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Abstract
Simulating fluid dynamics is crucial for the design and development process,
ranging from simple valves to complex turbomachinery. Accurately solving the
underlying physical equations is computationally expensive. Therefore, learning-
based solvers that model interactions on meshes have gained interest due to their
promising speed-ups. However, it is unknown to what extent these models truly
understand the underlying physical principles and can generalize rather than
interpolate. Generalization is a key requirement for a general-purpose fluid simu-
lator, which should adapt to different topologies, resolutions, or thermodynamic
ranges. We propose SURF, a benchmark designed to test the generalization
of learned graph-based fluid simulators. SURF comprises individual datasets
and provides specific performance and generalization metrics for evaluating and
comparing different models. We empirically demonstrate the applicability of
SURF by thoroughly investigating the two state-of-the-art graph-based mod-
els, yielding new insights into their generalization. SURF is available under
https://github.com/s-kuenzli/surf-fluidsimulation.

1 Introduction
Fluid simulations have established themselves as indispensable tools for addressing intricate and
complex tasks in design and development processes. They play a central role in the construction of
Formula 1 cars, where fluid simulations are extensively harnessed to refine external aerodynamics and
enhance the performance of combustion engines [1]. Moreover, they enable the accurate simulation
of scenarios that are too expensive or even infeasible to conduct in real-world experiments, such as
the examination of atmospheric re-entry vehicles [2]. The application of fluid simulations extends
even to domains such as weather prediction [3].

The underlying physics governing these phenomena can be modeled by the Navier-Stokes equations.
Unfortunately, no closed-form solution is known, and they remain one of the infamous “Millennium
Problems” [4]. Thus, computationally expensive iterative numerical solutions of the non-linear
partial differential equations are used. The ongoing development of simulation software is geared
towards delivering high-quality outcomes in the shortest feasible time frame [5]. Here, learning-based
approaches have the potential to accelerate this development by either directly predicting the simulated
process or providing a better initial solution that can be refined by classical iterative solvers [6]. Often,
this comes with a direct tradeoff between guaranteed precision and rapid processing time.

Due to the common modeling of the simulation environment as irregular meshes, Graph Neural
Network (GNN) based approaches have gained substantial traction recently. There, the main research
focus lies on how accurately GNNs can predict the flow of fluid dynamics. The aim is to create a
learned general-purpose fluid simulator. Given the wide range of applications of such a simulator, one
of its most essential abilities is to generalize and accurately predict the fluid dynamics in novel and
unseen environments as they might arise in the aforementioned development processes. This poses
a significant challenge, as training on all possible environments or scenarios is simply infeasible.
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Figure 1: Velocity visualization for three datapoints of the SURF benchmark from SURF-Base,
SURF-Topology, and SURF-Full dataset, respectively. The datasets are designed to measure a specific
aspect of generalization, e.g., how well models can adapt to new objects, such as different air foils or
unseen topologies with turns. Values are displayed contoured to make visual comparisons easier.

As a consequence, such a model has to truly grasp the underlying physical principles in order to
generalize rather than only interpolate between observed training data points. To be more precise,
such a simulator should be able to adapt to different topologies, resolutions, and thermodynamic
ranges. Therefore, we want to address the question how well GNNs can generalize to different fluid
dynamics environments.

We propose SURF, a benchmark for the simulation of fluid dynamics that focuses explicitly on
generalization capabilities to evaluate how well a model grasps the underlying physical principles.
SURF contains a diverse set of training and benchmarking datasets, with the explicit aim of adapting
to (1) finer mesh resolution, (2) different parameter ranges, (3) topologies, and (4) dynamic simu-
lation environments. To quantify the generalization, we propose a new set of metrics, the SURF
generalization scores, measuring the performance of each mentioned aspect. They intend to capture
the relative performance loss of a model due to not training on an unseen scenario where it has to
rely on its ability to generalize. To demonstrate the utility and applicability of SURF, we empirically
evaluate two state-of-the-art models, MGN [7] and EAGLE [8], for mesh-based fluid simulation.

We propose the SURF benchmark to systematically evaluate the ability of learned mesh-based
simulators to generalize across the demanding environments of fluid dynamics. SURF’s main
contributions can be summarized as follows:

• We introduce seven new large-scale datasets to simulate the fluid dynamics behavior. Each
dataset is constructed to change specific aspects of the environment to assess generalization
performance across different datasets.

• We propose the SURF generalization scores. A set of new metrics which quantitatively capture
the ability of a proposed model architecture to generalize to overall or specific changes across
mesh resolution, parameter ranges, topologies, or simulation dynamics. This is complemented
by the SURF performance score, which can assess the prediction quality of a model.

• We investigate what aspects of the training process help models to generalize by identifying how
a training data set should be built such that the generalization of a model improves.

• We conduct a thorough empirical evaluation and comparison of two state-of-the-art GNN-based
fluid simulators concerning their ability to generalize.

2 Related Work
In recent years there has been much interest in deploying machine learning for fluid simulation.
The different approaches can be divided into the following categories: particle-based, grid-based,
mesh-based and operator learning methods. The particle and grid methods are described in the
Appendix A, whereas the mesh-based and operator learning methods are described in the following.

Mesh-Based Methods. In industrial contexts, mesh-based fluid dynamics solvers are vital for
simulating complex fluid behavior. Due to their ability to handle complex geometries with irregular
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meshes. Renowned solvers like ANSYS Fluent and Star-CCM+ or the open-source solver OpenFoam
are extensively employed. In aerospace engineering, they are used to optimize aircraft designs for
enhanced efficiency and safety. The automotive industry relies on them to simulate airflow around
vehicles, reducing drag and improving fuel efficiency. These mesh-based solvers underpin industrial
innovation by providing insights into fluid dynamics phenomena crucial for optimal design and
performance across diverse sectors.

Meshes directly translate to graph representations, making them amenable to Graph Neural Networks
(GNNs). In this context, mesh nodes and edges correspond to graph nodes and undirected edges
within the graph structure. Graph Element Networks [9] use this structure, while works that combine
graph structures with PDEs also exist [10]. The most relevant architectures for our evaluation are
MeshGraphNets (MGN) [7] and EAGLE [8].

