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Abstract

Combinatorial auctions are used to allocate re-
sources in domains where bidders have complex
preferences over bundles of goods. However, the
behavior of bidders under different payment rules
is not well understood, and there has been limited
success in finding Bayes-Nash equilibria of such
auctions due to the computational difficulties in-
volved. In this paper, we introduce non-decreasing
payment rules. Under such a rule, the payment
of a bidder cannot decrease when he increases
his bid, which is a natural and desirable prop-
erty. VCG-nearest, the payment rule most com-
monly used in practice, violates this property and
can thus be manipulated in surprising ways. In
contrast, we show that many other payment rules
are non-decreasing. We also show that a non-
decreasing payment rule imposes a structure on the
auction game that enables us to search for an ap-
proximate Bayes-Nash equilibrium much more ef-
ficiently than in the general case. Finally, we intro-
duce the utility planes BNE algorithm, which ex-
ploits this structure and outperforms a state-of-the-
art algorithm by multiple orders of magnitude.

1 Introduction
Combinatorial auctions (CAs) are commonly used to allocate
multiple, indivisible goods to multiple bidders. CAs allow
bidders to express complex preferences on the space of all
bundles of goods, taking into account that goods can be com-
plements or substitutes [Cramton et al., 2006]. CAs have
found widespread use in practice, including for the sale of ra-
dio spectrum licenses [Cramton, 2013], for the procurement
of industrial goods [Sandholm, 2013], and for the allocation
of TV ad slots [Goetzendorff et al., 2014].

Unfortunately, the incentive properties of CAs are not very
well understood. One exception, of course, is the well-know
VCG auction, which is strategyproof [Vickrey, 1961; Clarke,
1971; Groves, 1973]. However, using VCG in a CA domain
can lead to undesirable outcomes, such as very low revenue
[Ausubel and Milgrom, 2006] or collusion by bidders [Day
and Milgrom, 2008].

1.1 Non-truthful Payment Rules
Due to VCG’s shortcomings in CAs, non-truthful payment
rules are used in practice. The most prominent among these
are core-selecting payment rules [Day and Milgrom, 2008].
A rule is core-selecting if there is no group of bidders that
is envious towards the auction winners. To achieve this, pay-
ments must lie in the core, which is the set of payments where
no coalition of bidders is willing to pay more than what the
auction charged the winners. The core is a convex polytope
and the minimum revenue core is the face of the core where
the total payment of all bidders is minimized. The VCG-
nearest payment rule (or “Quadratic”), the rule most often
used in practice, selects the unique point in the minimum rev-
enue core that minimizes the Euclidean distance to the VCG
payment point [Day and Cramton, 2012]. To date, VCG-
nearest has been used in over ten spectrum auctions world-
wide, generating more than $20 billion in revenues [Ausubel
and Baranov, 2017]. Core-selecting CAs have also been pro-
posed for use in electricity markets [Karaca et al., 2018] and
in sponsored search auctions [Hartline et al., 2018]

Unfortunately, there does not exist a strategyproof core-
selecting payment rule [Goeree and Lien, 2016], and rela-
tively little is known about the incentives and strategic be-
havior of bidders when non-truthful payment rules like first-
price or core-selecting rules are used in CAs. Large set-
tings with many bidders and goods are intractable to ana-
lyze, both analytically and computationally. Therefore, core-
selecting CAs have mostly been analyzed in stylized settings
[Ausubel and Baranov, 2013; Parkes et al., 2001]. Even
so, many ways are known in which bidders can manipulate
core-selecting CAs in their favor [Gretschko et al., 2016;
Beck and Ott, 2013].

1.2 Background on BNE Algorithms
We employ the standard Bayes-Nash equilibrium (BNE) con-
cept to analyze the incentives of bidders in a CA. A BNE,
in contrast to the related Nash Equilibrium, captures the fact
that bidders have incomplete information about their rivals’
preferences. Bidders have a belief about other bidders’ valu-
ations, in the form of random variables drawn from the value
space. Bidders submit their own bids, chosen from their
action space, in response to the expected bids of others.

For the purpose of equilibrium computation, [Bosshard et
al., 2017; Reeves and Wellman, 2004] have argued that CAs



should be modeled as infinite games, i.e., games with contin-
uous value and action spaces. The argument is that it is actu-
ally more difficult to compute equilibria for finite games with
a large number of states than for infinite games. However, the
infinite setting is very challenging in its own way: the BNE
solution concept imposes an equilibrium condition on every
valuation of every bidder simultaneously; thus, special care
must be taken to ensure the equilibrium condition is met for
all possible valuations. While it is possible to apply heuristics
in this step (e.g. checking the equilibrium condition at a finite
sample of valuations), such heuristic equilibria are difficult to
interpret in a standard game-theoretic way. In contrast, the
BNEs in the infinite game model are readily interpretable.

The state of the art in this area is the work of Bosshard et al.
[2017], who describe a fast numerical algorithm for finding
approximate BNEs (i.e. ε-BNEs) in the infinite setting. They
also point out several pitfalls that should be avoided, under
the label of the false precision problem, to ensure that the
result of a search for ε-BNEs yields a correct ε.

The combinatorial nature of the problem, together with
the incomplete information setting, make BNE computation
a very hard, almost intractable problem. Even state-of-the-art
algorithms can only solve instances of limited size. By size
we mean the number of bidders and goods included in the
auction, as well as the number of bundles each bidder bids
on. The latter directly affects the dimensionality of bidders’
strategies, because the bids on all different bundles must be
jointly optimized by each bidder. Scalability in this dimen-
sion is thus particularly difficult.

