
Bootstrapping Language-Audio Pre-training for
Music Captioning

Luca A. Lanzendörfer∗
ETH Zurich

lanzendoerfer@ethz.ch

Constantin Pinkl∗
ETH Zurich

cpinkl@ethz.ch
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Abstract—We introduce BLAP, a model capable of generating
high-quality captions for music. BLAP leverages a fine-tuned
CLAP audio encoder and a pre-trained Flan-T5 large language
model. To achieve effective cross-modal alignment between music
and language, BLAP utilizes a Querying Transformer, allowing
us to obtain state-of-the-art performance using 6x less data
compared to previous models. This is a critical consideration
given the scarcity of descriptive music data and the subjective
nature of music interpretation. We provide qualitative examples
demonstrating BLAP’s ability to produce realistic captions for
music, and perform a quantitative evaluation on three datasets.
BLAP achieves a relative improvement on FENSE compared to
previous models of 3.5%, 6.5%, and 7.5% on the MusicCaps,
Song Describer, and YouTube8m-MTC datasets, respectively. The
codebase is available at https://github.com/ETH-DISCO/blap.

Index Terms—Music Captioning, Language Models, Con-
trastive Language-Audio Pre-training

I. INTRODUCTION

The field of music captioning, a specialized subset of gen-
eral audio captioning, presents unique challenges in generating
natural language descriptions for music. Current generative
models, which can generate various modalities from textual
prompts, underscore the importance of having datasets that
pair these modalities with corresponding textual annotations.
As an example, the field of image generation has thrived, in
part, due to the availability of images accompanied by de-
scriptive captions. However, such captions are not commonly
found in the music domain, and only a few such annotated
datasets exist. Additionally, these text-music datasets contain
only a fraction of data compared to their text-image dataset
counterparts.

Despite the advancements of LLMs in processing textual
and visual data as part of vision-language pre-training [1]–
[3], their integration with the audio domain, particularly music,
remains an open challenge [4]–[6]. This is in part due to the
scarcity of audio data with descriptive captions, especially in
music, where subjective interpretation plays a significant role
alongside objective elements such as instruments or keys.

Addressing this gap, our work introduces BLAP (Bootstrap-
ping Language-Audio Pre-training), a novel music captioning
model utilizing a pre-trained CLAP [7] audio encoder and a
pre-trained Flan-T5 [8] language model.

A significant challenge in audio-language pre-training,
much like in vision-language pre-training, is achieving ef-
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fective cross-modal alignment. In the case of BLAP, this
involves aligning musical elements with appropriate linguistic
descriptions. Given that LLMs are not exposed to raw audio
data in their initial training, creating a coherent bridge between
audio and language is essential. Our approach, inspired by the
methodologies in vision-language pre-training [2], leverages a
Querying Transformer (Q-Former) to facilitate this alignment,
creating an intermediate representation suitable for music data.
Utilizing a Q-Former as a knowledge transfer model between
music and language modalities, reduces computational de-
mands by bootstrapping a pre-trained audio encoder and an
LLM.

Our contributions can be summarized as follows:
• We introduce BLAP, a new pre-trained language-audio

model that bootstraps a pre-trained audio encoder and an
LLM to generate high-quality captions for music using
6x less samples compared to previous state-of-the-art.

• We perform a qualitative and quantitative evaluation on
several metrics and three different datasets, and demon-
strate that BLAP outperforms previous state-of-the-art
models.

• We open-source the code and model weights in order to
contribute to the broader accessibility and advancement
of the music captioning field.

