not a purely ‘‘local’’ problem, i.e., nodes that are far from each other
have an impact on each other (and the chromatic number). Therefore, it is not surprising that all previous work has targeted
computing a ∆ + 1 coloring in general graphs as fast as possible (or resorted to very restricted graph classes). However,
this somehow overlooks the original goal of the coloring problem, i.e., use as few colors as possible. Though in distributed
computing the focus is often on communication, inmany cases keeping the number of colors low outweighs the importance
of minimizing communication. For example, a TDMA schedule can be derived from a (2-hop) coloring. The length of the
schedule (and thus the throughput of the network) is determined by the number of employed colors.

✩ This is the journal version of [25].
∗ Corresponding author.

E-mail addresses: vollkoff@gmail.com (J. Schneider), elkinm@cs.bgu.ac.il (M. Elkin), wattenhofer@tik.ee.ethz.ch (R. Wattenhofer).
1 Current address: IBM Research, Zurich, Switzerland.

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.09.004

http://dx.doi.org/10.1016/j.tcs.2012.09.004
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:vollkoff@gmail.com
mailto:elkinm@cs.bgu.ac.il
mailto:wattenhofer@tik.ee.ethz.ch
http://dx.doi.org/10.1016/j.tcs.2012.09.004

J. Schneider et al. / Theoretical Computer Science 509 (2013) 40–50 41

In this paper, we also consider fast distributed computation of ∆ + 1 colorings and maximal independent sets in the
first part. The algorithms for both problems are similar. In the second part we are interested in both using less than ∆ + 1
colors and efficient computation. For sparse graphs, such as trees and planar graphs, as well as for dense graphs, e.g., cliques
and unit disk graphs (UDG), efficient distributed algorithms are known that have both ‘‘good’’ time complexity and ‘‘good’’
approximation ratio of the chromatic number. Sparse graphs typically restrict the number of edges to be linear in the number
of nodes. Unit disk graphs restrict the number of independent nodeswithin distance i to be boundedby apolynomial function
f (i). Our requirements on the graph aremuch less stringent than for UDGs, i.e., we do not restrict the number of independent
nodes to grow dependent on the distance only. We allow for growth of the neighborhood dependent on the distance and
also on ∆, i.e., n. For illustration, if the number of nodes within distance i + 1 is bounded by ∆1+i/10 our deterministic MIS
algorithm improves on the state-of-the-art algorithms running in linear time in ∆ by more than a factor of ∆1/10. Note, for
any graph the size of the neighborhoodwithin distance 1+ i is bounded by∆1+i. Additionally, if the size of the neighborhood
within distance i of a graph is lower bounded by∆h·i for an arbitrary constant h then the graph can have only small diameter,
i.e., O(log∆). In such a case a trivial algorithm collecting the whole graph would allow for a coloring exponentially faster
than the current state of the art deterministic algorithms running in time O(∆ + log∗ n) for small ∆ already. Therefore, we
believe that for many graphs that are considered ‘‘difficult’’ to color we significantly improve on the best known algorithms.
The guarantee on the number of used colors is the same as in previous work, i.e., ∆+1. Despite the hardness of the coloring
problem, intuitively, it should be possible to color a graph with small chromatic number with fewer colors and also a lot
faster than a graph with large chromatic number. Our (randomized) algorithm in the second part of the paper shows that
this in indeed the case. The algorithm works without knowledge of the chromatic number χ .

2. Model and definitions

Communication among nodes is done in synchronous rounds without collisions. Each node can exchange one distinct
message with each neighbor. Nodes start the algorithm concurrently. The communication network is modeled with a graph
G = (V , E). The distance between two nodes u, v is given by the length of the shortest path between nodes u and v. For a
node v its neighborhood N r(v) represents all nodes within distance r of v (not including v itself). By N(v) we denote N1(v)
and by N+(v) := N(v) ∪ v. The degree d(v) of a node v is defined as |N(v)|, d+(v) := |N+(v)|, ∆ := maxu∈V d(u) and
∆i := maxu∈V |N i(u)|. By Gi

= (V , E i) of G = (V , E) we denote the graph where for each node v ∈ V there is an edge to
each node u ∈ N i(v). In a (vertex) coloring any two adjacent nodes u, v have a different color. A set T ⊆ V is said to be
independent in G if no two nodes u, v ∈ T are neighbors. We consider a slight generalization of ruling sets: A set R ⊆ V is
(α, β)-ruling for W if every two nodes in the set R have distance at least α in G and any node w ∈ W not in the set R has a
node in the set Rwithin distance β . An (α, β)-ruling set is short for an (α, β)-ruling for V (the set of all nodes). A (2,1)-ruling
set is called a maximal independent set (MIS). The function log∗ n states how often one has to take the (iterated) logarithm
to get at most 1, i.e., log(log∗ n) n ≤ 1. The term ‘‘with high probability’’ abbreviated by w.h.p. denotes a number 1 − 1/nc for
an arbitrary constant c > 1.

Every node knows an upper bound on the total number of nodes n and themaximal degree∆. This assumption is probably
not necessary using techniques from [16]. We also use the following Chernoff bound:

Theorem 1. The probability Pr(X < (1 − δ)a) that the number X of occurred independent events Xi ∈ {0, 1}, i.e., X :=


Xi, is
less than (1 − δ) times a with a ≤ E[X] can be upper bounded by e−aδ2/2. The probability Pr(X > (1 + δ)b) that the sum X is
more than (1 + δ)b with b ≥ E[X] with δ ∈ [0, 1] can be upper bounded by e−bδ2/3.

Corollary 2. The probability that the number X of occurred independent events Xi ∈ {0, 1}, i.e., X :=


Xi, is less than E[X]/2
is at most e−E[X]/8 and the probability that is more than 3E[X]/2 is bounded by e−E[X]/12.

3. Related work

Distributed coloring is a well studied problem in general graphs in the message passing model, e.g., [6,7,24,22,19,18] –
see also Table 1. There is a tradeoff between the number of used colors and the running time of an algorithm. Even allowing
a constant factor more colors can have a dramatic influence on the running time of a coloring algorithm, i.e., in [24] the
gap between the running time of an O(∆) and an ∆ + 1 coloring algorithm can be more than exponential for randomized
algorithms. More precisely, a ∆ + 1 coloring is computed in time O(log∆ +

√
log n) and an O(∆ + log1+1/ log∗ n n) coloring

in time O(log∗ n). When using O(∆2) colors, a coloring can be computed in time O(log∗ n) [19], which is asymptotically
optimal for constant degree graphs due to a lower bound of timeΩ(log∗ n) for three coloring of an n-cycle. Using O(∆1+o(1))
colors [7] gives a deterministic algorithm running in time O(f (∆) log∆ log n) where f (∆) = ω(1) is an arbitrarily slow
growing function in ∆. To this date, the fastest deterministic algorithm to compute a ∆ + 1 coloring in general graphs
requires O(∆ + log∗ n) [6,17] or nO(1)/

√
log n time [22]. For a (d, c) cluster decomposition, each cluster has diameter d and if

all nodes in a cluster are assigned the same color then the graph can be colored with c colors such that adjacent nodes from
distinct clusters have distinct colors. Then all clusters of the same color compute a solution in parallel, e.g., the computation is
carried out by a leader. The computation of the decomposition is quite involvedmerging clusters and recursively computing
a decomposition on the resulting graph of merged clusters until the maximum degree in the graph is sufficiently small. In

42 J. Schneider et al. / Theoretical Computer Science 509 (2013) 40–50

Table 1
Comparison of coloring algorithms, where c is an arbitrary constant.

