
MIS on Trees

Christoph Lenzen
Computer Engineering

and Networks Laboratory
ETH Zurich
Switzerland

lenzen@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering

and Networks Laboratory
ETH Zurich
Switzerland

wattenhofer@tik.ee.ethz.ch

ABSTRACT

A maximal independent set on a graph is an inclusion-maxi-
mal set of mutually non-adjacent nodes. This basic symme-
try breaking structure is vital for many distributed algo-
rithms, which by now has been fueling the search for fast lo-
cal algorithms to find such sets over several decades. In this
paper, we present a solution with randomized running time
O(

√
log n log log n) on trees, improving roughly quadrati-

cally on the state-of-the-art bound. Our algorithm is uni-
form and nodes need to exchange merely O(log n) many bits
with high probability. In contrast to previous techniques
achieving sublogarithmic running times, our approach does
not rely on any bound on the number of independent neigh-
bors (possibly with regard to an orientation of the edges).

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory—graph
algorithms, trees; F.2.2 [Analysis of Algorithms and

Problem Complexity]: Nonnumerical Algorithms and
Problems—computations on discrete structures

General Terms

Algorithms, Theory

Keywords

symmetry breaking, optimal bit complexity, maximal inde-
pendent set, asymptotic analysis

1. INTRODUCTION & RELATED WORK
In graph theory, two nodes are independent if they are not

neighbors. A set of nodes is independent if the nodes in the
set are pairwise independent. And a maximal independent
set (MIS) is an independent set that is not a proper subset of
any other independent set; in other words, an MIS cannot be
extended. Finding an MIS is a most basic form of symmetry
breaking, and as such widely used as a building block in
distributed or parallel algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0719-2/11/06 ...$10.00.

Not surprisingly, obtaining an MIS quickly is one of the
fundamental questions in distributed and parallel comput-
ing. More surprisingly, despite all the research, the state-of-
the-art algorithm was discovered in the 1980s. Several re-
search groups [1, 6, 10] more or less concurrently presented
the same simple randomizedmarking algorithm that finds an
MIS in time O(log n) with high probability1 (w.h.p.) Deter-
ministic algorithms tend to be much slower; Panconesi and
Srinivasan [13] presented an algorithm with running time

2O(
√

log n), based on a network decomposition. In contrast,
the strongest lower bound proves that Ω(

√
log n) time is re-

quired, even for randomized algorithms on line graphs [8].
Arguably, reducing this complexity gap is one of the most
important open problems in distributed computing.

In the last 25 years, a lot of work went into understand-
ing special graph classes. One line of work shows that the
MIS problem can be solved in time Θ(log∗ n) on rooted
trees [4], graphs of bounded degree [5], and bounded-growth
graphs [14]. The upper bounds are deterministic and the
matching lower bound [9] can be extended to randomized
algorithms [12]. Another common technique is to compute
a coloring first and subsequently gradually augment an in-
dependent set by concurrently adding all feasible nodes of a
given color. Using deterministic (∆+1)-coloring algorithms
with running time (essentially) linear in the maximum de-
gree ∆ [2, 7], this reduction yields O(∆ + log∗ n)-time so-
lutions suitable for small-degree graphs. However, all these
results work on graphs with restricted degrees, sometimes
explicitly, sometimes implicitly. In rooted trees, for instance,
each node just deals with one single neighbor (the parent)
and in bounded-growth graphs the number of independent
neighbors is bounded.

In other words, finding an MIS seems to be difficult mostly
in graphs with an unbounded number of independent neigh-
bors. Until recently, even on (non-rooted) trees no better
algorithm than the randomized marking algorithms from
the 1980s was known. This was changed by Barenboim
and Elkin [3], who devised a deterministic algorithm with
running time o(log n) for graphs with arboricity2 o(

√
log n).

Their algorithm first computes a forest decomposition and
subsequently efficiently colors the graph. Again, the key in-
gredient of the coloring step is that nodes can restrict their
attention to the small number of parents they have in the de-

1That is, with probability 1−1/nc for an arbitrary, but fixed
constant c.
2A forest decomposition is a partitioning of the edge set into
rooted forests. The arboricity of a graph is the minimum
number of forests in a forest decomposition.

composition. However, even on graphs of constant arboricity
(in particular trees) the improvement is marginal, i.e., their
algorithm has a time complexity of Θ(log n/ log log n). An
accompanying lower bound shows that even randomized al-
gorithms require Ω(log n/ log f) rounds to compute a forest
decomposition into f forests, while the computed coloring
uses Ω(f) colors. Hence, their technique is limited to a fac-
tor O(log log n) gain in time complexity. What is more,
their algorithm is non-uniform, as it needs an upper bound
of O(A) on the arboricity A of the graph or a polynomial
upper bound on the number of nodes as input.

