
Optimal File-Distribution in Heterogeneous
and Asymmetric Storage Networks

Tobias Langner1, Christian Schindelhauer2, and Alexander Souza3

1 Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland,
tobias.langner@tik.ee.ethz.ch

2 Institut für Informatik, Universität Freiburg, Germany, schindel@informatik.uni-freiburg.de
3 Institut für Informatik, Humboldt Universität zu Berlin, Germany, souza@informatik.hu-berlin.de

Abstract

We consider an optimisation problem which is motivated from storage virtualisation in the Inter-
net. While storage networks make use of dedicated hardware to provide homogeneous bandwidth
between servers and clients, in the Internet, connections between storage servers and clients are
heterogeneous and often asymmetric with respect to upload and download. Thus, for a large
file, the question arises how it should be fragmented and distributed among the servers to grant
“optimal” access to the contents. We concentrate on the transfer time of a file, which is the time
needed for one upload and a sequence of n downloads, using a set of m servers with heterogeneous
bandwidths. We assume that fragments of the file can be transferred in parallel to and from mul-
tiple servers. This model yields a distribution problem that examines the question of how these
fragments should be distributed onto those servers in order to minimise the transfer time. We
present an algorithm, called FlowScaling, that finds an optimal solution within running time
O(m logm). We formulate the distribution problem as a maximum flow problem, which involves
a function that states whether a solution with a given transfer time bound exists. This function
is then used with a scaling argument to determine an optimal solution within the claimed time
complexity.

Keywords: distributed storage, distribution problem, asymmetric bandwidths, distributed file
system, flow scaling
Categories: D.4.3 (Distributed file systems), F.2.2 (Computations on discrete structures) G.1.6
(Linear programming), G.2.1 (Combinatorial algorithms)

1 Introduction

This paper deals with the optimal distribution of fragments of a file across a potentially het-
erogeneous network of file servers. Our objective is to minimise the transfer time of a file, that
is the time for one upload and a sequence of downloads. This goal and the underlying model
are motivated from the concept of storage virtualisation in data centres, where the accumulated
hard disk memory of multiple machines is to be provided as one large storage unit. Our paper
transfers these ideas from the homogeneous setting in data centres to the heterogeneous situation
in the Internet with highly differing bandwidth setups of the individual machines.

In order to provide storage virtualisation, data centres have to implement a distributed file
system which has to provide file system operations like read, write, delete, etc. but, in contrast
to a disk-based file system, can distribute files across multiple machines. For example, if a user,
called client, wants to store a file in the file system, one way of doing so on the implementation
side is that the data centre (the virtual server) stores the file as a whole on one of its servers.

2 Tobias Langner, Christian Schindelhauer, and Alexander Souza

Another way is that the file be split into fragments and these are stored on different servers. This
enables parallel up- and parallel download of the file, which can provide significant speed-up and
hence is of particular interest for large files such as movies.

However, if connected to the Internet, the bandwidths of the individual users usually vary
significantly. Furthermore, another – so far neglected – aspect comes into play: the asymmetry
of end-users’ Internet connections. A typical DSL or T1 connection provides significantly higher
download bandwidths compared to the upload. When files are to be distributed through the
Internet, and furthermore, specific quality of service requirements (QoS) have to be met (such
as transfer time and throughput), the heterogeneity of the bandwidths certainly has to be taken
into consideration.

The QoS parameter of interest for our work is the transfer time: the time for one file upload
and multiple subsequent downloads as defined below. Hence, we consider the question of how to
distribute fragments of a file optimally in a potentially heterogeneous network in a manner that
minimises this transfer time.

The above problem contains several practical challenges, but due to the theoretic nature of
our contribution, we shall abstract from most of them and focus on the core of the problem. For
example, we ignore the fact that for some users, the actual bottleneck might not be the bandwidth
of the accessed servers but rather the own Internet connection. This extended problem will be
dealt with in a follow-up paper.

Related Work. In the seminal paper of Patterson et al. the case for redundant arrays of
inexpensive disks was made [1]. Since then, the development of distributed file systems has lead
to RAID-systems for small enterprises and households, storage area networks, and file systems
distributed over the Internet.

