
1Johannes Schneider

Bounds on
Contention Management Algorithms

Johannes Schneider
Roger Wattenhofer

How to handle access to shared data?
 Locks, Monitors…
 Coarse grained vs. fine grained locking

easy but slow program demanding, time consuming but fast programs

Thread 1 Thread 2

 Problems: difficult, error prone, composability…

Johannes Schneider

lock all data
modify/use data
unlock all data

lock Element A
lock Element B
modify/use A,B
lock Element C
modify/use A,B,C
unlock A
modify/use B,C
unlock B,C

lock Element B
lock Element A
modify/use A,B

unlock A,B

Deadlock!Only 1 thread can execute

2

Transactional memory(TM) - a possible solution

 Simple for the programmer

 Composable

 Idea from database community
 Many TM systems (internally) still use locks
 But the TM system (not the programmer) takes care of
 Performance
 Correctness (no deadlocks...)

Johannes Schneider

Begin transaction
modify/use data
End transaction

Method A.x()
Begin Transaction
B.y()
…
End Transaction

Method B.y()
Begin transaction

…
End transaction

3

Transactional memory systems

 If transactions modify
different data, everything is ok

 the same data, conflicts arise that must be resolved
 Transactions might get delayed or aborted
⇒ Job of a contention manager

 A transaction keeps track of all modified values
 It restores all values, if it is aborted
 A transaction successfully finishes with a commit

Johannes Schneider 4

 A contention manager can abort or delay a transaction
 Distributed
 Each thread has its own manager

 Example
 Initially: A=1, B=1

Manager 1 Manager 2

T1Trans. 1 T1Trans. 2

B:=2
…
A:=3

conflict
…
A:=2

Abort (undo all changes, i.e. set A:=1)
and restart

T1Trans.1

…
A:=2

Trans. 2

B:=2
…
A:=3conflict

Abort (set B:=1) and restart
OR

wait and retry

Conflicts – A contention manager decides

Johannes Schneider 5

Manager 1 Manager 2

Model

 n transactions (and threads) starting concurrently on n
cores

 Transaction
 sequence of operations
 operation takes 1 time unit
 Duration (number of operations) is fixed
 2 types of operations
Write = modify (shared) resource and lock it until commit
 Compute/abort/commit

Johannes Schneider 6

Contention management is an online problem

 A transaction demands unknown resources/variables
 Dynamic data structures change over time
 Eg.: Binary tree, a transaction wants to insert 3

Modify node 1

⇒If transaction executes a little later, data structure might have
changed.

Modify node 4

Johannes Schneider

1

1

4

3

3

7

Properties of a contention manager (CM)

 Throughput
 Makespan = How long it takes until all n transactions committed

makespan my CM
 Competitive ratio = -----------------------------

makespan optimal CM
 Look at worst case
 Oblivious adversary = knows my CM (but not random choices)
 Optimal CM knows decisions of adversary and all conflicts

 Progress guarantees
 Wait, lock, obstruction freedom

Johannes Schneider 8

T1

T4

T3

 Reduction to coloring
 Coloring problem

 Nodes = transactions
 Edges = resources (conflicts)
 Transactions have same duration t
 Resource acquisition at start, takes no time
 Transactions of same color don’t conflict

 How hard is it to approximate an optimal vertex coloring?
 Optimal = Minimum number of colors
 NP-hard to approximate a coloring [Even et al ‘08]

R14

R17

T7

Problem complexity

9Johannes Schneider

T2

Time [1,t] [t,2t] [2t,3t]
Trans.
Run&commit

T1,T2,T3 T4,T5,T6 T7,T8

→ CM problem → CM solution
→ Coloring solution

Still contention managers are needed…

…and there are lots of proposals: [Scherer et al., Ramadan et al., Guerraoui et al.]

 Timestamp
 Kindergarten
 Karma
 Polka
 SizeMatters
 …

 None performs well in the worst case
 Livelocks or O(n) competitive ratio at best [This paper]

 Some need globally shared data
 E.g. a global clock, that becomes a bottleneck

Johannes Schneider 10

Deterministic CM
 Assign priorities to cores
 Transaction TP running on a core P uses P's priority
 Priority of core P changed on commit of TP

 Core 2 priority = 1+ max(5,2,1) = 6
 Core 4 priority = 1+ max(6) = 7

 Worst case: All transactions are executed sequentially
 But: no global resource

11Johannes Schneider

T1Trans. A

R1:=1

T1Trans. B

R1:=1

T1Trans. C

R1:=1

Core 1, Prio. 5 Core 2, Prio. 1 Core 3, Prio. 2

T1Trans. D

R3:=1

Core 4, Prio. 66 7

Commit!! Commit!!

How about a randomized approach?

 Choose a random priority p from [1,n] on startup
 Transaction A with smaller priority wins against B
 B aborts and waits until A commits or aborts
 Then B restarts with new random priority

Johannes Schneider

16 December

David Hasenfratz

T1Tr. 1, p = 1 T1Tr. 2, p = 2

C:=1
…
A:=3

…
A:=2

T1Tr.3, p = 4

…
C:=2

Tr. 3 aborts and waits
Tr. 2 aborts and waits

…
C:=2

p =5
Tr. 3 restarts and chooses new random priority

12

 Assume:
 Longest transaction takes time t
 Any transaction conflicts with at most d -1 other transactions

 After time 2t any transaction can restart and draw a new
random number
 Execute for time < t, abort, then wait for at most time t until restart

 Probability highest random number: 1/d
 Choose e·d·log n random numbers

=> Probability to commit is:

 Time to choose e·d·log n random numbers is O(t·d·log n)

Rough Analysis

Johannes Schneider 13

Discussion

 Complexity measure
 Dependent on number of conflicting transactions d
 Previous: Dependent on number of total resources [Guerraoui et al ’05]

 One can have a lot of parallelism despite many shared resources

 Performance
 Assume: conflict. transactions d = O(1), Duration of transaction t = O(1)
 Makespan of randomized CM: O(log n) with ‘high’ probability
 Competitive ratio O(log n)

 Deterministic: O(n) same as timestamp [Attiya ’06]
 Competitive ratio O(n)
 But: Do not need a global clock (bottleneck)

⇒Exponential gap randomized and deterministic algorithm

14Johannes Schneider

More results in the paper

 Worst case analysis for other CM algorithms
 Lower bound depending on the power of adversary

Thanks for your attention!

15Johannes Schneider

	Slide Number 1
	How to handle access to shared data?
	Transactional memory(TM) - a possible solution
	Transactional memory systems
	Conflicts – A contention manager decides
	Model
	Contention management is an online problem
	Properties of a contention manager (CM)
	Problem complexity
	Still contention managers are needed…
	Deterministic CM
	How about a randomized approach?
	Rough Analysis
	Discussion
	More results in the paper