Colors Type Time

(1 − 1/O(χ))(∆ + 1) ra. O(logχ + log∗ n) [This paper]
for ∆ ∈ Ω(log1+1/ log∗ n n) and χ ∈ O(∆/ log1+1/ log∗ n n)

∆ + 1

ra. O(log∆ +
√
log n) [24]

ra. O(log n) [20,1,14]
det. O(∆1/2+Θ(1/

√
h)

+ log∗ n) [This paper] for |N i+1(v)| ≤ ∆1+i/h

det. O(∆ + log∗ n) [17,6]
det. O(2

√
log n) [22]

O(∆ + log1+1/ log∗ n) ra. O(log∗ n)[24]
O(∆) det. O(∆c log n)[7]
O(∆ log(c) n + log1+1/c n) ra. O(1) [24]
O(∆1+o(1)) det. O(log∆ log n)[7]
O(∆2) det. O(log∗ n) [19,21]

contrast we repeatedly (but non-recursively) compute network decompositions differently, i.e., using [24]. The algorithms
[6,17] improved on [18] by a factor of log∆ through employing defective colorings, i.e., several nodes initially choose the
same color. However, through multiple iterations the number of adjacent nodes with the same color is reduced until a
proper coloring is achieved. In [7] defective colorings were combined with tree decompositions [5]. In comparison, our
deterministic algorithm improves the linear running time in ∆ by a factor ∆d for a constant d for a large class of graphs by
iteratively computing ruling sets, such that a node in the ruling set can color its two hop neighborhood.

Overall∆+1 coloring has probably attractedmore attention than employing O(∆) or more colors. Using less than∆+1
colors is not possible for complete graphs—not even in a centralized setting, where the entire graph is known. An algorithm
in [15] parallelizes Brooks’ sequential algorithm to obtain a ∆ coloring from a ∆ + 1 coloring. In a centralized setting the
authors of [2] showed how to approximate a three-colorable graph using O(n0.2111) colors. Some centralized algorithms
iteratively compute large independent sets, e.g., [8]. It seems tempting to apply the same ideas in a distributed setting,
e.g., a parallel minimum greedy algorithm for computing large independent sets is given in [13]. It has approximation ratio
(∆+2)/3. However, the algorithm runs in time polynomial in∆ and logarithmic in n and thus is far from efficient. For some
restricted graph classes, there are algorithms that allow for better approximations in a distributed setting. A ∆/k coloring
for ∆ ∈ O(log1+c n) for a constant c with k ≤ c1(c) log∆ where constant c1 depends on c is given in [12]. It works for
quite restricted graphs (only), i.e., graphs that are ∆-regular, triangle free and ∆ ∈ O(log1+c n). Throughout the algorithm
a node increases its probability to be active. An active node chooses a color uniformly at random. The algorithm runs in
O(k + log n/ log∆) rounds.

Constant approximations of the chromatic number are achieved for growth bounded graphs (e.g. unit disk graphs)
[23] and for many types of sparse graphs [5]. In [9] the existence of graphs of arbitrarily high girth was shown such that
χ ∈ Ω(∆/ log∆). Since graphs of high girth locally look like trees and trees can be colored with two colors only, this
implies that coloring is a non-local phenomenon. Thus, a distributed algorithm that only knows parts of the graph and is
unaware of global parameters such asχ , has a clear disadvantage compared to a centralized algorithm. In [10] a lower bound
is given that any distributed algorithm choosing computing a greedy coloring requires time at least Ω(log n/ log log n) for
some large ∆. Our Algorithm RulingColoring assigns colors greedily.

We give a randomized coloring algorithm in terms of the chromatic number of a graph which uses ideas from [24].
Given a set of colors {0, 1, . . . , f (∆)} for an arbitrary function f with f (x) ≥ x [24] computes an f (x) + 1 coloring. The
run time depends on f , i.e., for f (∆) := ∆ Algorithm DeltaPlus1Coloring [24] takes time O(log∆ +

√
log n). For f (∆) :=

O(∆ + log1+1/ log∗ n n) Algorithm ConstDeltaColoring [24] takes only O(log∗ n) time. Both Algorithms from [24] operate anal-
ogously: In each communication round a node chooses a subset of all available colors and keeps one of the colors, if no
neighbor has chosen the same color. In [26] the message size of [24] is improved while maintaining the time complexity.

The fastest deterministic algorithms for obtaining aMIS for graphswith∆ ∈ O(2
√
log n) set actually start out by computing

a coloring [6,17]. Once the coloring is obtained a node with color i joins theMIS in round i, if none of its neighbors has joined
already. Thus their running time is the time to compute the coloring plus the number of used colors, i.e., O(∆ + log∗ n). In
contrast our MIS algorithm for graphs of moderate expansion computes a MIS directly. [22] gives the fastest deterministic
algorithm for ∆ + 1 coloring and MIS for graphs with ∆ ∈ Ω(2

√
n). It recursively computes (d, c)-cluster decompositions.

A (α, β)-ruling set [4] defines a network decomposition, such that any component has diameter at least α and at most β .
In [4] it is shown how to compute a (k, k log n)-ruling set in time O(k log n). In [11] a (1, log log∆)-ruling set is computed in
time O(log log∆) such that each node in the ruling set has at most O(log5 n) neighbors also in the ruling set. In [24] (2, c)-
ruling sets are computed in time 2cd1/c given a d-coloring of the graph or, more generally, a (k+1, ck)-ruling set in G in time
k ·2cd1/c given a d-coloring of the graph Gk+1. Such ruling sets allow to obtain network decompositions (and covers) of equal
diameter (up to a constant factor). Such a cover is of interest if the main concern is communication time among all nodes

J. Schneider et al. / Theoretical Computer Science 509 (2013) 40–50 43

within a cluster. We improve on this result by computing a (k + 1, ck)-ruling set in G in time k · cd1/c given a d-coloring of
the graph Gk.

4. Ruling sets

Given a d-coloring for a set W we compute a (2, c)-ruling set for W in time c · d1/c using Algorithm RulingSet with
node set W having colors from [0, d − 1]. In short the algorithm operates as follows: Partition the vertex set W into
W0 ∪ W1 ∪ · · · ∪ Wt−1 vertices for t := d1/c . SetW0 contains all vertices of colors {0, . . . , d/t − 1},W1 contains all vertices
of colors {d/t, . . . , 2d/t − 1}, etc. Recurse in each Wi to compute (in parallel) ruling set Ui for each Wi. Set U ′

0 := U0. For
each vertex u1 ∈ U1 that has a neighbor in U ′

0, eliminate u1. Denote by U ′

1 the subset of vertices that remained in U1 after
this process. For each u2 ∈ U2 that has a neighbor in (U ′

0 ∪U ′

1) do the same. Afterwards, for each u3 ∈ U3 that has a neighbor
in (U ′

0 ∪ U ′

1 ∪ U ′

2) do the same. Continue in this way for t − 2 iterations. All nodes V \ W stay inactive, i.e., do not take part
in the computation.

Algorithm (2, c)-RulingSet
Given nodes W with colors from [a, b] compute ruling set U
1: t := (b − a)1/c
2: if t < 2 then
3: U := W
4: else
5: ri := [i · t, (i + 1) · t − 1] {Colors inWi}
6: Wi := {v ∈ W |color(v) ∈ ri}
7: Ui := Result of RulingSet(Wi, ri) {Computed in parallel ∀i ∈ [0, (b − a)/t − 1]}
8: U := U0
9: for i = 1 to t − 1 do

10: if (v ∈ Ui) ∧ (@u ∈ (N(v) ∩ U)) then U := U ∪ v end if
11: end for
12: end if

Theorem 3. Given a d-coloring of a graph Algorithm RulingSet computes a (2, c)-ruling set for W in time c · d1/c .

LetW j
i be a set of nodeswith colors in r ji performing the jth recursive call to Algorithm RulingSet with parameters (W j

i , r
j
i).

Analogously, let U j
i be the returned ruling set of that call. Let t j be the t used in the jth recursion, i.e. t j := (((b− a)1/c)1/c)...,

where the exponent 1/c is applied j times.