Despite the high complexity of this problem, advances in
algorithmic techniques for BNE computation can still be very
beneficial. First, being able to quickly solve small-to-medium
sized instances makes it possible to solve many of them, en-
abling approaches such as an algorithmic search for payment
rules with desirable properties [Lubin et al., 2018]. Sec-
ond, understanding small CA instances helps us develop a
deeper understanding of the effects that drive strategic be-
havior in combinatorial auctions. For instance, the LLG do-
main has been extensively studied [Goeree and Lien, 2016;
Beck and Ott, 2013; Ausubel and Baranov, 2013; Baranov,
2010], even though the only combinatorial interaction that
arises is two local players needing to cooperate to jointly out-
bid the global player. There are many more interesting inter-
actions that can already happen in domains such as LLLLGG
[Bosshard et al., 2017], which have a size in-between very
stylized/toy domains such as LLG and a fully fledged spec-
trum auction with hundreds of goods and dozens of bidders.
With the advent of more efficient BNE algorithms, the possi-
bility of systematically studying such domains is just begin-
ning to open up.

1.3 Overview of our Contributions
In this paper, we aim to find new structural properties of CAs
that help us better understand the strategic behavior of bidders
in CAs and also allow us to design more effective BNE algo-
rithms. This leads us to introduce and analyze non-decreasing
payment rules for CAs. Such payment rules cannot decrease
a bidder’s payment when he increases his bid, unless the al-
location changes. In Section 3, we introduce this property

formally. We prove that VCG-nearest, the payment rule most
commonly used in practice, is not non-decreasing. We also
show that non-decreasing rules actually exist, by placing sev-
eral well-known rules in this class, including strategyproof
and core-selecting ones. In Section 4, we introduce a new
algorithm to compute ε-BNEs that exploits the structure of
non-decreasing payment rules. For this, we first show how
piecewise constant strategies can be used as an auxiliary mod-
eling step in the computation of ε-BNEs. Such strategies cre-
ate a cell structure that helps us understand the combinato-
rial interactions when bids are multidimensional. Under a
non-decreasing payment rule, this structure can be exploited
to find the best response of a bidder to the strategies of all
other bidders more efficiently. We assemble these ideas into
the utility planes BNE algorithm which computes ε-BNEs for
infinite games, while guaranteeing the correctness of ε. In
Section 5, we evaluate the runtime of our algorithm in two
different CA domains. We show that it outperforms the state-
of-the-art algorithm by multiple orders of magnitude.

2 Formal Model
In this section, we introduce CAs with continuous values
and bids. We use the well-known independent private val-
ues (IPV) model. In contrast to other work, we explicitly
handle the occurrence of ties. This is necessary because we
deal with piecewise constant strategies and thus cannot as-
sume that ties will occur with probability 0, as would be the
case with strictly monotone strategies.

2.1 Combinatorial Auctions
A combinatorial auction (CA) is a mechanism used to sell a
set M = {1, 2, . . . ,m} of goods to a set N = {1, 2, . . . , n}
of bidders. For each bundle of goods K ⊆ M , each bidder
i has a value vi(K) ∈ R≥0, and submits a (possibly non-
truthful) bid bi(K). We assume that each bidder only bids
on a limited number of r bundles of interest (typically a true
subset of all possible bundles). For a fixed r, the bid bi can
thus be represented by a point in the action space Rr≥0, with
bids on all other bundles implicitly being 0. The bid pro-
file b = (b1, . . . , bn) is the vector of all bids, and the bid
profile of everyone except i is denoted b-i. The CA has an
allocation rule X(b) which always produces an efficient allo-
cation: it maximizes reported social welfare (the sum of all
winning bids), by solving what is known as the winner de-
termination problem. Bids can be such that ties occur, i.e.
multiple allocations are efficient. Thus, X(b) is a correspon-
dence (set-valued function), with each x ∈ X(b) having the
same probability of being chosen. xi denotes the bundle as-
signed to i under allocation x, possibly the empty bundle.
The CA also has a payment rule p(b, x) which is a function
assigning a payment to each bidder based on the bid profile
and allocation. We assume that the payment rule satisfies in-
dividual rationality, i.e. pi(b, x) ≤ bi(xi). Each bidder has a
quasi-linear utility function ui(vi, b, x) = vi(xi) − pi(b, x).
We also assume that the utility functions satisfy free disposal,
i.e. a bidder always has weakly positive value for winning
additional goods.1

1Formally, free disposal requires that for all K ⊆ K′ ⊆ M , we
have that vi(K) ≤ vi(K

′).



bids VCG VCG-nearest bids′ VCG′ VCG-nearest′
{1} {2} {1, 2} {1} {2} {1, 2}

Bidder #1 4∗ 2 3 4∗ 3 3.5
Bidder #2 4∗ 5 2 3 4∗ 7 2 2.5
Bidder #3 2 2 6 0 0 2 2 6 0 0

Table 1: Auction where 3 bidders are bidding on 2 goods. Winning bids are marked with an ∗. Bidder 2 increases his bid on a non-winning
bundle (marked in bold), which decreases his payment on his winning bundle, while the allocation remains constant.

2.2 CAs as Bayesian Games
We model the process of bidding in a CA as a Bayesian game.
Each bidder knows his own valuation vi, but he only has prob-
abilistic information (i.e. a prior) over each other bidder j’s
valuation vj , represented by the random variable Vj . The
joint prior V = (V1, . . . , Vn) is common knowledge and con-
sistent between bidders. We assume that the Vi are mutually
independent. Each bidder chooses a strategy si. We assume
that all strategies are pure, i.e. si is a function mapping values
to bids. The expected utility of bidder i with value vi when
bidding bi is given by

ūi(vi, bi) := E
b-i∼s-i(V-i)

[
E

x∈X(b)
[vi(xi)− pi(b, x)]

]
, (1)

with the inner expectation corresponding to tie-breaking be-
tween efficient allocations. The amount of utility that a bidder
i is “leaving on the table” when submitting bid bi (instead of
bidding optimally) is called the utility loss, given by

li(vi, bi) := sup
b′i∈Rr

≥0

ūi(vi, b
′
i)− ūi(vi, bi). (2)

The expected utility might be discontinuous and not have a
maximum, which is why we take the supremum instead. Bid-
ders are in an ε-equilibrium when the utility loss is small for
all possible valuations of all bidders:
Definition 1. An ε-Bayes-Nash equilibrium (ε-BNE) is a
strategy profile s∗ such that

∀i ∈ N, ∀vi ∈ Vi : li(vi, s
∗
i (vi)) ≤ ε.

