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Abstract

Adversarial attacks on image models threaten system ro-
bustness by introducing imperceptible perturbations that
cause incorrect predictions. We investigate human-aligned
learned lossy compression as a defense mechanism, com-
paring two learned models (HiFiC and ELIC) against tra-
ditional JPEG across various quality levels. Our experi-
ments on ImageNet subsets demonstrate that learned com-
pression methods outperform JPEG, particularly for Vi-
sion Transformer architectures, by preserving semantically
meaningful content while removing adversarial noise. Even
in white-box settings where attackers can access the de-
fense, these methods maintain substantial effectiveness. We
also show that sequential compression—applying rounds
of compression/decompression—significantly enhances de-
fense efficacy while maintaining classification performance.
Our findings reveal that human-aligned compression pro-
vides an effective, computationally efficient defense that
protects the image features most relevant to human and ma-
chine understanding. It offers a practical approach to im-
proving model robustness against adversarial threats."

1. Introduction

Vision models have made significant improvements in re-
cent years, achieving remarkable success in tasks like im-
age classification [13], object detection [28, 31] and med-
ical imaging [26]. However, vision models remain highly
vulnerable to adversarial attacks despite these advance-
ments. Adversarial attacks are carefully crafted perturba-
tions added to input images, which are often imperceptible
to the human eye but can cause deep learning models to
make incorrect predictions [19, 29]. These attacks pose a
serious threat to applications that rely on the reliability of
vision models, such as autonomous driving, healthcare di-
agnostics, and surveillance systems.

One potential approach to defending against these ad-
versarial attacks is to remove the small perturbations in-
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troduced by the attacker. Eliminating these imperceptible
changes makes it possible to prevent the model from being
misled. Traditional methods, such as blurring or adding ran-
dom noise, can be effective at removing perturbations; how-
ever, they have significant drawbacks. While these methods
reduce the adversarial impact, they distort the image, chang-
ing its distribution in a way that may cause the image to be
“out of distribution” for the classifier. Moreover, they do not
solely remove adversarial perturbations—they also remove
information that could be important for the task. This re-
sults in a loss of critical information, degrading model per-
formance and making the system less reliable.

Ilyas et al. [15] showed in their seminal work that im-
age classifiers learn to use non-robust features for image
classification that the adversarial examples exploit. In the
area of image compression, researchers showed that human-
perception-aligned learned lossy compression models can
yield high compression ratios while producing images that
humans prefer, for instance, over JPEG compressed im-
ages. These techniques aim to preserve an image’s most im-
portant features according to human perception while dis-
carding less significant details. By doing so, they can re-
move adversarial perturbations without altering the under-
lying image distribution and without losing task-relevant
information. Since the images remain in distribution for
the classifier, the model can continue to perform effectively
while being protected from adversarial attacks. Dziugaite
et al. [6] has shown that JPEG compression could be a vi-
able defence, however, as later shown, only if the attacker
does not include the JPEG compression in the attack [27].

This work explores the potential of learned image com-
pression methods to defend against adversarial attacks. We
compare these methods to a traditional technique, JPEG,
and evaluate their effectiveness in removing adversarial per-
turbations while preserving the integrity of the image distri-
bution. Our findings show that human-perception aligned
compression offers a promising strategy for defending vi-
sion models against adversarial attacks, without sacrificing
classification accuracy. This approach contributes to devel-
oping more efficient and robust defense mechanisms, foster-
ing the creation of more secure and reliable vision systems.
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2. Related Work

2.1. Adversarial attacks

Adversarial examples have become a critical concern in ma-
chine learning, particularly regarding the robustness and se-
curity of deep learning models. These inputs are intention-
ally crafted to deceive models into making incorrect pre-
dictions. Szegedy et al. [29] first demonstrated that small,
imperceptible perturbations could cause neural networks to
misclassify images with high confidence.

Kurakin et al. [17] extended the study of adversarial at-
tacks to the physical world, showing that printed images
with adversarial perturbations could still deceive classifiers
when captured through a camera. This work underscored
the real-world implications of adversarial attacks beyond
purely digital environments.

In response to these challenges, various defense mech-
anisms have been proposed. Madry et al. [19] introduced
Projected Gradient Decent (PGD) attacks along with adver-
sarial training, a technique in which models are trained on
adversarial examples to improve their robustness. Paper-
not et al. [23] proposed defensive distillation, leveraging
knowledge distillation [14]—a technique that compresses
an ensemble of models into a smaller model—to enhance
resistance against adversarial attacks. Another approach in-
volves preprocessing inputs to remove adversarial pertur-
bations before classification, which can be achieved using
image compression techniques [6]. Despite these efforts,
achieving a comprehensive defense against adversarial at-
tacks remains an open problem.

2.2. Image compression as adversarial defense

Dziugaite et al. [6] demonstrated that JPEG compression
can weaken adversarial attacks by removing small perturba-
tions. The perturbations often vanish by compressing and
decompressing a potentially manipulated image, reducing
the attack’s effectiveness. Even with a high quality factor
of 75, JPEG compression enhanced model robustness.

However, Shin and Song [27] demonstrated that the de-
fensive effectiveness of JPEG compression can be signifi-
cantly diminished by leveraging a differentiable approxima-
tion of the algorithm. By propagating gradient information
through the model and the JPEG compression process, ad-
versarial attacks can generate perturbations that persist even
after the compression and decompression steps.

2.3. Learned lossy image compression

Recent advancements in image compression have moved
beyond traditional methods like JPEG, which use lin-
ear transformations, to learned techniques that replace the
Discrete Cosine Transform (DCT) with nonlinear trans-
formations [1, 8, 11, 18, 21]. Variational Autoencoder
(VAE)-based models and Generative Adversarial Networks

(GANS) [20] help minimize compression artifacts, produc-
ing realistic images even at ultra-low bitrates.