Proof. Given a d-coloring for the first call, we have for the range of colors b − a ≤ d. The time complexity is given by the
following recursion: T (d) = T (d/t) + (t − 1). This equation is due to the following observations: Every iteration reduces
the problem size by a factor t , i.e., the nodes are partitioned according to their colors into t sets. Computing a ruling set for
recursion j requires iterating through t − 1 sets. On the bottom level of the recursion, we just take the entire color class.
We obtain a ruling set in time T (d) = T (d/t) + (t − 1) ≤ logt d · t ≤ c · d1/c . Thus the total number of recursions is
c ≤ logt d. Next, we prove correctness, i.e. that the distance between two nodes in the ruling sets is at most c and at least 2.
In the last (cth) recursion we have tc < 2 and U c

i := W with W := {v} for some node v. (The case W = {} is trivial.) In the
second to last iteration c − 1 we have tc−1

≥ 2. The result U c−1
i is initialized to U c

0 . When iterating through all sets U c
k with

k ∈ [1, tc−1
− 1], a node v ∈ U c

k is either joined U c−1
i or a neighbor u ∈ N(v) has been joined U c−1

i . In the same manner in
the jth (j ≤ c − 2) recursion a node v belonging to set U j+1

i either joined set U j
i or a neighbor u ∈ N(v) joined the set. Since

any two adjacent nodes u, v ∈ W j+1
i have distinct colors, they will not be considered in the same iteration and thus they

will not both be joined U j+1
i . Thus, after c recursions the distance to a node in the ruling set can be at most c and it is also at

least 2. �

Next, we extend Algorithm (2, c)-RulingSet to compute a (k + 1, ck)-ruling set for W ⊆ V in G for an arbitrary integer
k ≥ 1. When computing a (2, c)-ruling set for W it is sufficient if all nodes V \ W remain quiet and all nodes in W
simply communicate with their neighbors being in W . When computing a (k + 1, ck)-ruling set for W with k ≥ 1 in every
communication round in Algorithm (2, c)-RulingSet turns into k communication rounds. Let a step be one communication
round in Algorithm (2, c)-RulingSet and k communication rounds, when computing a (k + 1, ck)-ruling set for W . The first
round is the same as in Algorithm (2, c)-RulingSet followed by k − 1 forwarding rounds, i.e., in round l ∈ [2, k − 1] a node
simply retransmits some values it has received in a prior round m with m < l. More precisely, in the lth iteration any node
v ∈ V must forward the smallest color for every set W j

i it has received during any of the communication rounds m < l in
this step. Thus, a node only joins the ruling set, if its color is smallest among any color received of a nodeW j

i within distance
k. Furthermore, if a node u is joined the ruling set during this step then its neighbors w ∈ N(u) forward that some node has

44 J. Schneider et al. / Theoretical Computer Science 509 (2013) 40–50

joined the ruling set (It does not matter which node joined). Next, the neighbors of w forward this information and so on
for k − 2 rounds, i.e., until the step is over. When a node u becomes aware that some node w ∈ Nk(v) is being joined, the
ruling set stops attempting to join the MIS and only forwards messages.

Theorem 4. Given a d-coloring of nodes W in a graph Gk the extended Algorithm RulingSet computes a (k+ 1, ck)-ruling set for
W in G in time (k + 1)c · d1/c for an arbitrary integer k ≥ 1.

The proof is analogous to Theorem 3. We restate the parts that require adaptation.

Proof. The time complexity is given by the following recursion: T (d) = T (d/t) + k · (t − 1). This equation is due to the
following observations: Every iteration reduces the problem size by a factor t , i.e., the nodes are partitioned according to
their colors into t sets. Computing a ruling set for recursion j requires iterating through (t − 1) sets. The multiplication
with k follows since the exchange of a message for two adjacent nodes u, v in Gk requires not one round but k rounds of
communication (in G). On the bottom level of the recursion, i.e., the cth recursion, we just take the entire color class. A ruling
set is computed in time T (d) = T (d/t) + k(t − 1) ≤ k logt d · t ≤ kc · d1/c .

By definition of the algorithm a node w ∈ W joins the ruling set if and only if its color is smallest for all nodes in W
within distance k. Since we are given a coloring of the graph Gk all nodes within distance k must have distinct colors and,
therefore, if a node w ∈ W has the smallest color within distance k from it then there can be no other node u ∈ Nk(w)
having the same color. If node w having the smallest color joins the ruling set then this information is forwarded up to a
distance k from u and thus no node within distance k in G from node w joins the ruling set after w is joined. Therefore, the
distance between two nodes in the ruling set must be at least k + 1. For graph G for a recursion j either a node v ∈ W j

i joins
the ruling set U j

i or it gets a node u ∈ Nk(v) at distance at most k in the ruling set u ∈ W j
i . �

In fact, it is possible to decrease the running time by a factor of a by increasing the bound on the maximal distance
to a node in the ruling set by the same factor a. For simplicity we only look at (2, ac)-ruling sets for V running in time
c/a · d1/c . The algorithm RulingSetTradeOff given next is similar to the original one but contains one additional step to take
into account the reduction in the running time by a factor of a. Instead of dividing the nodes into t sets and going through all
t sets sequentially, we combine a of the t sets into a (2, a)-ruling set W ′

l for Wla,Wla+1, . . . ,W(l+1)a−1 with l ∈ [0, t/a − 1]
in one round. Then we continue forW ′

l in the same manner as for a setWi in the original algorithm to get the ruling set Ul.
Given a d-coloring we partition the vertex set V (=: W) into W0 ∪ W1 ∪ · · · ∪ Wt−1 vertices for t := d1/c . Set W0

contains all vertices of colors {0, . . . , d/t − 1}, W1 contains all vertices of colors {d/t, . . . , 2d/t + 1}, etc. Set W ′

l := Wa·l
with 0 ≤ l ≤ t/a−1. For each vertexw ∈ Wal+i with 1 ≤ i < a addw toW ′

l , if there is no neighbor u ∈ (Wal+j∩N(w))with
j ∈ [l · a, i ≤ (l + 1)a − 1]. Recurse in each W ′

l to compute (in parallel) ruling set Ul. Set U ′

0 := U0. For each vertex u1 ∈ U1
that has a neighbor in U ′

0, eliminate u1. Denote by U ′

1 the subset of vertices that remained in U1 after this process. For each
u2 ∈ U2 that has a neighbor in (U ′

0 ∪ U ′

1) do the same. Afterwards, for each u3 ∈ U3 that has a neighbor in (U ′

0 ∪ U ′

1 ∪ U ′

2) do
the same. Continue in this way for t/a − 1 iterations.

Theorem 5. Given a d-coloring of a graph Algorithm RulingSetTradeOff computes a (2, ac)-ruling set in time c/a · d1/c .

The proof is analogous to Theorem 3. We restate the parts that require adaptation.

Proof. For a recursion j every node v ∈ W j
al+i (for some l, i) gets a node u ∈ Na

+
(v) at distance at most a being joined some

W ′l
k . This follows, since nodes W j

al are joined W ′

l and a node w ∈ W j
al+i with i ∈ [1, a − 1] is not joined only if there is a

neighbor u ∈ N(w) being also in W j
al+i−1. Thus, the longest path P = (x0, x1, . . . , xk) from a node x0 ∈ W j

al+i not in W ′

l to a
node xk ∈ W ′

l is given by xi ∈ W j
al+o for i ∈ [0, a], i.e. P is of length k := a.