MGN [7] follows an encode-process-decode architecture and undergoes testing across diverse physical
domains, including scenarios such as 2D incompressible fluid flow around a cylinder or cloth
simulation. An extensive series of 1200 distinct simulations are conducted to compile a comprehensive
dataset. Systematically varied parameters like inlet velocity, cylinder position, and radius are explored
within each simulation, spanning 600 discrete time steps.

EAGLE [8] improves upon this approach by introducing enhancements such as node clustering,
graph pooling, and global attention mechanisms. These refinements strengthen the model’s ability
to capture global dependencies. Simultaneously, a dataset featuring 1,184 simulations depicting 2D
unsteady fluid flow originating from a mobile flow source across 600 distinct fluid domains was
generated.

Operator Learning. A different approach for predicting solutions of partial differential equations
like the Navier Stokes equations are machine learning methods which learn an operator mapping
from the input functions to the solutions [11]. Several different neural architectures are investigated
for learning operators. Fourier neural operator (FNO) [12] learns the operator in spectral space or
transformer models [13] which are based on attention mechanism. Nevertheless, the application
of these methods to real-world problems is challenging. For example methods like FNO using
Fast Fourier Transform require a uniform regular grid. These challenges are addressed in recent
publications. Geo-FNO [14] extends FNO by learning a mapping from an irregular mesh to a uniform
mesh. Nevertheless, the adaption to general topologies remains a challenge. A General Neural
Operator Transformer (GNOT) [15] for Operator Learning uses heterogeneous normalized attention
layer, which is able to handle multiple input functions and irregular meshes.

Fluid Simulation Datasets. Both MGN and EAGLE focus their evaluation on synthetic in-
distribution datasets but also consider generalization as an essential quality that is discussed further.
EAGLE investigates generalization to different ground topologies and mesh resolutions. MGN
changes mesh sizes and tests on airfoils with steeper angles or with higher inflow speeds. More
synthetic datasets for the purpose of learning were introduced [16, 17], for example for turbulence
simulation [18]. The PDEBench [19] provides solutions to a wide variety of partial differntial equa-
tions (PDE), including a single dataset for the Navier-Stokes equation in a unit square with random
initial velocities and forcing terms.

None of these works offer dedicated datasets or comprehensive scores designed to compare models for
this specific purpose. Our evaluation bridges this gap, creating a unified benchmark to quantitatively
analyze their respective generalization capabilities. In addition to velocity and pressure, we add
temperature as a solution variable. This enables the models to calculate the fluid-solid heat transfer,
an important process for optimizing heat exchangers or analyzing electronic cooling. This also allows
the simulation of different thermal fluid properties resulting in different heat propagation in the fluid
flow.

3 Preliminaries
Mesh Generation. The geometry is built using Ansys SpaceClaim 2023 R1 [20]. Two different
meshes are created with Ansys Meshing [21]. The fine mesh consists mostly of quadrilaterals and a
small amount of triangles. At the wall boundaries, an inflation layer with eight elements is defined for
a better resolution of the gradient. This mesh is then used for the ground truth calculation. The coarse
mesh, consisting of triangles, is used for training and predictions (see Figure 2). The exact meshing
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Figure 2: A mesh for a regular datapoint is visualized on the left, while the right datapoint depicts an
instance from SURF-Mesh, with an increased mesh resolution by a factor of two.

algorithms used in Ansys Meshing are proprietary, but the triangular meshing of 2D geometries is
a well-studied subject [22]. The algorithms differ in the resulting mesh quality (the minimal angle
of the triangle should be maximized), the number of created triangles for a certain geometry, and
the generation time. Similar meshes could also be obtained with the open source mesher presented
in [23]. The result values (velocities, pressure, temperature) at the nodes of the coarse mesh are
interpolated from the nodes of the fine mesh using linear interpolation on a triangular grid.

Root Mean Square Error (RMSE). To compare the predictions of a given model, the root mean
square error (RMSE) is calculated for velocity, pressure, and temperature. The RMSE for the velocity
v for a time horizon H on the test set D is calculated as:

RMSEv(x, y) =
1

|D|H

D∑
d

H∑
t=1

1√
2Nd

Nd∑
v

||xt
v − ytv||2

Where xt
v is the predicted velocity vector at time step t at node v and ytv the corresponding ground

truth value. Nd denotes the number of nodes of the datapoint d. The RMSE for pressure p and
temperature t are calculated analogously.

4 SURF Benchmark
We introduce SURF, a 2D fluid dynamics benchmark specifically tailored to assess generalization.
The benchmark consists of seven new large-scale datasets accompanied by a custom set of metrics
to quantify performance and generalization of proposed model architectures. In this section, we
describe the design and generation process of the individual datasets and their intended purpose.
Then, we define the SURF performance and generalization scores, which allow for a comprehensive
evaluation and comparison against other baselines. Our dataset is publically available online2 with
the accompanying code3 that includes evaluation scripts.

4.1 SURF Datasets

Each of the seven SURF datasets is a large-scale collection of 2D fluid flow simulations with at least
1200 individual datapoints. They are accompanied by dedicated splits so that 80 percent are used
for training and 10 percent for validation and test data each. The ground truth for each simulation
is computed using ANSYS Fluent [24], a mesh-based solver using the finite volume method [25].
Afterward, the solution calculated on the fine mesh is downsampled using the linear interpolation
described in Chapter 3. Every datapoint consists of 300 timesteps and about 1800 nodes that comprise
the mesh topology. For the individual parameters, which determine the generation of each dataset,
we refer to the Appendix. In the following, we outline the main differences between each of the
individual datasets.

SURF-Base. This dataset serves as a basis for all other SURF datasets. It comprises simulated data
of 2D flow around a single cylinder which can vary in size with two additional inlets, parametrized
through position, angle, inflow velocity, and temperature.

2https://huggingface.co/datasets/SURF-FluidSimulation/FluidSimulation
3https://github.com/s-kuenzli/surf-fluidsimulation
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Figure 3: Velocity visualization for ground-truth data from SURF-Base (left) and SURF-Full (right),
evaluated at timesteps 0, 5, 10, 20 (top to bottom). Note that on the right, the bottom inlet is active
in the beginning, then turned off and turned on again in the last step, leading to a more dynamic
simulation environment. Values are displayed contoured to make visual comparisons easier.