HiFiC [20] leverages GANSs to achieve visually appeal-
ing reconstructions while preserving perceptually signifi-
cant information. A user study demonstrated HiFiC’s su-
periority in reconstruction quality over other methods, even
at half the bits per pixel.

ELIC [12] optimizes image compression for both speed
and efficiency. It outperforms previous learned methods,
such as Minnen et al. [21] and Cheng et al. [3], particularly
at low bitrates.

At low bitrates, learned compression methods outper-
form JPEG by preserving perceptual quality and reducing
visual artifacts, all while maintaining the original image dis-
tribution. Thus, using learned compression as preprocess-
ing for neural network classifiers can enhance robustness
by removing small perturbations while preserving the im-
age distribution.

3. Methods

Our experiments’ objective was to evaluate the effectiveness
of image compression as a defense mechanism against ad-
versarial attacks. We also investigated the impact of varying
compression quality levels and the effects of applying mul-
tiple compression steps sequentially.

We implemented our defenses as an additional prepro-
cessing step applied to the (perturbed) image before it was
fed into the classifier. Since lossy image compression in-
herently removes specific details, it is expected to eliminate
some of the adversarial perturbations, thereby reducing the
effectiveness of the attack. We then generated adversarial
perturbations for the dataset and assessed the classifier’s ac-
curacy on the perturbed images, comparing it to the baseline
accuracy before the attack.

3.1. Defenses

The compression methods used as defenses were JPEG,
HiFiC, and ELIC. JPEG was selected because it is one of
the most widely used compression algorithms and has been
previously explored as a defense mechanism against adver-
sarial attacks [0, 27]. Thus, JPEG serves as a baseline for
comparison with the other compression techniques. To im-
plement JPEG compression and decompression, we used
the differentiable approximation provided by Kornia [25].

HiFiC and ELIC are learned compression methods that
utilize different architectures to achieve high image quality
at low bitrates (Table 1, [12, 20]). PyTorch implementa-
tions and checkpoints with pretrained weights are publicly
available for both methods. * *

2HiFiC: https : / / github . com / Justin - Tan / high -
fidelity—-generative-compr i

3ELIC: https ://github . com/ VincentChandelier /
ELiC-ReImplemetation.
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For HiFiC and ELIC, we employed differentiable for-
ward functions. The use of differentiable defenses al-
lowed gradient information to propagate through the entire
pipeline (including both the model and the defense mech-
anism). This is expected to reduce the effectiveness of the
defense, as it enables the adversarial attack to adapt its per-
turbations to persist through the compression process. To
account for this, we conducted an additional set of experi-
ments using this stronger adaptive attack. In tables through-
out this paper, this is annotated with through being true.

3.2. Adversarial attacks

We use these methods to compute adversarial examples:

* Fast gradient sign method (FGSM) [10].

e Jterative FGSM (iIFGSM) [17].

* Projected gradient descent (PGD) [19].
 Carlini-Wagner attack (CW) [2].

* DeepFool attack (DeepFool) [22].

For FGSM, iFGSM and PGD we use different [, norm val-
ues (epsilon) to modulate the attack strength, for CW and
DeepFool we computed the accuracy for perturbations be-
low a specific ls norm value. For iFGSM and PGD we
used 10 iterations. For all attacks, the torchattacks [16] im-
plementation was used. For a full list of hyperparameters
see Table 3 in the Appendix. When we pass the gradients
through the compression model as in [27], we call it as a
“white-box” while if we do not, we call it a “black-box”
attack.

3.3. Models and datasets

The experiments used two different base models: ResNet50
[13], and a Vision Transformer (ViT), specifically ViT-B/16
[5]. Both models were sourced from PyTorch [24] and ini-
tialized with pretrained ImageNet weights.

For our experiments, we used the validation split of Ima-
genette, a subset of ImageNet [4] containing 10 easily clas-
sified classes. In later experiments, the full ImageNet test
split was utilized.

3.4. Compression strength

To determine the appropriate compression quality for our
experiments, we conducted additional tests for each com-
pression method, comparing different levels to identify an
optimal quality setting. Beyond defensive strength, our
choice of compression was also influenced by several fac-
tors: the impact of the defense on accuracy in the absence
of an attack, comparability between different compression
methods and related work, and the availability of pretrained
weights for learned compression models. Training these
models from scratch was beyond the scope of this study.

The parameters influencing compression strength for the
different methods were as follows:

Table 1. Bits per pixel (BPP) measurements for different com-
pression methods and quality settings, computed on 100 random
224x224 images from ImageNet. This table enables direct com-
parison of compression efficiency across JPEG, ELIC, and HiFiC
methods at various quality levels.

JPEG ELIC HiFiC
Quality | BPP || Weights | BPP || Weights | BPP
g=250 | 035 0004 0.06 low 0.15
q=10.0 | 048 0008 0.09 med 0.43
qg=15.0 | 0.59 0016 0.14 high 0.46
qg=25.0 | 0.78 0032 0.19
q=235.0 | 0.94 0150 0.42
qg=150.0 | 1.14 0450 0.69
q="75.0 | 1.65
q=95.0 | 3.80

» JPEG: The quality parameter ¢ € [0,100] and controls
the quantization strength of the algorithm, with lower val-
ues corresponding to greater compression. We compared
values ¢ € {5.0,10.0,15.0,25.0,35.0, 50.0, 75.0, 95.0}.
Typically, values greater than 70 are considered high
quality, while values below 30 result in low-quality im-
ages that may appear pixelated and blurry.

» HiFiC: Three different sets of pretrained weights were
available for HiFiC: HiFiC'", HiFiC™? and HiFiC"#",
which were trained to achieve target bitrates per pixel
(BPP) of 0.14, 0.3, and 0.45, respectively.