3 Non-decreasing Payment Rules
In this section, we introduce non-decreasing payment rules.
Informally, when a bidder increases his bid under such a
rule, his payment cannot decrease unless the increased bid
causes a change in the allocation. If the allocation stays fixed,
then charging a smaller payment for a higher bid is counter-
intuitive. However, if the allocation changes, then it might
very well be appropriate (in economic terms) to decrease the
payment for a higher bid. For example, a bidder might cur-
rently be allocated the highly sought-after bundle K, and
upon increasing his bid on a less-demanded bundle K ′, his
allocation changes from K to K ′ and his payment decreases.
Definition 2. For any allocation x, let Bx be the set of bid
profiles for which x is efficient. The payment rule p(b, x) is
non-decreasing at x if, for all bidders i and bid profiles b, b′ ∈
Bx with b-i = b′-i, the following holds:

b′i ≥ bi ⇒ pi(b
′, x) ≥ pi(b, x).

A payment rule p(b, x) is non-decreasing if it is non-
decreasing at all allocations x.

As we will show in Section 4, non-decreasing payment
rules exhibit a particular structure that we can exploit in
the design of BNE algorithms. However, this property is
also desirable from an incentive point-of-view. Consider the
strategyproof VCG payment rule, which is obviously non-
decreasing, because under VCG, bidder i’s payment is inde-
pendent of his bid (and thereby also non-decreasing). Cou-
pled with the welfare-maximizing allocation rule, this gives
bidders an incentive to report their true valuations under VCG
which leads to high efficiency. In contrast, a rule that is not a
non-decreasing rule can be manipulated in surprising ways.

3.1 The VCG-nearest Rule
To illustrate this, consider the VCG-nearest payment rule.
One justification for using this rule that has been provided in
the literature is that VCG-nearest produces outcomes in the
minimum revenue core and maximizes incentives for truthful
bidding [Cramton, 2013; Day and Milgrom, 2008]. It is intu-
itive that minimizing the distance to VCG should reduce the
“residual incentive to misreport” [Day and Cramton, 2012],
but the evidence for this is sparse. Indeed, there are other
ways to choose a minimum revenue core payment, and there
is some evidence suggesting that VCG-nearest may not be the
best [Lubin et al., 2018; Bichler et al., 2014].

As it turns out, VCG-nearest is not a non-decreasing pay-
ment rule, violating this property in many different situations.
First, we discuss a simple example, which will also serve as
proof for our claim.
Proposition 1. VCG-nearest is not non-decreasing.

Proof. Given by counterexample in Table 1, where bidder 2
decreases the payment on his winning bundle {2} by increas-
ing his bid on losing bundle {1, 2} from 5 to 7.

Note that bidder 2 could also cause his payment to decrease
by directly decreasing his bid on {2}. In contrast, the manip-
ulation shown in Table 1 involves an over-bid, which can be
particularly problematic for the auction process. The CCA,
which is the auction format most often used in practice (e.g.
for spectrum auctions) has a clock phase of several rounds
used for price discovery, followed by a final round in which
a sealed-bid CA is used. There are activity rules in place that
force bidders to be consistent in their revealed preferences:
their demand for goods must decrease in response to prices
rising over time [Cramton, 2013]. The manipulation we show
here allows bidder 2 to declare high demand for bundle {2}
while keeping his anticipated payment low. This suggests that
there may be ways to circumvent the activity rule by strate-
gically exaggerating one’s demand, a topic which should be
investigated further.



bundle of interest bid VCG VCG-nearest bid′ VCG′ VCG-nearest′

Bidder #1 {1} 5 2 37/12 5 1 36/12
Bidder #2 {2} 5 0 16/12 5 0 18/12
Bidder #3 {3} 4 1 37/12 5 1 36/12
Bidder #4 {4} 1 0 7/12 1 0 6/12
Bidder #5 {5} 1 0 7/12 1 0 6/12
Bidder #6 {6} 1 0 10/12 1 0 12/12
Bidder #7 {1, 2, 4} 5 5
Bidder #8 {2, 3, 5} 5 5
Bidder #9 {1, 3, 6} 7 7
Bidder #10 {4, 5, 6} 2 2
Bidder #11 {2, 3, 4} 5 5

Table 2: Auction where 11 single-minded bidders are bidding on 6 goods. We show VCG and VCG-nearest payments for each bidder. If
bidder 3 increases his bid (marked in bold), this decreases bidder 1’s VCG payment, which in turn decreases bidder 3’s VCG-nearest payment.

This first counterexample already shows ways in which
the VCG-nearest payment rule can be problematic. Unfor-
tunately, there exist even more egregious cases. For instance,
a bidder who is single-minded (i.e. who only bids on a sin-
gle bundle) can sometimes decrease his payment by bidding
higher on his bundle, even when he is already winning. VCG-
nearest is thus doing the direct opposite of what would be in-
tuitive when receiving an economic signal of higher interest
in a bundle.

Consider the situation in Table 2, where 11 bidders are bid-
ding for 6 goods. We show two different bid profiles, along
with the corresponding auction outcomes. The only differ-
ence between the bid profiles is that bidder 3 has increased
his bid from 4 to 5, which causes bidder 1’s VCG payment
to drop from 2 to 1. In both situations, the winners are bid-
ders 1-6, and each of the remaining bidders imposes a single
core constraint. The minimum-revenue core is a line segment
that fulfills all five of these constraints with equality, yielding
a total payment of 9.5. However, bidder 3’s payment under
VCG-nearest decreases from 37/12 to 36/12.

3.2 Other Core-Selecting Payment Rules
We have already seen that VCG is non-decreasing, but it
is not a core-selecting rule like VCG-nearest. Fortunately,
many well-known core-selecting payment rules are also non-
decreasing. This is straightforward to see for the first-price
payment rule, which is non-decreasing because i’s payment
is directly proportional to the bid on the bundle he wins, and
independent of his bids on other bundles. We now show
that two other core-selecting rules are non-decreasing as well.
The first one is the proportional rule, where the payments are
on the core boundary and proportional to the winning bids.
The second is the proxy rule, where we imagine a proxy agent
bidding on behalf of each bidder in infinitesimal increments
until a point in the core is hit [Ausubel and Baranov, 2013].
We provide formal definitions of these payment rules in Ap-
pendix A of the full version of this paper.

