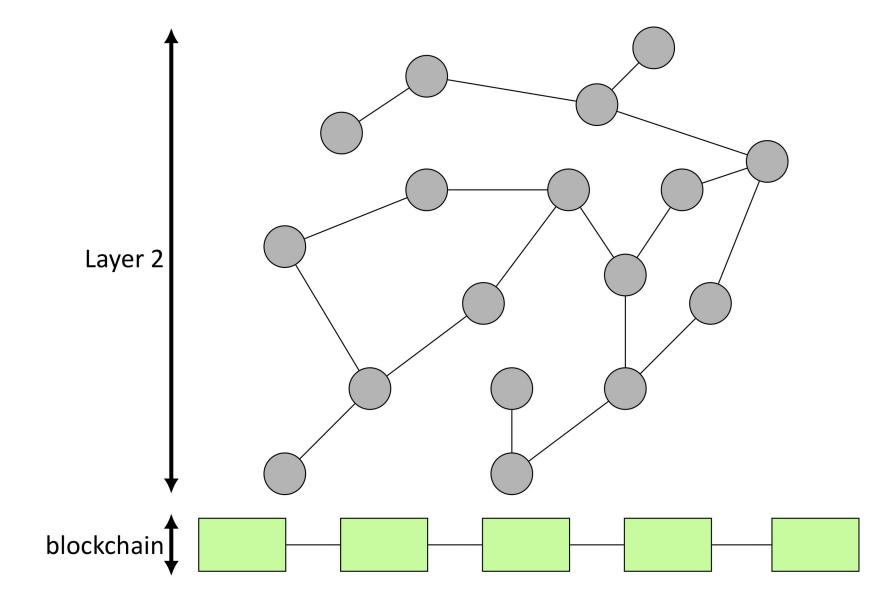
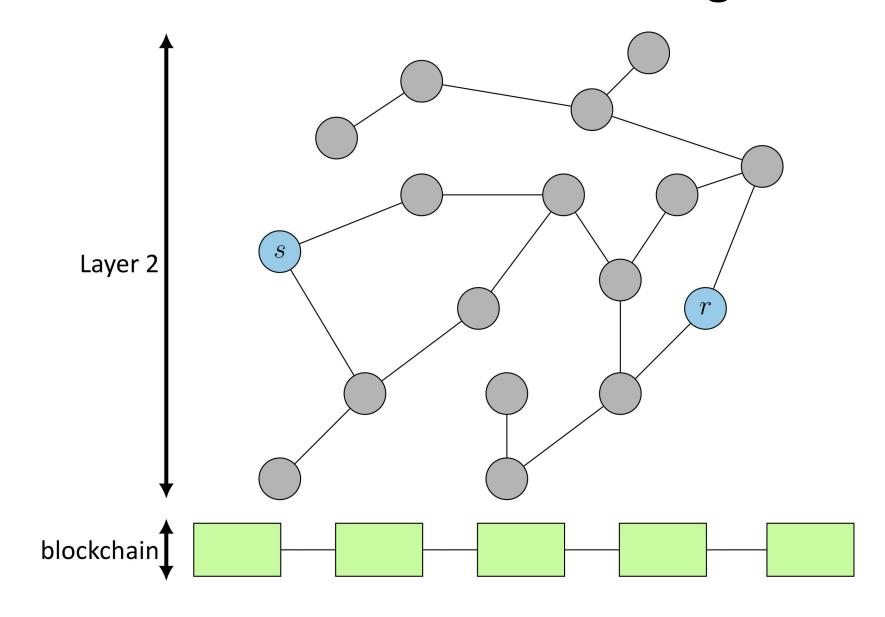
Ride the Lightning: The Game Theory of Payment Channels

Zeta Avarikioti, Lioba Heimbach, Yuyi Wang, Roger Wattenhofer ETH Zurich – Distributed Computing – www.disco.ethz.ch