The time complexity is given by the following recursion: T (d) = T (d/t)+ (t/a−1). This equation is due to the following
observations: Every iteration reduces the problem size by a factor t , i.e., the nodes are partitioned according to their colors
into t/a setsWl. Computing setsW ′

l from setsWal+i takes O(1) time. Computing a ruling set for recursion j requires iterating
through (t/a−1) sets. On the bottom level of the recursion, i.e., the cth recursion, just take the entire color class. We obtain
a ruling set in time T (d) = T (d/t) + (t/a − 1) ≤ logt d · t/a = c/a · d1/c . �

5. Deterministic coloring

For coloring one can either let each node decide itself on a color or decompose the graph into (disjoint) clusters and
elect a leader to coordinate the coloring in a cluster. Our deterministic algorithm follows the later strategy by iteratively
computing ruling sets. Each node in the set can color itself and its neighbors in a greedymanner. Tomake fast progress, only
nodes can join the ruling set that color many nodes. Once no node has sufficiently many neighbors to color, i.e., less than ∆ϵ

(for a parameter ϵ of the algorithm), the nodes switch to another algorithm [6,17].
When a node v is in the ruling set, it gets to know all nodes N2(v) and assigns colors to at least ∆ϵ uncolored nodes by

taking into account previously assigned colors. Node v can assign colors to vertices of N+(v) locally. It does so in a greedy
manner, i.e., it looks at a node u ∈ N+(v) and chooses the smallest color that is not already given to a node w ∈ N(u).
Potentially, two nearby nodes u, v in the ruling set might concurrently assign the same colors to adjacent nodes, e.g., node
u assigns color 1 to node x, node v assigns 1 to y and x, y are neighbors. To prevent this problem any two nodes u, v in

J. Schneider et al. / Theoretical Computer Science 509 (2013) 40–50 45

the ruling-set must have distance at least 4. Thus, the algorithm computes a (4, 3c)- ruling set, where c is a parameter of
the Algorithm RulingSet in the previous section. Computing a (4, 3c)-ruling set in turn demands that two nodes u, v within
distance 3 have distinct labels, therefore we start out by computing an O(|N3(v)|2) coloring in the graph G3 using [19]
(or [7] to compute an O(|N3(v)|) coloring). [19] takes a graph H and computes a O(∆2) coloring in time O(log∗ n).

We call a node u active if color col(u) > ∆. Nodes that are not active are removed from the graph, i.e. do not communicate
any more. After the initial coloring, a node participates in iteratively computing (4, 3c)-ruling sets. As soon as a node v has
less than ∆ϵ active neighbors for some parameter ϵ it does not join the ruling set itself but still forwards messages and
still might get colored by a neighbor. As soon as all nodes w ∈ N3(u) within distance 3 have less than ∆ϵ active neighbors
node w switches to another algorithm, i.e. it executes [6] or [17]. [6,17] compute a ∆ + 1 coloring for a graph H in time
O(∆ + log∗ n). Nodes might end the while loop at different times. However, [6,17] assume a synchronous start of all nodes.
To deal with synchronization issues we can either execute the algorithm in ‘‘lock step’’, i.e. each loop is executed for a fixed
number of rounds, or, alternatively, use a well-known synchronizer, e.g. an α synchronizer [3]. We decided on the latter
option, i.e., a node executing algorithm [6] only transmits a message (say the transmission is the tth step of the algorithm),
if it has received all messages by its active neighbors that is supposed to have received due to [6] (or [17]) up to step t − 1.
Using [6,17] the remaining active nodes U compute a∆ϵ

+1 coloring among themselves, i.e., disregarding non-active nodes
u ∈ V \ U , which have already obtained a color col(u) ≤ ∆. Thus, each node v ∈ U obtains a color col′(v) ∈ [0, ∆ϵ

]. As a
last step we sequentially go through all ∆ϵ

+ 1 colors and let node v ∈ U with color col′(v) = i choose greedily a final color
col(v) ∈ [0, ∆] in round i, taking into account all previously assigned colors col(u) with u ∈ V .

Let Nact
+

(v) be all active nodes u ∈ N+(v). Set dact
+

(v) := |Nact
+

(v)|.
Before elaborating on the running time for Algorithm RulingColoring we address correctness.

Theorem 6. Algorithm RulingColoring computes a proper ∆ + 1 coloring.

Proof. By definition of a (4, 3c)-ruling set R any two nodes u, v ∈ R have distance 4. Therefore, if all nodes in the ruling set
color their neighbors, therewill not be any color conflicts. The remaining nodes u ∈ U , i.e., thosewith less than∆ϵ neighbors
of color larger than∆, are assigned a color col′(u) ∈ [0, ∆ϵ

] (see Theorem 4.6 in [6]). If a node u ∈ U with col′(u) = i chooses
a final color col(u) in round i, no neighborw ∈ N(u)makes a choice at the same time (since all neighbors have distinct colors
col′(w) ≠ col′(u)) and thus the resulting coloring is proper. �

Algorithm RulingColoring for graph Gwith ∆i+1 ≤ ∆1+i/h

1: ϵ := 1/2 +
3h+2

√
h+3

h3/2

2: col(v) := Compute an O((∆3)
2) coloring in the graph G3 using [19]

3: while ∃u ∈ N3
+
(v) s.t. dact

+
(u) ≥ ∆ϵ do

4: Compute a (4, 3
√

h

)-ruling set R for active nodes

5: if v ∈ R then
6: (Greedily) color all nodes u ∈ Nact

+
(v)

7: end if
8: end while
9: if v is active then

10: col′(v) := color from [0, ∆ϵ
] using [6]

11: for i = 0..∆ϵ do
12: if col′(v) = i then
13: Greedily pick color col(v) ∈ [0, ∆], s.t. @u ∈ N(v) with col(u) = col(v)
14: end if
15: end for
16: end if

Theorem 7. Algorithm RulingColoring computes a ∆ + 1 coloring in time O(∆1/2+Θ(1/
√
h)

+ log∗ n) for ∆i+1 ≤ ∆1+i/h. The
running time is sublinear in ∆ for h ≥ 36.

Proof. Correctness follows by Theorem 6. Since we compute every ruling set for all active nodes v with dact
+

(u) ≥ ∆ϵ ,
any node joining the ruling set colors ∆ϵ

+ 1 nodes, i.e., renders them inactive. Every active node (participating in the
computation of a ruling set) gets a node in the ruling set within distance 3c. Therefore, any node that has more than ∆ϵ

active neighbors gets at least ∆ϵ inactive nodes within distance 3c + 1 by computing one ruling set. The total time until
node v gets colored with a color of at most ∆ or has less than ∆ϵ neighbors with color larger ∆ is given by the following
terms: The time it takes to compute a O(|N3(v)|2) coloring using [19], i.e., O(log∗ n). In addition, the total number of nodes
|N3c+1(v)| ≤ ∆3c+1 within distance 3c + 1 divided by the number of nodes that get their final color for a computation of a
ruling set, i.e., at least ∆ϵ , multiplied by the time it takes to color the nodes and to compute one ruling set, i.e., O(c · (∆3)

2/c)
(see Theorem 4). In total this results in timeO(c∆3c+1/∆

ϵ
·(∆3)

2/c). To compute color col′(u) for the remaining nodes u ∈ U ,

46 J. Schneider et al. / Theoretical Computer Science 509 (2013) 40–50

i.e., those with at most ∆ϵ nodes w ∈ N+(u) with color larger ∆, using [6] (or [17]) takes time O(∆ϵ
+ log∗ n). Considering

each col′(u) ∈ [0, ∆ϵ
] in a distinct round requires time O(∆ϵ). This yields O(c∆3c+1 · (∆3)

2/c/∆ϵ
+ ∆ϵ

+ log∗ n). This term
is minimized for c∆3c+1 · (∆3)

2/c/∆ϵ
= ∆ϵ . Neglecting the factor c , using ∆i+1 = ∆1+i/h and taking the logarithm, we get

1 + 3c/h + 2(1 + 2/h)/c − ϵ = ϵ, i.e., ϵ = 1/2 +
3c2+2h+4

2ch . Clearly, the larger h the smaller the expansion and thus the
faster our coloring algorithm runs. Thus, in case h is large, i.e., h /∈ O(1), the time complexity of our algorithm only improves
compared to h being constant. Therefore, assume h ∈ Θ(1). Setting parameter c :=

√
h yields ϵ := 1/2 +

3h+2
√
h+3

h3/2
. We

get running time linear in ∆, i.e., O(∆ + log∗ n), for ϵ = 1 = 1/2 +
5h+4
h3/2

, i.e., h = 26.53 · · · . Since we have c :=
√
h and c

must be an integer, we get c := 6, i.e., a sublinear running time for h ≥ c2 = 36.
Substituting c :=

√
h and ϵ := 1/2 +

5h+4
h3/2

≤ 1/2 + Θ(1/
√
h) in O(c∆3c+1 · (∆3)

2/c/∆ϵ
+ ∆ϵ

+ log∗ n) yields

O(
√
h · ∆1/2+Θ(1/

√
h)

+ log∗ n) = O(∆1/2+Θ(1/
√
h)

+ log∗ n). �

One might start out by computing an O((∆3)
2−a) coloring in the graph G3 using [6] in time O((∆3)

a
+ log∗ n) instead of

an O((∆3)
2

+ log∗ n) coloring using [19]. Depending on the maximal degree ∆, it might be better to compute an (initial)
O(|N3(v)|) coloring in time O((∆3)

c0 log∆3 log n) for an arbitrary small constant c0 using [7]. However, this only influences
the constants.