Proposition 2. The proportional and proxy rules are non-
decreasing.

Proof. We show this for proportional, the argument is analo-
gous for proxy. Let b and b′ be identical bid profiles, except

for b′i(K) > bi(K), and let x be an allocation that is efficient
under both b and b′. There are three cases: (1) xi = ∅, thus i’s
payment is 0 by individual rationality. (2) xi = K. The core
is the same w.r.t. b and b′. Let p̃ be the unique point on the line
of payments proportional according to b′ with p̃i = pi(b, x).
Since p̃j ≤ pj(b, x)∀j 6= i, p̃ lies weakly below the core, thus
pi(b

′, x) ≥ p̃i = pi(b, x). (3) xi = K ′ 6= K. Each core con-
straint under b′ is weakly higher than under b, but payments
have the same proportion in both cases, so p(b, x) lies weakly
below the core w.r.t. b′. Thus pi(b′, x) ≥ pi(b, x).

The intuition behind this proof is simple: Many core-
selecting payment rules (such as proportional, proxy and vcg-
nearest) can be defined through the combination of a ref-
erence point and a method to project the payment to the
core from the reference point [Lubin et al., 2018]. The core
constraints themselves always increase in response to higher
bids, and the reference point used for proxy and proportional
is the origin. It is therefore sufficient to show that the projec-
tion method is non-decreasing, which is what the proof does.

The existence of payment rules which are both core-
selecting and non-decreasing suggests re-evaluating the use
of VCG-nearest in practice. Another payment rule may bring
with it all the advantages of being in the core while being less
manipulable and easier to work with for bidders and auction-
eers. We leave a more detailed exploration of the space of
non-decreasing core-selecting payment rules for future work.

4 The Utility Planes BNE Algorithm
In this section, we present our utility planes BNE algorithm, a
highly efficient BNE algorithm for CAs with non-decreasing
payment rules. We will make use of several building blocks.
First, and most importantly, we will use an algorithmic trick,
whereby our algorithm internally only considers piecewise
constant strategies, i.e., strategies that consist of a finite num-
ber of flat segments. This will imply that only finitely many
different bids can occur. This allows us to compute approxi-
mate best responses in a highly efficient manner using utility
planes, as we will explain in Section 4.2. Note that if such a
discretization were applied naively, this could lead to a phe-
nomenon called the false precision problem [Bosshard et al.,
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Figure 1: Example of utility planes in one dimension. Top: Each
possible bid of a bidder generates a utility plane (a line in this case).
The upper envelope is marked as a dashed line. Bottom: Piecewise
constant strategy induced by the set of utility planes.

2017]. This problem arises when an auction game is simpli-
fied to make it tractable, an equilibrium is computed in the
simplified game, and is then translated back to the original
(richer) game without justification. This would lead to un-
derestimating the potential utility loss and thus the ε in the
computed equilibrium. Fortunately, the fact that we have non-
decreasing payment rules allows us to use a powerful struc-
tural result (given as Theorem 1) to bound the utility loss, not
only in relation to the restricted space of piecewise constant
strategies, but with respect to all possible strategies. We pro-
vide details of this in Section 4.3. This enables us to avoid
the false precision problem and compute a true ε-BNE of the
original game. Our full BNE algorithm is presented in detail
in Section 4.4.

4.1 Iterative Best Response Algorithms
Our BNE algorithm is based on the iterative best response
paradigm. This is a well known approach to finding equilibria
of games [Brown, 1951]. Starting at some strategy profile s,
we repeatedly replace s with a best response to s, i.e. a strat-
egy profile s′ where for each bidder i, strategy s′i maximizes
his utility against the previous strategies s-i. While such al-
gorithms usually have no convergence guarantees, they work
well in practice and are robust to issues such as only having
access to approximate best responses.

4.2 Computing Best Responses via Utility Planes
Recall that a strategy is a function mapping every valuation
vi to a corresponding bid bi = si(vi). If we were to construct
a best response to a strategy profile s naively, we would need
to find a bid that maximizes the expected utility for each valu-
ation vi separately. In fact, this is how Bosshard et al. [2017]
compute best responses. They find the optimal bid for a fi-
nite number of valuations and then interpolate between these
pointwise best responses to extend the strategy to the entire
value space of the bidder. This “local” approach is straight-
forward but computationally expensive, because the expected

bi(K)

bi(K
′)

win nothing win bundle K

win bundle K’

bi(K)

bi(K
′)

Figure 2: Action space of bidder i, with two bundles of interest K
and K′. Left: for fixed bids b-i of other bidders, the action space
is partitioned into three convex polytopes, depending on which bun-
dle bidder i wins. Right: For a probability distribution over finitely
many bids b-i (represented here by black, green, red and blue), the
action space is partitioned into cells where the probability of win-
ning each bundle is the same within each cell. For instance, the cell
highlighted in gray consists of all bids where i wins nothing in the
black case, bundle K in the green case, and bundle K′ in the red and
blue cases.

utility must be computed for many (value, bid) pairs, without
sharing any intermediate results between them.

Fortunately, two of our assumptions (quasi-linear utilities
and independently distributed valuations) allow us to do bet-
ter: we use a “global” approach, where we construct the best
response strategy s′i without ever directly computing s′i(vi)
for any particular vi. Note that for a fixed bid bi, the expected
utility ūi(vi, bi) is linear in vi. Specifically, ūi contains one
linear term for each bundle K, namely the value vi(K) times
the probability of winning K. The remaining term is the ex-
pectation of−pi(b, x) across all bundles, which is constant in
vi. Thus, ūi(vi, bi) forms a utility plane that maps valuations
vi to expected utility [Rabinovich et al., 2013].

