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Sequential Privacy:
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Decision-making in the Age of LLMs
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Traditional Privacy Framework — Differential Privacy
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The Stakes - A Hospital Scenario  [ifi
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The Stakes - A Hospital Scenario

Time (1) Blood-Glucose Action (a,;=
(BGy) insulin units)

08:00 200 mg/dL 3U
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Eating habits, insulin sensitivity, work
schedule, unique physiological response, etc.



Why Traditional Framework (DP) Fails for RL
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Our Position

Privacy challenges

* Temporal correlation
* Behavioral privacy

* Collaborative privacy

* Context-dependence

>

Sequential Privacy




Challenge: Temporal Correlation
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Why traditional DP fails

Time (8 Blood-Glucose Action (a,= Privacy leakage through
(BG,) insulin units) =
patterns from the sequence of

08:00

pairs [44, 48].

11:30

[44] X. Zhang, M. M. Khalili, and M. Liu, “Differentially
private real-time release of sequential data,” ACM

Transactions on Privacy and Security, 2022.
|
[48]. I. Mironov, “RALenyi Differential Privacy,”i
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Multi-scale Protection

Action (a, = Protection across time-steps
insulin units)

240 mg/dL (pc
lunch)

13:00 180 mg/dL

Multiple possible patterns ?777?




Behavioral Privacy

Policy Trained WITHOUT Patient A Policy Trained WITH Patient A Priva Cy itself is a P riva Cy vu lnerabi l.lty
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[11] C. J. Cundy, R. Desai, and S. Ermon, “Privacy-constrained policies via
mutualinformation regularized policy gradients,” in AISTATS, 2024



Behavioral Pattern Protection
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[11] C. J. Cundy, R. Desai, and S. Ermon, “Privacy-constrained policies via
mutualinformation regularized policy gradients,” in AISTATS, 2024




Collaborative Learning

Multi-agent systems are being deployed
Current solution:

Federated RL: Collaborative learning
without transmitting RL trajectories

Global updates reveal sensitive information
about individuals or institutions [42]
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[42] Z. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Proceedings
of NeurlIPS, 2019.




Collaborative Privacy protection

Individual agents

Potential directions:
- Apply multi-scale DP on the gradients
- Prevent adversaries from identifying @

- Construct mutual-information bound -Server.
- Ensure shared updates reveal minimal (multl Scale) DP
information about individual agents s |
Prevents from reverse-engineering individuals 'E'

when observing global patterns

(0

[42] Z. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Proceedings
of NeurlIPS, 2019.




Context-Dependent Privacy Requirements

Healthcare Domain & Autonomous Vehicle Domai

HIPAA Compliance Requirements Transportation Safety Standards
e Strict privacy protection * Vehicle performance optlmlzatlon

* Route efficiency reqwrem&n 8

G Privacy in decision-making is not “one size fits all”.



Context-Aware Adaptation

Healthcare Domain & Autonomous Vehicle Domain

HIPAA Compliance Requirements Transportation Safety Standards
e Strict privacy protection * Vehicle performance optimization

* Route efficiency requirements

i Ml

Privacy Requirement: () :==<o0.1 Privacy Requirement: -



Rethinking Privacy in RL

Challenges in Sequential Decision-making Sequential Privacy Framework

 Temporal Correlation * Multi-scale Privacy Protection
* Behavioral Policy * Behavioral Pattern Protection
* Collaborative Learning * Collaborative Privacy Preservation

* Domain Dependence  Context-Aware Adaptation

LEVELS OF DRIVING AUTOMATION

O & 0 6 0 O |
= - > = - = Analogy to Levels of Driving Automation

AUTOMATION ASSISTANCE AUTOMATION AUTOMATION AUTOMATION AUTOMATION

THE AUTOMATED SYSTEM MONITORS THE DRIVING ENVIRONMENT

Image source: Synopsys blog



Research Agenda — \What We Need

e

._



INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS

+ IJCNN2025

)’ 30 JUNE - 5 JULY 2025 | ROME, ITALY
22 INTERNATIONAL NEURAL NETWORK SOCIETY

----------
---------
--------
.......
------
-----

Thank you




	Slide 1: Sequential Privacy: Rethinking Privacy in RL for Sequential  Decision-making in the Age of LLMs
	Slide 2: The Stakes - A Hospital Scenario
	Slide 3: Traditional Privacy Framework – Differential Privacy
	Slide 4: The Stakes - A Hospital Scenario
	Slide 5: The Stakes - A Hospital Scenario
	Slide 7: Why Traditional Framework (DP) Fails for RL
	Slide 8: Our Position
	Slide 9: Challenge: Temporal Correlation
	Slide 10: Why traditional DP fails
	Slide 11: Multi-scale Protection
	Slide 12: Behavioral Privacy
	Slide 13: Behavioral Pattern Protection
	Slide 14: Collaborative Learning
	Slide 15: Collaborative Privacy protection
	Slide 16: Context-Dependent Privacy Requirements
	Slide 17: Context-Aware Adaptation
	Slide 18: Rethinking Privacy in RL
	Slide 19: Research Agenda – What We Need
	Slide 20: Thank you