In this work, we present a much faster, uniform algorithm
running on arbitrary forests. Our approach guarantees ter-
mination within O(

√
log n log log n) rounds w.h.p. This is

achieved by fusing several techniques into a single algorithm
and devising a novel analysis. Initially, we employ a recent
variation by Métivier et al. [11] of the traditional random-
ized marking algorithm. The authors show how their algo-
rithm can be implemented with optimal bit complexity of
O(log n) w.h.p. This is not an inherent property of their
approach, as also the classic algorithms can be adapted to
exhibit the same bit complexity; we demonstrate how to ob-
tain the same bound for our technique. However, their algo-
rithm appeals by its simplistic elegance: In each phase, each
eligible node picks a random value and joins the independent
set if its value is a local maximum. As a positive side effect
of this subroutine, our algorithm will also succeed to obtain
an MIS on arbitrary graphs within O(log n) rounds w.h.p.
However, we make use of the technique with a different goal.
The logarithmic time complexity of the randomized mark-
ing algorithm follows from the argument that in expectation
a constant fraction of the edges is removed in each phase.
Thus, by itself, the algorithm might also on trees exhibit
a logarithmic running time. The key observation we make
is that on trees—up to maybe a few exceptions—nodes of
high degree will not survive more than O(

√
log n log log n)

phases of this algorithm. Moreover, (in essence) it can be
shown that on trees the maximum node degree falls expo-
nentially until it becomes O(

√
log n). From this point on,

we utilize deterministic coloring [2, 7] to clear most of the
remaining subgraph consisting of nodes that are still eligi-
ble to join the independent set. Afterwards, the diameter
of connected components will be sufficiently small such that
iteratively removing isolated nodes and leaves will complete
the task quickly. Although the presented proof is tailored to
trees, the main ingredient is that in trees probabilistic de-
pendencies are scarce. Therefore, one might hope that our
result can be extended to more general sparse graph classes,
e.g. graphs of bounded arboricity.

2. MODEL & PRELIMINARIES
We employ the standard synchronous message passing

model of distributed computation. The (non-faulty) sys-
tem is modelled as a simple graph G = (V,E), where nodes
represent computational devices and edges represent bidi-
rectional communication links. In each synchronous round,
nodes may perform arbitrary finite local computations, and
send (receive) a message to (from) each neighbor. The set
of neighbors of a node v ∈ V is denoted by Nv := {w ∈
V | {v, w} ∈ E}. The degree of v ∈ V is δv := |Nv|. Initially,
each node knows its neighbors and the (local part) of the in-
put of the problem. For deterministic MIS algorithms, the
latter is typically an initial coloring of polynomially many

(in n := |V |) colors. If randomization is permitted, nodes
have access to an infinite source of unbiased and indepen-
dent random bits. In this case, an initial coloring can be
generated w.h.p. (without any communication) and verified
in one round by exchanging the colors between neighbors.
The time and bit complexity of an algorithm are the maxi-
mum number of rounds any node requires to terminate and
the maximum number of bits sent over any edge, respec-
tively.

Throughout our analysis, we will make frequent use of
Chernoff type bounds. For reference, we state here the vari-
ants we use.

Theorem 2.1. For N independent 0–1 random variables
X1, . . . , XN , define X :=

∑N
i=1 Xi. Then

(i) X ∈ E[X] +O
(

log n+
√

E[X] log n
)

w.h.p.

(ii) E[X] ∈ O
(

1√
log n

)

⇒ X ∈ O
(√

log n
log log n

)

w.h.p.

(iii) P [X = 0] ≤ e−E[X]/2

(iv) E[X] ≥ 8c log n ⇒ X ∈ Θ(E[X]) w.h.p.

(v) E[X] ∈ ω(log n) ⇒ X ∈ (1± o(1))E[X] w.h.p.

3. ALGORITHM
In this section, we introduce our MIS algorithm for trees.

For the sake of simplicity, we (i) present a non-uniform vari-
ant, (ii) assume that the algorithm makes use of uniformly
random real numbers, and (iii) use a generic term of Θ(R)
in the description of the algorithm. In Theorem 4.10, we will
show how to remove the first two assumptions, and it will
turn out that for the uniform algorithm the precise choice of
the constants in the term Θ(R) is (up to a constant factor)
irrelevant for the running time of the algorithm.

The algorithm seeks to perpetually increase the number
of nodes in the independent set I until it finally is maximal.
Whenever a node enters I , its inclusive neighborhood is re-
moved from the graph and the algorithm proceeds on the
remaining subgraph of G. It consists of three main steps,
each of which employs a different technique to add nodes
to I . It takes a single parameter R, which ideally is small
enough to guarantee a small running time of the first two
loops of the algorithm, but large enough to guarantee that
the residual nodes can be dealt with quickly by the final loop
of the algorithm.

We proceed by describing the parts of the algorithm in
detail, whose pseudocode is given in Algorithm 1. In the first
part, the following procedure is repeated Θ(R) times. Each
active node draws uniformly and independently at random
(u.i.r.) a number from [0, 1] ⊂ R and joins I if its value is
a local maximum.3 This and similar techniques have been
known for long and ensure to reduce the number of edges
in the graph exponentially w.h.p.; however, in our case we
have the different goal of reducing the maximum degree in
the graph rapidly. Once degrees become small, we cannot
guarantee a quick decay of degrees w.h.p. anymore, therefore
the employed strategy is changed.

3A random real number from [0, 1] can be interpreted as
infinite string of bits of decreasing significance. As nodes
merely need to know which one of two values is larger, it
is sufficient to generate and compare random bits until the
first difference occurs.