II. RELATED WORK

Audio and Music Captioning has received increased inter-
est in recent years, where Pengi [4] was a notable contribution
to the field. Pengi was trained on a composite of various audio
datasets, consisting of approximately 3.4 million audio-text
pairs. MusCaps [9] was one of the first approaches to focus on
music captioning, using a model that combines convolutional
and recurrent neural network architectures to process audio-
text inputs. The music captioning model of LP-MusicCaps [5]
follows a similar approach to Pengi, but fine-tunes the model
on their own augmented MSD [10] dataset, consisting of 445k
samples. Their model differs from our approach, as they do
not employ intermediate representation but directly forward
the music features to the LLM. Salmonn [6] is a multi-
modal LLM designed to process and understand general audio
inputs, including speech, audio events, and music. Salmonn
was trained on 2.3 million samples, of which 53k are music
clips. Llark [11] integrates a music feature extractor with a pre-
trained LlaMa model [12]. This approach is designed to handle
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Fig. 1. Training Pipeline for the Generative Learning Stage. The pipeline
first encodes the audio via an Audio Encoder. The result is then fed into
the Q-former via cross-attention to produce output tokens that are further
processed using a linear layer. The resulting tokens are then concatenated with
an LLM instruction prompt. Finally, the LLM produces a loss function based
on the reference caption. We freeze the audio encoder and the LLM during
training. Yellow indicates the components that are trained, blue indicates
frozen components.

various music-related tasks, such as music understanding,
captioning, and reasoning.

Audio Datasets, especially in the music captioning domain
generally lack data in terms of quantity or quality. Music-
Caps [13] was one of the first music captioning datasets,
containing 5k samples with expert-defined captions. Music-
Caps is a subset of AudioSet [14], which contains captions
for 10-second audio clips. SongDescriber [15] is a music
captioning dataset that contains 1.1k crowd-sourced hand-
written annotations for 706 full-length music pieces. YT8M-
MusicTextClips [16] is a video-text dataset created for the
task of retrieving suitable music for a video clip. The dataset
contains handwritten audio captions for 4k video clips from
the YouTube-8M dataset [17].

MusicBench [18] augmented MusicCaps by extracting and
including music features of chords, beats, tempo, and key. The
existing samples in MusicCaps were multiplied with musically
meaningful augmentations, resulting in over 50k samples. The
music captions were augmented using an LLM.

III. MODEL

We propose BLAP, a model capable of generating high-
quality natural language captions for music. Our model ar-
chitecture and training methodology are based on the BLIP-2
architecture [2], a recent successful image captioning model.
BLAP bootstraps from a pre-trained audio encoder and a pre-
trained LLM. This is enabled by a Q-Former that aligns the
audio and text representations. Instead of fine-tuning an entire
LLM, this strategy allows us to only learn the weights of the
Q-former. Given that the Q-Former contains only a fraction
of the parameters compared to the frozen LLM, this approach
demands considerably less data than architectures in audio-
language systems where the LLM is also trained.

The training process of BLAP consists of two stages. In the
first stage, we focus on representation learning, training the
Q-Former and computing the correct query tokens to extract
relevant audio information (cf. Section III-A). In this stage,
we also fine-tune the pre-trained CLAP audio encoder. The
second stage aims to generate accurate captions by leveraging
an LLM (cf. Section III-B). The LLM is kept frozen to reduce
computing costs and helps avoid overfitting. Additionally, the
audio encoder is frozen in the second stage to focus solely on
optimizing the Q-Former and its query tokens. The authors of
BLIP-2 [2] found that this two-stage training approach helps
mitigate the problem of catastrophic forgetting.

A. Representation Learning Stage

In the first stage of training, we aim to learn a meaningful
joint representation of music and text. We connect an audio
encoder to the Q-Former. The goal is to train the Q-Former
such that the query tokens learn to extract the most relevant
information for text generation. In the first stage, we learn
a representation that aligns both music and text and can be
decoded into a descriptive caption. Therefore, we complete
the audio-text contrastive loss (LATC) with two additional
losses: the audio-text matching loss LATM, and an audio-based
language generating loss LLM. Each loss uses its own self-
attention pattern to connect the queries and the text tokens.
For general training all three losses are minimized jointly.

B. Generative Learning Stage

Figure 1 illustrates the generative learning stage. During
this stage, prompt tuning is conducted by fine-tuning and
transforming the query outputs of the Q-Former to generate
appropriate inputs for the frozen LLM. More precisely, the
Q-Former query outputs are transformed using a linear layer
to acquire the prefix tokens, which are then prepended to a
fixed prefix text of "Generate an objective music
description." This processed input is then fed into the
LLM. We use a pre-trained FLAN-T5-xl model [8] which is
an encoder-decoder transformer architecture [19]. The encoder
uses bi-directional attention to process the input into an em-
bedding. Subsequently, the language modeling (LM) loss [20]
is computed by inputting the reference caption into the decoder
with causal attention. Both the Language Model and the audio
encoder remain frozen throughout this training stage.

