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Abstract—Epilepsy is one of the most common neurological
disorders and affects over 65 million people worldwide. Despite
the continuing advances in anti-epileptic treatments, one third
of the epilepsy patients live with drug resistant seizures. Besides,
the mortality rate among epileptic patients is 2 — 3 times higher
than in the matching group of the general population. Wearable
devices offer a promising solution for the detection of seizures
in real time so as to alert family and caregivers to provide
immediate assistance to the patient. However, in order for the
detection system to be reliable, a considerable amount of labeled
data is required to train it. Labeling epilepsy data is a costly
and time-consuming process that requires manual inspection and
annotation of electroencephalogram (EEG) recordings by medical
experts. In this paper, we present a self-learning methodology
for epileptic seizure detection without medical supervision. We
propose a minimally-supervised algorithm for automatic labeling
of seizures in order to generate personalized training data. We
demonstrate that the median deviation of the labels from the
ground truth is only 10.1 seconds or, equivalently, less than 1%
of the signal length. Moreover, we show that training a real-time
detection algorithm with data labeled by our algorithm produces
a degradation of less than 2.5% in comparison to training it with
data labeled by medical experts. We evaluated our methodology
on a wearable platform and achieved a lifetime of 2.59 days on
a single battery charge.

I. INTRODUCTION

Epilepsy is a chronic neurological disorder that affects over
65 million people around the world [1]. Despite being the
fourth most common chronic disorder [2], the understanding
of its cause is still limited. Although substantial advances have
been made in the field of anti-epileptic drugs, one third of the
epilepsy patients live with uncontrolled seizures [1].

Epilepsy is manifested by recurrent unprovoked seizures due
to abnormal neuronal activity in the brain [1]. The length of
the seizures can range from few seconds to several minutes
and the symptoms include behavioral arrest, rigid extension
of limbs, automatic movements and severe body convulsions
[3]. The unpredictability of these symptoms not only degrades
the quality of life of the patient, but could also be life-
threatening, e.g. driving accidents or drowning. Besides, in the
most severe cases, an epileptic seizure may result in sudden
unexpected death in epilepsy (SUDEP). As a consequence,
mortality among people with epilepsy is 2 — 3 times higher
than in the age- and sex-matched general population [4].

Due to the unpredictability of the seizures, today, the most
promising way of reducing mortality and improving the life
standard of the patients is continuous real-time monitoring.
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Continuous monitoring enables alerting the family members
and caregivers in order to assist the person whenever a seizure
occurs. However, traditional patient monitoring takes place in
the hospitals over several days and in an intrusive manner
involving very bluky medical devices [5].

Wearable technologies open up the possibility of bringing
the monitoring outside the hospital environment to the pa-
tients’ daily life by removing the dependence on the bulky
medical equipment. Ultra-low power portable devices (also
known as edge devices) can function over extended periods
of time capturing and processing biological signals in order to
detect epileptic seizures early and raise alerts.

The state-of-the-art algorithms for epileptic seizure detec-
tion are based on machine learning techniques [6] and hence,
they require a considerable amount of labeled data for the
training. However, labeling recordings of epileptic seizures is
a very costly and time-consuming process that requires manual
inspection and annotation of electroencephalogram (EEG)
signals by medical experts. On top of this, the variability
of the brain signals across patients significantly degrades the
classification performance between generic and personalized
approaches [7].

To address these two issues, we propose a new methodology
that labels epileptic seizures in edge devices by detecting them
a posteriori with only minimal supervision from the patient.
The personalized data generated is used to train a real-time
detection algorithm. If a seizure is missed, the patient enters
into a state of impaired consciousness without any call for
assistance being sent. Most people recover from this state
within an hour [8], [9]. Upon recovery, the patient touches
a button on a smartwatch/smartphone indicating that a seizure
occurred in the last hour. Then, our proposed algorithm detects
and labels the seizure, and this labeled data is used to train the
real-time classifier. In this manner, with every missed seizure
our methodology generates personalized data and the real-time
detection algorithm becomes more robust.

