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Abstract. “How well connected is the network?” This is one of the most
fundamental questions one would ask when facing the challenge of design-
ing a communication network. Three major notions of connectivity have
been considered in the literature, but in the context of traditional (single-
layer) networks, they turn out to be equivalent. This paper introduces a
model for studying the three notions of connectivity in multi-layer net-
works. Using this model, it is easy to demonstrate that in multi-layer
networks the three notions may differ dramatically. Unfortunately, in
contrast to the single-layer case, where the values of the three connectiv-
ity notions can be computed efficiently, it has been recently shown in the
context of WDM networks (results that can be easily translated to our
model) that the values of two of these notions of connectivity are hard
to compute or even approximate in multi-layer networks. The current
paper shed some positive light into the multi-layer connectivity topic:
we show that the value of the third connectivity notion can be computed
in polynomial time and develop an approximation for the construction
of well connected overlay networks.

Keywords: Overlay networks, graph theory, connectivity,
approximation.

1 Introduction

1.1 Background and Motivation

The term “connectivity” in networks has more than one meaning, but these
meanings are equivalent in “traditional” networks. While the graph theoretic
definition of connectivity refers to the ability to reach every node from every
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other node (a.k.a. 1-connectivity), the term connectivity is often related also
to the survivability of a network, namely, the ability to preserve 1-connectivity
whenever some links fail.1 In other words, a network G is said to be k-connected
if it satisfies the following “connectivity property” (CP):

(CP1) G remains connected whenever up to k − 1 links are erased from it.

However, there are also other meanings to connectivity. A network G is also said
to be k-connected if it satisfies the following “connectivity property”:

(CP2) There exist k pairwise link-disjoint paths from s to t for every two nodes
s, t in G.

The equivalence of these two properties [13] enables numerous practical appli-
cations. For example, one of the applications of the existence of link-disjoint
paths (Property (CP2)) is to ensure survivability (Property (CP1)). Often, a
backup (link-disjoint) path is prepared in advance, and the traffic is diverted to
the backup path whenever a link on the primary path fails. An example is the
backup path protection mechanism in SONET networks (see, e.g., [15]).

A third property capturing connectivity is based on the amount of flow that
can be shipped in the network between any source and any destination, defining
the capacity of a single link to be 1. In other words, a network G is said to be
k-connected if it satisfies the following “connectivity property”:

(CP3) It is possible to ship k units of flow from s to t for every two nodes s, t
in G.

This property too is equivalent to the first two [8], and is also used together
with them. For example, routing some flow of information around congestion
(which may be possible only if the network satisfies property (CP3) and thus
can support this additional flow) uses the second property, i.e., it relies on the
existence of multiple link-disjoint paths.

Current networks, however, offer multi-layered structures which yield signif-
icant complications when dealing with the notion of connectivity. In particu-
lar, the overlay/underlying network dichotomy plays a major role in modeling
communication networks, and overlay networks such as peer-to-peer (P2P) net-
works, MPLS networks, IP/WDM networks, and SDH/SONET-WDM networks,
all share the same overall structure: an overlay networkH is implemented on top
of an underlying network G. This implementation can be abstracted as a routing
scheme that maps overlay connections to underlying routes. We comment that
there are sometimes differences between such a mapping and the common notion
of a routing scheme. Still, since the routing scheme often defines the mapping,
we shall term this mapping the routing scheme.

Often, the underlying network itself is implemented on top of yet another net-
work, thus introducing a multi-layer hierarchy. Typically, the lower level under-
lying network is “closer” to the physical wires, whereas the higher level network

1 The current paper does not deal with node connectivity.
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is a traffic network in which edges capture various kinds of connections, depend-
ing on the context. For the sake of simplicity, we focus on a pair of consecutive
layers G and H . This is sufficient to capture a large class of practical scenarios.

The current paper deals with what happens to the different connectivity prop-
erties once we turn to the context of overlay networks. As discussed later on,
connectivity has been studied previously in the “overlay network” world under
the “survivability” interpretation (CP1), and it has been observed that, in this
context, the connectivity parameter changes, i.e., the connectivity of the overlay
network may be different from that of the underlying network. Lee et al. [12]
demonstrated the significance of this difference by showing that the survivability
property is computationally hard and even hard to approximate in the multi-
layer case. Since the three aforementioned connectivity parameters may differ
in multi-layer networks (see Sect. 1.2), they also showed a similar result for the
disjoint paths connectivity property.