Freezing the LLM and the audio encoder leads to a signif-
icant reduction in the number of parameters that need to be
updated, enabling the use of larger batch sizes. Additionally,
this forces the model to refine the Q-Former’s capability to
extract audio information relevant to the caption from the
audio encoding.

IV. EXPERIMENTS

A. Setup

As described in Section III, the model consists of three main
components: an audio encoder, a Q-Former, and an LLM. We
list each component in more detail and denote the stage in
which each component is active:



Audio Encoder (Stage 1 and 2): To encode the audio
we use the HTS Audio Transformer (HTS-AT), introduced
in CLAP [21]. We used their checkpoint to initialize the
model. HTS-AT has been shown to outperform traditional
audio encoders using CNNs [22]. We initialize HTS-AT using
the LAION model checkpoint [7].

Q-Former (Stage 1 and 2): We used BERTbase [23] as the
base model in the Q-Former. We initialize the BERT model
with pre-trained weights and initialize all cross-attention layers
randomly since the original BERT model did not use cross-
attention. The Q-Former contains 182 million trainable param-
eters. Since the hidden size of the BERT model is 768 we use
16 query tokens each of dimension 768.

Large Language Model (Stage 2): We use a pre-trained
FLAN-T5-xl model [8]. The total number of parameters of
BLAP sum up to 3 billion parameters, however, since most of
these parameters belong to the frozen LLM, we need to update
only a fraction of the total parameter count during training
(182 million).

Dataset. For training we used a dataset consisting of 31k
royalty-free music snippets from Shutterstock, totaling 700
hours of data. The music snippets also contain metadata
tags and human-generated captions. The included metadata
describes mood, genre, and the instruments used.

B. Evaluation Metrics

To evaluate models in music captioning, we use metrics
commonly found in image captioning [2] and general audio
captioning [24]. Historically, metrics such as BLEU [25],
ROUGE [26], and METEOR [27] have been used to assess
text quality and similarity [28]; however, these metrics have
been superseded by more recent metrics [29], [30].

We evaluate on SPICE [31] and SPIDEr [32]. SPICE fo-
cuses on the semantic propositional content of captions rather
than the n-gram overlap, aiming to better simulate human
judgment [31]–[33]. SPIDEr combines SPICE and CIDEr [34].
The authors of SPIDEr introduce a policy gradient method to
optimize this combined metric, improving both the semantic
relevance and the syntactic fluency of generated captions.
Both metrics have been shown to correlate more closely with
human judgments compared to other metrics such as CIDEr,
METEOR, ROUGE, and BLEU [31]–[33].

Furthermore, we evaluate models on FENSE [35], a learned
metric specifically tailored for audio captioning, integrating the
capabilities of Sentence-BERT [36] to assess similarity, along
with an error detector. The error detector identifies and focuses
on fluency errors within sentences. Unlike Sentence-Bert and
BERT-Score [33], which do not sufficiently penalize or may
even favor incorrectly phrased sentences, FENSE offers a
more comprehensive evaluation of the quality of the generated
captions, with a particular emphasis on linguistic fluency.

C. Training Details

During training of the first stage, in addition to training the
Q-Former and Q-tokens we also fine-tuned the weights of the
CLAP audio encoder. We found that this significantly helped

the overall model performance; we assume this is because
CLAP was mainly trained on general audio, and by fine-tuning
CLAP the resulting embeddings better represent music. The
small model size of the first stage allowed us to use a large
batch size of 1120, which is important for contrastive learning.
In comparison, BLIP-2 [2] used a batch size of 2320. We used
a learning rate of 3 · 10−5, a weight decay of 3 · 10−4, and the
Adam optimizer [37] with β1 = 0.9 and β2 = 0.999. During
training of the second stage, we only update the Q-former
weights and Q-tokens, keeping the audio encoder frozen. The
second stage is initialized with the weights trained in the first
stage. Due to the larger model size of the second stage, we
reduced the batch size to 400, and trained with a learning rate
of 3 · 10−4.