Ghewamat et al. introduced a highly scalable distributed file system called Google File System
(GFS) [2]. Being required to provide high data-throughput rates, a large number (> 1000) of
inexpensive commodity computers (chunk servers) and a dedicated master server are connected
by a high-speed network to form a GFS Cluster. GFS is optimised for storing large files (> 100
MB) by splitting them up into chunks of a fixed size (e.g. 64 MB) and storing multiple copies of
each chunk independently. Upon a file-retrieval request, the master server is asked and responds
the locations of the replicas to the client. The client then contacts one of the chunk servers and
receives the desired chunk from this single server, yielding that no parallel data transfer is used.

Another distributed file system is Dynamo which was developed by DeCandia et al. for
Amazon [3]. In contrast to GFS, it does not provide a directory structure but implements a
simple key-value structure, only. It also does not have a central master server, but is completely
decentralised by using consistent hashing to assign key-value-pairs to the servers. Dynamo is able
to cope with heterogeneous servers by accounting for the storage capacity of each server in the
hash-function. Similar to GFS, different connection speeds are not taken into account since all
servers are (assumed to be) connected through the same network.

Various other distributed file systems are based on peer-to-peer networks. However, they
concentrated on the reputation based election of storage devices [4], were optimised for high
reliability of the stored files [5] or meant to be applied in malicious environments where servers
might be managed by adversaries and thus cannot be trusted [6].

The assumption that the underlying network infrastructure is homogeneous is questionable.
Firstly, data centre configurations “as such” evolve over time (i.e. not all components are replaced
at once). Secondly and more importantly, in an Internet-based service, client connections and
also the upload and download bandwidth of a specific connection can be significantly different.
Albeit being a natural setting, only relatively few results on the heterogeneous variant of the

Optimal File-Distribution in Heterogeneous and Asymmetric Storage Networks 3

distribution problem are available. To the best of our knowledge, no work on the asymmetric
case exists.

One of the approaches for heterogeneous distributed storage is the Distributed Parallel File
System (DPFS) by Shen and Choudhary [7]. When a file is to be stored, it is broken up into frag-
ments called bricks that are then distributed across a network of participating storage servers,
where each server receives a portion of the file. Of course, the striping-strategy affects the per-
formance of the system, as it yields a distribution of bricks on servers. To account for the hetero-
geneous bandwidths of the involved servers, Shen and Choudhary proposed a greedy algorithm
that prefers fast servers over slow servers according to a pre-calculated performance factor. Thus,
if a server is k times as fast as another one, it is also allotted k times as many bricks.

Karger et al. introduced the concept of Distributed Hash Tables (DHT) [8] that are used to
balance the network load on multiple mirror servers. Every available server receives a random
value in the interval [0, 1] using a hash-function. When a clients wants to access a server, it is
also hashed into the interval [0, 1] and then served by the “closest” server.

The idea of DHT was extended by Schindelhauer and Schomaker’s Distributed Heterogeneous
Hash Tables (DHHT) [9]. Instead of clients, the documents to be stored are projected into [0, 1]
using a hash function and are assigned to the “closest” server. The two hash functions for hashing
the servers and the clients then account for the heterogeneity of the network (in terms of server
capacity and connection bandwidth).

DHHT was further extended by its authors by the the notion of transfer time [10]: Let a
matrix (Ad,i) describe the amount of document d being stored on server i, respectively. The
bandwidth of server i is given by a quantity bi. Then two different notions of transfer time of a
document d are introduced. The sequential time SeqTimeA(d) =

∑
iAd,i/bi and the parallel time

ParTimeA(d) = maxiAd,i/bi. Using popularity values assigned to the documents, the problems
of minimising the average as well as the worst-case time of both measures can be solved optimally
with linear programming. Additionally, closed solutions for minimising the average sequential and
parallel time were given. In their model the time for uploading the data has not been considered
at all, which is a major concern of our paper.

Our Contribution. Based on work of Langner [11], we introduce a model, which is motivated
from the transfer time model, but also accounts for the following situation observed frequently in
practise: Large files, e.g. movies, are usually uploaded once and remain unchanged for a substan-
tial amount of time. In the meantime, they are downloaded many times. Moreover, our model
covers asymmetric up- and download bandwidths and hence captures the actual technological
situation contrasting the DHHT- and DPFS-models.