Algorithm 1: Fast MIS on Trees.

input : R ∈ N

output: maximal independent set I
I := ∅
for i ∈ {1, . . . ,Θ(R)} do // reduce degrees

for v ∈ V in parallel do
rv := u.i.r. number from [0, 1]
if rv > maxw∈Nv{rw} then

I := I ∪ {v}
delete Nv ∪ {v} from G

for i ∈ {1, 2} do // remove nodes of small degree
H := subgraph of G induced by nodes of degree
δv ≤ R
(R + 1)-color H
for c ∈ {1, . . . , R + 1} do

for v ∈ V with color c in parallel do
I := I ∪ {v}
delete Nv ∪ {v} from G

while V 6= ∅ do // clean up

for v ∈ V in parallel do
if δv = 0 then // remove isolated nodes

I := I ∪ {v}
delete Nv ∪ {v} from G

if δv = 1 then // remove leaves
{w} := Nv

if δw 6= 1 then // true leaf
I := I ∪ {v}
delete Nv ∪ {v} from G

else // pair of degree-1 nodes
rv := u.i.r. number from [0, 1]
if rv > rw then

I := I ∪ {v}
delete Nv ∪ {v} from G

Consequently, the second part of the algorithm aims at
dealing with small-degree nodes by means of a deterministic
scheme. Though it might be the case that not all nodes
of degree larger than R could be removed during the first
loop, we will show that if R is large enough, most nodes will
not have more than R neighbors of degree larger than R in
their neighborhood. Thus, removing all nodes of degree at
most R for two times will thin out the graph considerably.
To this end, we first (R+ 1)-color the subgraph induced by
all nodes of degree at most R and then iterate through the
colors, adding all nodes sharing color c concurrently to I .

Yet, a small fraction of the nodes may still remain in the
graph. In order to deal with these nodes, we repeat the step
of removing all leaves and isolated nodes from the forest
until all nodes have terminated.

As evident from the description of the algorithm, itera-
tions of the first and third loop can be implemented within
a constant number of synchronous distributed rounds. The
second loop requires O(R) time plus the number of rounds
needed to color the respective subgraph; for this problem
deterministic distributed algorithms taking O(R + log∗ n)
time are known [2, 7]. In Theorem 4.9 we will show that
for some R ∈ O(

√
log n log log n), the third loop of the algo-

rithm will complete in O(R) rounds w.h.p. Thus, for an ap-

propriate value of R, the algorithm computes an MIS within
O(

√
log n log log n) rounds.

4. ANALYSIS
For the purpose of our analysis, we will make use of the

notion of a rooted tree. A tree becomes rooted by choosing
a node r ∈ V as root. The parent p ∈ Nv of a node V \ {r}
then is its neighbor which is closer to the root, while its
children Cv := Nv \ {p} are the remaining neighbors. In
all lemmas, w.l.o.g. we take for granted that G is a rooted
tree. Note that this assumption is introduced to simplify
the presentation. To execute the algorithm, nodes do not
require knowledge of an orientation of the edges and the
proof trivially generalizes to forests.

The lion’s share of the argumentation will focus on the
first loop of Algorithm 1. We will call an iteration of this
loop a phase. By δv(i) we denote the degree of node v at the
beginning of phase i in the subgraph of G induced by the
nodes that have not been deleted yet; similarly, Nv(i) and
Cv(i) are the sets of neighbors and children of v still active
at the beginning of phase i, respectively.

We start our analysis with the observation that, in any
phase, a high-degree node without many high-degree chil-
dren is likely to be deleted in that phase, independently of
the behaviour of its parent.

Lemma 4.1. If at the beginning of phase i it holds for
a node v that half of its children have a degree of at most
δv(i)/16 ln δv(i), then v is deleted with probability at least 1−
5/δv(i) in that phase, independently of the random number
of its parent.

Proof. Observe that the probability that v survives
phase i is increasing in the degree δw(i) of any child w ∈
Cv(i) of v. Thus, w.l.o.g., we may assume that all children
of v of degree at most δ := δv(i)/16 ln δv(i) have exactly that
degree.

Consider such a child w. With probability 1/δ, its random
value rw(i) is larger than all its children’s. Denote by X the
random variable counting the number of children w ∈ Cv(i)
of degree δ satisfying that

∀u ∈ Cw(i) : rw(i) > ru(i). (1)

Thus, for the random variable X counting the number of
such nodes it holds that

E[X] =
∑

w∈Cv(i)
δw(i)=δ

1

δ
≥ 8 ln δv(i).

Since the random choices are independent, applying Cher-
noff’s bound yields that

P

[

X <
E[X]

2

]

< e−E[X]/8 ≤ 1

δv(i)
.

Node v is removed unless the event E that rv(i) < rw(i) for
all the children w ∈ Cv(i) of degree δ satisfying (1) occurs.
If E happens, this implies that rv(i) is also smaller than all
random values of children of such w, i.e., rv(i) is smaller than
δ E[X]/2 ≥ δv(i)/4 other independent random values. Since
the event that X ≥ E[X]/2 depends only on the order of the
involved random values, we infer that P [E |X ≥ E[X]/2] <
4/δv(i). We conclude that v is deleted with probability at

least

P

[

X ≥ E[X]

2

]

P

[

Ē
∣

∣

∣

∣

X ≥ E[X]

2

]

>

(

1− 1

δv(i)

)(

1− 4

δv(i)

)

> 1− 5

δv(i)

as claimed. Since we reasoned about whether children of v
join the independent set only, this bound is independent of
the behaviour of v’s parent.