BLAP was trained on eight A100 GPUs. The first stage (cf.
Section III-A) was trained for 22.5k steps. The second stage
(cf. Section III-B) was trained for 70k steps. During training,
the model did not show signs of overfitting and maintained
effective generalization on the validation set, and therefore,
we assume that the model could be improved further with
more training.

To compare BLAP with LP-MusicCaps and Salmonn, both
trained on the MusicCaps dataset, we also fine-tuned BLAP on
MusicCaps. We used the MusicCaps training split, containing
2.6k samples, and trained for 500 steps, using a batch size
of 400. To avoid overfitting on MusicCaps, we adjusted the
learning rate from 3 · 10−4 to 3 · 10−6.

V. RESULTS

Quantitative Analysis. We compared BLAP with LP-
MusicCaps [5], Qwen-Audio [38], Pengi [4], and Salmonn [6]
on MusicCaps [13], Song Describer [15], and YouTube8M-
MTC [16]. For the LP-MusicCaps model, we used the model
checkpoint fine-tuned on MusicCaps. For Salmonn, we used
the 13B model checkpoint.

The results of the models are shown in Table I. We observe
that BLAP produces competitive results on all three music-
text datasets. Since LP-MusicCaps, Salmonn, and Pengi have
evaluated their performance on the BLEU metric we also add
it to our evaluation, even though BLEU has been shown to
correlate poorly with human judgment [31]–[33]. A primary
factor contributing to BLAP’s weaker performance in this
metric is its tendency to produce more concise captions, which
inherently result in lower n-gram scores. When considering
SPIDEr, SPICE, and FENSE, which all correlate well with
human judgement, BLAP outperforms the other models on the
evaluation datasets. In the case of FENSE, which is the most
relevant metric for audio and music captioning [35], BLAP
achieves a relative improvement of 3.5% for MusicCaps, 6.5%
for Song Describer, and 7.5% for YouTube8M-MTC compared
to the previous state-of-the-art LP-MusicCaps.

Qualitative Analysis. To provide an analysis of the qual-
itative performance, we generate captions with BLAP, LP-
MusicCaps, Salmonn, Qwen-Audio, and Pengi on the eval-
uation subset of MusicCaps samples (cf. Table II). We high-
light model performance and comparisons on the MusicCaps



TABLE I
RESULTS ON MUSICCAPS, SONG DESCRIBER, AND YOUTUBE8M-MUSICTEXTCLIPS DATASETS. WE MEASURE THE PERFORMANCE OF PENGI,

QWEN-AUDIO, SALMONN, LP-MUSICCAPS (LP-MC), AND BLAP ON BLEU@1 (B1), BLEU@4 (B4), FENSE (F), SPIDER (SP), AND SPICE (SC).
FOR ALL METRICS, HIGHER IS BETTER. BLAP OUTPERFORMS PREVIOUS MODELS IN SPICE AND FENSE, TWO RELEVANT CAPTIONING METRICS.

MusicCaps Song Describer YouTube8M-MTC
Model B1 B4 F SP SC B1 B4 F SP SC B1 B4 F SP SC
Pengi 12.5 0.6 45.8 5.3 7.1 10.8 0.3 38.6 4.0 4.5 8.1 0.3 35.1 4.6 5.9
Qwen-Audio 14.9 2.1 36.4 4.5 3.1 5.8 0.2 31.3 2.0 2.2 4.3 0.1 35.9 5.5 3.2
Salmonn 29.2 3.7 47.9 10.5 9.2 11.2 0.7 43.9 3.6 6.5 9.3 0.6 45.6 3.2 7.0
LP-MC 29.1 5.3 54.7 10.4 10.2 11.4 0.3 46.1 3.4 5.1 9.6 0.3 48.0 3.2 6.1
BLAP (ours) 26.2 3.3 56.6 8.8 11.2 12.9 0.4 49.1 4.3 6.6 11.6 0.3 51.6 3.9 7.4

TABLE II
EXAMPLES FROM THE MUSICCAPS DATASET WITH THE ORIGINAL EXPERT HUMAN-ANNOTATED CAPTION AND THE CAPTIONS GENERATED BY PENGI

(9K HOURS OF TRAINING DATA), QWEN-AUDIO (137K HOURS OF TRAINING DATA), SALMONN (4.4K HOURS OF TRAINING DATA), LP-MUSICCAPS (4.4K
HOURS OF TRAINING DATA), AND OUR PROPOSED MODEL BLAP (0.7K HOURS OF TRAINING DATA). ADDITIONAL EXAMPLES CAN BE FOUND ONLINE.