We consider the Distribution Problem where a file f is split into m disjoint fragments
that are then uploaded in parallel to m servers (with possibly heterogeneous and asymmetric
bandwidths) – one fragment per server. Our objective is to find the optimal partition of f that
minimises the transfer time. This time is the total time it takes to complete a sequence of a
parallel upload of the file and n subsequent parallel downloads. The parameter n is introduced
in order to reflect the typical “one-to-many” situation mentioned above. Our main result is:

Theorem 1. Algorithm FlowScaling solves the Distribution Problem optimally in time
O(m logm).

Our approach is to formulate the problem as a linear program, which turns out to be related to a
maximum flow problem. This already yields a strongly polynomial optimal algorithm. The central
question is thus how to improve the running time. We define a function which states whether
a solution with a given transfer time bound exists or not. This specific maximum flow problem

4 Tobias Langner, Christian Schindelhauer, and Alexander Souza

is then solved using a scaling argument (explained later), yielding the claimed O(m logm) time
complexity.

2 Preliminaries

We are given a distribution network N , i.e. a weighted directed graph G = (V,A) where nodes
represent computers and edges network connections between them. Each edge has a positive
weight b : A 7→ R+ indicating the bandwidth of the respective connection. The node set V :=
S ∪ {c} with S = {s1, . . . , sm} contains the client node c and m server nodes in S. The edge
set A := U ∪D consists of the upload edges in U = {(c, si) : i ∈ S} and the download edges in
D = {(si, c) : i ∈ S}. When convenient, we use a server si and its index i interchangeably.

The definition above implies that both in-degree and out-degree of the server nodes are one.
The in- and out-degree of the client node c is m, consequently. Each server si has a pair of upload
and download bandwidths which we denote as ui and di. A graphical illustration of the above
definition is given in Figure 1

s1 sm

c

si

dm

um

diui

d1

u1

Fig. 1. Illustration of a distribution network. The upload bandwidths ui and download bandwidths di
denote the speed of the respective connection between client c and server si.

The Distribution Problem poses the question how we have to split a file f with size |f |
into fragments x1, . . . , xm for the m servers in a distribution network such that the time for one
upload to the servers and n subsequent downloads from the servers is minimised. Since we want
to be able to recover f from the fragments xi, we require

∑m
i=1 xi = |f |. We assume that the

number of downloads n is known (or can be estimated) beforehand. Of course, the model would
be more realistic, if n need not be known. However, we justify our assumption as follows: If the
number n of downloads is unknown, then the optimal transfer time can not be approximated by
any algorithm, see Lemma 1.

For a given distribution x = (x1, . . . , xm), we define the upload time tu(x) and download time
td(x) as the maximal upload/download time over all individual servers, i.e.

tu(x) = max
i∈S

{xi
ui

}
and td(x) = max

i∈S

{xi
di

}
.

The objective value val(x) is the upload time of x plus n times the download time,

val(x) = tu(x) + n · td(x) .

Optimal File-Distribution in Heterogeneous and Asymmetric Storage Networks 5

Realistically, the exact number of downloads n is not known beforehand. This induces an online
problem, where the value of n is learned gradually. Thus an online algorithm has to find a file-
distribution, which is “good” for all values of n or adapt the current distribution on-the-fly when
another download occurs. More precisely, we say that an algorithm for the online problem is
c-competitive, if its transfer time is at most c times larger than the optimal transfer time (with
n known beforehand). Lemma 1 states that there does not exist a c-competitive algorithm for
any constant c.

Lemma 1. There is no c-competitive algorithm for the online Distribution Problem for any
constant c ≥ 1.

Proof. Let I be an instance of a Distribution Problem with two servers s1 and s2 and
bandwidths u1 = a, d1 = 1

a , u2 = 1, and d2 = 1 where a � 1. If there is only an initial upload
(and no download), the optimal solution is xopt,0 =

(
a

a+1 ,
1

a+1

)
with val(xopt,0) = 1

a+1 . An

arbitrary c-competitive online algorithm alg is allowed to upload at most c · 1
a+1 data units to

s2, as then the upload already takes time c · val(xopt,0). Consequently, in xalg at least a+1−c
a+1

data units have to be uploaded to s1 and we have

td(xalg) ≥
a+1−c
a+1
1
a

=
a(a+ 1− c)

a+ 1
.