In this work, we address the problem of collecting and
labeling personalized data at the edge device and without
medical supervision for training a real-time epileptic seizure
detection algorithm. The main contributions are:

o Conception of a self-learning methodology for epileptic
seizure detection and demonstration of a minimally-
supervised algorithm for labeling epileptic seizures at the
edge device. The median deviation of the labels given by
this algorithm is only 10.1 seconds from the ground truth.

« Validation of the proposed self-learning methodology, in
which the real-time detection degrades by only 2.5% in



comparison to using expert-labeled data, and evaluation
of the battery lifetime of a wearable device running our
methodology, which achieves 2.59 days of operation on
one charge.

II. RELATED WORK

The most common wearable system to capture brain activity
is the EEG cap with embedded electrodes [10] placed accord-
ing to the international 10-20 system [11]. Based on recordings
obtained using the EEG cap, many different seizure detection
methods have been proposed in the literature [6].

Supervised learning techniques exist that use a number of
different approaches such as discrete wavelets [12], Fourier
transform [13], support vector machines (SVM) [14], and neu-
ral networks [15], [16]. In spite of achieving high classification
performance, these methodologies require large amounts of
training data which is generally not available for new patients.
The medical experts then need to inspect this large amount of
data carefully in a lengthy process by manually going through
the video-EEG (VEEG) or EEG to annotate the onset/offset
of the seizures for each patient, which represents a limiting
factor associated with the supervised algorithms.

The use of unsupervised methods for real-time seizure
detection have also been explored recently, as in [17], where
the best results are obtained for the k-means and k-mediod
algorithms. Although these unsupervised algorithms do not
have any dependence on training data, their classification
performance is significantly lower than in the supervised case.
In [18], an unsupervised method is presented that aims at
easing the annotation of epileptic seizures by doctors in order
to generate training data, but this method is targeted to the
hospital and not to wearable devices.

In addition to the limitations in terms of data availability and
classification performance, the cumbersomeness and intrusive-
ness of the EEG cap hinders the adoption of these methods
since the majority of epilepsy patients refuse to wear this cap
in their daily lives due to the negative social impact [19]. A
number of studies such as [20] have been conducted in order
to reduce the number of electrodes used for the detection of
epileptic seizures. Some minimally intrusive ultra-low energy
wearable devices for recording EEG signals have been recently
proposed, such as in-ear sensors [21], behind-the-ear sensors
[22] or glasses with hidden electrodes [7]. These devices
remove the social stigma associated with the EEG caps while
retaining the capability of patient monitoring.

Finally, there are works in the literature that present self-
aware systems for personalized health care such as [23], [24].
Nevertheless, these systems tackle the problem of patient
deterioration and not the specific problem of generating per-
sonalized training data.

To the best of our knowledge, this is the first time that a self-
learning methodology for EEG seizure detection is proposed.
Using a minimally-supervised algorithm for labeling at the
edge device, our approach combines the high classification
performance of the supervised methodologies with the in-
dependence from data for pretraining of the unsupervised
approaches. This is done in the context of wearable platforms
with a reduced number of electrodes, such as [7], [21], [22],
in order to remove any component of social stigma.
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Fig. 1. Temporal pipeline for learning from undetected seizures.

III. METHODOLOGY OVERVIEW

In this section, we give an overview of our self-learning
methodology for epileptic seizure detection. Given the negative
social impact of the EEG caps mentioned above, we focus on
non-invasive EEG wearable platforms, such as those proposed
in [7], [21], [22]. In particular, we target e-Glass [7], a
wearable platform in which only two hidden electrodes, i.e.,
F+T5 and FyTy, are used to collect the EEG signals. However,
our methodology is not restricted to this platform and so,
it is suitable for any wearable EEG monitoring system. The
processing pipeline of our methodology is divided in three
parts: feature extraction, a posteriori seizure labeling and
supervised real-time seizure detection.

Fig. 1 illustrates the scenario considered in this article, i.e.,
our a posteriori detection algorithm is triggered by the patient
after recovering from an undetected epileptic seizure and labels
the position of the seizure in the signal, which is then used to
train the real-time classifier.