Interestingly, the motivation of Lee et al. for addressing the disjoint paths
connectivity property was the issue of flow. One of the contributions of the
current paper is to directly address this issue, showing that in contrast to the
previous two notions of connectivity, the maximum flow supported by an overlay
network can actually be computed in polynomial time.

In the specific context of survivability, other papers have shown that the issue
of connectivity in an overlay network is different from that of connectivity in
underlying networking. Consider, for example, a situation where several overlay
edges (representing connections) of H pass over the same physical link. Then all
these overlay edges may be disconnected as a result of a single hardware fault in
that link, possibly disconnecting the overlay network. The affected overlay links
are said to share the risk of the failure of the underlying physical link, hence they
are referred to in the literature as a shared risk link group (SRLG). An SRLG-
based model for overlay networks was extensively studied in recent years;2 see,
e.g., [14] for a useful introduction to this notion and [2] for a discussion of this
concept in the context of MPLS. The SRLG model hides the actual structure
of the underlying network, in the sense that many different underlying networks
can yield the same sets of SRLG. (For certain purposes, this is an advantage of
the model.) An even more general notion is that of Shared Risk Resource Group
However, sometimes this model abstracts away too much information, making
certain computational goals (such as, e.g., flow computations) harder to achieve.

In contrast to the SRLG model, we present the alternative model of deep
connectivity, which allows us to simultaneously consider all three components:
the overlay network, the underlying network, and the mapping (the routing
scheme). Note that all three should be considered: For example, if the underlying
network is not connected, then neither can the overlay network be. The routing
scheme also affects the connectivity properties as different routing schemes may
yield significantly different overlay link dependencies. In some cases, routing is
constrained to shortest paths, whereas in other cases it can be very different.

2 Note that a common underlying link is not the only possible shared risk; overlay
links sharing a node may form a shared risk link group too.
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In policy based routing schemes (see, e.g. [16]), for example, some underlying
edges are not allowed to be used for routing from u to v, which may cause the
underlying path implementing the overlay link (u, v) to be much longer than the
shortest (u, v)-path.

1.2 The Deep Connectivity Model

The underlying network is modeled by a (simple, undirected, connected) graph
G whose vertex set V (G) represents the network nodes, and whose edge set E (G)
represents the communication links between them. Some nodes of the underlying
network are designated as peers ; the set of peers is denoted by P ⊆ V (G). The
overlay network, modeled by a graph H , spans the peers, i.e., V (H) = P and
E (H) ⊆ P × P ; H typically represents a “virtual” network, constructed on top
of the peers in the underlying communication network G.

An edge (u, v) in the overlay graph H may not directly correspond to an edge
in the underlying graph G (that is, E (H) is not necessarily a subset of E (G)).
Therefore, communication over a (u, v) edge in H should often be routed along
some multi-hop path connecting u and v in G. This is the role of a routing scheme
ρ : P×P → 2E(G) that maps each pair (u, v) of peers to some simple path ρ(u, v)
connecting u and v in G. A message transmitted over the edge (u, v) in H is
physically disseminated along the path ρ(u, v) in G. We then say that (u, v)
is implemented by ρ(u, v). For the sake of simplicity, the routing scheme ρ is
assumed to be symmetric, i.e., ρ(u, v) = ρ(v, u). More involved cases do exist in
reality: the routing scheme may be asymmetric, or may map some overlay edge
into multiple routes; the simple model given here suffices to show interesting
differences between the various connectivity measures.

When a message is routed in H from a peer s ∈ P to a non-neighboring peer
t ∈ P along some multi-hop path π = (x0, x1, . . . , xk) with x0 = s, xk = t,
and (xi, xi+1) ∈ E(H), it is physically routed in G along the concatenated path
ρ(x0, x1)ρ(x1, x2) · · · ρ(xk−1, xk). In some cases, when the overlay graph H is
known, it will be convenient to define the routing scheme over the edges of H ,
rather than over all peer pairs.

The notion of deep connectivity grasps the connectivity in the overlay graph
H , while taking into account its implementation by the underlying paths in
G. Specifically, given two peers s, t ∈ P , we are interested in three different
parameters, each capturing a specific type of connectivity. In order to define
these parameters, we extend the domain of ρ from vertex pairs in P × P to
collections of such pairs in the natural manner, defining ρ(F ) =

⋃
(u,v)∈F ρ(u, v)

for every F ⊆ P×P . In particular, given an (s, t)-path π in H , ρ(π) =
⋃

e∈π ρ(e)
is the set of underlying edges used in the implementation of the overlay edges
along π.