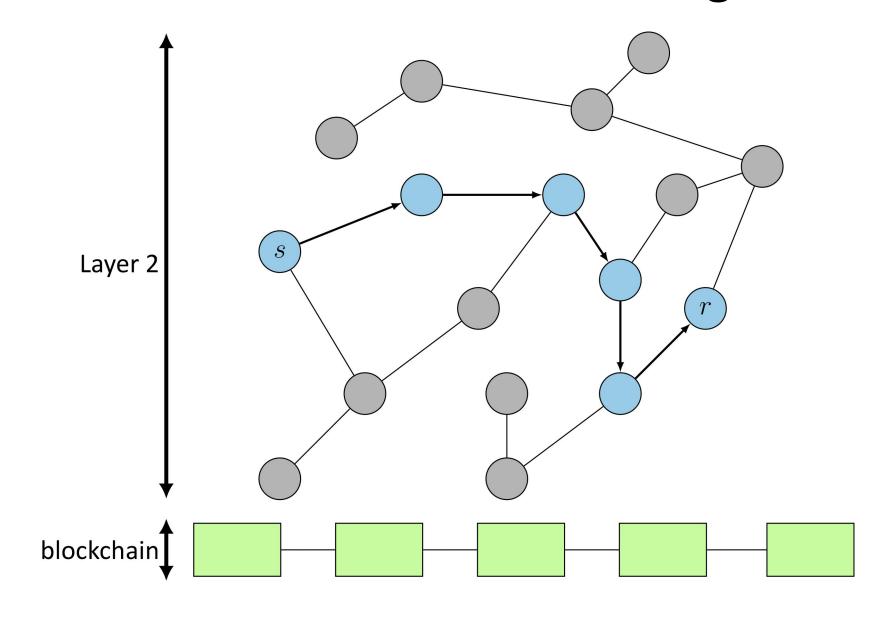
Payment channels

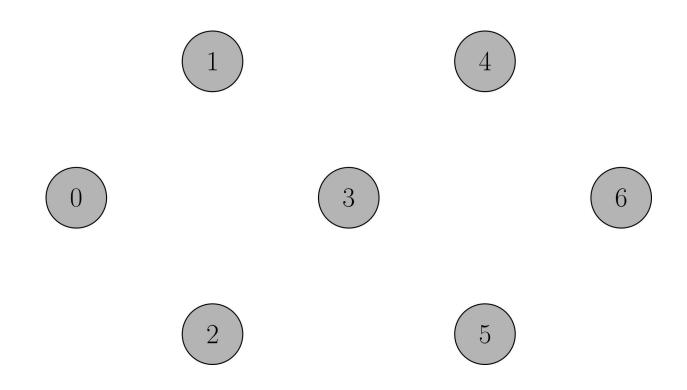


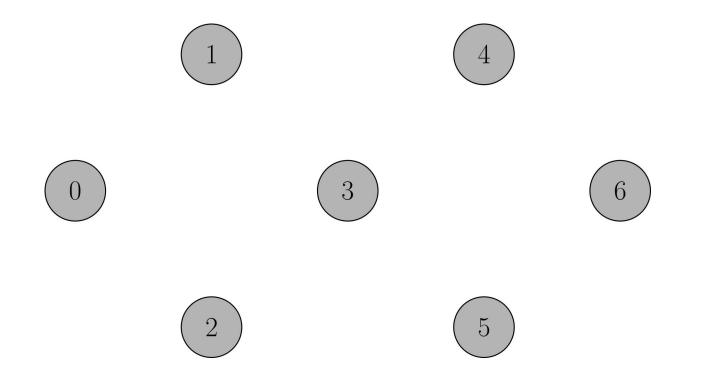
Off-chain transaction between neighbors



Off-chain transaction between neighbors