If one download occurs after the upload, the optimal solution is given by xopt,1 =
(

1
a+1 ,

a
a+1

)

with val(xopt,1) = 2 · a
a+1 . For the ratio of the objective values of both solutions, we get

val(xalg)

val(xopt,1)
>

td(xalg)

val(xopt,1)
≥ a+ 1− c

2

which means that alg is not c-competitive, since a can be arbitrarily large. ut
If we assume the number n > 0 of downloads to be known beforehand, then we can safely set
n = 1, |f | = 1 and solve the resulting simplified problem instead, Lemma 2 below. Thus, in the
sequel, we will consider the simplified version only.

Lemma 2. Let I = (N , |f |, n) with n > 0 and I ′ = (N ′, 1, 1) be the Distribution Problem
instances where N equals N ′ with the modification that for the download edge weights in N ′ we
have d′i = di/n. If x′ is an optimal solution for I ′, then x = |f | · x′ is optimal for I.

Proof. For the objective value of the solution x within instance I, we have

valI(x) = tu(x) + n · td(x)

= max
i∈S

{
xi
ui

}
+ n ·max

i∈S

{
xi
di

}

= max
i∈S

{
xi
ui

}
+ max

i∈S

{
xi
di

n

}

= max
i∈S

{
x′i · |f |
ui

}
+ max

i∈S

{
x′i · |f |

di

n

}

= |f | ·
(

max
i∈S

{
x′i
u′i

}
+ max

i∈S

{
x′i
d′i

})

= |f | · valI′(x′) .

Consequently, if x′ is minimal for I ′, we have that |f | · x′ is minimal for I. ut

6 Tobias Langner, Christian Schindelhauer, and Alexander Souza

The Distribution Problem can be formulated as a linear program by introducing two variables
tu and td for the upload and download time of the solution x.

minimise tu + td

subject to

m∑

i=1

xi = 1

xi
ui
≤ tu for all i ∈ {1, . . . ,m}

xi
di
≤ td for all i ∈ {1, . . . ,m}

xi ≥ 0 for all i ∈ {1, . . . ,m}

This already yields that the optimal solution for the Distribution Problem can be found in
polynomial time. In the next section, however, we shall prove Theorem 1 by showing that the
time complexity O(m logm) suffices.

3 Flow Scaling

We transfer an idea from Hochbaum and Shmoys [12] which yielded a polynomial approximation
scheme for Makespan Scheduling. In that problem, we are given a set of identical processors
and have to schedule a set of jobs, where the objective is to minimise the maximum completion
time, i.e. the makespan. The principal approach is to “guess” the optimal makespan and then
find a schedule that does not violate this makespan by “too much”. The optimal makespan is
actually determined by using binary search.

Distribution- and Flow-Problems. We employ a similar approach (but are able to avoid
the binary search step). We assume that the total time T = tu + td and the upload time tu are
given. (Thus we obviously also have the download time td = T − tu.) Then we can formulate a
Distribution Problem instance I as a Maximum Flow instance GI as given in Figure 2: We
have a source s, a sink t, and m intermediate vertices s1, . . . , sm. Source and sink correspond
to the client in Figure 1, and the si correspond to the servers. For i = 1, . . . ,m, the upload
edge (s, si) of server si has capacity tu · ui. This is the maximum amount of data that can be
transferred to this server in time tu. Similarly, for i = 1, . . . ,m, the download edge (si, t) of server
si has capacity td · di because this is the maximum amount of data that can be transferred from
this server to the sink node t in time td.

Upload Download
︷ ︸︸ ︷ ︷ ︸︸ ︷

tu · ui td · disi

tu · um td · dmsm

s t

tu · u1 td · d1s1

Fig. 2. Flow network GI for given upload/download time tu, td, and distribution problem instance I.