» ELIC: Six different checkpoints were available for ELIC:
[0004, 0008, 0016, 0032, 0150, 0450]. These correspond
to different values of A, the rate-controlling parameter,
determining the trade-off between estimated bitrate and
image reconstruction distortion (see [12] for details).

Additionally, we computed BPP values for images from
the ImageNet dataset resized to 224 x 224 pixels across dif-

ferent compression methods, cf. Table 1. This allowed a

direct comparison of size reduction between techniques.

3.5. Sequential compression

We also conducted experiments on the effectiveness of com-
pressing and decompressing an image multiple times in
sequence as a defense. We always propagated the gradi-
ents through the defense for these experiments to achieve a
stronger attack. The experiments were conducted on Ima-
genette and ImageNet. For ImageNet, we used 1000 ran-
domly sampled images to reduce computation time.

4. Results

The main results can be found in Figures 2 and 3 with Ta-
bles 4 and 5 in the Appendix giving the exact value. We
use quality levels 25.0, low, and 0016 for the compression
defenses for JPEG, HiFiC, and ELIC, respectively, unless
otherwise stated.
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Figure 1. Visual comparison of image degradation after three compression/decompression cycles using different compression methods and
quality settings. From left to right: (a) ELIC 0004, (b) ELIC quality 0016, (c) HiFiC low, (d) HiFiC medium, (¢) JPEG quality 25.0, and (f)
the original uncompressed image. Note how learned compression methods (ELIC, HiFiC) exhibit different artifact patterns than traditional

JPEG compression.

Table 2. Classification accuracy (%) for different defenses against
iFGSM attacks on the Imagenette dataset at varying epsilon val-
ues. Results are shown for both ResNet50 and ViT models under
black-box (Through=False) and white-box (Through=True) attack
scenarios, demonstrating the vulnerability of all defenses to white-
box attacks.
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4.1. Baseline results

Both of the used models achieved a very high accuracy on
Imagenette, ~ 0.998 for ResNet50 and ~ 0.999 for the ViT,
as well as a strong resilience against the FGSM attack even
without a defense, with both models still achieving accura-
cies > 0.8 at an attack strength of epsilon %. For iFGSM
(cf. Table 2) and PGD the accuracy dropped to < 0.05 for
ResNet50 and < 0.01 for the ViT at this level of attack
strength. These baseline experiments also indicate a dif-
ference in robustness between the two models used, as the
accuracy of the ViT is lower for all baseline experiments.

4.2. Defense results

All three defense methods showed promising results in
Figure 2, showing almost no change in accuracy after all
“black-box” attacks when using the ResNet50 model (see
Figures 2 and 3). For “black-box” attacks against ViT,

ResNet50 ViT

Accuracy FGSM

Accuracy iFGSM

Accuracy PGD
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Figure 2. Model accuracy under FGSM (top row), iFGSM (mid-
dle row), and PGD (bottom row) adversarial attacks on the Ima-
genette dataset for ResNet50 (left) and ViT (right) architectures.
Solid lines represent “black-box” attacks (without gradient propa-
gation through the compression), while dashed lines show “white-
box” attacks (with gradient propagation through the defense).
Learned compression methods (ELIC, HiFiC) consistently outper-
form JPEG for the ViT model, particularly under stronger attacks.
Epsilon values represent attack strength as x/255.

iFGSM and PGD lead to a drop in accuracy at epsilon %
for JPEG, but still achieve a much higher accuracy than the
baseline. The learned compression algorithms show much
better performance for ViT, with ELIC and HiFiC achieving
an accuracy comparable to before the attack even for high
epsilon values.
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Figure 3. Model accuracy under Carlini-Wagner (CW, top row)
and DeepFool (bottom row) adversarial attacks on the Imagenette
dataset for ResNet50 (left) and ViT (right) architectures. Solid
lines represent “black-box” attacks, while dashed lines show
“white-box” attacks. Epsilon shows the maximum L2 norm of
the perturbations. HiFiC demonstrates superior robustness against
CW attacks, especially for the ViT model.

Adversarial images crafted with the CW and DeepFool
attacks were easier to defend against as shown in Figure 3.
This could be attributed to the fact that these attacks find
minimal perturbations, compared to the other three attacks
that find perturbations within the given bounds, which are
not necessarily minimal. There are also more hyperparam-
eters to tune for an optimal attack and a longer runtime.
These factors lead us to focus less on these attacks and not
conduct additional experiments with CW or DeepFool.

Attacking the entire pipeline drastically weakens the ef-
fect of all three defenses. There is still improvement over
no defense, but the accuracy is not comparable to the exper-
iments where the gradient information was not propagated
through the defenses.

These results indicate three major things:

e The ViT used is less robust against adversarial attack.

* The tested learned compressions perform better for ViT.

» Learned compression is a better defence than JPEG.

e Even for learned compression, the effectiveness of
compression-based defenses is greatly diminished by cre-
ating adversarial images where gradient information was
propagated through the defense as seen in [27].

4.2.1. ImageNet results

After analyzing these results, we decided to repeat some
experiments on 1000 random images taken from the Im-
ageNet dataset, to see how the defenses perform on this

ResNet50 ViT
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Figure 4. Model accuracy under FGSM (top row), iFGSM (middle
row), and PGD (bottom row) adversarial attacks on 1000 randomly
sampled images from the ImageNet dataset. Results demonstrate
that the same defense patterns observed on Imagenette general-
ize to the more complex ImageNet classification task, though with
lower overall accuracy due to the increased task difficulty.

harder task, with 1000 possible classes instead of 10 and
a much lower baseline accuracy (both models achieve an
accuracy of about 0.8 on ImageNet). The results of these
experiments can be found in Figure 4. In this experimental
setup, all defenses show a larger accuracy decrease without
an attack (epsilon= 0). This decrease is larger for ResNet50
than for the ViT. There is also a more noticeable decrease as
the epsilon constraint of the attack gets larger for all attacks.
On Imagenette the accuracy was almost constant for effec-
tive defenses. However, the results on ImageNet generally
show the same trends as those discussed before.