SURF-Rotated. The complete computational domain is rotated at an angle of [0°, 360°]. This
ensures equal velocity distribution in all directions instead of the predominant velocity in the positive
x-direction.

SURF-Range. Compared to the base dataset, the range of most simulation parameters is increased
and decreased by a factor of two, including inlet velocity, object wall temperature, the radius of the
cylinder, thermal conductivity, and heat capacity. In particular, this impacts the range of the calculated
Reynolds number.

SURF-Topology. Two objects are present instead of a single cylinder. Each object is either a
cylinder or one of five different airfoils, which vary in their angle of attack and can redirect the flow.
The domain is equipped with an elbow angle from 0° to 90°. A flow separation may occur due to the
velocity and the elbow angle.

SURF-Dynamic. Both small inlets vary their velocities over time. This introduces more variation
of the calculated flow because, without the transient boundary conditions, the flow can converge to a
steady state. Instead, the flow varies during the complete time horizon of the simulation.

SURF-Full. The superset of all other dataset generation parameters, except for datapoints with
higher mesh resolutions. Therefore, it includes more temporal dynamics, larger ranges, multiple
objects with diverse airfoils, and an elbow in the domain. Note that it contains datapoints not present
in the other datasets as it is a superset of the generation parameters rather than the actual datapoints.

SURF-Mesh. Generated the same way as the full dataset, but the ground truth is downsampled to a
finer mesh. The element size is reduced by a factor of two.

4.2 SURF Metrics

To measure the prediction quality of models on the SURF benchmark, we define a performance score
PS. It follows the convention of the N-RMSE metric introduced in [8] and extends it to include
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temperature. The time horizon is always fixed at 250 timesteps.

SURFPS =
1

3
(PSv + PSp + PSt) =

1

3

(
RMSEv

σv
+

RMSEp

σp
+

RMSEt

σt

)
Where σv denotes the standard deviation of the velocity on the respective dataset. Unless explicitly
stated otherwise, the performance score is always reported on the SURF-Full dataset.

The main aim of the SURF Benchmark is to quantify the ability of a model architecture to generalize
across different environment settings. We measure generalization as the relative decrease in the
performance of a model on the respective dataset. The idea is to train a model on an origin dataset
and then test how well the performance translates to a different target dataset that differs in one aspect
of the environment. Formally, let GSv(Φ,D1,D2) denote the velocity generalization of model Φ
across datasets D1 and D2.

GSv(Φ,D1,D2) =
RMSEv (ΦD1(D2),D2)

RMSEv (ΦD2
(D2),D2)

Where ΦD1(D2) denotes the prediction for the test set of D2 made by model Φ trained on the train
set D1. The GS scores for temperature and pressure are calculated analogously. Moreover, the full
generalization score is the average over all physical quantities:

GS =
1

3
(GSv + GSp + GSt)

We identify four aspects fundamental to the ability to generalize: mesh resolution, parameter ranges,
topologies, and dynamic simulation environments. Therefore, for each of these, we define a corre-
sponding SURF generalization score, indicating how well the generalization of a single aspect of the
environment has been learned:

SURFGS-Mesh(Φ) = GS(Φ,SURF-Full,SURF-Mesh)
SURFGS-Topology(Φ) = GS(Φ,SURF-Base,SURF-Topology)

SURFGS-Range(Φ) = GS(Φ,SURF-Base,SURF-Range)
SURFGS-Dynamic(Φ) = GS(Φ,SURF-Base,SURF-Dynamic)

For assessing how well a model can generalize to different topologies, such as handling new objects,
we can quantify this using the SURFGS-Topology score. To simplify evaluation and comparison across
different models, we define the SURFGS score to capture the generalization capabilities of all aspects
as an average over the more specialized generalization scores.

SURFGS =
1

4
(SURFGS-Mesh + SURFGS-Topology + SURFGS-Range + SURFGS-Dynamic)

5 Evaluation
We empirically evaluate two state-of-the-art models for fluid simulation, MeshGraphNets (MGN) [7]
and EAGLE [8]. While MGN uses a message-passing Graph Neural Network to compute embeddings
directly on the given mesh, EAGLE adds a global attention mechanism to enable long-range informa-
tion exchange. Both models undergo the SURF benchmark to assess their (1) baseline performance
score, (2) generalization score, and (3) what training dataset generalizes best.

We adjust both architectures slightly to incorporate the temperature as a parameter, which was not
used in the original architectures and thus assumed constant. We use the same loss function for both
MGN and EAGLE. More information on the exact training setup can be found in Appendix D.1. All
scores are reported as mean values over three runs.

5.1 Performance

To assess the overall accuracy and quality of the predictions, we compare the results of MGN and
EAGLE, across three distinct SURF datasets: Base, Rotated, and Full. The performance scores for
each model and dataset are summarized in Table 1.
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Table 1: Performance scores for velocity, pressure, and temperature after 250 time steps of MGN and
EAGLE trained and tested on the SURF-Base, SURF-Rotated, and SURF-Full dataset, respectively.
Both models achieve similar performance, but EAGLE predicts the pressure dynamics more accurately
than MGN.

Dataset Model PSv ↓ PSp ↓ PSt ↓ PS ↓
Base MGN 0.073 ± 0.005 0.142 ± 0.011 0.068 ± 0.003 0.094 ± 0.006

EAGLE 0.074 ± 0.003 0.090 ± 0.004 0.097 ± 0.006 0.087 ± 0.004

Rotated MGN 0.041 ± 0.002 0.133 ± 0.003 0.071 ±0.002 0.082 ± 0.001

EAGLE 0.061 ± 0.007 0.089 ± 0.005 0.107 ± 0.003 0.086 ± 0.004

Full MGN 0.165 ± 0.099 0.168 ± 0.088 0.111 ± 0.041 0.148 ± 0.076

EAGLE 0.163 ± 0.004 0.166 ± 0.011 0.146 ± 0.015 0.158 ± 0.006

Table 2: Generalization scores after 250 time steps of the MGN and EAGLE model trained on the
SURF-Base, SURF-Rotated, and SURF-Dynamic and then tested on the test set SURF-Topology,
SURF-Range, SURF-Dynamic, and SURF-Full. Note that this is different from the SURF generaliza-
tion scores.