Algorithm RulingColoring as well as the fastest algorithm for large ∆ [22] use large messages, i.e., potentially more than
polylogarithmic in n. In particular the initial coloring in G3 using [19] or [7] and the assignment of colors by nodes in the
ruling set requires collecting all connectivity information up to distance 3 of a node.

6. Deterministic MIS

The MIS algorithm RulingMIS operates in a similar manner as the previously described coloring algorithm. We start out
with a coloring. A node v iteratively participates in computing (2, c)-ruling sets, which are added to the MIS, as long as
there are at least ∆ϵ active nodes u ∈ N+(v). We call a node u active if the node u is not in the MIS and also not adjacent to
a node w ∈ N(u) in the MIS. The remaining nodes are dealt with using [6] or [17] with a synchronizer [3] (as described in
the previous section).

Let Nact
+

(v) be all active nodes u ∈ N+(v). Set dact
+

(v) := |Nact
+

(v)|.

Algorithm RulingMIS for graph G with ∆i+1 ≤ ∆1+i/h

1: ϵ := 1/2 +
2h+

√
h+2

h3/2

2: col(v) := Compute an O(∆2) coloring in the graph G using [19]
3: while (v is active) ∧ (dact

+
(v) ≥ ∆ϵ) do

4: Compute a (2,
√

h

)-ruling set R

5: if v ∈ R then Join MIS end if
6: end while
7: Compute MIS using Algorithm [6] if v is active

Correctness and time complexity for Algorithm RulingMIS are proven analogously to Algorithm RulingColoring.

Theorem 8. Algorithm RulingMIS computes a MIS.

Proof. By definition of a (2, c)-ruling set any two nodes have distance 2. Since nodes in the ruling set join the MIS and their
neighbors become inactive, all nodes in the MIS must have distance at least 2, i.e., are independent. Nodes only become
inactive if they join the MIS or have a neighbor in the MIS. Thus, once a node becomes inactive, it is either in the MIS or has
a neighbor in the MIS. For the remaining nodes a MIS is computed correctly due to Theorem 4.6 in [6]. �

Theorem 9. Algorithm RulingMIS has time complexity O(∆1/2+Θ(1/
√
h)

+ log∗ n) for ∆i+1 ≤ ∆1+i/h. It is sublinear for h ≥ 16.

The proof is analogous to the proof of Theorem 7.

Proof. Correctness follows by Theorem 8. Since we compute ruling sets for all active nodes v with dact
+

(u) ≥ ∆ϵ , any node
joining the ruling set (and thus the MIS) renders ∆ϵ

+ 1 nodes inactive. Any active node (participating in the computation
of a ruling set) either joins the ruling set or gets a neighbor within distance c that is in the ruling set. The total time until
node v becomes inactive or has less than ∆ϵ active neighbors is given by the following terms: The time it takes to compute
a O(|N(v)|2) coloring using [19], i.e., O(log∗ n). In addition, the total number of nodes |Nc+1(v)| ≤ ∆c+1 within distance
c + 1 divided by the number of nodes that get colored for a computation of a ruling set, i.e., at least ∆ϵ

+ 1, multiplied by
the time it takes to color the nodes and to compute one ruling set, i.e., O(c · ∆2/c) (see Theorem 4). To compute a MIS for
the remaining nodes, i.e., at most ∆ϵ neighbors of each node, using [6] (or [17]) takes time O(∆ϵ

+ log∗ n). Thus, overall we
get time O(c∆c+1/∆

ϵ
· ∆2/c

+ ∆ϵ
+ log∗ n). This term is minimized for c∆c+1 · ∆2/c/∆ϵ

= ∆ϵ . Neglecting the factor c ,

J. Schneider et al. / Theoretical Computer Science 509 (2013) 40–50 47

using ∆i+1 = ∆1+i/h and taking the logarithm, we get ϵ = 1/2 +
c2+2h
2ch . Clearly, the larger h the smaller the expansion and

thus the faster our MIS algorithm runs. Therefore, in case h is large, i.e., h /∈ O(1), the time complexity of our algorithm only
improves compared to h being constant. Therefore, assume h ∈ O(1). Setting parameter c :=

√
h yields ϵ = 1/2 +

3h
2h3/2

.

The time complexity becomes O(∆1/2+Θ(1/
√
h)

+ log∗ n), which is sublinear in ∆ for h > 9. But since c :=
√
h must be an

integer we get sublinearity for c ≥ 4, i.e. h ≥ 16. �

To improve upon the constants one might compute a different initial coloring (in the same manner as explained for
Algorithm RulingColoring. Algorithm RulingMIS only requires messages of size O(log n).

7. Coloring depending on the chromatic number

The algorithm (but not the analysis) itself is straightforward without many novel ideas. In the first two rounds a node
attempts to get a color from a set with less than ∆ colors. Then, (essentially) coloring algorithms from [24] are used to color
the remaining nodes.

Let ∆0 := ∆ be the maximal size of a neighborhood in the graph, where all nodes are uncolored, and let N0(v) be the
neighbors of node v upon the start of the algorithm. Let N(v) be all uncolored neighbors of node v in the current iteration.
The algorithm lets an uncolored node v be active twice with a fixed constant probability 1/c1. An active node chooses a
random color from all available colors in the interval [0, ∆0/2− 1]. Node v obtains its chosen color and exits the algorithm,
if none of its neighbors N(v) has chosen the same color. After the initial two attempts to get colored each node v computes
the set of all colors C1

N(v) that have been colored by neighbors N(v) in iterations 0 and 1 and how many neighbors d(v) are
left to color. The number of ‘‘conserved’’ (or saved) colors s(v) (compared to a ∆ + 1 coloring) is given by the difference
s(v) := ∆0 − d(v) + |C1

N(v)|. The algorithm can use the conserved colors to either speed up the running time, since more
available colors render the problem simpler, e.g., allow for easier symmetry breaking, or to reduce the number of used colors
as much as possible. In Algorithm FastRandColoring we spend half of the conserved colors for fast execution and preserve
the other half to compute a coloring using ∆0 + 1 − s(v)/2 colors. A node v repeatedly chooses uniformly at random an
available color from [0, ∆0 + 1 − s(v)/2] using Algorithm DeltaPlus1Coloring[24] until the number of available colors is at
least a factor two larger than the number of uncolored neighbors. Afterwards it executes Algorithm ConstantDeltaColoring
[24] using 2∆ colors.