For a set of such utility planes, we can construct their upper
envelope, which is a piecewise linear function defined as the
pointwise maximum of all these planes (Figure 1, top). The
value space is split into regions depending on which plane
is the topmost one. This upper envelope naturally induces
the best response, which is a piecewise constant strategy: for
each region in the value space, the bid bi associated to the
topmost plane is the one maximizing i’s expected utility and
is thus part of the best response (Figure 1, bottom).

The problem of computing upper envelopes is well known
in computational geometry [Edelsbrunner et al., 1989]. In
our implementation, we avoid constructing the envelope ex-
plicitly, because this is expensive and fraught with numerical
precision issues. Instead, we evaluate the upper envelope for
a finite set of valuations on a grid, and keep the strategy con-
stant between grid points. This makes the best response less
accurate, but only in a negligible way.

4.3 Partitioning the Action Space
Recall that the action space of bidder i is the set of all bids
that i is allowed to submit, i.e. Rr≥0, where r is the number
of bundles of interest. We want to impose a structure on this
space that will help us understand which bids we need to con-
sider when computing the best response of i to some strategy
profile s. This will also help us determine if s is an ε-BNE.



Consider the situation where the bids b-i of all other bid-
ders are fixed. In this case, i’s action space is partitioned into
r + 1 convex polytopes, with i’s allocation being different
in each polytope (Figure 2, left). To explain how this parti-
tion arises, we need the concept of a constrained allocation
rule. Recall that the allocation rule X(b) maximizes reported
social welfare across all bidders. The constrained allocation
rule X-i(K, b-i) also maximizes welfare, but is subject to the
constraint that bundle K is allocated to bidder i. Thus, the
total reported social welfare achieved by X-i(K, b-i) is a lin-
ear function of bi(K). Now, consider two bundles K and
K ′. We can express the condition that X-i(K, b-i) achieves
higher reported social welfare thanX-i(K

′, b-i) as a linear in-
equality. Given a bid bi where i wins bundle K under the
(unconstrained) efficient allocation, such a linear inequality
must hold for every bundle K ′ 6= K. Thus, the set of all such
bids forms a convex polytope.

Taking this idea further, if we have a probability distribu-
tion over finitely many bid profiles b-i (i.e. when each sj is a
piecewise constant strategy), we can partition the action space
of i into many smaller convex polytopes, such that inside each
polytope, bidder i’s probability of winning each bundle is the
same (Figure 2, right). This finer partition can be visualized
as intersecting the partitions corresponding to each possible
b-i. We call each of these smaller polytopes a cell of bidder
i’s action space.

Next, we show that for any strategy profile s, we can bound
the maximum utility that bidder i could possibly obtain by de-
viating from his current strategy. To compute this bound, we
only need to consider what happens at all cell vertices. The
idea is the following: if we have two different points bi ≤ b′i
that are both strictly inside the same cell, then bidding bi is
always preferable. This is because the non-decreasing pay-
ment rule ensures that the expected payment at bi is weakly
lower than at b′i, while keeping the same distribution over al-
locations. Taking this idea to its logical conclusion, it is never
optimal to bid anything other than the lowest vertex of a cell.

There is a catch, however: a vertex itself belongs to sev-
eral cells, so bidding exactly on the vertex would lead to ties
between different allocations for bidder i, making the auction
result different from that of inner points of the cell. The op-
timal bid that is representative of a cell is thus strictly in the
interior of the cell, just above the lowest vertex.

We cannot determine the payment for such an optimal bid
exactly since we make no assumptions about the payment rule
except that it is non-decreasing.2 To solve this issue, we can
compute the allocation as if i had bid sligthly above the ver-
tex, but collect the payment as if he had bid exactly on the ver-
tex. This results in an upper bound for the maximum utility
that can be obtained anywhere in the cell in question. Formal-
izing the above, we introduce the tie-winning expected utility

ūδi (vi, bi, π) := E
b-i

[
E

x∈X(bi+δπ,b-i)
[vi(xi)− pi(b, x)]

]
, (3)

where δ is a small constant, and the vector π corresponds to
a permutation of (1, . . . , r) which moves the bid into one of
the cells neighboring bi. The permutation π expresses some

2In particular, the payment rule need not be continuous.

preference order over bundles in case of self-ties. Next, we
introduce the i-optimal expected utility

ūOPT
i (vi, bi) := max

π∈Π

[
lim
δ→0

ūδi (vi, bi, π)

]
, (4)

which maximizes over Π, the set of all such permutations.
With this definition in place, we can state the main technical
result of the paper.

Theorem 1. In a CA with a non-decreasing payment rule
and where bidders have piecewise constant strategies, it holds
that for every vi, there exists a cell vertex b∗i such that, for any
bid bi in i’s action space,

ūOPT
i (vi, b

∗
i ) ≥ ūi(vi, bi).

Proof. See Appendix B of the full version of this paper.

4.4 The Algorithm
With Theorem 1, we now have all the pieces in place to build
our algorithm. On a high level, our algorithm works as fol-
lows: We have a strategy profile s consisting of piecewise
constant strategies. Thus, bidder i’s action space has finitely
many cell vertices and we can construct best response s′i from
the utility planes corresponding to these vertices. s′i is an ap-
proximate best response over the full action space of i. The
strategy profile s′ we construct in this way also consists of
piecewise constant strategies, so we can repeat this procedure
in the next iteration of our iterative best response algorithm.

Our full BNE algorithm is provided in Algorithm 1. The
iterative best response loop is given in lines 3-22. In lines
6-8, we compute two sets of utility planes for each bidder:
one for the actual expected utility ūi, and another for the i-
optimal expected utility ūOPT

i . In lines 9-10, we compute two
upper envelopes, one for each set of utility planes. Line 11
computes bidder i’s best response, i.e. the strategy obtain-
ing the highest possible utility in response to st−1

-i . Line 12
computes the best response, assuming that i wins all ties and
obtains the i-optimal utility. The utility loss of bidder i is cal-
culated in lines 13-17 by comparing the utility obtained by the
current strategy st−1

i to the utility obtained by the i-optimal
best response at all vertices of both envelopes. In lines 19-21,
we check if the strategy profile of the last iteration is a more
accurate BNE than any previous strategy profile. The next
theorem shows that Algorithm 1 computes a true ε-BNE:

Theorem 2. In a CA with a non-decreasing payment rule,
Algorithm 1 returns strategy s and ε, such that s is an ε-BNE.