– The edge-removal deep connectivity of s and t in H with respect to G and
ρ, denoted by ERDCG,ρ(s, t,H), is defined as the size of the smallest subset
F ⊆ E (G) that intersects with ρ(π) for every (s, t)-path π in H ; namely, the
minimum number of underlying edges that should be removed in order to
disconnect s from t in the overlay graph.



Notions of Connectivity in Overlay Networks 29

– The path-disjoint deep connectivity of s and t in H with respect to G and ρ,
denoted by PDDCG,ρ(s, t,H), is defined as the size of the largest collection
C of (s, t)-paths in H such that ρ(π) ∩ ρ(π′) = ∅ for every π, π′ ∈ C with
π �= π′, i.e., the maximum number of overlay paths connecting s to t whose
underlying implementations are totally independent of each other.

– The flow deep connectivity of s and t in H with respect to G and ρ, denoted
by FDCG,ρ(s, t,H), is defined as the maximum amount of flow3 that can be
pushed from s to t in G restricted to the images under ρ of the (s, t)-paths
in H , assuming that each edge in E (G) has a unit capacity. Intuitively, if s
and t are well connected, then it should be possible to push a large amount
of flow between them.

Example: To illustrate the various definitions, consider the underlying network
G depicted in Fig. 1(a), and the overlay network H depicted in Fig. 1(b). The
routing scheme ρ assigns each of the 6 overlay edges adjacent to the extreme
S and T a simple route consisting of the edge itself. For the remaining three
overlay edges, the assigned routes are as follows:

ρ(U1, U4) = (U1,M1,M2, U2, U3, U4)

ρ(M1,M4) = (M1,M2, D2, D3,M3,M4)

ρ(D1, D4) = (D1, D2, D3, U3, U4, D4) .

The route ρ(M1,M4) is illustrated by the dashed line in Fig. 1(a). Note that
in the original (underlying) network G, the connectivity of the extreme nodes
S and T is 3 under all three definitions. In contrast, the values of the three
connectivity parameters for the extreme nodes S and T in the overlay network
H under the routing scheme ρ are as follows:

– The edge-removal deep connectivity of s and t in H w.r.t. G and ρ is
ERDCG,ρ(s, t,H) = 2.
Indeed, disconnecting the underlying edge (D2, D3) plus any edge of the
upper underlying route will disconnect S from T .

– The path-disjoint deep connectivity of s and t in H w.r.t. G and ρ is
PDDCG,ρ(s, t,H) = 1.
Indeed, any two of the three overlay routes connecting S and T share an
underlying edge.

– The flow deep connectivity of s and t inH w.r.t.G and ρ is FDCG,ρ(s, t,H) =
3/2.
This is obtained by pushing 1/2 flow unit through each of the three overlay
routes.

For each deep connectivity (s, t)-parameter XG,ρ(s, t,H), we define the corre-
sponding all-pairs variant XG,ρ(H) = mins,t∈P XG,ρ(s, t,H). When G and ρ are
clear from the context, we may remove them from the corresponding subscripts.

3 In the setting of undirected graphs, flow may be interpreted in two different ways
depending on whether two flows along the same edge in opposite directions cancel
each other or add up. Here, we assume the latter interpretation which seems to be
more natural in the context of overlay networks.
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Fig. 1. (a) The underlying graph G. (b) The overlay network H .

1.3 Contribution

Our model for overlay networks makes it convenient to explore the discrepancies
between the different deep connectivity notions. Classical results from graph
theory, e.g., the fundamental min-cut max-flow theorem [8, 7] and Menger’s
theorem [13] state that the three connectivity parameters mentioned above are
equivalent when a single layer network is considered. Polynomial time algorithms
that compute these parameters (in a single layer network) were discovered early
[8, 5, 6] and have since become a staple of algorithms textbooks [3, 11]. As
mentioned above, previous results [12, 4], when translated to our model, have
shown that in multi-layer networks, two of the three connectivity parameters
are computationally hard and even hard to approximate. Our first technical
contribution is to expand on these negative results by showing that the path-
disjoint deep connectivity property cannot be approximated to any finite ratio
when attention is restricted to simple paths in the underlying graph.