A. Feature Extraction

EEG signals have a complex, non-stationary and nonlinear
nature which hinders the use of the raw signals for epilep-
tic seizure detection. In order to capture the most valuable
information contained in the signal, we extract a number of
features of power in the frequency domain and of nonlinearity.
These features are extracted from four-second windows with
an overlap of 75%, i.e., after the features from one window
are extracted, the window slides by one second. To obtain the
nonlinear features, we apply the discrete wavelet transform
(DWT) [12] to decompose the EEG signal until level seven
using Daubechies 4 (db4) wavelet basis function.

As some of the features extracted contain redundant infor-
mation, we use backward elimination [25] to sort them in
order of relevance. We observed that extracting the ten most
relevant features offers a proper trade-off between accuracy
and complexity and, therefore, the following features are
extracted: total theta ([4, 8] Hz) band power, relative theta
band power and total delta ([0.5, 4] Hz) band power from
electrode F%7T5 and relative theta band power, seventh level
permutation entropy for n = 5 and n = 7 [26], sixth level
permutation entropy for n = 7, third level Renyi entropy and
sixth level sample entropy for £ = 0.2 and k£ = 0.35 [27] from
electrode FgTy.
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Fig. 2. Graphical representation of the algorithm. A value of distance is
obtained for each sliding window in the feature space. The window with the
maximum distance is labeled as seizure.

B. A Posteriori Seizure Detection at the Edge Device

To label the seizures present in the EEG signal, we propose
a minimally-supervised algorithm that exploits two pieces of
information. The first one is the confirmation that the last hour
of EEG signal contains an epileptic seizure; as mentioned
above, this input is provided by the patient and is used to
trigger the algorithm. The second one is the average length of
the epileptic seizures, which is provided by a medical expert.

Our algorithm uses as inputs the average length of the
epileptic seizures and the features, extracted as described in the
previous subsection. Then, it finds the position of the epileptic
seizure in the signal using a clustering scheme specifically
designed for this problem. This information is used to label
the epileptic seizure in the signal. An in-depth explanation of
the proposed algorithm is given in Section IV.

C. Supervised Real-Time Seizure Detection

The labels produced at the output of the a posteriori
detection algorithm are used to train a supervised real-time
seizure detection algorithm that is in charge of raising the
alerts in case a seizure occurs. We consider the detection
algorithm proposed by the authors of [7] since its classification
performance using the electrode pairs F775 and FgT) has
already been demonstrated. However, our methodology is not
restricted to this algorithm and so, any real-time detection
technique can be used.

In [7], the authors extract 54 features from the raw signal
recorded at each electrode pair and use this data as the input
to a classifier based on the random forest algorithm [28].

IV. MINIMALLY-SUPERVISED ALGORITHM FOR A
POSTERIORI SEIZURE DETECTION

In this section, we present our algorithm for a posteriori
seizure detection at the edge device. Our algorithm exploits
the inherent differences existing in the EEG signal between
epileptic seizures and seizure-free parts.

Basically, the algorithm calculates a measure of the distance
between a continuous set of points under a sliding window and
the rest of the signal. The distance is obtained by adding the
individual distances between each point inside the window and
each point outside it. The algorithm is shown in pseudo-code

Algorithm 1 A posteriori epileptic seizure detection

Input: Window length W, features array X [L][F] where L is
the number of data points extracted from the EEG signal
and F' the number of features.

Output: Position of epileptic seizure .

Let edge and distance_vector be arrays of size F' and
distance be an array of size L — W.

1: Normalize(X[L|[F));

2:fori=1to L-W do

33 forw=0to W—1do

4 edge + {0};

5: for k =1 to L with step 4 do

6

7

8

9

if k& is outside the window [i, + W] then
edge < edge + abs(X[i + w] — X [k]);
end if
end for
10: edge + edge/((L — W)/4);
11: distance_vector < distance_vector + edge;
122 end for
13:  distance_vector <+ distance_vector /W,

14:  distanceli] = ||distance_vector||s;
15: end for

16: y < argmaz(distance);

17: return y;

in Algorithm 1 and depicted graphically in Fig. 2. The figure
shows that the window with the largest distance in the feature
space is found and labeled as seizure.