Optimal File-Distribution in Heterogeneous and Asymmetric Storage Networks 7

The Maximum Flow formulation allows us to decide if it is possible to transfer (i.e. upload and
download) a file f (w.l.o.g. having size |f | = 1) in time T . For this purpose, we define a function

fT,i(t) = min{t · ui, (T − t) · di}

for i = 1, . . . ,m and t ∈ [0, T]. Notice that fT,i(t) equals the maximum value of an s−si− t-flow,
when the upload time is tu = t and the download time hence td = T − t. Using these functions,
we define the total data function by

δT (t) =

m∑

i=1

fT,i(t). (1)

Lemma 3. An instance I = (N , 1, 1) of the Distribution Problem admits a feasible solution
x with transfer time T = tu + td if and only if

δT (t) ≥ 1 for some t ∈ [0, T]. (2)

Proof. The famous Max-Flow-Min-Cut theorem tells us that the maximal amount of data that
can be uploaded to the servers and download again afterwards in an instance I is given by the
capacity of a minimum cut in the flow network GI defined above, see Figure 2.

Consequently, there exists a solution for a distribution problem instance I with upload time
tu = t and download time td = T − t if and only if the capacity of the minimum cut in the
distribution flow graph GI is at least 1, i.e. the file size. Observe that the function δT (t) equals
the minimum cut capacity. ut

Hence, we can use Equation 2 as the decision criterion that tells us whether there exists a
distribution satisfying given upload and download times tu and td = T − tu.

For each summand fT,i of δT , we define the value pT,i by pT,i · ui = (T − pT,i) · di, where its
maximum is attained. That is, for i = 1, . . . ,m we have

pT,i = T · di
ui + di

.

For convenience, we define pT,0 = 0 and pT,m+1 = T . Then, for i = 0, . . . ,m+ 1 we define

δT,i = δT (pT,i).

For simplicity of notation, we shall write pi and δi instead of pT,i and δT,i, respectively, in the
sequel when appropriate.

The function δT is concave and piecewise linear in the interval [0, T], but not differentiable at
the pi defined above. The points (pi, δi) for i = 0, . . . ,m+ 1 are called the vertices of δT in the
sequel. Figure 3 depicts an illustration of a sample total data function along with its summands.
To determine whether a distribution with total time T exists for a given Distribution Problem
instance, we only have to check whether its maximum value is at least 1. If we implement this
by evaluating the δi-values näıvely, we arrive at O(m2) running time. Thus we have to be careful
in evaluating this function.

Lemma 4. The algorithm EvaluateTotalDataFunction computes the vertices (pi, δi) for
i = 1, . . . ,m in time O(m logm).

8 Tobias Langner, Christian Schindelhauer, and Alexander Souza

δT

tup0 = 0 p4 = Tp1 p2 p3

I2 I3 I4I1

σ1

σ2

σ4

σ3

Fig. 3. The graph shows a sample total data function for m = 3 along with the three summands it
comprises and the intervals I1 to I4 induced by its vertices.

Proof. The algorithm works as follows: It renumbers the servers such that for two servers si and
sj we have i < j if pi < pj . This takes time O(m logm).

Then the total data function is made up of m+ 1 linear segments in the intervals I1 to Im+1

where Ij = [pj−1, pj]. Let σj denote the slope of δT in the interval Ij . Recalling the formulation
of the total data function in Equation 1 we infer that the slope σ1 of δT in [p0, p1] is given by

σ1 =

m∑

i=1

ui .

For the slopes in the other intervals the following recursion formula holds, see Figure 3:

σi = σi−1 − ui − di for i ∈ {2, . . . ,m+ 1}.

Using this observation, we get a recursive formula for the value of δT (pi).

δT (pi) =

{
σ1 · p1 if i = 1

δT (pi−1) + σi · (pi − pi−1) if i > 1
(3)

This formula can be evaluated for the positions pi efficiently in O(m) steps with a simple scan-
line approach as implemented in Algorithm 1. The critical step determining the overall run-time
is the renumbering in line 4 that involves sorting the servers according to their value of pi and
thereby incurs a run-time cost of O(m logm). ut

It is straightforward how Algorithm 1 can be modified in order to check whether we have δT (pi) ≥
1 for some pi and return the respective pi. According to the deliberations above, δT (pi) ≥ 1
implies that there is a solution to the Distribution Problem with the time bounds tu = pi
and td = T − pi. So what remains to be shown is how we can find the actual distribution vector
x = (x1, . . . , xm) for a given pair (tu, td) specifying how the file f should be distributed among
the m servers. This is accomplished with Algorithm 2.