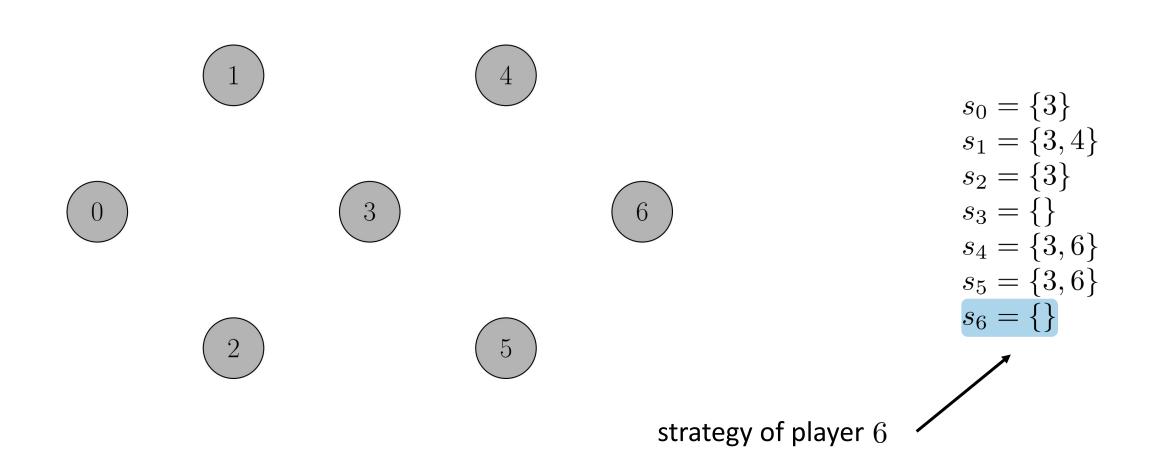


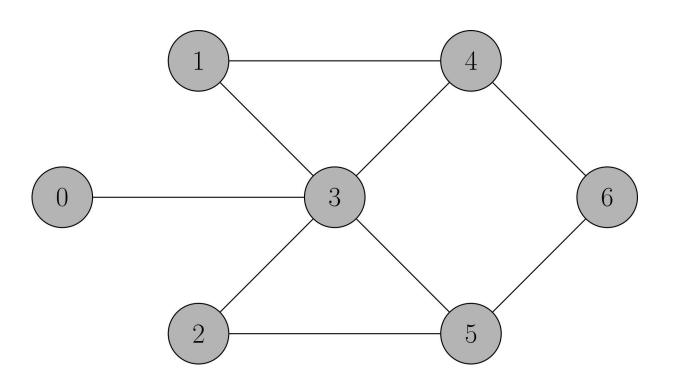




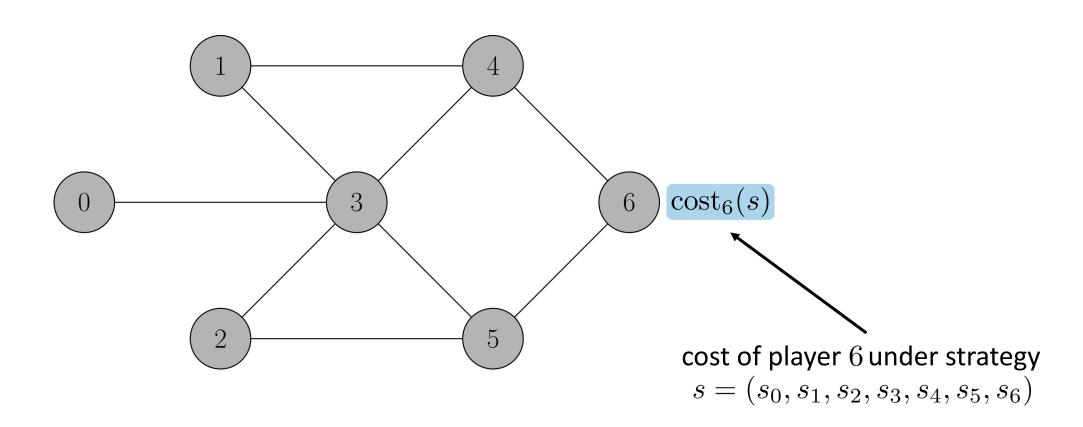
$$s_0 = \{3\}$$

 $s_1 = \{3, 4\}$
 $s_2 = \{3\}$
 $s_3 = \{\}$
 $s_4 = \{3, 6\}$
 $s_5 = \{3, 6\}$
 $s_6 = \{\}$