Training Set Model Topology ↓ Range ↓ Dynamic ↓ Full ↓
Base MGN 3.10± 0.72 1.30 ± 0.07 5.76± 0.64 3.32± 1.29

EAGLE 3.68± 0.10 1.08 ± 0.09 2.17± 0.08 3.73± 0.52

Rotated MGN 1.81 ± 0.38 1.54± 0.18 6.73± 0.60 1.95 ± 0.72

EAGLE 1.96 ± 0.08 1.36± 0.22 2.41± 0.17 1.47 ± 0.06

Dynamic MGN 3.11± 0.56 1.52± 0.23 1.00 ± 0.00 3.93± 1.52

EAGLE 4.47± 0.24 2.16± 0.33 1.00 ± 0.00 5.25± 1.76

Velocity. Across all datasets, both MGN and EAGLE models demonstrate comparable performance
in predicting velocity. Their scores consistently remain close, indicating a strong and balanced
predictive capability in this aspect.

Pressure. EAGLE showcases a notable advantage in pressure prediction across the board. It
consistently scores better than MGN, suggesting that EAGLE is better equipped to predict pressure-
related outcomes accurately.

Temperature. For temperature prediction, the MGN model emerges as the more proficient one.
Across all datasets, MGN consistently outperforms EAGLE in this aspect, suggesting a greater
aptitude for capturing temperature-related patterns.

Overall Assessment. Considering all velocity, pressure, and temperature scores together, there is
no clear winner between MGN and EAGLE. Both models achieve comparable performance, with
EAGLE excelling in pressure prediction and MGN performing better in temperature prediction. This
balanced performance across diverse aspects underscores the comparable overall performance of the
two models. Furthermore, the performance trends observed in the datasets remain consistent with the
models’ behavior. This consistency across datasets reinforces the stability of the introduced perfor-
mance characteristics. Notably, the SURF-Full dataset consistently leads to the highest prediction
loss, indicating that the increased complexity of this dataset might pose a challenge for both models.

5.2 Generalization

We investigate the ability of MGN and EAGLE models to generalize across individual aspects such
as topologies, mesh resolution, parameter ranges, and simulation dynamics. We use the proposed
SURF generalization scores defined in Section 4.2. Recall that the generalization score captures the
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Table 3: The computed SURF generalization scores for MGN and EAGLE. While MGN can
generalize better to different topologies, EAGLE achieves better generalization on mesh resolution,
simulation dynamics, and parameter ranges, resulting in an overall better SURFGS score.

Model SURFGS-Mesh ↓ SURFGS-Topology ↓ SURFGS-Range ↓ SURFDynamic ↓ SURFGS ↓
MGN 1.07 ± 0.26 3.10 ± 0.72 1.30 ± 0.07 5.76 ± 0.64 2.81 ± 0.23

EAGLE 1.01 ± 0.05 3.68 ± 0.10 1.08 ± 0.09 2.17 ± 0.08 1.98 ± 0.06

relative drop in performance due to a model not training on the target dataset and therefore having to
rely on its ability to generalize.

The computed SURF generalization scores for each aspect are presented in Table 3. Our observation
indicates that MGN exhibits better adaptability to unseen topologies compared to EAGLE. However,
in an overall assessment, the EAGLE architecture demonstrates superior generalization regarding
mesh resolution, parameter ranges, and simulation dynamics, which results in a lower overall SURFGS
score.

Impact of Training Dataset on Generalization. We explore what factors enhance training to yield
better generalization results in the mentioned architectures. We analyze the GS scores, reflecting
the efficacy of inter-dataset training-to-testing transfer. The results are shown in Table 2, and for the
complete matrix, we refer to the appendix.

We reaffirm the conclusions drawn from the prior SURF generalization scores: EAGLE excels in
generalization across all datasets, except Topology. Notably and maybe surprisingly, training on the
SURF-Rotated dataset substantially improves generalization to the SURF-Full dataset for both MGN
and EAGLE. Observing dynamic fluid boundary conditions modestly enhances generalization across
datasets. Yet the most significant increase comes from the SURF-Rotated training. Recall that this
dataset is a rotated version of the base dataset, and while training solely on rotated versions of the
same dataset does not augment dataset size, introduce new topologies or dynamics, it remarkably
amplifies generalization across all datasets. Illustrated in Figure 4, the model trained on rotated data
excels in predicting fluid flow in adapted curved tunnels and amidst more challenging wing profiles.
In contrast to a cylinder, a wing profile can redirect the flow. Additionally, no flow separation occurs
for low attack angles of an airfoil. With an increasing angle of attack, a flow separation may occur.
Correctly predicting the flow separation or a stall is important for calculating the lift of an aircraft
because a flow separation leads to a sudden loss of lift.

6 Limitations
The presented benchmark only considers incompressible flows, i.e., the fluid density is assumed to be
constant over time and domain. This assumption is reasonable for flows where the velocity is less
than a third of the speed of sound of the fluid. For dry air at a temperature of 20°C, the speed of sound
is 340 m/s. Hence, air flows with a speed of less than 100m/s can be considered incompressible.
Further, the flow in the dataset is always turbulent; there is no laminar flow in the dataset because if
laminar flows were included, the velocity range would become very large (>factor 1000). For these
velocity ranges, the training is expected to be challenging. Additionally, the flow characteristics are
different, further increasing the difficulty for a neural network to learn both fluid regimes.

Another limitation presents itself in the fact that the datasets cannot capture all configurations that
could show up in practice. While the presented metrics are well-suited to judge generalization
capabilities to different domains, they can only serve as an approximation of how well these models
generalize to real-world applications with variations that are not included in our testing. That being
said, we expect that our metrics give a good and valuable indication of the generalization power of
the tested model.