Lemma 5. For given values of tu and td = T − tu with δT (tu) ≥ 1, algorithm CalculateDis-
tribution computes a feasible distribution x in time O(m).

Proof. Algorithm 2 iterates through allm servers and assigns to each server the maximum amount
of data that can be uploaded to it in time tu and downloaded from it in time td. More formally,

Optimal File-Distribution in Heterogeneous and Asymmetric Storage Networks 9

Algorithm 1 EvaluateTotalDataFunction(N , T)

Input. A distribution network N and a total time bound T .

Output. A tuple of two m-dimensional vectors p and δ where δi is the total data function value at pi.

1: for i← 1 to m do
2: pi ← T · di

ui+di
. Calculate the positions pi

3: end for
4: renumber(p, pi < pj for i < j) . Renumber servers according to p-values
5: σ ←

∑m
i=1 ui

6: δ0 = 0
7: for i = 1 to m do
8: δi ← δi−1 + σ · (pi − pi−1)
9: σ ← σ − ui − di

10: end for
11: return (p, δ)

the amount fT,i(tu) = min{tu · ui, td · di} (or less if the file size is already almost exhausted) is
assigned to server si. Recalling Equation 2, a valid solution with upload time tu and download
time td = T − tu exists if the inequality

δT (tu) =

m∑

i=1

fT,i(tu) ≥ 1

is satisfied. If so, then Algorithm 2 terminates with a valid distribution for tu and td within
running time O(m). ut

Algorithm 2 CalculateDistribution(N , tu, td)

Input. A distribution network N and target upload and download times tu and td.

Output. A distribution x = (x1, . . . , xm) obeying the target times.

1: f ← 1, i← 1
2: x← (0, . . . , 0) . initialise x to be a zero vector of dimension m
3: while f > 0 do
4: xi ← min

{
f, min{tu · ui, td · di}

}
5: f ← f − xi
6: i← i+ 1
7: end while
8: return x

Scaling. Using Algorithm 1 and 2, we can – for a fixed total time T – determine whether
a solution exists and if so, calculate it. However, it still remains to show how we can find the
minimal total time which still allows for a solution. One way of doing so is binary search. However,
we can do better by having a closer look at δT yielding a scaling property.

Lemma 6. For t ∈ [0, 1] and T > 0 we have

δT (pT,i) = T · δ1(p1,i) .

10 Tobias Langner, Christian Schindelhauer, and Alexander Souza

Proof. Recall that we have pT,i = T · di/(ui + di) = T · p1,i and hence for any j = 1, . . . ,m

fT,j(pT,i) = min

{
T · ujdi

ui + di
,

(
T − T · di

ui + di

)
· dj
}

= T ·min

{
ujdi
ui + di

,
uidj
ui + di

}
= T · f1,j(p1,i).

Using pT,i = T · p1,i and fT,j(pT,i) = T · f1,j(p1,i) yields

δT (pT,i) =

m∑

j=1

fT,j(pT,i) = T ·
m∑

j=1

f1,j(p1,i) = T · δ1(p1,i).

Thus, as the vertices of the piecewise linear function scale, the whole function scales. ut
The geometric structure of the total data function δT is illustrated in Figure 4 where we can
clearly see the straight edges of the polytope that represent the points (pT,i, T, δT,i) for varying
values of T .

δ

t

T

T1

T2

T3

T4

T5

(pT,1, T, δT,1) (pT,3, T, δT,3)

(pT,2, T, δT,2)

Fig. 4. The total data function δT as a two-variable function of upload time t and total time T .

Previously we have shown how the total data function δT for a fixed value of T can be evaluated
at the positions pT,i in time O(m logm) using Algorithm 1. Now we will show that evaluating
δ1(t) and then using the scaling property given in Lemma 6 yields an algorithm for computing
the optimal total time T .

Lemma 7. Algorithm FlowScaling computes an optimal solution x for an instance I =
(N , 1, 1) of the Distribution Problem.