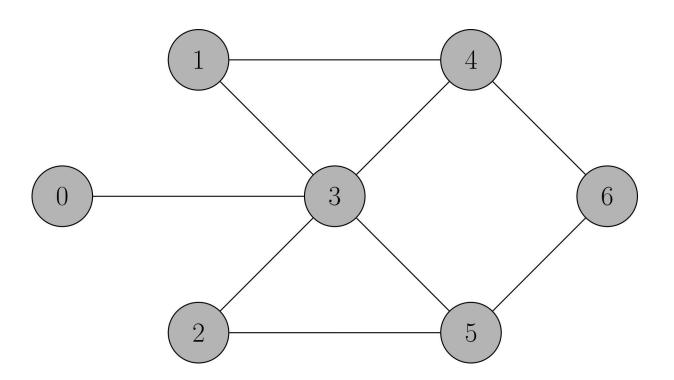




$$s_0 = \{3\}$$
 $s_1 = \{3, 4\}$
 $s_2 = \{3\}$
 $s_3 = \{\}$
 $s_4 = \{3, 6\}$
 $s_5 = \{3, 6\}$
 $s_6 = \{\}$



Nash equilibrium



A graph is a

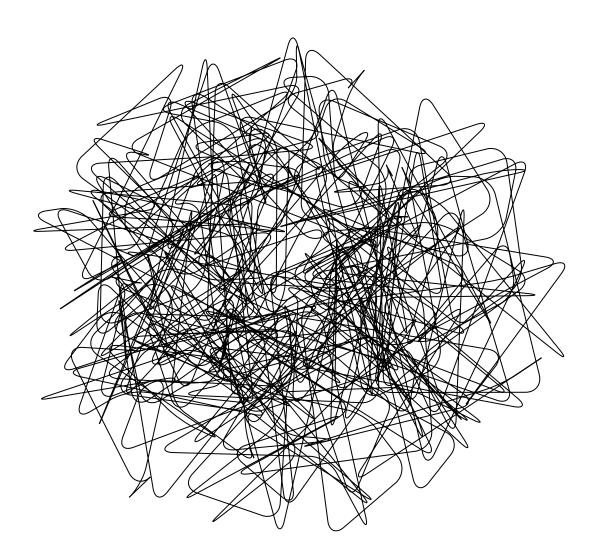
Nash equilibrium

if no player can

reduce her cost

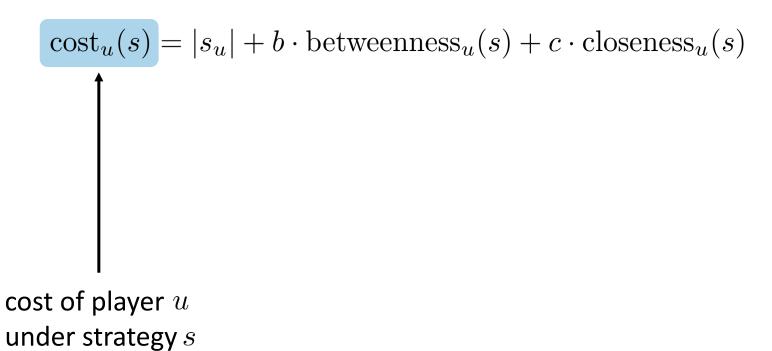
by unilaterally
changing strategy.

Price of anarchy

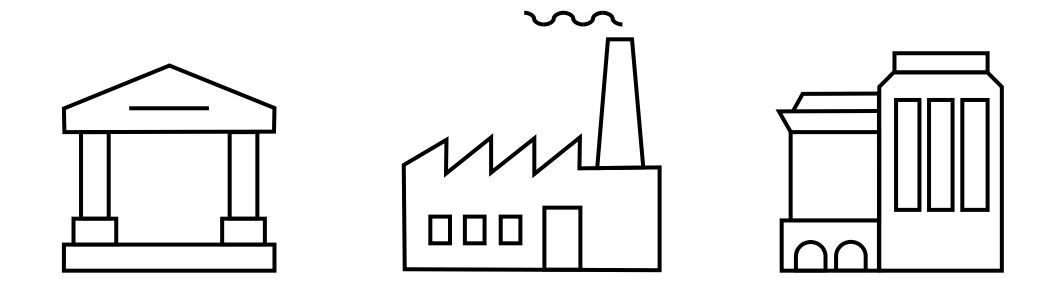


The price of anarchy is the ratio of the social costs of the worst-case Nash equilibrium and the social optimum.