4.3. Computational overhead

We also computed the time it takes the model during in-
ference to show that these defenses are feasible in practice.
For this test, we used an Nvidia RTX3090 and ResNet50.
We did not include the time the models need to initialize.
Without a defense it took 20.8 seconds to classify the 3925
images in the Imagenette dataset, or 5 ms per image. With
JPEG as a defense, it took 8 ms per image. Using ELIC
and HiFiC it took 14 ms per image. Even when compress-



Accuracy ResNet

0.4 1

Accuracy ViT

0.2

tetet

AERE

5.0

10.0
15.0
25.0
35.0
50.0
75.0
95.0

5.0

10.0
15.0
25.0
35.0
50.0
75.0
95.0

0.0

4/255 8/255 12/255
Epsilon

0 2/255

Figure 5. Comparison of model accuracy for different JPEG qual-
ity levels under iFGSM attacks for ResNet50 (top) and ViT (bot-
tom). Dashed lines show results when gradient information was
available to the attack (“white-box” setting). Lower quality set-
tings provide better defense against strong attacks but reduce clean
accuracy, with quality level 25.0 offering the best trade-off.

ing and decompressing the images 5 times in sequence, this
only increased to 33 ms for HiFiC and 36 ms for ELIC.
These timings show that running these compression algo-
rithms in an ML pipeline is feasible.

4.4. Quality ablation

This section compares different compression strengths for
all the compressions used as defenses. Complete tables can
be found in the Appendix, see Tables 6 to 8.

44.1. JPEG

Figure 5 shows the accuracy for different JPEG qualities
when attacked with iFGSM. For ResNet50, only the high
quality levels (75.0,95.0) were vulnerable to a standard at-
tack. When using the stronger attack, which propagates the
gradients through the defense, no quality level achieved a
high accuracy and therefore a successful defense. For an at-
tack of 8/255 the levels 15.0 and 25.0 achieved the highest
accuracy at =~ 0.2. In the ViT experiment, a larger spread
of results can be observed for “black-box” attacks, with
lower quality levels performing better at high epsilon val-
ues. JPEG with a quality level 5.0 showed a large decrease
in accuracy without any attack. For “white-box™ attacks
none of the levels provide almost any defence. Consider-
ing these observations, we decided to use a quality level of
25.0, as this achieves a good performance, does not degrade
the baseline accuracy and has been used in previous work
by Shin et al. [27].

1.0 & @ & L =
+ 0.8+
= N
2 0.6 AN low
> LN medium
< .
5 0.4+ s\\ —8— high
9 [ 298
< ] Sel

0.2 “e-ii:

il J

0.0 — T T T T
=
>> 0.6 1 low
8 N medium
3 0.4- . —e— high
o
< AN

0.2 Y

o
0.0 = . . —_—
0 2/255 4/255 8/255 12/255
Epsilon

Figure 6. Comparison of model accuracy for different HiFiC
quality settings (low, medium, high) under iFGSM attacks for
ResNet50 (top) and ViT (bottom). HiFiC low provides the
strongest defense with minimal impact on clean accuracy, particu-
larly for the ViT model.

4.4.2. HiFiC

Figure 6 shows that all the different compression strengths
worked well as a defense for ResNet50, but only HiFiC low
achieved a high accuracy for the ViT, with the other two
qualities showing a decrease in accuracy for epsilon larger
than %. All levels were very vulnerable when the gradient
was passed through the defense. Since the lowest quality
only decreased baseline performance a little, we used HiFiC

low for the main experiments.

4.4.3. ELIC

Figure 7 shows the results for ELIC. The higher quality
levels show decreased performance for high epsilon values.
The lowest quality levels show a decreased accuracy with-
out any attack. There is a larger difference between quality
levels when the gradient is propagated through the defense
compared to HiFiC. For the main experiment we decided to
use ELIC 0016, as it achieved good accuracies without vis-
ibly decreasing the baseline performance, and because it is
similar in BPP to HiFiC low.

4.5. Sequential defense

4.5.1. Imagenette

For JPEG, we used quality level 25.0 for the results shown
in Figures 10 and 17. For HiFiC and ELIC, there is a trade-
off between a decrease in accuracy without an attack on low
qualities and a decrease in effectiveness on high qualities.
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Figure 7. Comparison of model accuracy for different ELIC
quality parameters (0004 through 0450) under iFGSM attacks for
ResNet50 (top) and ViT (bottom). ELIC 0016 provides an optimal
balance between defense strength and clean image accuracy, with
comparable bitrate to HiFiC low.
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Figure 8. Defense effectiveness of sequential HiFiC low com-
pression against iFGSM attacks on Imagenette using ResNet50.
Each point represents N consecutive compression/decompression
cycles. The baseline accuracy rapidly decreases after multiple iter-
ations, limiting the practical utility of sequential HiFiC defenses.

The baseline accuracy using HiFiC low deteriorates quickly,
making it unusable as a sequential defense, see Figure 8.
ELIC 0016 also decreases the baseline accuracy, but it was
much slower than HiFiC low. This leads to a promising
defense that reaches close to baseline accuracy with seven
sequential defense iterations, as seen in Figure 9.