Future Work. The proposed benchmark serves as a starting point for future research to test machine
learning methods predicting fluid flows for generalization and overall performance. A possible future
direction for the practical applications of learned neural networks on fluid flow predictions could
be the application of these architectures to three-dimensional geometries. The biggest hurdle to
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Figure 4: When training a model on the augmented dataset SURF-Rotated (right) instead of the
SURF-Base dataset (left), the model exhibits better generalization to new environments and can
even predict the flow between objects such as wing profiles more precisely, even though it has never
encountered these during training. Values are displayed contoured to make visual comparisons easier.

overcome is the high memory footprint, especially during training. For example, the MGN method
used approximately 24 GB of GPU memory during training. By simply extruding the geometry
from the SURF-Full dataset by 100mm, the number of nodes in the mesh increases by a factor
of 10, therefore requiring considerably more memory. Thus, we face a new challenge for neural
fluid simulators: Developing scalable architectures that can be applied to large (or high-resolution)
and complex geometries. Another interesting area for future investigations lies in exploring a
broader spectrum of architectural choices and potential factors that can impact generalization. This
encompasses the characteristics of the training, architecture choices, or even continual learning.
SURF stands as a versatile platform well-suited for delving into this research.

7 Conclusion
Fluid simulation is a critical building block in developing and optimizing cutting-edge products,
such as turbomachinery, cars, and airplanes. Using machine-learning models to simulate fluid
dynamics can lead to faster processing times or more precise results. Given the nature of where
such simulators are deployed, it is infeasible to train on all possible scenarios. Therefore, the
ability of a learned simulator to grasp the underlying physics and generalize is an essential aspect of
judging a given simulator’s quality and applicability to real-world scenarios. We introduce SURF, a
dedicated benchmark consisting of seven datasets to assess a mesh-based model’s performance and
generalization capabilities. We present a set of new metrics, which can be used to test and quantify
generalization to different domain topologies, dynamic boundary conditions, finer mesh resolution,
or a wider range of simulation parameter values.

We demonstrate the applicability of SURF on two state-of-the-art models and perform a comparative
analysis. Both models achieve similar performance regarding the overall simulation accuracy. The
main objective of SURF is to assess the generalization abilities. Here, the generalization scores show
that while MGN generalizes better to unseen topologies, EAGLE can adapt better to the other aspects
and achieves a lower unified SURFGS score. Interestingly, training on a rotated domain has a large
positive impact on both models, an observation that can be used in future work to improve neural
fluid simulators.

Our benchmark focuses on how well learned mesh-based models adapt to new fluid dynamic domains,
a crucial property for general-purpose fluid simulators. To achieve this, we introduce seven new large-
scale datasets. Alongside these datasets, we introduce a new set of metrics: the SURF generalization
scores. These metrics offer a simple way to measure different aspects of generalization and allow
for easy comparison between different approaches. Our testing clearly showcases the effectiveness
of SURF in evaluating generalization ability. As we move forward, we anticipate that SURF will
contribute to a better understanding of generalization and a simpler and unified evaluation within this
field.
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A Extended Related Work
The particle-based and grid-based methods for fluid simulation are described in the following.

Particle-Based Methods. The particle-based approach to fluid simulations draws inspiration from
smoothed particle hydrodynamics (SPH) as outlined in [26]. SPH represents a mesh-free Lagrangian
technique in which particle interactions serve as approximations of fluid dynamics. This approach
proves advantageous in modeling situations like free surface flows (such as ocean waves or partially
filled pipes) and intricate fluid-solid interactions (like water splashes resulting from a car moving
through a water puddle). Notably, these scenarios involve fluid domains where considerable changes
occur, even affecting domain boundaries throughout the simulation. This inherent adaptability
simplifies the simulation process, eliminating the need for mesh adaptation due to the mesh-free
nature of the method. An example of the particle-based approach for fluid simulations with machine
learning is “Graph Network-based Simulators” (GNS) [27]. The Graph Network framework [28]
is applied, where particles are represented as nodes, and the interactions among the particles are
modeled with edges. The dynamic behavior is replicated by learned message-passing on graphs. This
approach was adapted by Li and Farimani [29], who represent the advection (viscosity and body
forces), pressure, and collisions between particles through three separate graphs.

Grid-Based Methods. Grid-based fluid simulations are relatively fast and mainly used for real-
time and visualization applications [30, 31]. Leveraging the grid structure facilitates optimal GPU
utilization. Nonetheless, a notable drawback is the consistent resolution across the domain, which
may give rise to issues concerning precision and the portrayal of small entities within the flow. Due to
the native GPU hardware support, many works on using machine learning methods to predict physics
are based on convolutional architectures on regular grids [32–35].

B Physical Background
This section gives a brief background of the physics phenomena governing fluid dynamics, mesh
generation, and how the quality and accuracy of a prediction are quantified.

Fluid Simulation. The physical behavior of fluids is described by the Navier-Stokes equations,
a set of partial differential equations. They specifically express the conservation of mass and the
momentum balance. In this work, we restrict ourselves to incompressible 2D flows with Newtonian
fluids. The velocity and pressure field completely defines the flow of an incompressible fluid at a
certain point in time. Two quantities are preserved in the fluid flow: mass and momentum. The
equation for the conservation of mass for an incompressible, 2D flow is given by [24]:

∂u

∂x
+

∂v

∂y
= 0

Where u and v denote the velocity in the x-direction and y-direction, respectively. The momentum
balance equations are:

ρ
∂u

∂t
+ ρu
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+ ρv
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[
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]
p denotes the pressure, whereas the fluid density and the kinematic viscosity are denoted by ρ and µ.
For the calculation of the temperature, the heat transfer has to be calculated. This leads to the energy
conservation equation:

ρcp

[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

]
= k

[
∂2T

∂x2
+

∂2T

∂y2

]
k and cp denote the thermal conductivity and heat capacity, respectively. If the fluid velocities u and
v are set to zero, one gets the equation for the heat transfer in solids. Hence, the terms weighted with
the fluid velocities describe the convective heat transport.

13



A Generalization Benchmark for GNNs Predicting Fluid Dynamics

Reynolds Number. Note that two incompressible flows with the same Reynolds number behave
similarly and the velocity and pressure fields only differ by a constant factor. As a consequence, by
scaling the solution, the simulation of a single fluid (e.g., water) can be translated to another medium
(e.g., air). The Reynolds number is an important dimensionless quantity used to characterize fluid
flows. The Reynolds number is the ratio between inertial and viscous forces [36]:

Re =
ρuL

µ

L is a characteristic linear dimension. For example, for a flow around a cylinder, the characteristic
length is equal to the diameter of the cylinder, or for a flow in a pipe, it is equal to the diameter of the
pipe.

