[
ETH Distributed @
id| dssisch hnisch hsehule Ziirich H I \ /
Sws Federal metitute of Technalogy Zurich Computing Gro

Bounds on
Contention Management Algorithms

Johannes Schneider
Roger Wattenhofer

I
ETH Distributed /| ™\

™

e ettt ! Computing Group|)
How to handle access to shared data?

= Locks, Monitors...
Coarse grained vs. fine grained locking
easy but slow program demanding, time consuming but fast programs

Thread 1 Thread 2

lock Element A lock Element B
lock all dat lock Element B \ - lock Element A
oc d.a / ata it modify/use A,B modify/use A,B
mol ”Z UITZ ta a lock Element C unlock A,B
uniock af data modify/use A,B,C

Only 1 thread can execute unlogk A Deadlock!
modify/use B,C
unlock B,C

= Problems: difficult, error prone, composabillity...

Johannes Schneider

o |
ETH Distributed /| ™\

S

Eidgendssische Technische Hochschule Ziirich CompUﬁng GI'D&E[/

Swiss Federal Institute of Technology Zurich

Transactional memory(TM) - a possible solution

Begin transaction
modify/use data
End transaction

= Simple for the programmer

Method A.x()

= Composable | Begin Transaction— Method B.y()
B.y() Begin transaction
End Transaction End transaction

= |dea from database community
= Many TM systems (internally) still use locks

= But the TM system (not the programmer) takes care of
Performance
Correctness (no deadlocks...)

Johannes Schneider 3

o
ETH Distributed /| "\

A

Eidgendssische Technische Hochschule Ziirich H Y
; Et:nF:s:: len echnische Hachschule Ziiric Comput’ng Gro&gl/

Transactional memory systems

= |f transactions modify
Y “different data, everything is ok

/N : :
w@the same data, conflicts arise that must be resolved
“ Transactions might get delayed or aborted

Job of a contention manager

= A transaction keeps track of all modified values
= |t restores all values, if it is aborted
= A transaction successfully finishes with a commit

Johannes Schneider

| [
ETH Distributed
Eidgendssische Technische Hochschule Ziirich Computf.ng C‘;roI 0

Swiss Federal Institute of Technology Zurich

Conflicts — A contention manager decides

= A contention manager can abort or delay a transaction

= Distributed
= Each thread has its own manager

= Example
= Initially: A=1, B=1

Manager 1 Manager 1
B:=2
A=2 conflict |-+ _ A=2 confict_|

v v
Abort (undo all changes, i.e. set A:=1) Abort (set B:=1) and restart
and restart OR

wait and retr

Johannes Schneider

|
ETH Distributed /™
Eidgendssische Technische Hochschule Ziirich I

Swiss Federal Institute of Technology Zurich Comp'Jt’ng Gro@l/

Model

= n transactions (and threads) starting concurrently on n
cores

= Transaction
sequence of operations
operation takes 1 time unit
Duration (number of operations) is fixed
2 types of operations

Write = modify (shared) resource and lock it until commit
Compute/abort/commit

Johannes Schneider 6

|
ETH Distributed [\
Eidgendssische Technische Hochschule Ziirich i

Swiss Federal Institute of Technology Zurich Comp”t'ng Growj

Contention management is an online problem

= A transaction demands unknown resources/variables
Dynamic data structures change over time
Eg.: Binary tree, a transaction wants to insert 3

Modify node 1

If transaction executes a little later, data structure might have
changed.

Modify node 4

Johannes Schneider

o
ETH Distributed /| "\

A

Eidgendssische Technische Hochschule Ziirich CompUﬁng GFD&E\[/

Swiss Federal Institute of Technology Zurich

Properties of a contention manager (CM)

= Throughput
Makespan = How long it takes until all n transactions committed

makespan my CM
Competitive ratio = -------m-mmmmmmmmmmmmeeeee
makespan optimal CM

Look at worst case

Oblivious adversary = knows my CM (but not random choices)
Optimal CM knows decisions of adversary and all conflicts

* Progress guarantees
Walit, lock, obstruction freedom

Johannes Schneider 8

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Problem complexity

= Reduction to coloring

Coloring problem — CM problem — CM solution

— Coloring solution
Nodes = transactions
Edges = resources (conflicts)
Transactions have same duration t
Resource acquisition at start, takes no time
Transactions of same color don’t conflict

o
Distributed /[
Computing Grotp| /)

T2
T4
R14
T1
R17
T3
T7
Time [1,t] [t,2t] [2t,3t]
Trans. T1,T2,T3 T7,T8
Run&commit

= How hard is it to approximate an optimal vertex coloring?
Optimal = Minimum number of colors X(G')

NP-hard to approximate a coloring X (G’)

Johannes Schneider

log x(G)

25

[Even et al ‘08]

|
Distributed /|

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Comp'Jt’ng Gro@l/

Still contention managers are needed...