The experiments indicate a clear trend, showing that run-
ning an image through a defense multiple times increases its
effectiveness for all defenses. JPEG showed the fastest in-
crease, achieving an accuracy of over 0.9 for epsilon 55 af-

255
ter 5 iterations and converging towards the baseline. The de-
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Figure 9. Defense effectiveness of sequential ELIC 0016 compres-
sion against iFGSM attacks on Imagenette using ResNet50. Ac-
curacy against adversarial examples improves with multiple com-
pression cycles while maintaining reasonable baseline accuracy,
demonstrating better sequential defense properties than HiFiC.

crease in baseline accuracy for JPEG is negligible even after
50 iterations. HiFiC and ELIC also show an increased accu-
racy for each additional sequential iteration, achieving ac-
curacies of about 0.4 with 7 iterations. Because of the large
amount of gradient information, we were unable to compute
results for more than 7 iterations of ELIC or HiFiC.

Figure | shows how the image quality deteriorates
when compressing and decompressing multiple times in se-
quence. Both of the learned compressions show a stark dif-
ference to the original image. ELIC introduces black/red ar-
tifacts which take up parts of the image. The lowest quality
of HiFiC leads to a much brighter image, which lost most of
the color information. JPEG performed best, while it also
introduces artifacts and blurs the image a lot, the image still
looks similar after multiple passes through the compression.

4.5.2. ImageNet

Experiments in Figure 11 with sequential JPEG defense
on ImageNet yielded similar patterns but with lower over-
all accuracy, partly due to decreased baseline performance.
Lower quality levels reduced clean image accuracy, with
this reduction primarily dependent on the quality parameter
rather than iteration count, as accuracy remained relatively
stable across multiple compression cycles.

The lines’ jaggedness compared to earlier could come
from the random sampling. However, even considering the
lower baselines, no quality seems to converge towards the
baseline with 10 sequential passes. This indicates a deeper
sequential defense is needed for this more challenging task.

An experiment with a deeper sequential JPEG defense,
see Figure 13, shows this, as quality 10.0 seems to con-
verge. For quality 95.0 the accuracy still improves even at
50 iterations. The jaggedness of the baseline for low itera-
tions is due to using different subsets of ImageNet. This was
changed later in the experiment for more consistent results.
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dataset for ResNet50 (top) and ViT (bottom). Lower quality set-
tings show decreased clean accuracy but provide stronger defenses
against adversarial examples.
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Figure 12. Baseline accuracy (no attack) after JPEG compression
cycles at different quality levels on ImageNet using ResNet50.
The plot demonstrates how image quality degradation affects clas-
sification performance even without adversarial perturbations.
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Figure 13. Extended sequential JPEG defense for quality levels
10.0 and 95.0 up to 50 iterations on ImageNet. Quality 10.0 con-
verges faster but to a lower accuracy ceiling, while quality 95.0
continues to improve even after 50 iterations but at a slower rate.

5. Conclusion

This paper demonstrates that human-aligned learned com-
pression can effectively defend against adversarial attacks.
We show that HiFiC and ELIC have advantages over JPEG,
as they do not significantly decrease the baseline accuracy
of an image classification model even at low BPP. However,
we also show the weaknesses of such defenses in a white-
box setting, as a gradient can either be directly computed or
approximated, decreasing the defense’s effectiveness. Se-
quential compression significantly enhances defense effec-
tiveness, with JPEG showing the most practical balance be-
tween robustness and image quality over multiple iterations.
There are some limitations, as we only experiment with
gradient-based attacks. In real world settings, there are
more possible ways to attack a model such as gradient
free attacks [7, 9, 30]. Further work could include results
for these defenses in settings that include these additional
threats and combines image compression with other defen-
sive measures to create more robust deep learning models.
While these defenses are weakened in white-box set-
tings, they offer meaningful protection. Future work should
explore combining compression-based defenses with other
techniques and test against other threats to develop more
robust systems that align with human visual perception.
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A. Tables

Attack Hyperparameters
FGSM eps=epsilon
iFGSM eps=epsilon,alpha=epsilon/4, steps = 10
PGD eps=epsilon, alpha=epsilon/4,steps=10,randomstart=True
CW c=1, kappa=0, steps=50, 1r=0.01
DeepFool steps=50, overshoot=0.02

Table 3. Hyperparameters used for each adversarial attack method. This table details the specific configuration for the experiments’ FGSM,
iFGSM, PGD, CW, and DeepFool attacks.

Attack parameters l2 norm value

Attack Model Defense | Through | Baseline 4 5 6 7 8 16 32
None False 0.998 0.944 | 0.787 | 0.529 | 0.304 | 0.193 | 0.054 | 0.051
ipeg False 0.996 0.996 | 0.996 | 0.995 | 0.996 | 0.996 | 0.996 | 0.996

True 0.996 0.518 | 0.338 | 0.285 | 0.281 | 0.281 | 0.281 | 0.281
ResNet50 ELIC False 0.998 0.998 | 0.998 | 0.998 | 0.997 | 0.997 | 0.997 | 0.997

True 0.998 0.958 | 0.869 | 0.724 | 0.554 | 0.429 | 0.225 | 0.225
False 0.975 0.975 | 0.975 | 0.975 | 0.975 | 0.975 | 0.975 | 0.975
True 0.975 0.972 | 0.961 | 0932 | 0.9 | 0.868 | 0.596 | 0.596

HiFiC

W None False 0.999 | 0.803 | 0.494 | 0.231 | 0.097 | 0.045 | 0.005 | 0.005
ipeg False 0.998 0.997 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995

True 0.998 0.409 | 0.287 | 0.267 | 0.264 | 0.264 | 0.264 | 0.264

ViT ELIC False 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999

True 0.999 | 0.934 | 0.796 | 0.555 | 0.346 | 0.228 | 0.137 | 0.137

HiFiC False 0.995 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995

True 0.995 0.984 | 0.964 | 0.934 | 0.888 | 0.832 | 0.547 | 0.547

None False 0.998 0.541 | 0.493 | 0.464 | 0.452 | 0.447 | 0.443 | 0.443

ipeg False 0.996 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995

True 0996 | 0.892 | 0.849 | 0.8 | 0.753 | 0.708 | 0.406 | 0.155

ResNet50 ELIC False 0.998 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998