The Reynolds number is often used to predict the transition from laminar to turbulent flow. For a
pipe flow with Re < 2000, the flow is classified as laminar, for Re > 4000, the flow is classified as
turbulent [37]. In between, the flow is classified as transitional. In laminar flows, the fluid particles
follow smooth paths in layers. Particles close to a solid surface move in lines parallel to that surface.
There are no swirls in the flow. In contrast, unsteady vortices across large spatial scales interact in
turbulent flows.

C Dataset Generation
C.1 Parameters

The 2D geometry, in which the fluid flows, is built from the parameters shown in Figure 5. Small
gaps can lead to numerical problems during the solution (meshing and stability of the solver). To
prevent too small gaps, the y-position of each object is calculated using a ObjectyFactor ranging
from 0 to 1.

ObjectyPos =minDistance+ objectHeight+

ObjectyFactor · (DomainHeight− 2 · objectHeight

− 2 ·minDistance)

(1)

Where minDistance is set to 30mm and objectHeight denotes the vertical size of the corresponding
object. The transient velocities of Inlet2 and Inlet3 are defined according to:

Inletv(t) = InletvMean+ InletvAmplitude · sin(2π · InletvFrequency · t) (2)

The outlet boundary condition does not allow an influx. Therefore, if necessary, the amplitude of
Inlet2 and Inlet3 is reduced to always ensure a net outflow through the outlet.

The data sets and the used range for each parameter are given in Table 4 and 5. Given the range of the
cylinder radius and inlet velocity, the SURF-Base and SURF-Base data set cover a Reynolds Number
range between 1000 and 126000.

C.2 Process for Generation of Data Sets

The process of generating a data set is outlined in Figure 2. The steps required and the software used
in the process are:

• Parameter Ranges: Define the range of each parameter (see Table 5 and 4).
• Latin Hypercube Sampling: According to the defined range, Latin hypercube sampling [38]

is used to generate the samples for the data set. Each sample corresponds to a simulation
with a specific geometry and boundary conditions defined by the parameters. These samples
are internally referred to as design points (DP). For a sample size of n the Latin hypercube
algorithm divides each parameter range into n equally long sub-ranges and ensures that there is
only one sample in each sub-range. For two parameters, this is similar to having n rooks on a
nxn chessboard without threatening each other.

• Create Geometry & Mesh: The geometry is built running in Ansys SpaceClaim 2023 R1 [20].
The creation of the geometry and the mesh for each design point is done in Ansys Workbench
2023 R1 [39], and Ansys Meshing 2023 R1 [21]. Two different meshes are created with Ansys
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Figure 5: Sketch of how the individual geometry parameters influence the creation of the SURF
dataset. Each dataset defines its own range for its generation parameter. For example, The SURF-Base
dataset only allows for a cylinder while SURF-FULL can have up to two airfoils.

Meshing[21]. The fine mesh consists mostly of quadrilaterals and a small amount of triangles.
Quadrilaterals are preferred because they are numerically more efficient (better solution quality
with the same cost compared to triangles). At the wall boundaries, an inflation layer with eight
elements is defined for a better gradient resolution. This mesh is used for the ground truth
calculation. The coarse mesh, consisting of triangles, is used for training and predictions (cf.
Figure 2). A coarse mesh must be used due to the GPU memory footprint of the training and to
ensure that the training can still be run on an Nvidia RTX 3090 GPU (24 GB).
Software: Ansys SpaceClaim 2023 R1, Ansys Workbench 2023 R1, Ansys Meshing 2023 R1

• Prepare for execution: The fluid simulation setup is defined in a journal file for Ansys Fluent
(FluentSimulation.jou). In this file, the simulation settings, boundary conditions, and fluid
parameters are defined. We then run the simulation on a compute cluster.

• Run: Each simulation is run as a separate job, requesting two cores and 2 GB of memory.
A transient incompressible 2D simulation is run with a fixed time step of 0.01s for 300 time
steps. The calculated results on the fine mesh are then mapped to the coarse mesh. For the
downsampling linear triangular interpolation is used. Due to numerical inaccuracies, some
nodes lie outside of the domain of the mesh. For these nodes, the nearest neighbor interpolation
is used. The final data structure for the training data set was taken from the Eagle paper. For
each DP there is a folder with the two files sim.npz and triangles.npy. sim.npz contains the node
coordinates, velocities, pressure, and temperature for each calculated time step. Triangles.npy
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Figure 6: Different airfoil shapes and their corresponding number.

contains the edges connecting the nodes.
Software: Python 3.8.5 and Ansys Fluent 2021 R1

C.3 Dataset Statistics

Before downsampling, each data set has a size of about 2 TB. The size of the downsampled data sets
used for the training is between 37 and 53 GB. The calculation of one simulation takes between 7 -
30min to finish. Each dataset is divided into a training, validation, and test set, by randomly shuffling
the simulations and selecting 80% of the simulations for the training set and 10% for the validation
and training set respectively. Table 7 shows statistics for the main parameters of the generated dataset.
Key characterics of the datasets are given in Table 6.

D Baselines

Two Graph Neural Network models are trained on the presented data sets. Because the training
data also includes the temperature as a state value, the models are slightly adapted to predict the
temperature field in the flow as well.
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Parameter Base Rotated Range Topo Dynamic Full
DomainLength 1600 1600 1600 1600 1600 1600

DomainHeight 400 400 400 400 400 400

DomainElbowAngle 0 0 0 [0, 90] 0 [0, 90]

DomainElbowRadius 0 0 0 200 0 200

DomainOrientation 0 [0, 360] 0 0 0 [0, 360]

Inlet2xPos [150, 450] [150, 450] [150, 450] [150, 450] [150, 450] [150, 450]

Inlet2Angle [20, 45] [20, 45] [20, 45] [20, 90] [20, 45] [20, 90]

Inlet3xPos [150, 450] [150, 450] [150, 450] [150, 450] [150, 450] [150, 450]

Inlet3Angle [20, 45] [20, 45] [20, 45] [20, 45] [20, 45] [20, 45]