Proof. It follows from Theorem 1 that, for all vi, the enve-
lope envt,OPT

i (vi) is an upper bound for the utility obtainable
at vi with any bid bi. For any two piecewise linear functions
f and g, the maximum of the function h := g− f must occur
at a vertex (one of the segment points) of either f or g. Both
envt,OPT

i and envti are piecewise linear functions, and if we
subtract them we get an upper bound for the utility loss. It fol-
lows that εi computed in lines 14-17 of Algorithm 1 bounds
the maximum utility loss of bidder i.



Algorithm 1: Utility Planes BNE Algorithm
Input: Auction (X, p), valuations V , target ε̃
Output: strategy profile s and overall utility loss ε

1 s0 = Initial strategies
2 best iteration = 0
3 for t = 1 . . .maximum iterations do
4 εt = 0
5 foreach bidder i do
6 foreach Vertex bi in bidder i’s action space do
7 Compute utility plane of bi w.r.t. st−1

-i , both
with random and i-optimal tie breaking

8 end
9 envti = upper envelope with random tie breaking

10 envt,OPT
i = upper envelope with i-optimal tie

breaking
11 sti = strategy induced by envti
12 st,OPT

i = strategy induced by envt,OPT
i

13 Qi = vertices of envt,OPT
i ∪ vertices of envt−1

i
14 foreach vi ∈ Qi do
15 li = ūOPT

i (vi, s
t,OPT
i (vi))− ūi(vi, st−1

i (vi))
16 εt = max [εt, li]
17 end
18 end
19 if εt < εbest iteration then
20 best iteration = t
21 end
22 end
23 return (sbest iteration, εbest iteration)

Discussion. With this theorem, our results are on solid
ground: While our algorithm only considers a finite set of
bids (because internally, it only operates with piecewise con-
stant strategies), it measures the ε it achieves against the high-
est utility achievable by any bid, thus avoiding the false pre-
cision problem described by Bosshard et al. [2017].

The reason why our algorithm works well in practice also
becomes clear now: the best responses we compute are al-
most optimal. In fact, a bidder loses very little utility by be-
ing restricted to bids that are cell vertices, namely the utility
lost due to ties. This amount is very small when the grid res-
olution is large enough and value distributions are relatively
close to uniform.

4.5 Runtime Analysis
Computing a utility plane is by far the most expensive part of
Algorithm 1. Therefore, we evaluate its runtime in the unit
cost model, counting the number of times this operation must
be performed, and ignoring any other operations (e.g. the
computation of the upper envelope).

The algorithm computes one utility plane for each vertex bi
of the cell structure of bidder i. Luckily, the number of such
vertices is bounded. If all strategies are piecewise constant,
then we have a finite number of distinct bids used by each
bidder. Thus, we can always find a step size such that any bid
by any bidder on any bundle is an integer multiple of this step

size. It turns out that if we build a regular grid with resolution
equal to this step size and lay it over the action space of a
bidder, then all cell vertices fall exactly on grid points.

Lemma 1. In a CA where bidders have piecewise constant
strategies, if it is always the case that for some constant step
size c ∈ R≥0, bi(K) is an integer multipe of c, then the co-
ordinates of all cell vertices are also integer multiples of c.

Proof. Each cell vertex bi is defined by a linear system of
equalities. The coefficients of these equalities are always 1, 0
or −1, so if we perform Gaussian elimination to find bi, we
will add and subtract equations, but never multiply them. The
claim easily follows from the fact that {a · c : a ∈ Z, c ∈ R}
is closed under addition.

Lemma 1 allows us to bound the amount of work the al-
gorithm does per iteration. If we choose the initial strategies
to only contain bids on a regular grid, then the number of cell
vertices does not grow over time, assuming that bidders never
want to bid above their maximum value for any bundle.3

For instance, if we have a bidder interested in two bun-
dles with values in the [0, 2] interval, choosing a step size
of c = 1/32 means that we need to compute at most 652

utility lines in each iteration. More generally, if a bidder
has r bundles of interest, with each bundle Kj having value
in the interval [0, vmax

i (Kj)], then all vertices lie on an r-
dimensional grid with resolution c, going from 0 to vmax

i (Kj)
in each dimension. In that case we need to compute at most
( 1
c + 1)r ·∏r

j=1 v
max
i (Kj) utility lines for that bidder.

5 Experimental Results
In this section, we evaluate the performance of our utility
planes BNE algorithm. We benchmark it against the algo-
rithm from Bosshard et al. [2017] in two domains: the
single-minded LLG domain and the multi-minded LLLLGG
domain.

5.1 Experiment Setup
For each domain, we set a target ε. This target is 0.001 for
LLG, and 0.02 for LLLLGG. For each algorithm, we measure
the runtime required to reach a strategy profile that is proven
to be an ε-BNE. The starting strategy profile is one where all
bidders bid truthfully.4

Both algorithms are written in Java 8 and share as much
of their implementation as possible. There is often a need
to integrate over the bids b-i, e.g. when computing expected
utilities or utility planes. This integration is approximated us-
ing Monte Carlo sampling with common random numbers, as
described in [Bosshard et al., 2017]. The number of samples
used is 20,000 for LLG and 200,000 for LLLLGG.

3For the first-price, proxy and proportional payment rules, we
have found this to be the case in our experiments. Proving this prop-
erty formally is an interesting open problem.

4The cell structure we describe in Section 4.3 only arises when
all bidders play piecewise constant strategies. Therefore, our BNE
algorithm computes an inaccurate ε in the first iteration. To fix this
issue, we make sure that the algorithm runs for at least two iterations.