“ea and there are |OtS Of pl‘OpOSBJS [Scherer et al., Ramadan et al., Guerraoui et al.]
Timestamp
Kindergarten
Karma
Polka
SizeMatters

= None performs well in the worst case
Livelocks or O(n) competitive ratio at best [This paper]

= Some need globally shared data
E.g. a global clock, that becomes a bottleneck

Johannes Schneider

[
ETH Distributed /rlb
Eidgendssische Technische Hochschule Ziirich Computl.ng Gro&gjj

Swiss Federal Institute of Technology Zurich

Deterministic CM

= Assign priorities to cores
= Transaction TP running on a core P uses P's priority
= Priority of core P changed on commit of TP

Core 1, Prio. 5 Core 2, Prio.6 Core 3, Prio. 2 Core 4, Prio. 7/

R1:=1

Cgmmit!!
Core 2 priority = 1+ max(5,2,1) = 6
Core 4 priority = 1+ max(6) = 7

= Worst case: All transactions are executed sequentially
But: no global resource

Johannes Schneider

|
ETH Distributed /[
Eidgendssische Technische Hochschule Ziirich Computl.ng Grow

Swiss Federal Institute of Technology Zurich

How about a randomized approach?

= Choose a random priority p from [1,n] on startup

= Transaction A with smaller priority wins against B
B aborts and waits until A commits or aborts
Then B restarts with new random priority

C=1 Tr. 3 aborts and waits | ...
A=2 Tr. 2 aborts and waits | ... C:=2
A:=3
Tr. 3 restarts and chooses new random priority C:=2

Johannes Schneider

o
Distributed /|

Swis Faderalmaitue of Technology Zuich Computing Gro&gl J
Rough Analysis

= Assume:
Longest transaction takes time t
Any transaction conflicts with at most d -1 other transactions

= After time 2t any transaction can restart and draw a new
random number

Execute for time < t, abort, then wait for at most time t until restart
= Probability highest random number: 1/d

= Choose e-d-log n random numbers

.y .. : logn
=> Probability to commit is: 1 — (1 — — L jedtosn o 17" g1

e-d e M

= Time to choose e:d-log n random numbers is O(t-d-log n)

Johannes Schneider

o
ETH Distributed /" Y
Eidgendssische Technische Hochschule Ziirich CompUﬁng GrO&EL/

Swiss Federal Institute of Technology Zurich

Discussion

= Complexity measure
Dependent on number of conflicting transactions d

Previous: Dependent on number of total resources [Guerraoui et al '05]
One can have a lot of parallelism despite many shared resources

= Performance
Assume: conflict. transactions d = O(1), Duration of transaction t = O(1)
Makespan of randomized CM: O(log n) with ‘high’ probability
Competitive ratio O(log n)
Deterministic: O(n) same as timestamp [Attiya *06]
Competitive ratio O(n)
But: Do not need a global clock (bottleneck)

Exponential gap randomized and deterministic algorithm

Johannes Schneider 14

Eidgendssische Technische Hochschule Ziirich

I
ETH Distributed @
Swiss Federal Institute of Technology Zurich ComPunng Gro

More results in the paper

= Worst case analysis for other CM algorithms
= Lower bound depending on the power of adversary

[hanks fa/‘ Jour altention/

Johannes Schneider

	Slide Number 1
	How to handle access to shared data?
	Transactional memory(TM) - a possible solution
	Transactional memory systems
	Conflicts – A contention manager decides
	Model
	Contention management is an online problem
	Properties of a contention manager (CM)
	Problem complexity
	Still contention managers are needed…
	Deterministic CM
	How about a randomized approach?
	Rough Analysis
	Discussion
	More results in the paper