Applied inductively, this result implies that in order to
maintain a high degree for a considerable number of phases,
a node must be the root of a large subtree. This concept is
formalized by the following definition.

Definition 4.2 (Delay Trees). A delay tree of depth
d ∈ N0 rooted at node v is defined recursively as follows. For
d = 0, the tree consists of v only. For d > 0, node v satisfies
at least one of the following criteria:

(i) At least δv(d+ 1)/4 children w ∈ Cv are roots of delay
trees of depth d with δw(d) ≥ δv(d+1)/16 ln δv(d+1).

(ii) Node v is the root of a delay tree of depth d− 1 and it
holds that δv(d) ≥ δv(d+ 1)2/(81 ln δv(d+ 1)).

In order to bound the number of phases for which a node
can have a significant chance to retain a large degree, we
bound the depth of delay trees rooted at high-degree nodes.

Lemma 4.3. Assume that R ≥ 2
√
lnn ln lnn and also that

δv(d) ≥ eR. Then for a delay tree of depth d− 1 rooted at v

it holds that d ∈ O(
√

log n/ log log n).

Proof. Assume w.l.o.g. that d > 1. Denote by si(δ),
where i ∈ {0, . . . , d − 1} and δ ∈ N, the minimal number
of leaves in a delay tree of depth i rooted at some node w
satisfying δw(i+ 1) = δ.

We claim that for any δ and i ≤ ln δ/(2 ln(81 ln δ)), it
holds that

si(δ) ≥
i

∏

j=1

δ

(81 ln δ)j−1
,

which we will show by induction. This is trivially true for
i = 1, hence we need to perform the induction step only.

Observe that because any node is a delay tree of depth
zero, the number of leaves in a delay tree of depth one equals
the degree of the root. Moreover, as δ is sufficiently large,
we have for any x′ ≥ δ/(81 ln δ)i that the derivative of the
function x/(81 ln x) at x′ is at least one. Hence, for any
C ≥ 1, we have that

si(Cδ′) ≥ Csi(δ
′)

because the minimal number of leaves si in the tree must
grow at least linearly in the argument no matter which of
the two possible conditions in the recursive definition of a
delay tree is satisfied.

Consequently, for any i ∈ {2, . . . , ⌊ln δ/(2 ln(81 ln δ))⌋},
the assumption that the claim is true for i − 1 and the re-

cursive definition of delay trees yield that

si(δ) ≥ min

{

δ

4
si−1

(

δ

16 ln δ

)

, si−1

(

δ2

81 ln δ

)}

≥ δ si−1

(

δ

81 ln δ

)

> δ

i−1
∏

j=1

δ

(81 ln δ)j

=
i

∏

j=1

δ

(81 ln δ)j−1
.

Thus the induction step succeeds, showing the claim.
Now assume that v is the root of a delay tree of depth

d−1. As δv(d) ≥ eR, we may insert any i ∈ {1, . . . ,min{d−
1, ⌊R/(2 ln 81R)⌋}} into the previous claim. Supposing for
contradiction that d−1 ≥ ⌊R/(2 ln 81R)⌋, it follows that the
graph contains at least

⌊R/(2 ln 81R)⌋
∏

j=1

eR

(81R)j−1

>

⌊R/(2 ln 81R)⌋
∏

j=1

eR/2

∈ eR
2/((4+o(1)) lnR)

⊆ n2−o(1)

nodes. On the other hand, if d− 1 < ⌊R/(2 ln 81R)⌋, we get

that the graph contains at least e(d−1)R/2 nodes, implying
that d ∈ O(

√

lnn/ ln lnn) as claimed.

With this statement at hand, we infer that for some R ∈
Θ(

√
log n log log n), it is unlikely that a node has degree eR

or larger for R phases.

Lemma 4.4. Suppose that R ≥ 2
√
lnn ln lnn. Then, for

any node v ∈ V and some number r ∈ O(
√

log n/ log log n),

it holds with probability at least 1−6e−R that δv(r+1) < eR.
This statement holds independently of the behaviour of v’s
parent.

Proof. Assume that δv(r) ≥ eR. According to Lem-
ma 4.1, node v is removed with probability at least 1 −
5/δv(r) in phase r unless half of its children have at least
degree δv(r)/16 ln δv(r).

Suppose the latter is the case and that w is such a child.
Using Lemma 4.1 again, we see that in phase r − 1, when
δw(r − 1) ≥ δw(r) ≥ δv(r)/16 ln δv(r), w is removed with
probability 1 − 5/δw(r − 1) if it does not have δw(r − 1)/2
children of degree at least δw(r − 1)/16 ln δw(r − 1). Thus,
the expected number of such nodes w that do not themselves
have many high-degree children in phase r − 1 but survive
until phase r is bounded by

5δv(r − 1)

δw(r − 1)
≤ 80δv(r − 1) ln δv(r)

δv(r)
.