The inputs of the algorithm are the window length W, which
is the average duration of the epileptic seizures of the patient,
and the features array X of dimensions L x F', where L is
the number of data points extracted from the signal and F'
the number of features (in this case 10). In order to have all
the features in the same scale, they are normalized in Line 1
of the Algorithm 1: the mean value, across the signal, of the
corresponding feature is subtracted and the result is divided
by the standard deviation of the feature.

Then, in the first for-loop of the algorithm, in Line 2,
the window of size W slides along the first dimension of
the features array, i.e., the signal length, with step one. The
second for-loop, in Line 3, iterates over every point inside
this window. The third for-loop along with the condition in
Line 6 is used to iterate over every fourth point outside
of the considered window. Given the 75% overlap in the
feature extraction step, by taking every fourth point, redundant
information is avoided and the complexity is reduced.

At this point, the absolute differences between a point
contained in the window and every fourth point of those
outside the window are obtained feature by feature. In Line 7,
these values are summed up and in Line 10 normalized by the
total elements added, i.e., (L — W)/4. The result is stored in
an array called edge of size F'. This calculation is repeated for
all the W points contained in the window and all of the values
of the edge vector are accumulated in Line 11 in a vector of
length F' called distance_vector. This vector is normalized
over W in Line 13.

In order to have a single value for the distance instead of



F’ values, the Euclidean norm of the vector distance_vector
is calculated across features. This is done in Line 14 and it is
represented by the operator ||-||2. As a result, we have a vector
called distance of length L — W that contains the distance
value for all the L — W windows of length W.

In Line 16, the index of the position with the maximum
distance is obtained and it is set as the position of the epileptic
seizure and returned as the output y of the algorithm. Finally,
the seizure is labeled as the points in the range [y,y + W].

To calculate the complexity of the algorithm, we observe
that, after extracting and normalizing the features, the al-
gorithm considers L — W windows. Each window has W
points with F' features and for each of these data points
(L — W)/4 subtractions are calculated. Therefore, its com-
plexity is O(L?>W F), which means that in a wearable platform
such as the one described in Section V-B one second of signal
is processed in one second time.

The algorithm we have presented in this section labels
seizures at the edge device without medical supervision. This
data can train the online supervised classifier enabling a self-
learning pipeline for epileptic seizure detection. In Section
VI we demonstrate the quality of our a posteriori seizure
detection algorithm and its suitability for the proposed self-
learning methodology.

V. EXPERIMENTAL SETUP

In this section, we present the experimental setup for
evaluation of our methodology. In Section V-A, the database
of EEG signals used is described. In Section V-B, we present
the wearable platform where we ported our algorithm for
evaluation purposes and Section V-C explains the metric
employed to evaluate the proposed algorithm.

A. Epileptic Seizures Database

To evaluate our algorithm, we use the Physionet.org CHB-
MIT Scalp EEG database. This database contains recordings
of EEG signals sampled at 256 Hz from young patients in the
range of age from 1.5 to 22 years with refractory seizures. We
consider traces from 10 patients that are compliant with the
standard acquisition protocol [11]. We observe that Patient 6
suffers from very short epileptic seizures of only 13 seconds
on average. Such seizures can hardly be addressed by a moni-
toring system because any short burst of noise is misclassified
as seizure. Thus, we address the monitoring of patients whose
seizures have an average length of at least 30 seconds. In
this way, we consider the remaining 9 patients with a total of
45 epileptic seizures. From these traces we selected only the
electrode pairs of interest in this work, i.e., F7T5 and F3T}.

B. Target Wearable Platform

Our proposed methodology has been evaluated in a typical
architecture of current EEG-based wearable platforms. In
particular, the considered representative platform features an
ultra-low power 32-bit microcontroller STM32L151 [29] with
an ARM® Cortex®-M3, whose maximum operating frequency
is 32 MHz. The system acquires EEG signals from the two
mentioned electrode pairs, F775 and FgTy, at a sampling
frequency ranging from 125 Hz to 16 KHz with up to 16-
bit resolution. The memory of this system consists of 48 KB
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Fig. 3. Graphical representation of the proposed metric.

RAM and 384 KB Flash, the battery has a capacity of 570
mAh and it includes a 24-bit ADC [30].