True 0.998 0.917 | 0.876 | 0.83 | 0.78 | 0.738 | 0.559 | 0.541

HiFiC False 0.975 0.975 | 0.975 | 0.975 | 0.975 | 0.975 | 0.975 | 0.975

DeepFool True 0.975 0.797 | 0.743 | 0.69 | 0.638 | 0.59 | 0.356 | 0.281
None False 0.999 | 0.752 | 0.641 | 0.539 | 0.448 | 0.376 | 0.194 | 0.171

ipeg False 0.998 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996

True 0.998 0.969 | 095 | 0.931 | 0.912 | 0.885 | 0.684 | 0.381

ViT ELIC False 0.999 | 0.999 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998

True 0.999 | 0.955 | 0.926 | 0.891 | 0.854 | 0.81 | 0.559 | 0.417
False 0.995 0.995 | 0.994 | 0.994 | 0.994 | 0.994 | 0.994 | 0.994
True 0.995 0.89 | 0.838 | 0.789 | 0.732 | 0.678 | 0.332 | 0.237

HiFiC

Table 4. Comprehensive evaluation of CW and DeepFool attack effectiveness against different defenses, showing accuracy at various L2
norm constraint values. Results demonstrate that these attacks, which find minimal perturbations, are generally less effective than bounded
attacks like iFGSM and PGD.



Attack parameters lso norm value
Attack Model | Defense | Through | Baseline | -2 = = = - =
None False 0.998 0.923 | 0922 | 0.926 | 0.929 | 0.935 | 0.937
ipeg False 0.996 0994 | 0.99 | 0984 | 0.979 | 0.974 | 0971
True 0.996 0.908 | 0.898 | 0.893 | 0.895 | 0.893 | 0.894
ResNet50 ELIC False 0.983 0983 | 0.979 | 0981 | 098 | 0.979 0.98
True 0.983 0.921 | 0.868 | 0.837 | 0.821 | 0.809 | 0.798
HiFiC False 0.975 0973 | 0.968 | 0.963 | 0.958 | 0.953 | 0.949
FGSM True 0.975 0.856 | 0.805 | 0.786 | 0.775 | 0.764 | 0.759
None False 0.999 0911 | 0.865 | 0.843 | 0.831 | 0.828 | 0.823
ipeg False 0.998 0.978 | 0.943 | 0.909 | 0.885 | 0.872 | 0.869
True 0.998 0.872 | 0.836 | 0.815 0.8 0.791 | 0.786
ViT ELIC False 0.992 0.989 | 0.985 | 0.975 | 0.965 | 0.952 | 0.935
True 0.992 0.915 | 0.821 | 0.773 | 0.738 | 0.723 | 0.714
HiFiC False 0.995 0.993 | 0.991 | 0.984 | 0.974 | 0.964 | 0.956
True 0.995 0.879 | 0.824 | 0.792 | 0.783 | 0.774 | 0.769
None False 0.998 0.111 | 0.065 | 0.052 | 0.04 | 0.031 | 0.024
ipeg False 0.996 0.994 | 0.992 | 0.989 | 0.985 | 0.979 | 0.971
True 0.996 0423 | 029 | 0237 | 021 | 0.185 | 0.168
ResNet50 ELIC False 0.983 0982 | 0.98 098 | 0.981 | 0.979 | 0.977
True 0.983 0.785 | 0.538 | 0.385 | 0.293 | 0.221 | 0.178
HiFiC False 0.975 0974 | 0.971 | 0.966 | 0.962 | 0.958 | 0.958
{FGSM True 0.975 0.613 | 0.379 | 0.259 | 0.201 | 0.159 | 0.125
None False 0.999 0.158 | 0.035 | 0.013 | 0.006 | 0.004 | 0.002
ipeg False 0.998 0.975 | 0.895 | 0.746 | 0.565 | 0.395 | 0.263
True 0.998 0.278 | 0.114 | 0.058 | 0.041 | 0.024 | 0.018
ViT ELIC False 0.992 0.986 | 0.981 | 0.975 | 0.968 | 0.959 | 0.947
True 0.992 0.79 0.5 0.311 | 0.196 | 0.127 | 0.086
HiFiC False 0.995 0.993 | 0.991 | 0.986 | 0.984 | 0.974 | 0.967
True 0.995 0.567 | 0.262 | 0.13 0.08 | 0.051 | 0.036
None False 0.998 0.13 | 0.073 | 0.051 | 0.037 | 0.033 | 0.026
ipeg False 0.996 0994 | 0993 | 0.99 | 0986 | 0.981 | 0.975
True 0.996 0.445 | 0.307 | 0.253 | 0.218 | 0.189 | 0.169
ResNet50 ELIC False 0.983 0982 | 0983 | 0.979 | 098 | 0.979 | 0.977
True 0.983 0.804 | 0.58 | 0.425 | 0.321 | 0.262 | 0.215
HiFiC False 0.975 0974 | 0.969 | 0.965 | 0.963 | 0.961 | 0.955
PGD True 0.975 0.635 | 0.41 | 0.281 | 0.216 | 0.171 | 0.133
None False 0.999 0.176 | 0.042 | 0.016 | 0.008 | 0.003 | 0.003
ipeg False 0.998 098 | 0.916 | 0.801 | 0.646 | 0.498 | 0.352
True 0.998 0.304 | 0.121 | 0.068 | 0.037 | 0.026 | 0.017
ViT ELIC False 0.992 0.986 | 0.981 | 0.977 | 0.971 | 0.964 | 0.958
True 0.992 0.801 | 0.523 | 0.348 | 0.23 0.16 0.11
HiFiC False 0.995 0.993 | 0.992 | 0.988 | 0.984 | 0.978 | 0.974
True 0.995 0.604 | 0.297 | 0.164 0.1 0.066 | 0.046

Table 5. Comprehensive evaluation of FGSM, iFGSM, and PGD attack effectiveness against different defenses, showing accuracy at
various Loo norm constraint values. The table highlights the superior performance of learned compression methods, particularly for the
ViT architecture.