Algorithm FastRandColoring
1: col(v) := none
2: J(v) := [0, ∆0/2 − 1]
3: for i = 0..1 do
4: choice(v) := With probability 1/c1 random color from J(v) else none
5: if choice(v) ≠ none ∧ @u ∈ N(v), s.t.choice(u) = choice(v) ∨ col(u) = choice(v) then col(v) := choice(v) and

exit end if
6: end for
7: C1

N(v) := {col(u)|u ∈ N0(v)} \ none
8: s(v) := ∆0 − d(v) − |C1

N(v)|

9: H(v) := [0, ∆0 + 1 − s(v)/2] \ C1
N(v) {available colors}

10: Execute Algorithm DeltaPlus1Coloring [24] using colors H(v) until |H(v)| ≥ 2d(v)
11: Execute Algorithm ConstDeltaColoring [24] using colors H(v)

We start by giving an outline of the proof. We consider an optimal coloring using χ colors. Let Sc be all nodes with color
c ∈ [0, χ −1]. Note that any two nodes u, v ∈ Sc are independent since they obtain the same color c for an optimal coloring.
Using Algorithm FastRandColoring we prove that for a node w many of its neighbors, i.e. pairs in u, v ∈ (Sc ∩ N(w)) get the
same color. First, we show (Theorem 11) that after the first possibility of obtaining a color, the number of colored neighbors
of a node v is within certain bounds. In the following Theorem 12 we consider an uncolored neighbor u ∈ Sc of v. We show
that for the second possibility of obtaining a color a constant fraction of all colors taken by nodes N(v) ∩ Sc at the first
possibility are not chosen by any neighbor y ∈ N(u) or have been obtained by a node y ∈ N(u) before. This implies that a
neighbor u has a ‘‘good’’ (quantified in Theorem 14) chance to get a color that has been chosen by a node x ∈ (N(v) ∩ Sc).
Every such pair of nodes u, x ∈ (N(v) ∩ Sc) with the same color increases the number of ‘‘conserved’’ colors by 1.

For the analysis we use the following observation: If an event occurs with high probability then conditioning on the fact
that the event actually took place does not alter the probability of other likely events much as shown in the next theorem.
It follows directly from the union-bound.

Theorem 10. For nk0 (dependent) events Ei with i ∈ {0, . . . , nk0 − 1} and constant k0, such that each event Ei occurs with
probability Pr(Ei) ≥ 1 − 1/nk for k > k0, the probability that all events occur is at least 1 − 1/nk−k0 .

Proof. For each Ei, Pr(not Ei) ≤ 1/nk. Hence Pr(∃i s.t. not Ei) ≤ (1/nk) · nk0 = 1/nk−k0 . Therefore, Pr(all Ei occur) ≥

1 − 1/nk−k0 . �

48 J. Schneider et al. / Theoretical Computer Science 509 (2013) 40–50

Consider any coloring of the graph G using the minimal number of colors χ . Let Sc be a set of nodes having color
c ∈ [0, χ − 1] for this coloring. For a node v with color c for this optimal coloring, we have v ∈ Sc . Let choice i ≥ 0
(of colors) be the (i + 1)-st possibility where a node could have chosen a color, i.e., iteration i of the for-loop of Algorithm
FastRandColoring. Let the set C i

S be all distinct colors that have been obtained by a set of nodes S for any choice j ≤ i, i.e.,
C i
S := {c|∃u ∈ S, s.t. col(u) = c after iteration i}. We do not use multisets here, i.e., a color c can only occur once in C i

S . Let
P i
S be all nodes in S that make a choice in iteration i, i.e., P i

S := {c|∃u ∈ S, s.t. choice(u) = c in iteration i}. Let CP i
S be all

colors that have been chosen (but not yet obtained) by a set of nodes S in iteration i, i.e., CP i
S := {c|∃u ∈ P i

S, s.t. choice(u) =

c in iteration i}. By definition, |CP i
S | ≤ |P i

S |.
To deal with the interdependence of nodes we follow the idea of stochastic domination. If X is a sum of random binary

variables Xi ∈ {0, 1}, i.e., X :=


i Xi, with probability distributions A, B and PrA(Xi = 1|X0 = x0, X1 = x1, . . . , Xi−1 =

xi−1) ≥ PrB(Xi = 1|X0 = x0, X1 = x1, . . . , Xi−1 = xi−1) = p for any values of x0, x1, . . . , xi−1, we can apply a Chernoff
bound to lower bound PrA(X ≥ x) by a sum of independent random variables Xi, where Xi = 1 with probability p.

Theorem 11. After choice i ∈ [0, 1] for every node v holds w.h.p.: The colored nodes C1
S of any set S ∈ {Sc ∩N0(v)|c ∈ [0, χ−1]}

or S ∈ {N(v),N0(v)} with |S| ≥ c2 log n fulfill |C1
S | ∈ [|S|/(16c1), 3|S|/c1] with c1 > 32. The number of nodes |P1

S | making a
choice is at least |S|/(4c1) and at most 3|S|/(2c1).

Proof. Consider such a set S of nodes for some node v. For i possibilities to make a choice we expect (up to) i|S|/c1 nodes
to actually make a choice. Using the Chernoff bound from Corollary 2 the number of nodes that choose a color deviates
by no more than one half of the expectation with probability 1 − 2i/8|S|/c1 ≥ 1 − 2i/8c2 log n/c1 = 1 − 1/nc3 for a constant
c3 := ic2/(8c1). Thus, atmost 3i|S|/(2c1) neighbors of v make a choice and potentially get coloredwith probability 1−1/nc3 .
Using Theorem 10 this holds for all nodes with probability 1 − 1/nc3−3, which yields the bounds |P1

S | ≤ 3|S|/(2c1) and
|C1

S | ≤ 3|S|/c1.
For choice iw.h.p. the number of nodes thatmake a choice is therefore in [a, b] := [1/2·(1−3i/(2c1))·|S|/c1, 3|S|/(2c1)]

w.h.p. The lower bound, i.e., a ≤ |P i
S |, follows if we assume that for each choice j < i at most 3|S|/(2c1) nodes get colored,

which happens w.h.p. Thus, after i − 1 choices at least (1 − 3i/(2c1)) · |S| nodes can make a choice, i.e., are still uncolored.
We expect a fraction of 1/c1 of them to choose a color. Using Corollary 2 the number of nodes that make a choice is at least
half the expected number w.h.p. Thus, for choice 1 we have for c1 > 32 and a := (1 − 3/(2c1))/(2c1) · |S| the following:
|S|/(4c1) ≤ a ≤ |P1

S |.
Consider an arbitrary order w0, w1, . . . , w|S|−1 of nodes S. We compute the probability that node wk ∈ S obtains

a distinct color for choice i from all previous nodes w0, w1, . . . , wk−1 ∈ S. The probability is minimized, if all k − 1
nodes have distinct colors and k is large. Since k ≤ b = 3|S|/(2c1) we have p(col(wk) ∈ [0, ∆0/2] \ Sw0,w1,...,wk−1) ≥

p(col(wk) ∈ [0, ∆0/2] \ Sw0,w1,...,wb−1) ≥ 1/c1 · (1 − b/(∆0/2)) ≥ (1 − 3/∆0/(2c1)/(∆0/2))/c1 = 1/c4 with constant
c4 := 1/c1 · (1 − 3/c1). The lower bound for the probability of 1/c4 holds for any k ∈ [0, b − 1] and any outcome for nodes
Sw0,w1,...,wk−1 . Thus, to lower bound the number of distinct colors |CS | that are obtained by nodes in S we assume that the
number of nodes that make a choice is only a and that each node that makes a choice gets a color with probability 1/c4
(independent of the choices of all other nodes). Using the Chernoff bound from Corollary 2 gives the desired result for a set
S. In total there are n nodes and we have to consider at most 1 + χ ≤ 1 + n sets per node. Using Theorem 10 for n · (n + 1)
events each occurring w.h.p. completes the proof. �

Next we consider a node v and prove that for the second attempt of all uncolored nodes u ∈ (Sc ∩ N(v)) a constant
fraction of colors taken by independent nodes w ∈ (Sc ∩ N(v) \ {u}) from u are not taken (or chosen) by its neighbors
y ∈ N(u).

Theorem 12. For the second choice let E(c) be the event that for a node v for each uncolored node u ∈ (N0(v) ∩ Sc) holds
|(CP1

N0(u)
∪ C1

N0(u)
) ∩ C1

N0(v)∩Sc | ≤ 3/4|CN0(v)∩Sc | for |N(v) ∩ Sc | ≥ c2 log n. Event E(c) occurs w.h.p.