Proof. The algorithm FlowScaling evaluates the total data function using Algorithm 1 for
T = 1 and obtains coordinate pairs (pi, δi) for i = 1, . . . ,m. Let (pk, δk) be a pair, where δk is
maximum among all δi. We now choose

T =
1

δk
,

Optimal File-Distribution in Heterogeneous and Asymmetric Storage Networks 11

and
tu = pT,k = T · p1,k = T · pk =

pk
δk

to obtain

δT (tu) = δT (pT,k) = T · δ1(p1,k) = T · δ1(pk) =
1

δk
· δk = 1,

by Lemma 6. Thus we have that the maximum value of δT is equal to one. Lemma 5 yields that
we can compute a feasible solution. The equality δT (tu) = 1 and Lemma 3 show that the solution
is optimal, because there does not exist a feasible solution with total transfer time strictly smaller
than T . ut

Algorithm 3 FlowScaling(N)

Input. A distribution network N .

Output. The optimal distribution x∗ = (x1, . . . , xm) for N .

1: (p, δ)← EvaluateTotalDataFunction(N , 1)
2: k ← arg maxi=1,...,m{δi}
3: T ← 1

δk

4: tu ← pk
δk

5: return CalculateDistribution(N , tu, T − tu)

The asymptotic running time of Algorithm 3 is obviously determined by the call to EvaluateTo-
talDataFunction and is thus O(m logm). As a consequence, we have established Theorem 1.

4 Conclusion

We introduced a new distribution problem that asks how a file with given size should be split
and uploaded in parallel onto a set of servers such that the time for this upload and a number of
subsequent parallel downloads is minimised. In contrast to other work in this area, our problem
setting resembles the technological connection situation by allowing asymmetric upload and
download bandwidths of the individual servers. The FlowScaling algorithm determines an
optimal solution for this distribution problem by making use of a decision criterion derived from
maximum-flow theory stating whether a solution with given time bounds exists. This predicate
is then used to formulate the total data function which gives the maximum amount of data that
can be uploaded and downloaded again within total time T . A natural scaling argument finally
yields an elegant algorithm for solving the distribution problem in time O(m logm).

References

1. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive disks (raid).
In: SIGMOD ’88: Proceedings of the 1988 ACM SIGMOD International Conference on Management
of Data, New York, NY, USA, ACM (1988) 109–116

2. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: SOSP ’03: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, New York, NY, USA, ACM (2003)
29–43

12 Tobias Langner, Christian Schindelhauer, and Alexander Souza

3. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubra-
manian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. SIGOPS
Operating Systems Review 41(6) (2007) 205–220

4. The Wuala Project: Wuala. http://www.wuala.com (2008) [Online; accessed 22 July 2010].
5. Druschel, P., Rowstron, A.I.T.: Past: A large-scale, persistent peer-to-peer storage utility. In: HotOS.

(2001) 75–80
6. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,

Weatherspoon, H., Wells, C., Zhao, B.: Oceanstore: An architecture for global-scale persistent stor-
age. In: ASPLOS-IX: Proceedings of the Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems, New York, NY, USA, ACM (2000) 190–201

7. Shen, X., Choudhary, A.: DPFS: A distributed parallel file system. In: ICPP ’01: Proceedings of the
International Conference on Parallel Processing, Washington, DC, USA, IEEE Computer Society
(2001) 533

8. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hashing
and random trees: distributed caching protocols for relieving hot spots on the world wide web. In:
STOC ’97: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, New
York, NY, USA, ACM (1997) 654–663

9. Schindelhauer, C., Schomaker, G.: Weighted distributed hash tables. In: SPAA 2005: Proceedings
of the 17th ACM Symposium on Parallelism in Algorithms and Architectures, Las Vegas, Nevada,
USA, ACM Press, New York, NY, USA (2005) 218–227

10. Schindelhauer, C., Schomaker, G.: SAN optimal multi parameter access scheme. In: ICNICONSMCL
’06: Proceedings of the International Conference on Networking, International Conference on Systems
and International Conference on Mobile Communications and Learning Technologies, Washington,
DC, USA, IEEE Computer Society (2006) 28

11. Langner, T.: Distributed storage in heterogeneous and asymmetric networks. Master’s thesis, Albert-
Ludwigs-Universität Freiburg, Germany (2009)

12. Hochbaum, D., Shmoys, D.: A polynomial approximation scheme for scheduling on uniform pro-
cessors: Using the dual approximation approach. SIAM Journal on Computing 17(3) (1988) 539 –
551