Models Caption
Original Caption The low quality recording features an emotional electric guitar melody played with two different reverb pedal

effects, one after the other. It sounds like the player is comparing the two reverbs. The recording is a bit noisy.
BLAP (ours) The low quality recording features an electric guitar playing a blues song. It sounds like it is being played by

someone who has just learned how to play the instrument for the first time.
LP-MusicCaps This audio contains someone playing a guitar on a clean e-guitar. In the background you can hear the crowd

cheering. This song may be playing live during a concert.
Salmonn This music is an instrumental. The main melody is played on a guitar and is accompanied by a keyboard

playing a simple chord progression. The mood of the music is upbeat and cheerful. This music is suitable for
use in the soundtrack of a romantic comedy.

Qwen-Audio A man sings this song. The song is medium tempo with a piano accompaniment, guitar lead, bass guitar and
drums. The song is emotional and sad. The song is a cover of a song originally by John Lennon.

Pengi a guitar is being played on a electric guitar. a guitar is being played. this audio contains sound events: guitar,
plucked string instrument, musical instrument, music.

Original Caption This is a loud rock music piece played over two toy trains crashing. There is an even louder explosion sound
effect whenever the toys crash. The distorted electric guitar plays a simple tune in the minor scale while the
acoustic drums keep a basic rock beat as the rhythmic background.

BLAP (ours) This is a heavy metal song. The sound quality is low, but the music is loud and energetic. It sounds like it’s
being played on an amplified guitar or synthesizer. There are no vocals in this track.

LP-MusicCaps This audio contains a fully overdriven aggressive kick sound with a lot of digital noise sounds. This is an
amateur recording. This song may be playing in a post apocalyptic video game.

Salmonn This music is an instrumental. The tempo is fast with an energetic and upbeat rhythm. The main melody is
played on the electric guitar with a distorted sound. The rhythm section consists of a punchy bass line and
powerful drums. The overall mood of the music is energetic and upbeat. This music is suitable for use in
action scenes in movies or video games.

Qwen-Audio A low quality recording features a video game soundtrack playing in the background, followed by a loud
explosion and a mechanical sound effect. It sounds like a video game level or a training video.

Pengi a person is playing a music loop. a loop is being played. this audio contains sound events: the sounds of drums
and bass, vocals, organic music and organic music.

dataset, as it is a dataset with captions written by expert mu-
sicians, ensuring consistently high-quality reference captions.
We provide additional examples,1 including from Song De-
scriber and YouTube8M-MusicTextClips, together with their
audio. We find that BLAP tends to generate more concise
captions compared to other models, because the ShutterStock
training dataset contains mostly brief and low-quality cap-
tions. However, BLAP manages to capture the essence of the
music piece, while using significantly less training data. The
generated captions provide a well-rounded mixture of high-
level music descriptions and low-level music details, ensuring
a comprehensive and informative representation of the musical
content. Although BLAP compares well to LP-MusicCaps and
Salmonn while using significantly less data and smaller model

1https://lucala.github.io/BLAP/

architectures, it is clear that BLAP also cannot yet reach
the quality of the expert human-annotated captions found in
MusicCaps, leaving room for further improvements in future
work.

VI. CONCLUSION

We propose BLAP, a new music captioning model that
bootstraps a pre-trained CLAP audio encoder and a frozen
Flan-T5-xl LLM in order to lower data and compute require-
ments. BLAP relies on a Q-Former, and is trained in a two-
stage approach. We demonstrate the effectiveness of BLAP
on several relevant metrics and in qualitative evaluations. We
believe BLAP represents a promising avenue for exploring the
intersection of music and language, with potential future di-
rections for research and applications in cross-modal learning.

https://lucala.github.io/BLAP/
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