Proof. Consider a colored node w ∈ Sc ∩ N0(v) for some node v. We compute an upper bound on the probability that
an uncolored node y ∈ N(u) gets (or chooses) color col(w), i.e., p(∃y ∈ N(u), col(y) = col(w) ∨ choice(y) = col(w)) =

p(∨y∈N(u)col(y) = col(w) ∨ choice(y) = col(w)) ≤


y∈N(u) p(col(y) = col(w) ∨ choice(y) = col(w)). The latter inequality
follows from the inclusion–exclusion principle: For two events A, B we have p(A ∪ B) = p(A) + p(B) − p(A ∩ B) ≤

p(A) + p(B). We consider the worst case topology and worst case order in which nodes make their choices to maximize
y∈N(u) p(col(y) = col(w) ∨ choice(y) = col(w)). Due to Theorem 11 for every uncolored node y ∈ N(u) at most |P0

N0(y)
| +

|P1
N0(y)

| ≤ 3d(y)/c1 ≤ 3∆0/c1 neighbors z ∈ N0(y) make a choice during the first two attempts i ∈ [0, 1]. To maximize
the chance that some node y obtains (or chooses) color col(w), we can minimize the number of available colors for y and
the probability that some neighbor z ∈ N0(y) chooses color col(w), since when making choice i we have p(choice(y) =

col(w)) ≤ 1/(c1|J(y)|) because each available color in J(y) is chosen with the same probability. To minimize |J(y)| the
number of colored nodes z ∈ N0(y) should be maximized and at the same time each node z ∈ N0(y) should have a neighbor
itself with color col(w). The latter holds if z ∈ N0(y) is adjacent to node w. Thus, to upper bound p(col(y) = col(w)) we
assume that node w and each node y ∈ N(u) share the same neighborhood (except u), i.e., N0(y) \ {u} = N0(w), and the
maximal number of nodes in N0(y) given our initial assumption are colored or make a choice, i.e., 3d0(y)/c1 ≤ 3∆0/c1. This,
yields p(col(y) = col(w)) ≤ 1/(c1|J(y)|) ≤ 1/(c1(∆0/2 − 3∆0/c1)) ≤ 8/(c1∆0) (for c1 > 32) and therefore p(∃y ∈ N(u),

J. Schneider et al. / Theoretical Computer Science 509 (2013) 40–50 49

col(y) = col(w)) = p(∨y∈N(u)col(y) = col(w)) ≤


y∈N(u) p(col(y) = col(w)) ≤ 3∆0/c1 · 8/(c1∆0) ≤ 1/c1 (for c1 > 32).
In other words, the probability that some uncolored node y ∈ N(u) has obtained color col(w) or chooses col(w) is bounded
by 1/c1.

Let us estimate the probability that some neighbor y ∈ N0(u) gets the same color as a node w1 ∈ N0(v) ∩ Sc given that
some nodes z ∈ N0(u) have chosen or obtained col(w0) for some node w0 ∈ CN0(v)∩Sc \ {w1}. To minimize |J(y)| we assume
that |J(y)| is reduced by 1 for every colored node w0 ∈ CN0(v)∩Sc \ {w1}. Since at most 3/2d0(y)/c1 ≤ 3/2∆0/c1 neighbors
make a choice concurrently, the event reduces the size of |J(y)| by at most 3/2∆0/c1. Using the same calculations as above
with |J(y)| ≤ ∆0/2 − 9/2∆0/c1, the probability that some node y ∈ N0(u) has obtained color col(w) or chooses col(w)
given the outcome for any set of colored nodesW ⊆ N0(v) ∩ Sc is at most 1/2. Thus, we expect at most |CN0(v)∩Sc |/2 colors
from CN0(v)∩Sc to occur in node u’s neighborhood. Using the Chernoff bound from Corollary 2, we get that the deviation is
at most 1/2 the expectation with probability 1 − 2−|CN0(v)∩Sc |/8 for node u, i.e., the probability p(E(u, c)) of the event E(u, c)
that for a node u ∈ N(v) at most 3|CN0(v)∩Sc |/4 colors from N0(v) ∩ Sc are also taken or chosen by its neighbors y ∈ N0(u) is
at least 1 − 2−|CN(v)∩Sc |/8. Using Theorem 11 for S = N0(v) ∩ Sc we have |CN0(v)∩Sc | ≥ |S|/(16c1) = |N0(v) ∩ Sc |/(16c1) ≥

c2 log n/(16c1). Therefore, p(E(u, c)) ≥ 1 − 1/nc2/(16c1). Due to Theorem 10 the event E(c) :=


u∈N0(v) E(u, c) occurs
w.h.p. �

Using Theorem 12 together with Theorem 10 yields the following corollary.

Corollary 13. An event E(c) (as defined in Theorem 12) occurs w.h.p. given


c1∈X⊆[0,χ],|N(v)∩Sc1 |≥c2 log n E(c1) for an arbitrary set
X ⊆ [0, χ]

Theorem 14. After the first two choices for a node v with initial degree d0(v) ≥ ∆0/2 there exists a subset Nc ⊆ N0(v) with
|Nc | ≥ (∆ + 1)/(c5χ) that has been colored with (∆ + 1)/(2c5χ) colors for a constant c5 w.h.p. for ∆ ∈ Ω(log1+1/ log∗ n n) and
χ ∈ O(∆/ log n).

Proof. By assumptionχ ∈ O(∆/ log n), i.e.,χ < 1/(4c3)∆/ log n. At least half of all neighbors u ∈ N0(v)with u ∈ Sc ∩N0(v)
must be in sets |Sc ∩ N0(v)| ≥ c3 log n. This follows, since the maximum number of nodes in sets |Sc ∩ N0(v)| < c3 log n is
bounded by χ · c3 log n ≤ ∆0/4. Assume that all statements of Theorem 11 that happen w.h.p. have actually taken place.
Consider a node v and a set N0(v) ∩ Sc with |Sc ∩ N0(v)| ≥ c3 log n given there are at most 3/4d0(v) ≤ 3/4∆0 colored
neighbors u ∈ N0(v). For a node u ∈ N0(v)∩Sc the probability that it obtains the same color of another node N0(v)\{u}∩Sc
is given by the probability that it chooses a color col(w) taken by node w ∈ N0(v) \ {u} ∩ Sc that is not chosen by any of u’s
neighbors x ∈ N0(u). Due to Corollary 13 |CN0(v)∩Sc |/4 colors exist that are taken by some nodew ∈ N0(v)∩ Sc but not taken
(or chosen for the second choice) by a neighbor x ∈ N0(u). Due to Theorem 11 we have |CN0(v)∩Sc |/4 ≥ |N0(v) ∩ Sc |/(64c1).
Additionally, the theorem yields |P1

N0(v)∩Sc | ≥ |N0(v) ∩ Sc |/(4c1).
The probability for a node u ∈ P1

N0(v)∩Sc to obtain (not only choose) a color in CN0(v)∩Sc becomes the number of ‘‘good’’
colors, i.e., |N0(v)∩Sc |/(64c1), divided by the total number of available colors, i.e., 1/(∆0/2), yielding |N0(v)∩Sc |/(32c1 ·∆0).
This holds irrespective of the behavior of other nodesw ∈ P1

N0(v)∩Sc andw ∈ N0(v)∩ Sd with d ∈ [0, χ −1] \ {c}. The reason
is that a node u makes its decision of what color to choose independently of its neighbors y ∈ N0(u) and Theorem 11 and
Corollary 13 already account for the worst case behavior of neighbors y ∈ N0(u) to bound the probability that node u gets a
chosen color.

