
1Johannes Schneider

Bounds on
Contention Management Algorithms

Johannes Schneider
Roger Wattenhofer

How to handle access to shared data?
 Locks, Monitors…
 Coarse grained vs. fine grained locking

easy but slow program demanding, time consuming but fast programs

Thread 1 Thread 2

 Problems: difficult, error prone, composability…

Johannes Schneider

lock all data
modify/use data
unlock all data

lock Element A
lock Element B
modify/use A,B
lock Element C
modify/use A,B,C
unlock A
modify/use B,C
unlock B,C

lock Element B
lock Element A
modify/use A,B

unlock A,B

Deadlock!Only 1 thread can execute

2

Transactional memory(TM) - a possible solution

 Simple for the programmer

 Composable

 Idea from database community
 Many TM systems (internally) still use locks
 But the TM system (not the programmer) takes care of
 Performance
 Correctness (no deadlocks...)

Johannes Schneider

Begin transaction
modify/use data
End transaction

Method A.x()
Begin Transaction
B.y()
…
End Transaction

Method B.y()
Begin transaction

…
End transaction

3

Transactional memory systems

 If transactions modify
different data, everything is ok

 the same data, conflicts arise that must be resolved
 Transactions might get delayed or aborted
⇒ Job of a contention manager

 A transaction keeps track of all modified values
 It restores all values, if it is aborted
 A transaction successfully finishes with a commit

Johannes Schneider 4

 A contention manager can abort or delay a transaction
 Distributed
 Each thread has its own manager

 Example
 Initially: A=1, B=1

Manager 1 Manager 2

T1Trans. 1 T1Trans. 2

B:=2
…
A:=3

conflict
…
A:=2

Abort (undo all changes, i.e. set A:=1)
and restart

T1Trans.1

…
A:=2

Trans. 2

B:=2
…
A:=3conflict

Abort (set B:=1) and restart
OR

wait and retry

Conflicts – A contention manager decides

Johannes Schneider 5

Manager 1 Manager 2

Model

 n transactions (and threads) starting concurrently on n
cores

 Transaction
 sequence of operations
 operation takes 1 time unit
 Duration (number of operations) is fixed
 2 types of operations
Write = modify (shared) resource and lock it until commit
 Compute/abort/commit

Johannes Schneider 6

Contention management is an online problem

 A transaction demands unknown resources/variables
 Dynamic data structures change over time
 Eg.: Binary tree, a transaction wants to insert 3

Modify node 1

⇒If transaction executes a little later, data structure might have
changed.

Modify node 4

Johannes Schneider

1

1

4

3

3

7

Properties of a contention manager (CM)

 Throughput
 Makespan = How long it takes until all n transactions committed

makespan my CM
 Competitive ratio = -----------------------------

makespan optimal CM
 Look at worst case
 Oblivious adversary = knows my CM (but not random choices)
 Optimal CM knows decisions of adversary and all conflicts

 Progress guarantees
 Wait, lock, obstruction freedom

Johannes Schneider 8

T1

T4

T3

 Reduction to coloring
 Coloring problem

 Nodes = transactions
 Edges = resources (conflicts)
 Transactions have same duration t
 Resource acquisition at start, takes no time
 Transactions of same color don’t conflict

 How hard is it to approximate an optimal vertex coloring?
 Optimal = Minimum number of colors
 NP-hard to approximate a coloring [Even et al ‘08]

R14

R17

T7

Problem complexity

9Johannes Schneider

T2

Time [1,t] [t,2t] [2t,3t]
Trans.
Run&commit

T1,T2,T3 T4,T5,T6 T7,T8

→ CM problem → CM solution
→ Coloring solution

Still contention managers are needed…

…and there are lots of proposals: [Scherer et al., Ramadan et al., Guerraoui et al.]

 Timestamp
 Kindergarten
 Karma
 Polka
 SizeMatters
 …

 None performs well in the worst case
 Livelocks or O(n) competitive ratio at best [This paper]

 Some need globally shared data
 E.g. a global clock, that becomes a bottleneck

Johannes Schneider 10

Deterministic CM
 Assign priorities to cores
 Transaction TP running on a core P uses P's priority
 Priority of core P changed on commit of TP

 Core 2 priority = 1+ max(5,2,1) = 6
 Core 4 priority = 1+ max(6) = 7

 Worst case: All transactions are executed sequentially
 But: no global resource

11Johannes Schneider

T1Trans. A

R1:=1

T1Trans. B

R1:=1

T1Trans. C

R1:=1

Core 1, Prio. 5 Core 2, Prio. 1 Core 3, Prio. 2

T1Trans. D

R3:=1

Core 4, Prio. 66 7

Commit!! Commit!!

How about a randomized approach?

 Choose a random priority p from [1,n] on startup
 Transaction A with smaller priority wins against B
 B aborts and waits until A commits or aborts
 Then B restarts with new random priority

Johannes Schneider

16 December

David Hasenfratz

T1Tr. 1, p = 1 T1Tr. 2, p = 2

C:=1
…
A:=3

…
A:=2

T1Tr.3, p = 4

…
C:=2

Tr. 3 aborts and waits
Tr. 2 aborts and waits

…
C:=2

p =5
Tr. 3 restarts and chooses new random priority

12

 Assume:
 Longest transaction takes time t
 Any transaction conflicts with at most d -1 other transactions

 After time 2t any transaction can restart and draw a new
random number
 Execute for time < t, abort, then wait for at most time t until restart

 Probability highest random number: 1/d
 Choose e·d·log n random numbers

=> Probability to commit is:

 Time to choose e·d·log n random numbers is O(t·d·log n)

Rough Analysis

Johannes Schneider 13

Discussion

 Complexity measure
 Dependent on number of conflicting transactions d
 Previous: Dependent on number of total resources [Guerraoui et al ’05]

 One can have a lot of parallelism despite many shared resources

 Performance
 Assume: conflict. transactions d = O(1), Duration of transaction t = O(1)
 Makespan of randomized CM: O(log n) with ‘high’ probability
 Competitive ratio O(log n)

 Deterministic: O(n) same as timestamp [Attiya ’06]
 Competitive ratio O(n)
 But: Do not need a global clock (bottleneck)

⇒Exponential gap randomized and deterministic algorithm

14Johannes Schneider

More results in the paper

 Worst case analysis for other CM algorithms
 Lower bound depending on the power of adversary

Thanks for your attention!

15Johannes Schneider

	Slide Number 1
	How to handle access to shared data?
	Transactional memory(TM) - a possible solution
	Transactional memory systems
	Conflicts – A contention manager decides
	Model
	Contention management is an online problem
	Properties of a contention manager (CM)
	Problem complexity
	Still contention managers are needed…
	Deterministic CM
	How about a randomized approach?
	Rough Analysis
	Discussion
	More results in the paper