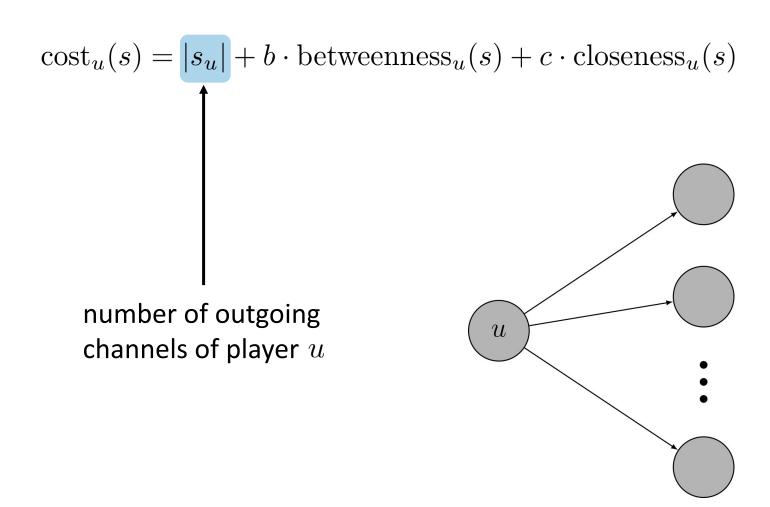
Model



Players



Channel formation



Channel formation

$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

Assumption: capital considered unlimited.

Channel formation

$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

Assumption: capital considered unlimited.

Assumption: channels initiated unilaterally.

Closeness Centrality

Reflection of the fees a node receives by forwarding the transaction of others.

Measure of the costs encountered for making transactions in the network.

Closeness Centrality

Reflection of the fees a node receives by forwarding the transaction of others.

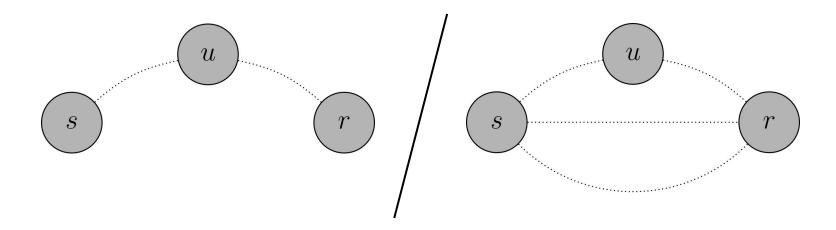
$$cost_u(s) = |s_u| + b$$
 between $cost_u(s) + c \cdot closeness_u(s)$

betweenness weight

$$b \ge 0$$

$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

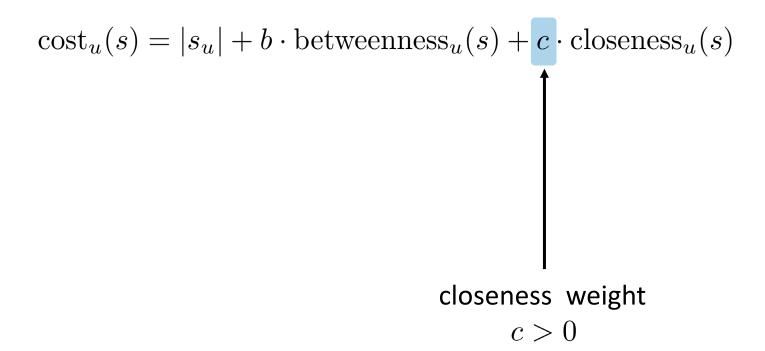


$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

Assumption: uniform transactions.

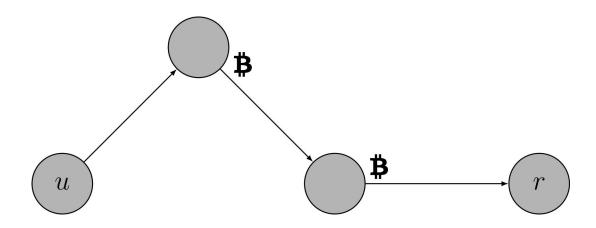
Closeness Centrality

Measure of the costs encountered for making transactions in the network.