C. Metric

To have a fair measure of the classification performance of
the algorithm, we propose a deviation metric § given by the
average of the absolute distances between the starting points
and between the ending points of our a posteriori detection
and the ground truth. Let y be the ground truth and y’ the
position detected a posteriori, the metric is defined as:

5= |ystart - y;tart' + ‘yend - y,endl (1)
= 5 .

This gives a non-normalized measure in seconds that pro-
vides an understanding of the combination of distance and
overlap between both labels. Fig. 3 shows how the value of §
accounts for the overlap of the labels.

To compare the quality of the detection with signals of
different lengths it is convenient to have a normalized measure,
i.e., a measure in the range [0,1]. In order to obtain this
normalized measure, we define N as the maximum error
we can get from the non-normalized metric and hence, the
normalized metric is defined as:

1— |Ystart — Ystart] T |Yend — Yendl
2N ’

YstarttYend ystm»ﬂrymd)
2 ) 2 :

2

6n07'm =

where N = max(L —

VI. EXPERIMENTAL RESULTS

This section demonstrates the classification performance of
the proposed algorithm for a posteriori seizure detection and its
suitability for our self-learning methodology. In Section VI-A
the classification performance of our algorithm is presented,
while in Section VI-B, the classification performance of a
supervised classifier trained with data labeled by our algorithm
is studied. Finally, in Section VI-C, the energy consumption
and the battery lifetime of the target platform running our
methodology are analyzed.

A. Evaluation of the Classification Performance of the a
Posteriori Labeling Algorithm

To extensively evaluate the robustness of our proposed
algorithm, we generate a large number of test samples. Each
sample consists of an EEG signal of random duration ranging
between 30 minutes and 1 hour that contains a single epileptic
seizure. For each one of the 45 epileptic seizures contained in



the database, 100 different samples were produced, resulting
in a total of 4500 test samples.

Our labeling algorithm using the 10 selected features was
run on each of these samples and the accuracy was measured
with the proposed metric. We firstly calculate the mean of
the non-normalized metric and the geometric mean of the
normalized metric (which is the only correct average of nor-
malized values) [31], across the 100 samples of each seizure.
Next, we extract the median values across the seizures of each
patient in order to obtain a non-normalized and a normalized
value per patient. Finally, we calculate the total classification
performance as the median across all seizures.

The total value of classification performance computed
in this manner is 6 = 10.1s and 9,0 = 0.9935. The
interpretation of these results is that the median detected
position of the epileptic seizure is at a distance within 10.1
seconds from the true seizure or within a 1% of the total
signal. To have a more accurate picture of the classification
performance, Table I shows the values obtained per patient.

TABLE I. CLASSIFICATION PERFORMANCE PER PATIENT

ID 1 2 3 4 5 6 7 8 9
4§ (s) 1451532 | 55 |159| 5.7 |11.5|139]| 32 | 5.0
Onorm (%) | 99.0]96.3]99.6]98.9]99.6]99.2|99.1]|99.8|99.7

The classification performance is higher than 95% for all
patients and higher than 98.5% for all of them except for
Patient 2. A deeper insight into the results is given in Table II,
where the mean value of § is given for each seizure. Only three
labels, one in each of Patients 2, 3 and 4, are far away from the
actual seizures. These three misplaced values are due to large
bursts of noise in the signal near the epileptic seizure. From a
global perspective, 73.3% of the seizures are detected within
15 seconds, 86.7% within 30 seconds and 93.3% within one
minute from the ground truth, which indicates the high quality
of our algorithm.

B. Validation on Supervised Real-Time Classifier

In order to demonstrate the suitability of the algorithm for
labeling epileptic seizures, we train the supervised real-time
classifier based on data labeled by our a posteriori detection

TABLE II. VALUE OF § IN SECONDS PER SEIZURE

Seizure Number

Patient
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Fig. 4. Geometric mean for doctor-labeled versus algorithm-labeled training
set, note that the scale starts at 0.5 for better resolution.

algorithm instead of by medical experts. To evaluate our
algorithm, we take for each seizure one signal with a length
ranging between 30 minutes and 1 hour that contains the
seizure. Then, we use our algorithm to label the seizures.
This newly labeled data, together with seizure-free samples,
conforms the training set of the experiments.

