Ad Hoc Networks: Pushing Mobile and
Wireless Communication
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Why Do You Study
Ad Hoc Networks?









Mobile Networks?



Distributed Control!






Complexity Theory

Can a Computer Solve
Problem P in Time t?
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Problem Pin Time t?
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Distributed (Message-Passing) Algorithms

e Nodes are agents with unique ID’s that can communicate with neighbors
by sending messages. In each synchronous round, every node can send a
(different) message to each neighbor.
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e Distributed (Time) Complexity: How many rounds does problem take?



An Example



How Many Nodes in Network?
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How Many Nodes in Network?

With a simple flooding/echo process, a network can find the number
of nodes in time O(D), where D is the diameter (size) of the network.



Diameter of Network?

e Distance between two nodes = Number of hops of shortest path
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Diameter of Network?

e Distance between two nodes = Number of hops of shortest path

e Diameter of network = Maximum distance, between any two nodes



Diameter of Network?
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Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)
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Pair of rows connected neither left nor right? Communication complexity:
Transmit @(n?) information over O(n) edges = (.(n) time!

[Frischknecht, Holzer, W, 2012]



Distributed Complexity Classification

arious problems
in growth-bounded
graphs

e.g., [Kuhn, Moscibroda, W, 2014]



Self-
Assembly

Distributed
Complexity
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Wireless Communication?



Capacity!



Protocol Model

Interference
Range






Physical (SINR) Model







Signal-To-Interference-Plus-Noise Ratio (SINR) Formula

Received signal power from sender




Example: Protocol vs. Physical Model

| 4m i 1m

Assume a single frequency (and no fancy decoding techniques!)

[ Is spatial reuse possible?

YES HWith power control}

Let a=3, =3, and N=10nW
Transmission powers: Pg=-15 dBm and P,= 1 dBm

| 1.26mW/(7m)3 ~ @
SINROFAGLD: & w1 31.6,07, Bm)3 o111 20

31.6pW/(1m)> ~ @
00T W +1.26mW/(Gmy3 ~ 313270

SINR of B at C:



This works in practice

... even with very simple hardware

Time for transmitting 20°000 packets:

Time required

standard MAC

“SINR-MAC”

Messages received

Node uq
Node us
Node ug

T21s
T78s
T80s

2675
2685
270s

Node uy4
Node wus
Node wug

standard MAC | “SINR-MAC”
19999 19773
18784 18488
16519 19498

Speed-up is almost a factor 3

[Moscibroda, W, Weber, Hotnets 2006]



Possible Application — Hotspots in WLAN
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The Capacity of a Network

(How many concurrent wireless transmissions can you have)



Convergecast Capacity in Wireless (Sensor) Networks

[Moscibroda, W, 2006]

[Giridhar, Kumar, 2005]

[ Worst-Case Capacity
N

Classic Capacity }
\

Topology Max. rate in arbitrary, Max. rate in random,

Model/Power worst-case deployment uniform deployment
Protocol Model O(1/n) O(1/logn)
Physical Model Q(1/log? 1) Q(1/logn)

(power control)




Capacity of a Network

| RealCopacty

How much information can be
transmitted in any network?

C

How much information can be
transmitted in nasty networks?

How much information can be
transmitted in nice networks?



Core Capacity Problems

Given a set of arbitrary communication links

One-Shot Problem
Find the maximum size feasible subset of links

O(1) approximations for uniform power [Goussevskaia, Halldorsson, W,
2009 & 2014] as well as arbitrary power [Kesselheim, 2011]

Scheduling Problem
Partition the links into fewest possible slots, to minimize time

Open problem: Only O (log n) approximation using the one-shot subroutine



Energy Efficiency?



Clock Synchronization!



Clock Synchronization Example: Dozer

Multi-hop sensor network with duty cycling

10 years of network life-time, mean energy consumption: 0.066mW
High availability, reliability (99.999%)

Many different applications use Dozer: TinyNode, PermaSense, etc.

[Burri, von Rickenbach, W, 2007]

Wireless vehicle detection systems
for outdoor parking lots




Problem: Physical Reality

clock rate

1+¢ 1
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message delay
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Clock Synchronization in Theory?

Given a communication network
1. Each node equipped with hardware clock with drift
2. Message delays with jitter

worst-case (but constant)

Goal: Synchronize Clocks (“Logical Clocks”)

. Both global and local synchronization!



Time Must Behave!

* Time (logical clocks) should not be allowed to stand still or jump




Local Skew

Tree-based Algorithms Neighborhood Algorithms
e.g. FTSP e.g. GTSP

Bad local skew



Synchronization Algorithms: An Example (“Amax”)

e (Question: How to update the logical clock based on the messages from
the neighbors?

e |dea: Minimizing the skew to the fastest neighbor

— Set clock to maximum clock value you know, forward new values immediately

e First all messages are slow (1), then suddenly all messages are fast (0)!

Fastest
Hardware
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Local Skew: Overview of Results

Everybody‘s expectation,
10 years ago (,,solved”)

Blocking
algorithm

Dynamic Networks!

Kappa algorithm ~ [Kuhn et al., SPAA 2009]

[Lenzen et al., FOCS 2008]
Dynamic Networks!

[Kuhn et al., PODC 2010]

together
[JACM 2010]



Experimental Results for Global Skew

Global Skew (us)
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[Lenzen, Sommer, W, 2009]



Experimental Results for Global Skew

Global Skew (us)
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Global Skew (us)

Summary
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Thank You!

Questions & Comments?
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