On the positive side, we show that the flow deep connectivity parameters can
be computed in polynomial time (Sect. 3), thus addressing the motivation of [12]
for studying the disjoint paths property in overlay networks. Then, we address
the issue of constructing a “good” overlay graph for a given underlying graph
and routing scheme. As opposed to the difficulty of approximating the value of
the parameters, we show that the related construction problem can sometimes
be well approximated. Specifically, in Sect. 4, we investigate the problem of
constructing 2-edge removal deeply connected overlay graphs with as few as
possible (overlay) edges. This problem is shown to be NP-hard, but we show
that a logarithmic-approximation for it can be obtained in polynomial-time.

2 Hardness of Approximation

As mentioned earlier, Lee et al. [12] established hardness of approxima-
tion results for the problems of computing the parameters ERDCG,ρ(s, t,H),
PDDCG,ρ(s, t,H), and ERDCG,ρ(H). For completeness, we observe that the all-
pairs variant PDDCG,ρ(H) of the path-disjoint deep connectivity parameter is
also hard to approximate, establishing the following theorem, which is essentially
a corollary of Theorem 4 in [12] combined with a result of H̊astad [10].
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Theorem 1. Unless NP = ZPP, the problem of computing the parameter
PDDCG,ρ(H) cannot be approximated to within a ratio of |E (H)|1/2−ε for any
ε > 0.

We now turn to show that the following natural variants of the PDDC parameters
cannot be approximated to within any finite ratio. Let SPDDCG,ρ(s, t,H) denote
the size of the largest collection C of (s, t)-paths in H such that all paths π ∈ C
are implemented by simple paths ρ(π) in G and ρ(π) ∩ ρ(π′) = ∅ for every
π, π′ ∈ C with π �= π′; let SPDDCG,ρ(H) = mins,t∈P SPDDCG,ρ(s, t,H). Note
that these parameters are merely a restriction of the PDDC parameters to simple
paths (hence the name, which stands for simple path-disjoint deep connectivity).

The inapproximability of the SPDDCG,ρ(s, t,H) parameter is proved by re-
ducing the set packing problem to the problem of distinguishing between the case
SPDDCG,ρ(s, t,H) = 0 and the case SPDDCG,ρ(s, t,H) ≥ 1. In fact, the ver-
tices s, t ∈ V (H) that minimize SPDDCG,ρ(s, t,H) in this reduction are known
in advance, thus establishing the impossibility of approximating the all-pairs
parameter SPDDCG,ρ(H) as well. The proofs of the following two theorems are
deferred to the full version.

Theorem 2. Unless P = NP, the problem of computing the parameter
SPDDCG,ρ(s, t,H) cannot be approximated to within any finite ratio.

Theorem 3. Unless P = NP, the problem of computing the parameter
SPDDCG,ρ(H) cannot be approximated to within any finite ratio.

3 Efficient Algorithm for FDC

In this section, we develop a polynomial time algorithm that computes the flow
deep connectivity parameter FDC(s, t,H) (which clearly provides an efficient
computation of the parameter FDC(H) as well). Consider some underlying graph
G, routing scheme ρ, overlay graph H , and two vertices s, t ∈ V (H). Let P
denote the collection of all simple (s, t)-paths in H . For each path p ∈ P and for
each edge e ∈ E (G), let ψ(p, e) be the number of appearances of the edge e along
the image of p under ρ. We begin by representing the parameter FDC(s, t,H)
as the outcome of the following linear program:

max
∑

p∈P xp s.t.
∑

p∈P ψ(p, e) · xp ≤ 1 ∀e ∈ E (G)

xp ≥ 0 ∀p ∈ P
The variable xp represents the amount of flow pushed along the image under ρ
of the path p for every p ∈ P . The goal is to maximize the total flow pushed
along the images of all paths in P subject to the constraints specifying that the
sum of flows pushed through any edge is at most 1. This linear program may
exhibit an exponential number of variables, so let us consider its dual program
instead:

min
∑

e∈E(G) ye s.t.
∑

e∈E(G) ψ(p, e) · ye ≥ 1 ∀p ∈ P
ye ≥ 0 ∀e ∈ E (G)
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The dual program can be interpreted as fractionally choosing as few as possible
edges of G so that the image under ρ of every path p in P traverses in total at
least one edge. We cannot solve the dual program directly as it may have an
exponential number of constraints. Fortunately, it admits an efficient separation
oracle, hence it can be solved in polynomial time (see, e.g., [9]).