Since Lemma 4.1 states that the probability bound for a
node w ∈ Cv(r − 1) to be removed holds independently of
v’s actions, we can apply Chernoff’s bound in order to see
that

(80 + 1/2)δv(r − 1) ln δv(r)

δv(r)
+O(log n)

of these nodes remain active at the beginning of phase r
w.h.p. If this number is not smaller than δv(r)/4 ∈ ω(logn),
it holds that δv(r − 1) ∈ δv(r)

2/((80 + 1/2 + o(1)) ln δv(r)).
Otherwise, at least δv(r)/2 − δv(r)/4 = δv(r)/4 children
w ∈ Cv(r − 1) have degree δw(r − 1) ≥ δv(r)/16 ln δv(r). In
both cases, v meets one of the conditions in the recursive
definition of a delay tree. Repeating this reasoning induc-
tively for all r ∈ O(

√

log n/ log log n) rounds (where we may
choose the constants in the O-term to be arbitrarily large),
we construct a delay tree of depth at least r w.h.p.

However, Lemma 4.3 states that r ∈ O(
√

log n/ log log n)

provided that δv(r) ≥ eR. Therefore, for an appropriate
choice of constants, we conclude that w.h.p. the event E
that both half of the nodes in Cv(r) have degree at least
δv(r)/16 ln δv(r) and δv(r) ≥ eR does not occur. If E does
not happen, but δv(r) ≥ eR, Lemma 4.1 gives that v is
deleted in phase r with probability at least 1− 5e−R.

Thus, the total probability that v is removed or has suf-
ficiently small degree at the beginning of phase r + 1 is
bounded by

P
[

Ē
]

· P
[

v deleted in phase r
∣

∣

∣
Ē and δv(r) ≥ eR

]

>

(

1− 1

n

)(

1− 5

eR

)

> 1− 6e−R,

where we used that R < lnn because δv ≤ n − 1. Since
all used statements hold independently of v’s parent’s ac-
tions during the course of the algorithm, this concludes the
proof.

For convenience reasons, we rephrase the previous lemma
in a slightly different way.

Corollary 4.5. Provided that R ≥ 2
√
log n log log n, for

any node v ∈ V it holds with probability 1 − e−ω(R) that
δv(R) < eR. This bound holds independently of the actions
of a constant number of v’s neighbors.

Proof. Observe that R ∈ ω(r), where r and R are as
in Lemma 4.4. The lemma states that after r rounds, v
retains δv(r+1) ≥ eR with probability at most 6e−R. As the
algorithm behaves identically on the remaining subgraph,
applying the lemma repeatedly we see that δv(R) < eR with

probability 1 − e−ω(R). Ignoring a constant number of v’s
neighbors does not change the asymptotic bounds.

Since we strive for a sublogarithmic value of R, the above
probability bound does not ensure that all nodes will have
degree smaller than eR after R phases w.h.p. However, on
paths of length at least

√
lnn, at least one of the nodes

will satisfy this criterion w.h.p. Moreover, nodes of degree
smaller than eR will have left a few high-degree neighbors
only, which do not interfere with our forthcoming reasoning.

Lemma 4.6. Assume that R ≥ 2
√
log n log log n. Given

a path P = (v0, . . . , vk), define for i ∈ {0, . . . , k} that Ci

is the connected component of G containing vi after remov-
ing the edges of P . If δvi(R) < eR, denote by C̄i the con-
nected (sub)component of Ci consisting of nodes w of de-
gree δw(R) < eR that contains vi. Then, with probability

1− e−ω(
√
lnn), we have that

(i) δvi(R) < eR and

(ii) nodes in C̄i have at most
√
lnn neighbors w of degree

δw(R) ≥ eR.

This probability bound holds independently of anything that
happens outside Ci.

Proof. Corollary 4.5 directly yields Statement (i). For
the second statement, let u be any node of degree δu(R) <
eR. According to Corollary 4.5, all nodes w ∈ Cu(R) have
δw(R) < eR with independently bounded probability 1 −
e−ω(R). In other words, the random variable counting the
number of such nodes having degree δw(R) ≥ eR is stochas-
tically dominated from below by the sum of δu(R) indepen-
dent Bernoulli variables attaining the value 1 with proba-

bility e−ω(R) ⊂ e−ω(
√
lnn). Applying Chernoff’s bound, we

conclude that w.h.p. no more than
√
lnn of u’s neighbors

have too large degrees. By means of the union bound, we

thus obtain that with probability 1− e−ω(
√
lnn), both state-

ments are true.

Having dealt with nodes of degree eR and larger, we need
to show that we can get rid of the remaining nodes suffi-
ciently fast. As a first step, we show a result along the lines
of Lemma 4.1, trading in a weaker probability bound for a
stronger bound on children’s degrees.

Lemma 4.7. Given a constant β > 0, assume that in
phase i for a node v we have that at least e−βδv(i) of its
children have degree at most eβδv(i). Then v is deleted with
at least constant probability in that phase, regardless of the
random value of its parent.

Proof. As in Lemma 4.1, we may w.l.o.g. assume that all
children with degree at most δ := eβδv(i) have exactly that
degree. For the random variable X counting the number of
nodes w ∈ Cv(i) of degree δ that satisfy Condition (1) we
get that

E[X] ≥
∑

w∈Cv(i)
δw(i)=δ

1

δ
> e−2β.