B. Supplementing tables on quality ablation

Attack parameters l2 norm value
Model Quality | Through | Baseline 2 4 8 12
50 False 0.931 0.933 | 0932 | 0.927 | 0.929
True 0.931 0.384 | 0.224 | 0.145 | 0.114
10.0 False 0.985 0.983 | 0.982 | 0.979 | 0.977
True 0.985 0.451 | 0.292 | 0.205 | 0.165
15.0 False 0.991 0.99 | 0988 | 0.984 | 0.979
True 0.991 0.444 | 0.303 | 0.218 0.18
5.0 False 0.996 0.994 | 0991 | 0.985 | 0.972
ResNet50 True 0.996 0.421 | 0.289 | 0.205 | 0.169
35.0 False 0.997 0.995 | 0.993 | 0.979 | 0.955
True 0.997 0.398 | 0.281 | 0.195 | 0.146
500 False 0.997 0.995 | 0988 | 0.963 | 0911
True 0.997 0.384 | 0.258 | 0.182 | 0.137
75.0 False 0.997 0.991 | 0.961 | 0.824 | 0.622
True 0.997 0.34 | 0.235 | 0.137 0.1
95.0 False 0.998 0.718 | 0.343 | 0.153 | 0.085
True 0.998 0.267 | 0.152 | 0.094 | 0.067
50 False 0.94 0.932 | 0925 | 0911 | 0.896
' True 0.94 0.337 | 0.135 | 0.042 | 0.016
10.0 False 0.992 0.983 | 0.968 | 0.925 | 0.854
True 0.992 0.358 | 0.145 | 0.048 | 0.021
15.0 False 0.996 0.985 | 0.958 | 0.845 | 0.636
True 0.996 0.324 | 0.116 | 0.039 0.02
25.0 False 0.998 0.974 | 0.898 | 0.561 | 0.264
ViT True 0.998 0.272 | 0.111 | 0.037 | 0.018
35.0 False 0.999 0.955 | 0.786 | 0.329 0.11
True 0.999 0.256 0.1 0.039 0.02
50.0 False 0.999 0914 | 0.613 | 0.159 | 0.033
True 0.999 0.247 | 0.091 | 0.031 | 0.016
75.0 False 0.999 0.735 | 0.253 | 0.03 0.006
True 0.999 0.237 | 0.087 | 0.028 | 0.012
95.0 False 0.999 0.333 | 0.079 | 0.012 | 0.004
True 0.999 0.256 | 0.075 | 0.018 | 0.006

Table 6. Ablation studies comparing model accuracy for different quality levels of JPEG compression defense against iFGSM attacks with
varying L2 norm constraints. These results informed the selection of optimal quality settings for the main experiments.



Attack parameters l2 norm value

Model Quality | Through | Baseline 2 4 8 12
ow False 0.976 | 0.973 | 0.967 | 0.965 | 0.956
True 0976 | 0.61 | 0376 | 0201 | 0.126
False 0.995 | 0.993 | 0.991 | 0.983 | 0.978
ResNet50 | med True 0995 | 0539 | 031 | 0.158 | 0.106
" False 0992 | 0.991 | 0.986 | 0.978 | 0.968
True 0992 | 0531 | 0.302 | 0.148 | 0.085
ow False 0995 | 0991 | 099 | 0983 | 0.967
True 0995 | 0575 | 0.255 | 0.083 | 0.038
ViT e False 0.999 | 0.995 | 0.984 | 0.921 | 0.822
True 0.999 | 0.509 | 0.212 | 0.058 | 0.024
o False 0.998 | 0.992 | 0.971 | 0.868 | 0.699
True 0998 | 0362 | 0.1 | 0019 | 0.006

Table 7. Ablation studies comparing model accuracy for different quality levels of HiFiC compression defense against iFGSM attacks with
varying L2 norm constraints. These results informed the selection of optimal quality settings for the main experiments.

Attack parameters l> norm value
Model Quality | Through | Baseline 2 4 8 12

0004 False 0.901 0.902 | 0.899 | 0.897 | 0.901
True 0.901 0.714 | 0.513 | 0.261 0.154
0008 False 0.957 0.959 | 0.956 | 0.953 | 0.955

ResNet50 True 0.956 0.761 | 0.534 | 0.275 0.17
0016 False 0.983 0.982 | 0981 | 0.979 | 0.979

True 0.984 0.785 | 0.542 | 0.289 0.18
0032 False 0.992 0.99 0.99 | 0.989 | 0.984
True 0.992 0.783 | 0.512 | 0.243 | 0.142

0150 False 0.998 0.997 | 0.994 | 0984 | 0.951
True 0.998 0.696 | 0.371 | 0.154 | 0.092
0450 False 0.998 0.996 | 0.989 | 0.928 | 0.775

True 0.998 0.57 | 0.255 | 0.111 0.073
0004 False 0.944 0.933 | 0931 | 0924 | 0914
True 0.944 0.724 | 0478 | 0.243 | 0.139

' 0008 False 0.977 0.972 | 0.965 | 0.955 | 0.947
ViT True 0.977 0.765 | 0.514 | 0.236 | 0.116
0016 False 0.993 0.989 | 0.982 | 0.968 | 0.948