$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$



$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

Assumption: uniform transactions.

$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

Assumption: uniform transactions.

Assumption: fixed transaction fees.

Social cost

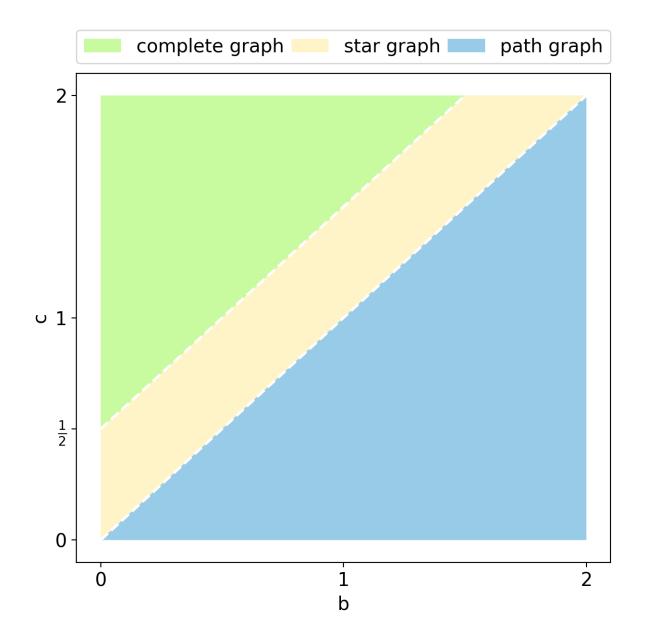
$$cost(s) = \sum_{u \in [n]} cost_u(s)$$

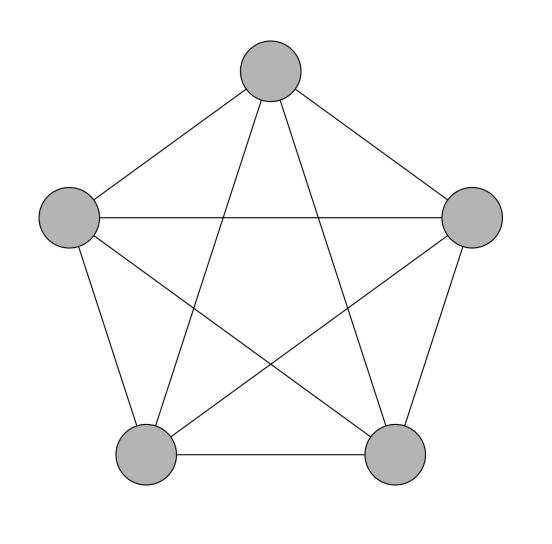
$$cost(s) = \sum_{u \in [n]} cost_u(s)$$

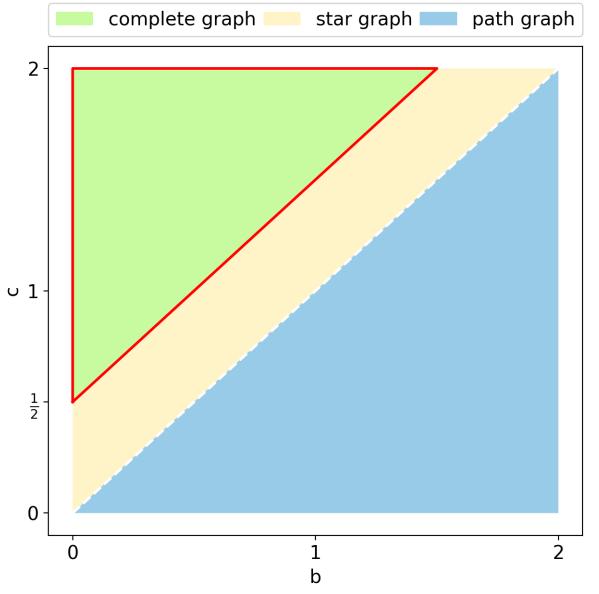
$$\min_{s} \text{cost}(s)$$

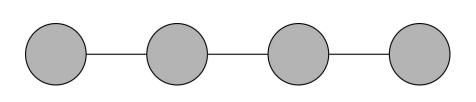
$$cost(s) = \sum_{u \in [n]} cost_u(s)$$