Given some real vector y indexed by the edges in E (G), our separation oracle
either returns a constraint which is violated by y or reports that all the con-
straints are satisfied and y is a feasible solution. Recall that a violated constraint
corresponds to some path p ∈ P such that

∑
e∈E(G) ψ(p, e) · ye < 1. Therefore

our goal is to design an efficient algorithm that finds such a path p ∈ P if such
a path exists.

Let w(e) =
∑

e′∈ρ(e) ye′ for every edge e ∈ E (H) and let H ′ be the weighted

graph obtained by assigning weight w(e) to each edge e ∈ E (H). The key ob-
servation in this context is that the (weighted) length of an (s, t)-path p′ in H ′

equals exactly to
∑

e∈E(G) ψ(p, e) ·ye, where p is the path in H that corresponds

to p′ in H ′. Therefore, our separation oracle is implemented simply by finding a
shortest (s, t)-path p∗ in H ′: if the length of p∗ is smaller than 1, then p∗ corre-
sponds to a violated constraint; otherwise, the length of all (s, t)-paths in H ′ is
at least 1, hence y is a feasible solution. This establishes the following theorem.

Theorem 4. The parameters FDCG,ρ(s, t,H) and FDCG,ρ(H) can be computed
in polynomial time.

4 Sparsest 2-ERDC Overlay Graphs

In this section, we are interested in the following problem, referred to as the
sparsest 2-ERDC overlay graph problem: given an underlying graph G, a peer
set P ⊆ V (G), and a routing scheme ρ : P × P → 2E(G), construct the spars-
est overlay graph H for P (in terms of number of overlay edges) satisfying
ERDCG,ρ(H) ≥ 2. Of course, one has to make sure that such an overlay graph
H exists, so in the context of the sparsest 2-ERDC overlay graph problem we
always assume that ERDCG,ρ(KP) ≥ 2, where KP is the complete graph on P .
This means that a trivial solution with

(
n
2

)
edges, where n = |P|, always exists

and the challenge is to construct a sparser one.

4.1 Hardness

We begin our treatment of this problem with a hardness result.

Theorem 5. The sparsest 2-ERDC overlay graph problem is NP-hard.

Proof. The assertion is proved by a reduction from the Hamiltonian path prob-
lem. Consider an n-vertex graph G0 input to the Hamiltonian path problem.
Transform it into an instance of the sparsest 2-ERDC overlay graph problem as
follows: Construct the underlying graph G by setting V (G) = V (G0) ∪ {x, y}
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and E (G) = E (G0) ∪ {(x, y)} ∪ {(v, x), (v, y) | v ∈ V (G0)} and let P = V (G0).
Define the routing scheme ρ by setting

ρ(u, v) =

{
(u, v) if (u, v) ∈ E (G0)
(u, x, y, v) otherwise.

This transformation is clearly polynomial in n.
We argue that G0 admits a Hamiltonian path if and only if there exists an

overlay graph H for P so that |E (H)| = n and ERDCG,ρ(H) ≥ 2. To that
end, suppose that G0 admits a Hamiltonian path π. If π can be closed to a
Hamiltonian cycle (in G0), then take H to be this Hamiltonian cycle. Otherwise,
take H to be the cycle consisting of π and a virtual edge connecting between
π’s endpoints. In either case, H clearly has n edges and by the design of ρ, H
satisfies ERDCG,ρ(H) = 2.

Conversely, if there exists an overlay graph H for P so that |E (H)| = n and
ERDCG,ρ(H) ≥ 2, then H must form a Hamiltonian cycle C in P × P . This
cycle can contain at most one virtual edge as otherwise, the removal of (x, y)
breaks two edges of C which means that ERDCG,ρ(H) < 2. By removing this
virtual edge, we are left with a Hamiltonian path in G0. �


4.2 Constructing Sparse 2-ERDC Overlay Graphs

On the positive side, we develop a polynomial time logarithmic approximation
algorithm for the sparsest 2-ERDC overlay graph problem. Our algorithm pro-
ceeds in two stages: First, we take T to be an arbitrary spanning tree of P ×P .
Subsequently, we aim towards (approximately) solving the following optimiza-
tion problem, subsequently referred to as the overlay augmentation problem:
augment T with a minimum number of P×P edges so that the resulting overlay
graph H satisfies ERDCG,ρ(H) ≥ 2.