Since the random choices are independent, applying Cher-
noff’s bound yields that

P [X = 0] ≤ e−E[X]/2 < e−e−2β/2 =: γ.

Provided that X > 0, there is at least one child w ∈ Cv of
v that joins the set in phase i unless rv(i) > rw(i). Since
rw(i) is already larger than all of its neighbors’ random val-
ues (except maybe v), the respective conditional probability
certainly does not exceed 1/2, i.e.,

P [v is deleted in phase i |X > 0] · P [X > 0] ≥ 1− γ

2
.

Since we reasoned about whether children of v join the
independent set only, this bound is independent of the be-
haviour of v’s parent.

We cannot guarantee that the maximum degree in the
subgraph formed by the active nodes drops quickly. How-
ever, we can show that for all but a negligible fraction of the
nodes this is the case.

Lemma 4.8. Denote by H = (VH , EH) a subgraph of G
still present in phase R in which all node degrees are smaller
than eR and for any node there are no more than O(

√
log n)

neighbors outside H still active in phase R. If R ≥ R(n) ∈
O(

√
log n log log n), it holds that all nodes from H are deleted

after the second for-loop of the algorithm w.h.p.

Proof. For the sake of simplicity, we consider the special
case that no edges to nodes outside H exist first. We claim
that for a constant α ∈ N and all i, j ∈ N0 such that i > j
and eR−j ≥ 8ec lnn, it holds that

max
v∈V

{∣

∣

∣

{

w ∈ Cv(R + αi) | δw(R + αi) > eR−j
}∣

∣

∣

}

≤ max
{

eR−2i+j , 8c lnn
}

.

w.h.p. For i = 1 we have j = 0, i.e., the statement holds by
definition because degrees in H are bounded by eR. Assume
the claim is established for some value of i ≥ 1.

Consider a node w ∈ H of degree δw(R + αi) > eR−j ≥
8ec lnn for some j ≤ i. By induction hypothesis, w.h.p. the
number of children of w having degree larger than eR−(j−1)

in phase R+αi (and thus also subsequent phases) is bounded

by max{eR−(2i−(j−1)), 8c lnn} ≤ eR−(j+1), i.e., at least a
fraction of 1− 1/e of w’s neighbors has degree at most fac-
tor e larger than δw(R + αi) in phase R + αi. According
to Lemma 4.7, this implies that w is removed with constant
probability in phase R + αi. Moreover, as long as w keeps
such a high degree, also in subsequent phases there is at
least a constant probability that w is removed. This con-
stant probability bound holds independently from previous
phases (conditional to the event that w retains degree larger
than eR−j). Furthermore, due to the lemma, it applies to
all children w of a node v ∈ H independently. Hence, apply-
ing Chernoff’s bound, we get that in all phases k ∈ {αi, αi+
1, . . . , α(i+1)−1}, the number |{w ∈ Cv(k) | δw(k) > eR−j}|
drops by a constant factor w.h.p. (unless this number is al-
ready smaller than 8c lnn). Consequently, if the constant α
is sufficiently large, the induction step succeeds, completing
the induction.

Recapitulated, after in total O(R) phases, no node in H
will have more than O(log n) neighbors of degree larger than
O(log n). The previous argument can be extended to reduce
degrees even further. The difficulty arising is that once the
expected number of high-degree nodes removed from the
respective neighborhoods becomes smaller than Ω(log n),
Chernoff’s bound does no longer guarantee that a constant
fraction of high-degree neighbors is deleted in each phase.
However, as used before, for critical nodes the applied prob-
ability bounds hold in each phase independently of previous
rounds. Thus, instead of choosing α as a constant, we simply
increase α with i.

Formally, if j0 is the greatest index such that eR−j0 ≥
8ec lnn, we define

α(i) :=

{

α if i ≤ j0
⌈

αei−j0
⌉

otherwise.

This way, the factor e loss in size of expected values (weak-
ening the outcome of Chernoff’s bound) is compensated for
by increasing the number of considered phases by factor e
(which due to independence appears in the exponent of the

bound) in each step. Hence, within

R
∑

i=⌈ln√
log n ⌉

α(i)

∈ O

R +

⌈ln(8ec lnn)⌉
∑

i=⌈ln√
log n⌉

lnn

ei

= O
(

R +
lnn√
log n

)

= O(R)

many phases w.h.p., no node in H will have left more than
O(

√
log n) neighbors of degree larger than O(

√
log n). As-

suming that constants are chosen appropriately, this is the
case after the first for-loop of the algorithm.

Recall that in the second loop the algorithm removes all
nodes of degree at most R in each iteration. Thus, degrees
in H will drop to O(

√
log n) in the first iteration of the

loop, and subsequently all remaining nodes from H will be
removed in the second iteration. Hence, indeed all nodes
from H are deleted at the end of the second for-loop w.h.p.,
as claimed.

Finally, recall that no node has more than O(
√
log n)

edges to nodes outside H . Choosing constants properly,
these edges contribute only a negligible fraction to nodes’ de-
grees even once they reach O(

√
log n). Thus, the asymptotic

statement obtained by the above reasoning holds true also
if we consider a subgraph H where nodes have O(

√
log n)

edges leaving the subgraph, concluding the proof.