Object1Type Cylinder Cylinder Cylinder Cylinder & 5 Airfoils Cylinder Cylinder & 10 Airfoils

Object1xPos [150, 450] [150, 450] [150, 450] [150, 450] [150, 450] [150, 450]

Object1yFactor [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

Object1Angle n/a n/a n/a [-15, 15] n/a [-30, 30]

Object1Radius [45, 75] [45, 75] [30, 90] [45, 75] [45, 75] [30, 90]

Object2Type n/a n/a n/a Cylinder & 5 Airfoils n/a Cylinder & 10 Airfoils

Object2xPos n/a n/a n/a [150, 450] n/a [150, 450]

Object2yFactor n/a n/a n/a [0, 1] n/a [0, 1]

Object2Angle n/a n/a n/a [-15, 15] n/a [-30, 30]

Object2Radius n/a n/a n/a [45, 75] n/a [45, 75]

Table 4: The geometry parameter ranges for the generation of the different SURF datasets.

Parameter Base Rotated Range Topo Dynamic Full
Inlet1v [1, 10] [1, 10] [0.5, 20] [1, 10] [1, 10] [0.5, 20]

Inlet2vMean [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]

Inlet2vAmplitude 0 0 0 0 [0, 10] [0, 10]

Inlet2vFrequency 0 0 0 0 [1, 5] [1, 5]

Inlet2T [290, 310] [290, 310] [290, 310] [290, 310] [290, 310] [290, 310]

Inlet3vMean [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]

Inlet3vAmplitude 0 0 0 0 [0, 10] [0, 10]

Inlet3vFrequency 0 0 0 0 [1, 5] [1, 5]

Inlet3T [290, 310] [290, 310] [290, 310] [290, 310] [290, 310] [290, 310]

Object1T [450, 800] [450, 800] [375, 1300] [450, 800] [450, 800] [375, 1300]

Object2T n/a n/a n/a [450, 800] n/a [375, 1300]

Thermal Conductivity [0.0258, 0603] [0.0258, 0603] [0.013, 1.2] [0.0258, 0603] [0.0258, 0603] [0.013, 1.2]

Heat Capacity [1.02, 3223] [1.02, 3223] [0.5, 6446] [1.02, 3223] [1.02, 3223] [0.5, 6446]

Table 5: The geometry parameter ranges for the generation of the different SURF datasets.

D.1 Training and Loss

Both models are trained with seven-step supervision. The predictions are calculated as follows:

qt+1
P = qt

GT + p1

qt+2
P = qt+1

P + p2

...

qt+7
P = qt+6

P + p6

(3)

The loss is calculated as:

loss = MSE (target, output) (4)
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Base Rotated Range Topo Dynamic Full Full Finer
Number of Datapoints 1200 1200 1200 1315 1200 1241 1241

Time Steps 300 300 300 300 300 300 300

End Time [s] 3 3 3 3 3 3 3

Average Number of Nodes 1287 1288 1293 1751 1287 1787 5433

Dataset Size [GB] 10.9 10.8 10.9 16.0 11.3 16.7 68.3

Table 6: Overview of the different SURF datasets.

Table 7: Statistics for the state variables of the SURF-Full data set.

Mean Standard Deviation
Velocity -1 9

Pressure 59 137

Temperature 340 129

with:

target =


qt+1
GT − qt

GT

qt+2
GT − qt+1

P
...

qt+7
GT − qt+6

P

 , output =

p1

...
p7

 (5)

qt denotes the state at time step t the subscripts GT and P are used to specify whether the state
values are from the ground truth or predicted values, respectively. Note that the target values are
always calculated with respect to the previously predicted state and not the state from the ground
truth.

The authors of EAGLE show that both models are more robust if trained on more than one time
step. Hence, for better comparability, we train both models with seven-step supervision. We use the
implementation provided by EAGLE [40] for both models. In this implementation, the loss for the
MGN model is calculated differently. In contrast to the loss for the EAGLE model, the targetMGN

is calculated solely on the ground truth data and is independent of the predicted data. We have found
that using the loss given in Eq. 4 gives better results for the MGN model and therefore use the same
loss for both models. This also lets us focus more on differences in the architectures.

The learning rate of 10−4 is used in the EAGLE paper [8]. As shown in Fig. 7 for the SURF-Full
data set, the training works better with a learning rate of 10−5. We therefore use a learning rate of
10−5 in our experiments. For MGN we use a learning rate of 10−4 with a decay factor of 0.999.

D.2 Heat Transfer

In contrast to the data set used in the MGN and EAGLE paper, the SURF datasets include heat
transfer and therefore the temperature as a state variable. Hence, the node encoders and decoders
are adapted to include the temperature in the state as input value for the node features and output
value, respectively. Apart from the flow velocity, two fluid properties characterize heat transfer: heat
capacity and thermal conductivity. In Table 5, the range of the two properties used to calculate the
data sets is reported. These two properties are fed to the Neural Networks as additional node features
to each node. Hence, the node features consist of a concatenation of the following: state (velocity,
pressure, temperature), one hot encoding of the node type, and the thermal fluid properties.

D.3 Computational Resources

Trainings were executed on Nvidia Geforce RTX 3090 GPU’s with a memory of 24 GB. The MGN
model required 24 GB of memory for the SURF-Full data set, where the number of nodes is the
highest, while the EAGLE model used 12 GB GPU memory. The 1,000 epochs of the EAGLE model
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Figure 7: Training and validation loss for the EAGLE model with different training parameters for
the SURF-Full data set.

Table 8: Performance scores for velocity, pressure, and temperature after 250 times steps of MGN
and EAGLE trained and tested on all datasets.