True 0.993 0.79 | 0.494 0.2 0.083

0032 False 0.997 0.991 | 0985 | 0.955 | 0.893

True 0.997 0.781 | 0.432 | 0.132 | 0.055

0150 False 0.999 0.989 | 0935 | 0.675 | 0.313

True 0.999 0.653 | 0.231 | 0.054 0.02

0450 False 0.999 0.951 | 0.731 | 0.212 | 0.038

True 0.999 0.495 | 0.139 | 0.032 0.01

Table 8. Ablation studies comparing model accuracy for different quality levels of HiFiC compression defense against iIFGSM attacks with
varying L2 norm constraints. These results informed the selection of optimal quality settings for the main experiments.



p T 3 16
N Baseline 55 5rE 555

1.0 0.998 0.255 | 0.11 | 0.068
2.0 0.998 0.32 | 0.134 | 0.086
3.0 0.997 0.375 | 0.155 | 0.094
4.0 0.997 0.433 | 0.189 | 0.115
5.0 0.998 0.501 | 0.231 | 0.145
6.0 0.997 0.595 | 0.301 | 0.19
7.0 0.998 0.707 | 0.41 | 0.271

Table 9. Detailed results for sequential defense using ELIC, showing accuracy after N compression/decompression cycles at different
attack strengths.

: P g 15
N | Baseline 255 255 255

1.0 0.995 0.312 | 0.162 | 0.101
2.0 0.993 0.359 | 0.182 | 0.116
3.0 0.99 0.399 | 0.211 | 0.135
4.0 0.989 0.444 | 0.245 | 0.153
5.0 0.989 0.498 | 0.284 | 0.177
6.0 0.989 0.549 | 0.329 | 0.213
7.0 0.987 0.602 | 0.385 | 0.253

Table 10. Detailed results for sequential defense using HiFiC, showing accuracy after N compression/decompression cycles at different
attack strengths.



N Baseline % 225 %
1.0 0.996 0.29 | 0.211 | 0.169
2.0 0.994 0.439 | 0.368 | 0.303
3.0 0.994 0.826 | 0.754 | 0.684
4.0 0.994 0.929 | 0.88 | 0.833
5.0 0.994 0.953 | 0.927 | 0.894
6.0 0.994 0.968 | 0.949 | 0.928
7.0 0.994 0.976 | 0.961 | 0.946
8.0 0.994 0.979 | 0.969 | 0.956
9.0 0.994 0.982 | 0.973 | 0.963
10.0 0.994 0.984 | 0978 | 0.968
11.0 0.994 0.989 | 0.981 | 0.972
12.0 0.994 0.989 | 0.984 | 0.974
13.0 0.994 0.991 | 0984 | 0.978
14.0 0.994 0.988 | 0.986 | 0.98
15.0 0.994 0.992 | 0.987 | 0.98
16.0 0.994 0.991 | 0.988 | 0.983
17.0 0.994 0.99 0.99 | 0.984
18.0 0.994 0.99 | 0.988 | 0.984
19.0 0.994 0.993 | 0.988 | 0.985

20.0 0.994 0.991 | 0.989 | 0.985

21.0 0.994 0.992 | 0.99 | 0.987

22.0 0.994 0.991 | 0.989 | 0.987

23.0 0.994 0.992 | 0.989 | 0.986

24.0 0.994 0.993 | 0.989 | 0.988

25.0 0.994 0.992 | 099 | 0.988

26.0 0.994 0.993 | 0.99 | 0.987

27.0 0.994 0.994 | 0991 | 0.988

28.0 0.994 0.992 | 099 | 0.988

29.0 0.994 0.993 | 0.99 | 0.985

30.0 0.994 0.994 | 099 | 0.987

31.0 0.994 0.992 | 099 | 0.987

32.0 0.994 0.993 | 0.992 | 0.989

33.0 0.994 0.994 | 0991 | 0.988

34.0 0.994 0.993 | 0.991 | 0.989

35.0 0.994 0.994 | 0.993 | 0.989

36.0 0.994 0.994 | 0992 | 0.99

37.0 0.994 0.994 | 099 | 0.986

38.0 0.994 0.993 | 0.992 | 0.987

39.0 0.994 0.994 | 0.992 | 0.988

40.0 0.994 0.993 | 0.992 | 0.989

41.0 0.994 0.993 | 0993 | 0.99

42.0 0.994 0.993 | 0.993 | 0.988

43.0 0.994 0.993 | 0.991 | 0.991

44.0 0.994 0.994 | 0993 | 0.99

45.0 0.994 0.993 | 0.991 0.99

46.0 0.994 0.994 | 0.993 | 0.991

47.0 0.994 0.994 | 0992 | 0.99

48.0 0.994 0.994 | 0993 | 0.99

49.0 0.994 0.994 | 0.992 | 0.989

50.0 0.994 0.994 | 0.99 0.99

Table 11. Detailed results for sequential defense using JPEG show accuracy after N compression/decompression cycles at different attack
strengths. JPEG demonstrates superior scaling with iteration count, maintaining high (> 99%) accuracy even after 50 cycles.
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Figure 15. All attacks
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Figure 16. Figure 2 in a larger format
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Figure 17. Accuracy of the sequential defense using multiple iterations of JPEG compression and decompression. iFGSM, ResNet50
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Figure 18. Accuracy of the sequential defense using multiple iterations of ELIC compression and decompression. iIFGSM, ResNet50

1.0 e e ]
== Baseline
0.8 1 —@— 4/255
> —— 8/255
& 0.6 -
S —0— 16/255
S 0.4-
0.2 "___.___.__*_./
0-0 T T T T T
1 2 3 4 5 6 7

Times through HiFiC

Figure 19. Accuracy of the sequential defense using multiple iterations of HiFiC compression and decompression. iIFGSM, ResNet50
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