We are now in the position to prove our bound on the
running time of Algorithm 1.

Theorem 4.9. Assume that G is a forest and the coloring
steps of Algorithm 1 are performed by a subroutine running
for O(R + log∗ n) rounds. Then the algorithm eventually
terminates and outputs a maximal independent set. Fur-
thermore, if R ≥ R(n) ∈ O(

√
log n log log n), Algorithm 1

terminates w.h.p. within O(R) rounds.

Proof. Correctness is obvious because (i) adjacent nodes
can never join I concurrently, (ii) all neighbors of nodes
that enter I are immediately deleted, (iii) no nodes from
V \⋃v∈I(Nv ∪{v}) get deleted, and (iv) the algorithm does
not terminate until V = ∅. The algorithm will eventually
terminate, as in each iteration of the third loop all leaves and
isolated nodes are deleted and any forest contains either of
the two.

Regarding the running time, assume that the value R ∈
O(

√
log n log log n) is sufficiently large, root the tree at a

node v0, and consider any path P = (v0, . . . , vk) of length

k ≥
√
lnn. Denote by Ci, i ∈ {0, . . . , k}, the connected

component of G containing vi after removing the edges of
P and—provided that δvi(R) < eR—by C̄i the connected
(sub)component of Ci that contains vi and consists of nodes
w of degree δw(R) < eR (as in Lemma 4.6). Then, by
Lemma 4.6, with probability independently lower bounded

by 1− e−ω(
√
lnn), we have that

(i) δvi(R) < eR and

(ii) nodes in C̄i have at most
√
lnn neighbors w of degree

δw(R) ≥ eR.

Hence, each of the C̄i satisfies with a probability that is

independently lower bounded by 1−e−ω(
√
lnn) the prerequi-

sites of Lemma 4.8, implying that w.h.p. all nodes in C̄i are
deleted by the end of the second for-loop. Since Property (i)
implies that C̄i exists, we conclude that independently of all
vj 6= vi, node vi is not deleted until the end of the second

loop with probability e−ω(
√
lnn). Thus, the probability that

no node from P gets deleted is at most

(

e−ω(
√
lnn)

)k

⊆ e−ω(lnn) = n−ω(1).

In other words, when the second loop is completed, w.h.p.
no path of length k ≥

√
lnn exists in the remaining graph,

implying that w.h.p. any of its components has diameter
at most

√
lnn. Consequently, it will take at most

√
lnn

iterations of the third loop until all nodes have been deleted.
Summing up the running times for executing the three

loops of the algorithm, we get that it terminates within
O(R + (R+ log∗ n) +

√
lnn) = O(R) rounds w.h.p.

We complete our analysis by deducing a uniform algo-
rithm that features the claimed bounds on time and bit
complexity.

Theorem 4.10. There exists a uniform MIS algorithm
that terminates w.h.p. within O(log n) rounds on general
graphs and O(

√
log n log log n) rounds on forests. It can be

implemented with a bit complexity of O(log n) w.h.p.

Proof. Instead of running Algorithm 1 directly, we wrap
it into an outer loop trying to guess a good value for R (i.e.,
R(n) ≤ R ∈ O(R(n)), where R(n) as in Theorem 4.9). Fur-
thermore, we restrict the number of iterations of the third
loop to R, i.e., the algorithm will terminate after O(R) steps,
however, potentially without producing an MIS.4 Starting
e.g. from two, with each call R is doubled. Once R reaches
R(n), according to Theorem 4.9 the algorithm outputs an
MIS w.h.p. provided that G is a forest. Otherwise, R con-
tinues to grow until it becomes logarithmic in n. At this
point, the analysis of the algorithm of Métivier et al. [11]
applies to the first loop of the algorithm, showing that it
terminates and return an MIS w.h.p. Hence, as the running
time of each iteration of the outer loop is (essentially) linear
in R and R grows exponentially, the overall running time of
the algorithm is O(

√
log n log log n) on forests and O(log n)

on arbitrary graphs w.h.p.
Regarding the bit complexity, consider the first and third

loop of Algorithm 1 first. In each iteration, a constant num-
ber of bits for state updates (entering MIS, being deleted
without joining MIS, etc.) needs to be communicated as well
as a random number that has to be compared to each neigh-
bor’s random number. However, in most cases exchanging
a small number of leading bits is sufficient to break symme-
try. Overall, as shown by Métivier et al. [11], this can be
accomplished with a bit complexity of O(logn) w.h.p. Es-
sentially, for every round their algorithm generates a random
value and transfers the necessary number of leading bits to
compare these numbers to each neighbor only. Using Cher-
noff’s bound, comparing O(log n) random numbers between
neighbors thus requires O(log n) exchanged bits w.h.p., as

4There is no need to start all over again; one can build on
the IS of previous iterations, although this does not change
the asymptotic bounds.

in expectation each comparison requires to examine a con-
stant number of bits. Thus, if nodes do not wait for a phase
to complete, but rather continue to exchange random bits
for future comparisons in a stream-like fashion, the bit com-
plexity becomes O(log n).