Domain & Rule Runtime Runtime Speedup
(Baseline) (Utility Planes) Factor

LLG (8 variations) 0.0109 0.0017 6.45
LLLLGG First Price 151.30 1.75 86.45
LLLLGG Proxy 224.10 2.91 77.01
LLLLGG Proportional† 155.47 1.95 79.72

Table 3: Runtimes for finding ε-BNEs of auctions with non-
decreasing payment rules, measured in core-hours. The ε reached
is 0.001 for LLG and 0.02 for LLLLGG. The baseline uses the al-
gorithm from [Bosshard et al., 2017].

5.2 Local-Local-Global (LLG)
First, we consider the well-known LLG domain, a stylized
setting with three bidders, two items and one bundle of in-
terest per bidder. Bosshard et al. [2017] measure the average
runtime of their BNE algorithm in 16 variations of this setting
for which analytical BNEs are known and can be compared
against [Ausubel and Baranov, 2013]. All of the payment
rules used are non-decreasing, including VCG-nearest, which
is non-decreasing in LLG, even if not in general. 8 of the 16
variations have independent bidder distributions. To achieve
the required ε of 0.001, we employ 800 verification points
for the baseline algorithm, and we compute 600 utility lines
in our new algorithm.

Handling the Global Bidder. One peculiarity of LLG is
that it is a dominant strategy for the global bidder to bid truth-
fully. This is easy to see, because from his perspective, a min-
imum revenue core-selecting auction is equivalent to a single
item second price auction. This de facto reduces the game to
two bidders. Unfortunately, our BNE algorithm requires all
bidders to play piecewise constant strategies, so we cannot
simply fix the global bidder to play the truthful strategy.

There are two possible ways to deal with this: the first op-
tion is to force the global bidder to play a piecewise constant
strategy, and to include his utility loss in the computation of
ε. The second option is to let the global bidder play truth-
fully, but bound the utility loss of the local bidders by pretend-
ing that the global bidder plays a piecewise constant strategy
slightly above or below the truthful strategy.

We do the latter, to keep the runtime comparison between
both algorithms as fair as possible. Specifically, when com-
puting the actual utilities for the local bidders, we let the
global bidder bid above truth, but when computing the i-
optimal utilities, we let him bid below truth. In LLG, higher
bids by the global bidder always lead to a decrease in the util-
ities of the local bidders. Our approach thus subtracts an un-
derestimate of the utility obtained from an overestimate of the
highest utility that could possibly be obtained. This produces
a correct bound on the utility loss.

Results. The average runtimes are shown in the first row
of Table 3. As one can see, our algorithm has much better
performance than the baseline, leading to a speedup of 6.45x.
Moreover, the equilibria we computed are close to the cor-
responding analytical BNEs: their L∞ distance is less than
0.043 in every case.

5.3 LLLLGG
Next, we test our algorithm in a larger setting, called
LLLLGG. In this setting, we have 6 bidders and 8 items, with
each bidder having two bundles of interest. The bidders are
split into two classes: there are 4 local and 2 global bidders,
with strategies being symmetric within each class. The value
distributions of all bidders are independent of each other. For
a detailed definition, see [Bosshard et al., 2017].

To compute ε-BNEs for this setting, we use a grid resolu-
tion of 1

32 . Since local bidders’ values are drawn from [0, 1]
and global bidders’ values are drawn from [0, 2], we com-
pute utility lines corresponding to 332 and 652 equally spaced
bids, respectively. The baseline algorithm uses a grid of 1202

verification points for both the local and global bidders.

Results. We run experiments for three non-decreasing pay-
ment rules: First-price, proxy and proportional. The runtimes
are shown in Table 3.5 For all payment rules, the utility planes
BNE algorithm finds a BNE over 77 times faster than the
baseline.

6 Conclusion
In this paper, we have introduced non-decreasing payment
rules, and we have shown that this property has important
consequences for incentives and algorithm design. Impor-
tantly, the commonly used VCG-nearest rule is not non-
decreasing and enables various kinds of manipulations. Our
preliminary analysis suggests that rules that are not non-
decreasing can be manipulated via overbidding. In contrast,
we conjecture that overbidding is never favorable in CAs with
non-decreasing payment rules. We have also developed the
theory necessary to create the utility planes BNE algorithm,
which exploits the structural properties of non-decreasing
payment rules to search for ε-BNEs in a very efficient way.
We have empirically found our algorithm to be highly perfor-
mant, beating a recent state-of-the-art algorithm by multiple
orders of magnitude. Thus, our BNE algorithm pushes the
boundary on what problem sizes can be analyzed computa-
tionally when studying non-truthful payment rules for CAs.
Overall, our results suggest that further analytical and algo-
rithmic analysis of non-decreasing payment rules is a promis-
ing avenue for future research.
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A Definitions of Payment Rules
Let W (b, x) =

∑n
i=1 bi(xi) be the reported social welfare

achieved by an allocation x. By extension, let W (b-i, x-i) =∑
j 6=i bj(xj) and let W (bL, xL) =

∑
j∈L bj(xj). Simi-

larly, let XL(bL) be the set of allocations x maximizing
W (bL, xL).

Definition 3. The first price payment is given by

pi(b, x) := bi(xi).

Definition 4. The VCG payment is given by

pi(b, x) := W (b-i, X-i(b-i))−W (b-i, x-i).

Definition 5. The core is the set of all points p(b, x) fulfilling

∀L ⊆ N :∑
i∈N\L

pi(b, x) ≥W (bL, XL(bL))−W (bL, xL)

Definition 6. The minimum-revenue core is the set of all
points p(b, x) minimizing

∑
i∈N pi(b, x) subject to being in

the core.

Definition 7. The VCG-nearest payment is the unique point
p(b, x) minimizing ||pi(b, x) − qi(b, x)||2 subject to being in
the minimum-revenue core, where qi(b, x) is the VCG pay-
ment point.

Definition 8. The proportional payment is the unique point
minimizing

∑
i∈N pi(b, x) subject to being in the core and

being of the form

pi(b, x) := α · bi(xi)
for some α ≥ 0.