Then, following [7], a set of experiments with personalized
data are performed where the training set is balanced and
consists of 2 to 5 seizures coming from the same subject that
is being tested. Thus, the length of the training set ranges
between 5 and 30 minutes of EEG recordings. The results of
these tests are evaluated against the data labeled by medical
experts. Sensitivity, specificity and the geometric mean of the
results are calculated and used for evaluation. In Fig. 4, the
results of expert-labeled training data are compared with the
results of algorithm-labeled training data.

These results show that when the online classifier is trained
with algorithm-labeled data the classification performance is
almost as high as when the labels are given by medical experts.
Overall, the geometric mean across all subjects using the labels
provided by medical experts is 94.95%. Using our algorithm
for labeling the data, the geometric mean across subjects yields
92.60%, which represents a degradation of only 2.35%, with
a degradation in terms of sensitivity and specificity of 2.43%
and 2.26% respectively. Thus, the proposed algorithm is a
promising labeling alternative to the costly and lengthy process
of labeling data by medical experts.

C. Energy Consumption and System Lifetime

Since the proposed algorithm for seizure labeling is only
triggered upon occurrence of an epileptic seizure, its energy
consumption on the target platform depends on the frequency
of the seizures. We calculate the lifetime for a frequency
ranging between one seizure a month to one seizure a day,
i.e., with the duty cycle of the algorithm ranging between
0.14% and 4.17%. On top of this, the algorithm requires the
EEG signal to be constantly sampled from the two electrode
pairs and so, the EEG acquisition duty cycle is 100% and the
required memory for one hour of data is 240 KB. Under these
conditions and with a battery of 570 mAh, as described in
Section V-B, running only our a posteriori detection algorithm
on a single battery charge allows for between 631.46 and
430.16 hours of operation, i.e., from 26.31 to 17.92 days,
depending on the frequency of the epileptic seizures.
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Fig. 5. Percentage of energy consumption of each task.

The supervised real-time classifier considered in this work
requires three seconds for processing a four-second window
and thus, the CPU duty cycle when running only the super-
vised detection algorithm is 75%. This allows for 65.15 hours,
that is, 2.71 days of operation on a single battery charge.

When both, our labeling algorithm and the online detection
algorithm are run on the same platform, the lifetime of the
battery ranges between 2.71 and 2.59 days, depending on the
frequency of the epileptic seizures. Hence, the degradation
in the battery lifetime due to the energy consumed by our a
labeling algorithm is minimal. These results are summarized in
Table III, and Fig. 5 shows that the online supervised detection
consumes a much larger percentage of the total energy than
our algorithm for EEG labeling.

TABLE III. BATTERY LIFETIME OF THE SYSTEM FOR THE WORST CASE
(ONE SEIZURE PER DAY)

Task Current Duty |Avg. current |Energy
(mA) | Cycle (%) (mA) (%)
EEG Acquisition (x2) [30] 0.870 100% 0.870 9.47
EEG Sup. Detection 10.5 75% 7.875 85.72
EEG Labeling 10.5 4.17% 0.438 477
Idle 0.018 20.83% 0.004 0.04
Battery Lifetime 2.59 days

VII. CONCLUSION

In this work, we have conceived a self-learning method-
ology for epileptic seizure detection and proposed a novel
algorithm for labeling epileptic seizures at the edge device
without medical supervision. In this manner, our labeling
algorithm generates personalized data that is used to train the
real-time classifier. Our experiments show that the proposed
algorithm can run on non-invasive EEG-based wearable plat-
forms together with an online classifier during between 2.71
and 2.59 days on a single battery charge. We demonstrated
that the median deviation of the labels from the ground truth
is only 10.1 seconds or, equivalently, less than 1% of the signal
length. Moreover, when our algorithm is used for labeling
instead of a medical expert, the classification performance of
a real-time detection algorithm degrades by only 2.35%. Thus,
the proposed algorithm is effective in removing the need for
medical experts to record and label epilepsy data, which eases
the adoption of wearable seizure monitoring systems and helps
to improve the quality of life of epilepsy patients.
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