Dataset Model PSv ↓ PSp ↓ PSt ↓ PS ↓
Base MGN 0.073 ± 0.005 0.142 ± 0.011 0.068 ± 0.003 0.094 ± 0.006

EAGLE 0.074 ± 0.003 0.090 ± 0.004 0.097 ± 0.006 0.087 ± 0.004

Rotated MGN 0.041 ± 0.002 0.133 ± 0.003 0.071 ±0.002 0.082 ± 0.001

EAGLE 0.061 ± 0.007 0.089 ± 0.005 0.107 ± 0.003 0.086 ± 0.004

Topology MGN 0.094 ± 0.019 0.155 ± 0.037 0.087 ± 0.008 0.112 ± 0.021

EAGLE 0.087 ± 0.006 0.092 ± 0.003 0.110 ± 0.007 0.097 ± 0.002

Range MGN 0.088 ± 0.004 0.130 ± 0.005 0.070 ± 0.010 0.096 ± 0.005

EAGLE 0.111 ± 0.012 0.121 ± 0.015 0.084 ± 0.004 0.106 ± 0.008

Dynamic MGN 0.045 ± 0.008 0.050 ± 0.004 0.035 ± 0.002 0.043 ± 0.004

EAGLE 0.131 ± 0.020 0.123 ± 0.008 0.109 ± 0.008 0.121 ± 0.011

Full MGN 0.165 ± 0.099 0.168 ± 0.088 0.111 ± 0.041 0.148 ± 0.076

EAGLE 0.163 ± 0.004 0.166 ± 0.011 0.146 ± 0.015 0.158 ± 0.006

Mesh MGN 0.292 ± 0.013 0.294 ± 0.028 0.211 ± 0.012 0.266 ± 0.017

EAGLE 0.237 ± 0.010 0.248 ± 0.017 0.237 ± 0.016 0.240 ± 0.007

took around 32h. The training for the MGN models was aborted after 48h reaching 700 - 800 epochs.
The training for SURF-Mesh required more GPU memory and was done on A6000s with 48 GB
of GPU memory for the EAGLE baseline and on A100 80GB GPU memory for the MGN baseline
respectively.

E Full Empirical Evaluation
We report the full performance and generalization scores in Table 8 and 9:

F Examples
Figures 8 to 14 depict examples for SURF datapoints.
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Table 9: Generalization scores for 250 time steps the MGN and EAGLE model trained on all
training sets and then tested on the test set SURF-Base, SURF-Rotated, SURF-Topology, SURF-
Range, SURF-Dynamic, SURF-Full, and SURF-Mesh. Note that this is different from the SURF
generalization scores.

Training Set Model Base ↓ Rotated ↓ Topology ↓ Range ↓ Dynamic ↓ Full ↓ Mesh ↓
Base MGN 1.00 ± 0.00 9.16 ± 0.54 3.10 ± 0.72 1.30 ± 0.07 5.76 ± 0.64 3.32 ± 1.30 1.55 ± 0.22

EAGLE 1.00 ± 0.00 6.67 ± 1.44 3.68 ± 0.10 1.08 ± 0.09 2.17 ± 0.08 3.73 ± 0.52 2.33 ± 0.14

Rotated MGN 1.08 ± 0.07 1.00 ± 0.00 1.81 ± 0.38 1.54 ± 0.18 6.73 ± 0.60 1.95 ± 0.72 1.09 ± 0.11

EAGLE 1.63 ± 0.13 1.00 ± 0.00 1.96 ± 0.08 1.36 ± 0.22 2.41 ± 0.17 1.47 ± 0.06 1.04 ± 0.05

Topology MGN 1.52 ± 0.34 7.81 ± 0.54 1.00 ± 0.00 1.48 ± 0.26 7.86 ± 0.92 2.96 ± 1.24 1.50 ± 0.04

EAGLE 2.49 ± 0.11 4.81 ± 0.28 1.00 ± 0.00 1.89 ± 0.10 3.27 ± 0.26 3.07 ± 0.26 2.22 ± 0.30

Range MGN 1.94 ± 0.27 11.95 ± 1.63 3.79 ± 0.96 1.00 ± 0.00 7.63 ± 0.75 4.21 ± 1.84 2.36 ± 0.73

EAGLE 1.89 ± 0.06 8.24 ± 2.08 3.60 ± 0.03 1.00 ± 0.00 2.33 ± 0.20 4.81 ± 2.20 2.81 ± 1.11

Dynamic MGN 0.58 ± 0.03 9.09 ± 0.35 3.11 ± 0.56 1.52 ± 0.23 1.00 ± 0.00 3.93 ± 1.52 1.94 ± 0.16

EAGLE 2.14 ± 0.19 10.96 ± 2.49 4.47 ± 0.24 2.16 ± 0.33 1.00 ± 0.00 5.25 ± 1.76 3.99 ± 1.58

Full MGN 3.53 ± 2.10 3.51 ± 2.26 1.98 ± 0.76 2.41 ± 1.42 6.30 ± 3.08 1.00 ± 0.00 1.07 ± 0.26

EAGLE Full 5.22 ± 0.49 2.58 ± 0.13 3.50 ± 0.45 4.04 ± 0.94 3.96 ± 0.38 1.00 ± 0.00 1.01 ± 0.05

Mesh MGN 4.63 ± 0.42 4.50 ± 0.71 3.07 ± 0.97 2.91 ± 0.33 9.03 ± 1.41 1.70 ± 0.71 1.00 ± 0.00

EAGLE 5.07 ± 0.38 3.63 ± 0.23 3.97 ± 0.16 4.04 ± 0.88 3.80 ± 0.37 1.71 ± 0.10 1.00 ± 0.00

Figure 8: Velocity visualization of two ground-truth datapoints from SURF-Base, evaluated at
timesteps 0, 5, 10, 20 (top to bottom).
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Figure 9: Velocity visualization of two ground-truth datapoints from SURF-Rotated, evaluated at
timesteps 0, 5, 10, 20 (top to bottom).

Figure 10: Velocity visualization of two ground-truth datapoints from SURF-Range, evaluated at
timesteps 0, 5, 10, 20 (top to bottom).
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Figure 11: Velocity visualization of two ground-truth datapoints from SURF-Topology, evaluated at
timesteps 0, 5, 10, 20 (top to bottom).

Figure 12: Velocity visualization of two ground-truth datapoints from SURF-Dynamic, evaluated at
timesteps 0, 5, 10, and 20 (top to bottom).
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Figure 13: Velocity visualization of two ground-truth datapoints from SURF-Full, evaluated at
timesteps 0, 5, 10, 20 (top to bottom).

Figure 14: Velocity visualization of two ground-truth datapoints from SURF-Mesh, evaluated at
timesteps 0, 5, 10, 20 (top to bottom).
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