Definition 9. The proxy payment is the unique point mini-
mizing

∑
i∈N pi(b, x) subject to being in the core and being

of the form
pi(b, x) := min [α, bi(xi)]

for some α ≥ 0.

B Proof of Theorem 1
Recall that X-i(K, b-i) is a constrained allocation, where all
goods not part of bundle K are allocated to maximize re-
ported social welfare across all bidders except i.

To simplify notation, we abbreviate the expression bi(K)+

W (b-i, X-i(K, b-i)) as W̃ (bi,K), with the parameter b-i be-
ing clear from context.

Definition 10. A cell of bidder i’s action space is a connected
region S ⊆ Rr≥0 where for any b-i with positive probability
of occurring in s-i(v-i), there exists an allocation x that is
efficient for each point in S, i.e.

∀b-i ∼ s-i(v-i) ∃x ∀bi ∈ S : x ∈ X(bi, b-i) (5)

Note that cells don’t partition the action space in the
strictest sense: a boundary between two cells is part of both
cells. The interiors of the cell are disjoint, however.

Lemma 2. A cell is a convex polytope.

Proof. It is clear that x ∈ X(bi, b-i) is equivalent to

∀K 6= xi : W̃ (bi, xi) ≥ W̃ (bi,K), (6)

where the quantifier over K includes all r bundles of interest
of bidder i, plus the empty bundle. Furthermore, note that

W̃ (bi,K) ≥ W̃ (bi,K
′)

⇔
bi(K)− bi(K ′) ≥W (b-i, X-i(K

′, b-i))−W (b-i, X-i(K, b-i))

⇔
bi(K)− bi(K ′) ≥ cK,K′
where cK,K′ is a constant independent of bi. If K ′ is the
empty bundle, then the inequality simplifies to

bi(K) ≥ cK .
A cell is fully defined by these two types of inequalities.

A pareto point of a cell is a point bi such that it’s not pos-
sible to strictly decrease one coordinate of bi and weakly de-
crease all others, and still remain in the cell.6

Lemma 3. A cell has a unique pareto point, which is a vertex.

Proof. Assume that we have two pareto points bi and b′i of
the same cell S. Consider the point b′′i , defined as the coordi-
natewise minimum between these two points, i.e.

∀K : b′′i (K) := min(bi(K), b′i(K)),

which implies that

∀K : W̃ (b′′i ,K) = min(W̃ (bi,K), W̃ (b′i,K)). (7)

Since b′′i pareto dominates both bi and b′i, it must be contained
in a cell other than S (otherwise it would contradict our as-
sumption that bi and b′i are pareto points of S). It follows
from (5) and (6) that there exists some bid of other bidders b-i
and an allocation x such that

∀K 6= xi : W̃ (bi, xi) ≥ W̃ (bi,K), (8)

∀K 6= xi : W̃ (b′i, xi) ≥ W̃ (b′i,K), (9)

∃K 6= xi : W̃ (b′′i , xi) < W̃ (b′′i ,K). (10)

Chaining together (10), (7) and (8) we get that

W̃ (b′′i , xi) < W̃ (b′′i ,K) ≤ W̃ (bi,K) ≤ W̃ (bi, xi).

Analogously, from (10), (7) and (9) we get that

W̃ (b′′i , xi) < W̃ (b′′i ,K) ≤ W̃ (b′i,K) ≤ W̃ (b′i, xi),

which is a contradiction to (7).
It remains to show that the unique pareto point bi is a ver-

tex. If bi lies strictly in the interior of some face F , there
exists at least one direction d such that the points bi + ε · d
and bi−ε ·d are also in the interior of F (for small enough ε).
If d has only positive or negative coordinates, then the point
bi− ε · d respectively bi + ε · d pareto dominates bi. If d has a
mix of positive and negative coordinates, then bi + ε · d nei-
ther dominates nor is dominated by bi, so it is either a pareto
point, or dominated by some other pareto point.

6Note that this is a pareto point in the geometric sense, not the
game-theoretic sense, though the terminology is of course related.



Lemma 4. In a CA with a non-decreasing payment rule and
where bidders have piecewise constant strategies, we have
that for any vi, there exists a cell vertex b∗i such that for any
bid bi in i’s action space

ūOPT
i (vi, b

∗
i ) ≥ ūOPT

i (vi, bi).

Proof. Let π be the permutation maximizing ūOPT
i (vi, bi).

For δ → 0, bi + δπ is in the interior of some cell S, be-
cause all the coordinates of π are distinct, and thus π is not
parallel to any of the constraints given by (6). Let b∗i be the
pareto point of S, and π∗ a permutation such that b∗i + δπ∗

is also in the interior of S. Player i’s probability of winning
each bundle is identical for b∗i + δπ∗ and bi + δπ, but the ex-
pected payment is weakly smaller for b∗i than for bi, because
the payment rule is non-decreasing.

Lemma 5. In a CA with a non-decreasing payment rule and
where bidders have piecewise constant strategies, for any
value vi and bid bi in i’s action space, we have that

ūOPT
i (vi, bi) ≥ ūi(vi, bi).

Proof. We show that

ūOPT
i (vi, bi) ≥ lim

δ→0
ūδi (vi, bi,1) ≥ ūi(vi, bi).

The second inequality follows from free disposal, because
bidder i has weakly higher probability of winning each non-
empty bundle under the allocationX(bi+δ1, b-i), and the ra-
tio of winning probabilities between non-empty bundles stays
the same.

For the first inequality, we show that
limδ→0 ū

δ
i (vi, bi, x) ≤ ūOPT

i (vi, bi) for any vector x in
the positive orthant. We convert x into a strict preference
ordering by changing one coordinate at a time, while weakly
increasing the expected utility. This proves the claim because
ūOPT
i maximizes over all strict preference orderings. Consider

two coordinates xa = xb. The allocation X(bi + δx, b-i) has
a certain probability of tying between bundles a and b. By
slightly increasing either xa or xb, we can weakly increase
the expected value, because the expected value under the
original x is an average of these two results, and thus can’t
be strictly better than both.

Proof of Theorem 1. Combine Lemmas 4 and 5.