Thus, for a set of |P1
N0(v)∩Sc | ≥ |N0(v)∩Sc |/(4c1) nodes we expect that for at least |N0(v)∩Sc |2/(128c21 ·∆0) nodes u there

exists another node w ∈ (N0(v) ∩ Sc) \ {u} with the same color. The expectation |N0(v) ∩ Sc |2/(128c21 · ∆0) is minimized if
all sets |N0(v) ∩ Sc | ≥ c3 log n are of equal size and as small as possible, i.e., ∆0/(4χ) since at least ∆0/4 nodes are in sets
|N0(v)∩ Sc | ≥ c3 log n for some c . This gives


c∈[0,χ−1] |N0(v)∩ Sc |2/(128c21 ·∆0) ≥


c∈[0,χ−1](∆0)

2/(2048c21 ·∆0 ·χ2) =

∆0/(c5 · χ) for c5 := 2048c21 . Since by assumption χ ∈ O(∆0/ log n) using Corollary 2 the actual number deviates by
at most 1/2 of its expectation w.h.p. Therefore, for at least ∆0/(c5 · χ) nodes u ∈ N0(v) ∩ Sc there exists another node
w ∈ N0(v) \ {u} ∩ Sc with the same color. Thus, to color all of these ∆0/(c5 · χ) nodes only ∆0/(2c5 · χ) colors are used. �

Theorem 15. If ∆ ∈ Ω(log1+1/ log∗ n n) and χ ∈ O(∆/ log1+1/ log∗ n n) then Algorithm FastRandColoring computes a (1 −

1/O(χ))∆ coloring in time O(logχ + log∗ n) w.h.p.

Proof. Extending Theorem 14 to all nodes using Theorem 10 we have w.h.p. that each node v with d0(v) ≥ ∆0/2 has at
most (∆0 + 1) · (1 − 1/(c5χ)) uncolored neighbors after the first two choices. However, node v is allowed to use d(v) + 1
colors and, additionally, half of the conserved colors, i.e., s(v)/2 = ∆0/(8c2χ) ≥ log1+1/ log∗ n n/(4c5) (see Theorem 14), to
get a color itself. When executing Algorithm DeltaPlus1Coloring [24] the maximum degree is reduced by a factor 2 in O(1)
rounds as long as it is larger than Ω(log n) due to Theorem 8 in [24]. The time until the maximum degree ∆ is less than
s(v)/4 is given by O(log∆0 − log s(v)) = O(log∆0 − log(∆0/(32c2χ))) = O(logχ). Thus, we have at least 2∆ colors
available, i.e., at least log1+1/ log∗ n n/(4c5) additional colors, when calling Algorithm ConstDeltaColoring [24]. Therefore, the
remaining nodes are colored in time O(log∗ n) using Corollary 14 [24]. Nodes with initial degree d0(v) < ∆0/2 can use
|H(v)| := ∆0 + 1 − s(v)/2 ≥ ∆0 + 1 − d0(v)/2 ≥ ∆0/2 ∈ Ω(log1+1/ log∗ n n) (since one cannot save more colors s(v) than
there are neighbors d0(v), i.e s(v) ≤ d0(v)) colors to color d(v)+1 nodes. After the first two attempts to get a color we have

50 J. Schneider et al. / Theoretical Computer Science 509 (2013) 40–50

d(v) ≤ d0(v)−2s(v) < ∆0/2−2s(v) ≤ (∆0 +1− s(v)/2)/2 = |H(v)|/2. The first inequality follows since any saved color
c implies that at least two neighbors u, w ∈ N0(v) are colored with the same color c. Thus, as for the case d0(v) ≥ ∆0/2
there are at least 2 · d(v) ≤ |H(v)| colors with |H(v)| ∈ Ω(log1+1/ log∗ n n) available to color d(v) nodes. �

8. Conclusion

It is still an open problem, whether deterministic ∆ + 1 coloring in a general graph is possible in time ∆1−ϵ
+ log∗ n for

a constant ϵ. Our algorithm indicates that this might well be the case, since we broke the bound for a wide class of graphs.
Though it is hard in a distributed setting – and sometimes not even possible – to use less than ∆ + 1 colors, we feel that

one should also keep an eye on the original definition of the coloring problem in a distributed environment: Color a graph
with as little colors as possible. To strive for a ∆ + 1 coloring is of much appeal and gives interesting insights but as we
have shown (in many cases) better bounds regarding the number of used colors and the required time complexity can be
achieved by taking the chromatic number of the graph into account.

References

[1] N. Alon, L. Babai, A. Itai, A fast and simple randomized parallel algorithm for themaximal independent set problem, J. Algorithms 7 (4) (1986) 567–583.
[2] S. Arora, E. Chlamtac, New approximation guarantee for chromatic number, in: Symp. on Theory of Computing, STOC, 2006.
[3] B. Awerbuch, Complexity of network synchronization, J. ACM 32 (4) (1985).
[4] B. Awerbuch, A.V. Goldberg, M. Luby, S.A. Plotkin, Network decomposition and locality in distributed computation, in: Symp. on Foundations of

Computer Science, FOCS, 1989.
[5] L. Barenboim, M. Elkin, Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition, in: PODC, 2008.
[6] L. Barenboim, M. Elkin, Distributed (δ + 1)-coloring in linear (in δ) time, in: Symp. on Theory of Computing, STOC, 2009.
[7] L. Barenboim, M. Elkin, Deterministic distributed vertex coloring in polylogarithmic time, in: Symp. on Principles of distributed computing, PODC,

2010.
[8] A. Blum, New approximation algorithms for graph coloring, J. ACM 41 (1994) 470–516.
[9] B. Bollobas, Chromatic number, girth and maximal degree, Discrete Math. 24 (1978) 311–314.

[10] C. Gavoille, R. Klasing, A. Kosowski, L. Kuszner, A. Navarra, On the complexity of distributed graph coloringwith localminimality constraints, Networks
54 (1) (2009).

[11] B. Gfeller, E. Vicari, A randomized distributed algorithm for the maximal independent set problem in growth-bounded graphs, in: Sy. on Principles of
Distributed Computing, 2007.

[12] D.A. Grable, A. Panconesi, Fast distributed algorithms for Brooks-Vizing colorings, J. Algorithms 37 (1) (2000) 85–120.
[13] M.M. Halldórsson, J. Radhakrishnan, Greed is good: approximating independent sets in sparse and bounded-degree graphs, in: STOC, 1994.
[14] Ö Johansson, Simple Distributed ∆+1-Coloring of Graphs, vol. 70, 1999.
[15] M. Karchmer, J. Naor, A fast parallel algorithm to color a graph with delta colors, J. Algorithms 9 (1) (1988) 83–91.
[16] A. Korman, J.-S. Sereni, L. Viennot, Toward more localized local algorithms: removing assumptions concerning global knowledge, in: PODC, 2011.
[17] F. Kuhn, Weak graph coloring: distributed algorithms and applications, in: Symp. on Parallelism in Algorithms and Architectures, SPAA, 2009.
[18] F. Kuhn, R. Wattenhofer, On the complexity of distributed graph coloring, in: Symp. on Principles of Distributed Computing, PODC, 2006.
[19] N. Linial, Locality in distributed graph algorithms, SIAM J. Comput. 21 (1) (1992) 193–201.
[20] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput. 15 (1986) 1036–1053.
[21] G.D. Marco, A. Pelc, Fast distributed graph coloring with O(∆2) colors, in: SODA, 2001.
[22] A. Panconesi, A. Srinivasan, Improved distributed algorithms for coloring and network decomposition problems, in: Symp. on Theory of Computing,

STOC, 1992.
[23] J. Schneider, R. Wattenhofer, A log-star distributed maximal independent set algorithm for growth-bounded graphs, in: Symp. on Principles of

Distributed Computing, PODC, 2008.
[24] J. Schneider, R. Wattenhofer, A new technique for distributed symmetry breaking, in: Symp. on Principles of Distributed Computing, PODC, 2010.
[25] J. Schneider, R. Wattenhofer, Distributed coloring depending on the chromatic number or the neighborhood growth, in: SIROCCO, 2011.
[26] J. Schneider, R.Wattenhofer, Trading bit, message, and time complexity of distributed algorithms, in: Int. Symp. on Distributed Computing, DISC, 2011.

	Symmetry breaking depending on the chromatic number or the neighborhood growth
	Introduction
	Model and definitions
	Related work
	Ruling sets
	Deterministic coloring
	Deterministic MIS
	Coloring depending on the chromatic number
	Conclusion
	References

