

Distributed Computing Group

Decentralized Graph Processing for Reachability Queries

Joël Mathys, Robin Fritsch, Roger Wattenhofer ETH Zürich 28. November 2022, ADMA, Brisbane, Australia

Introduction

Labeling Scheme

Given a Graph G, want to answer queries Q

Labeling Scheme

Given a Graph G, want to answer queries Q Encoder I, Decoder d

Q(u, v) = d(I(u), I(v))

Labeling Scheme

Given a Graph G, want to answer queries Q Encoder I, Decoder d

Q(u, v) = d(I(u), I(v))

Minimize max. label size [bits]

Warmup Tree

Tree T, answer reachability queries Q adС ge7

Warmup Tree

Tree T, answer reachability queries Q 0 DFS enumeration \boldsymbol{a} 6 C d \mathcal{D} 8 ge3 7

Warmup Tree

Our Goal

Given DAG G, answer reachability queries Q

General Graphs

Given DAG G, answer reachability queries $Q \rightarrow L \ge \Omega(n)$

Graphs of Bounded Degree

 Δ at most 1

 Δ at most 2

 $\begin{array}{l} \Delta \text{ at most 2} \\ \psi \text{ Graph Transformation} \end{array}$

 Δ at most 2 ψ Graph Transformation, preserves reachability, adds at most n / Δ nodes

 Δ at most 2 ψ Graph Transformation, preserves reachability, adds at most n / Δ nodes

 Δ at most 2 ψ Graph Transformation, preserves reachability, adds at most n / Δ nodes

Graphs of Bounded Genus

Tool I: Path removal

A directed path p, store log(n) bits per path

 $u \rightsquigarrow_G v \Leftrightarrow \mathsf{to}_p[u] \leq \mathsf{from}_p[v]$

Tool II: Planar Graphs

Construct a special tree T

Remove 6 paths to half the graph size, log²(n) scheme

Graphs of Bounded Genus: Intuition

General

Bounded Genus

Graphs of Bounded Genus: Outline

Layering

Planarizing

Planar Graphs

Graphs of Bounded Genus: Layering

Local Parts

Layer Partition

Digraph Sequence

Graphs of Bounded Genus: Planarizing

Layering preserves genus, now reduce genus to planar

Graphs of Bounded Genus: Planarizing

Find rooted subgraph with at most 4g leaves, remove through paths

Graphs of Bounded Genus

Layering

Remove g paths

Planar Scheme

Conclusion

Distributed Computing Group

Decentralized Graph Processing for Reachability Queries

Joël Mathys, Robin Fritsch, Roger Wattenhofer ETH Zürich 28. November 2022, ADMA, Brisbane, Australia