However, in order to avoid increasing the (sublogarith-
mic) time complexity of the algorithm on trees, more cau-
tion is required. Observe that in each iteration of the outer
loop, we know that Θ(R) many random values need to be
compared to execute the respective call of Algorithm 1 cor-
rectly. Thus, nodes may exchange the leading bits of these
Θ(R) many random values concurrently, without risking to
increase the asymptotic bit complexity. Afterwards, for the
fraction of the values for which the comparison remains un-
known, nodes send the second and the third bit to their
neighbors simultaneously. In subsequent rounds, we double
the number of sent bits per number repeatedly. Note that
for each single value, this way the number of sent bits is
at most doubled, thus the probabilistic upper bound on the
total number transmitted bits increases at most by a fac-
tor of two. Moreover, after log log n rounds, log n bits of
each single value will be compared in a single round, thus
at the latest after log log n + O(1) rounds all comparisons
are completed w.h.p. Employing this scheme, the total time
complexity of all executions of the first and third loop of
Algorithm 1 is (in a forest) bounded by

O

⌈logR(n)⌉
∑

i=1

2i + log log n

⊆ O(R(n) + logR(n) log log n)

= O
(

√

log n log log n
)

w.h.p.
It remains to show that the second loop of Algorithm 1

does not require the exchange of too many bits. The num-
ber of transmitted bits to execute this loop is determined by
the number of bits sent by the employed coloring algorithm.
Barenboim and Elkin [2] and Kuhn [7] independently pro-
vided deterministic coloring algorithms with running time
O(R + log∗ n). These algorithms start from an initial col-
oring with a number of colors that is polynomial in n (typ-
ically one assumes identifiers of size O(log n)), which can
be obtained w.h.p. by choosing a random color from the
range {1, . . . , nO(1)}. Exchanging these colors (which also
permits to verify that the random choices indeed resulted
in a proper coloring) thus costs O(log n) bits.5 However, as
the maximum degree of the considered subgraphs is R + 1,
which is in O(log n) w.h.p., subsequent rounds of the algo-
rithms deal with colors that are of (poly)logarithmic size in
n. As exchanging coloring information is the dominant term
contributing to message size in both algorithms, the overall
bit complexity of all executions of the second loop of Algo-
rithm 1 can be kept as low as O(log n + R(n) log log n) =
O(log n).

5. REFERENCES

[1] N. Alon, L. Babai, and A. Itai. A Fast and Simple
Randomized Parallel Algorithm for the Maximal

5To derive a uniform solution, one again falls back to dou-
bling the size of the bit string of the chosen color until the
coloring is locally feasible.

Independent Set Problem. Journal of Algorithms,
7(4):567 – 583, 1986.

[2] L. Barenboim and M. Elkin. Distributed
(∆ + 1)-Coloring in Linear (in ∆) Time. In Proc. 41st
annual ACM symposium on Theory of computing
(STOC), pages 111–120, 2009.

[3] L. Barenboim and M. Elkin. Sublogarithmic
Distributed MIS algorithm for Sparse Graphs using
Nash-Williams Decomposition. Distributed Computing,
22(5–6):363–379, 2009.

[4] R. Cole and U. Vishkin. Deterministic Coin Tossing
with Applications to Optimal Parallel List Ranking.
Information and Control, 70(1):32–53, 1986.

[5] A. Goldberg, S. Plotkin, and G. Shannon. Parallel
Symmetry-Breaking in Sparse Graphs. In In Proc.
19th Annual ACM Conference on Theory of
Computing (STOC), pages 315–324, 1987.

[6] A. Israeli and A. Itai. A Fast and Simple Randomized
Parallel Algorithm for Maximal Matching.
Information Processing Letters, 22(2):77 – 80, 1986.

[7] F. Kuhn. Weak Graph Coloring: Distributed
Algorithms and Applications. In In Proc. 21st ACM
Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2009.

[8] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Local
Computation: Lower and Upper Bounds. Computing
Research Repository, abs/1011.5470, 2010.

[9] N. Linial. Locality in Distributed Graph Algorithms.
SIAM Journal on Computing, 21(1):193–201, 1992.

[10] M. Luby. A Simple Parallel Algorithm for the
Maximal Independent Set Problem. SIAM Journal on
Computing, 15(4):1036–1055, 1986.

[11] Y. Métivier, J. M. Robson, N. Saheb Djahromi, and
A. Zemmari. An optimal bit complexity randomised
distributed MIS algorithm. In Proc. 16th Colloquium
on Structural Information and Communication
Complexity (SIROCCO), pages 323–337, 2009.

[12] M. Naor. A Lower Bound on Probabilistic Algorithms
for Distributive Ring Coloring. SIAM Journal on
Discrete Mathematics, 4(3):409–412, 1991.

[13] A. Panconesi and A. Srinivasan. On the Complexity of
Distributed Network Decomposition. Journal of
Algorithms, 20(2):356–374, 1996.

[14] J. Schneider and R. Wattenhofer. A Log-Star
Distributed Maximal Independent Set Algorithm for
Growth-Bounded Graphs. In Proc. of the 27th Annual
ACM Symposium on Principles of Distributed
Computing (PODC), 2008.