We will soon explain how we cope with this optimization problem, but first
let us make the following observation. Denote the edges in ρ(T ) by ρ(T ) =
{e1, . . . , e�} and consider some overlay graph H such that E (H) ⊇ T and some
1 ≤ i ≤ �. Let Fi(H) be the collection of connected components of the graph
obtained from H by removing all edges e ∈ E (H) such that ei ∈ ρ(e). Fix

κi(H) = |Fi(H)| − 1 and κ(H) =

�∑

i=1

κi(H) .

We think of κ(H) as a measure of the distance of the overlay graphH from being
a feasible solution to the overlay augmentation problem (i.e., ERDC(H) ≥ 2).

Proposition 1. An overlay graph H ⊇ T satisfies ERDC(H) ≥ 2 if and only
if κ(H) = 0.

Proof. If ERDC(H) ≥ 2, then Fi(H) must consist of a single connected compo-
nent for every 1 ≤ i ≤ �, thus κ(H) = 0. Conversely, if κ(H) = 0, then necessarily
|Fi(H)| = 1 for every 1 ≤ i ≤ �, which means that H does not disconnect by
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the removal of any edge ei ∈ ρ(T ). It is also clear that the removal of any edge
in E (G) − ρ(T ) does not disconnect H as the tree T remains intact. Therefore,
ERDC(H) ≥ 2. �

Consider some edge e ∈ (P×P)−E (H) and let H∪{e} denote the overlay graph
obtained from H by adding the edge e. By the definition of the parameter κ, we
know that Δi(e,H) = κi(H) − κi(H ∪ {e}) is either 0 or 1 for any 1 ≤ i ≤ �.

Fixing Δ(e,H) = κ(H)−κ(H ∪{e}), we observe that: Δ(e,H) =
∑�

i=1Δi(e,H)
referred to as Property (	).

We are now ready to complete the description of our approximation algorithm.
Starting from H = T , the algorithm gradually adds edges to H as long as
κ(H) > 0 according to the following greedy rule. At any intermediate step, we
add to H an edge e ∈ (P ×P)−E (H) that yields the maximum Δ(e,H). When
κ(H) decreases to zero, the algorithm terminates (recall that this means that
ERDC(H) ≥ 2).

The analysis of our approximation algorithm relies on the following
proposition.

Proposition 2. The parameter κ can be computed in polynomial time. More-
over, for every two overlay graphs H1, H2 such that E (H1) ⊆ E (H2), we have

(1) κ(H1) ≥ κ(H2); and
(2) Δ(e,H1) ≥ Δ(e,H2) for every edge e ∈ P × P.

Proof. The fact that κ can be computed efficiently and the fact that κ(H1) ≥
κ(H2) are clear from the definition of κ, so our goal is to prove that Δ(e,H1) ≥
Δ(e,H2) for every e ∈ P × P . By Property (	), it suffices to show that
Δi(e,H1) ≥ Δi(e,H2) for every 1 ≤ i ≤ �. If Δi(e,H2) = 0, then this holds
vacuously, so suppose that Δi(e,H2) = 1. This means that ei /∈ ρ(e) and the
endpoints of e belong to different connected components in Fi(H2). But since
E (H1) ⊆ E (H2), it follows that the endpoints of e must also belong to different
connected components in Fi(H1), hence Δi(e,H1) = 1 as well. �

Proposition 2 implies that the overlay augmentation problem falls into the class
of submodular cover problems (cf. [17, 1]) and our greedy approach is guaranteed
to have an approximation ratio of at most ln(κ(T )) + 1 = O(logN), where
N = |V (G)|. More formally, letting Ĥ be a sparsest overlay graph such that
Ĥ ⊇ T and ERDC(Ĥ) ≥ 2, it is guaranteed that the overlay graph H generated
by our greedy approach satisfies |E (H)− T | ≤ O(logN) · |E (Ĥ)− T |.

To conclude the analysis, let H∗ be an optimal solution to the sparsest 2-
ERDC overlay graph problem. Clearly, |E (H∗)| > n− 1 = |T |. Moreover, since
E (H∗)∪T is a candidate for Ĥ , it follows that |E (H∗)∪T | ≥ |Ĥ |, thus |E (H∗)| ≥
|E (Ĥ)− T |. Therefore,

|E (H)| ≤ O(logN) · |E (Ĥ)− T |+ |T |
≤ O(logN) · |E (H∗)|+ |E (H∗)|
= O(log(N) · |E (H∗)|)

which establishes the following theorem.
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Theorem 6. The sparsest 2-ERDC overlay graph problem admits a polynomial-
time logarithmic-approximation.
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