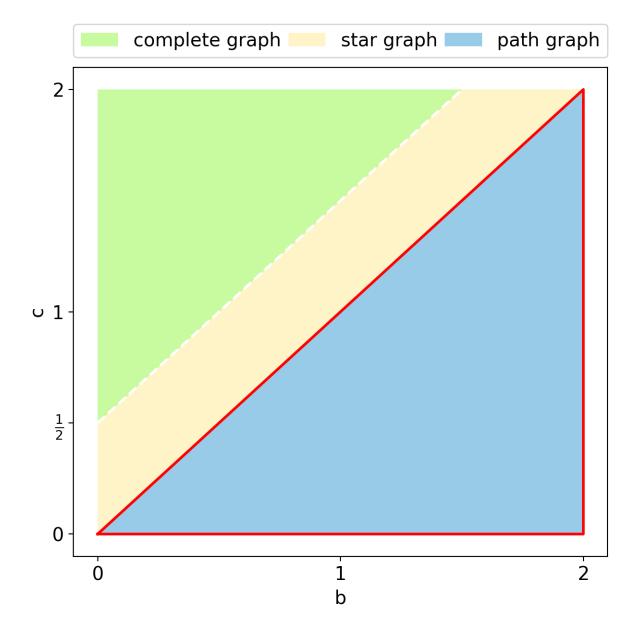
 $\min_{s} \text{cost}(s)$

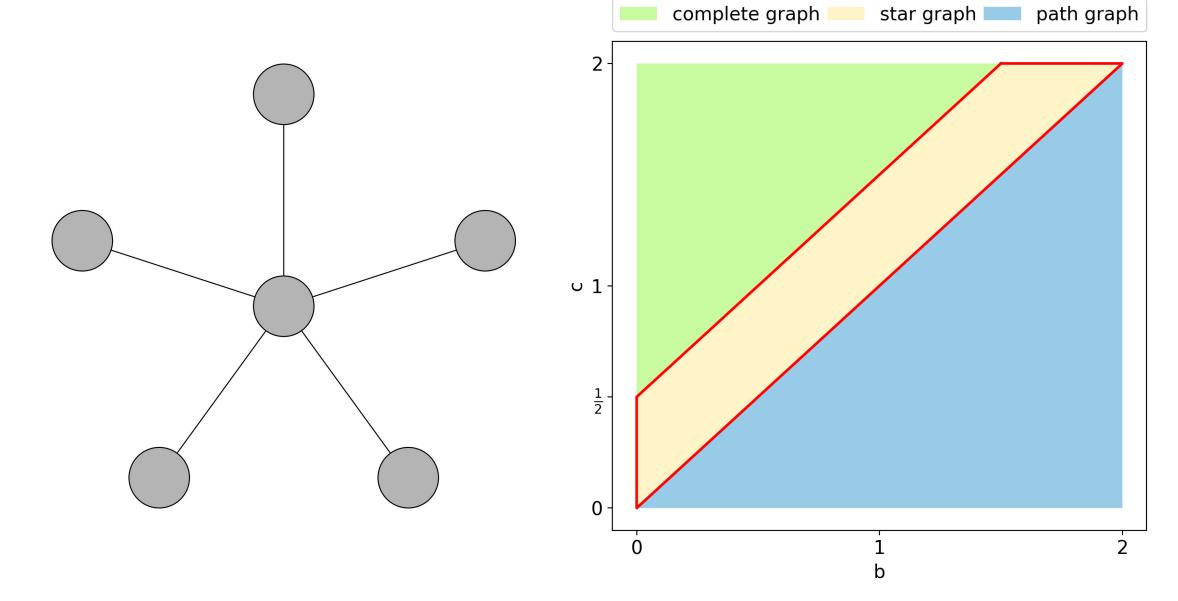






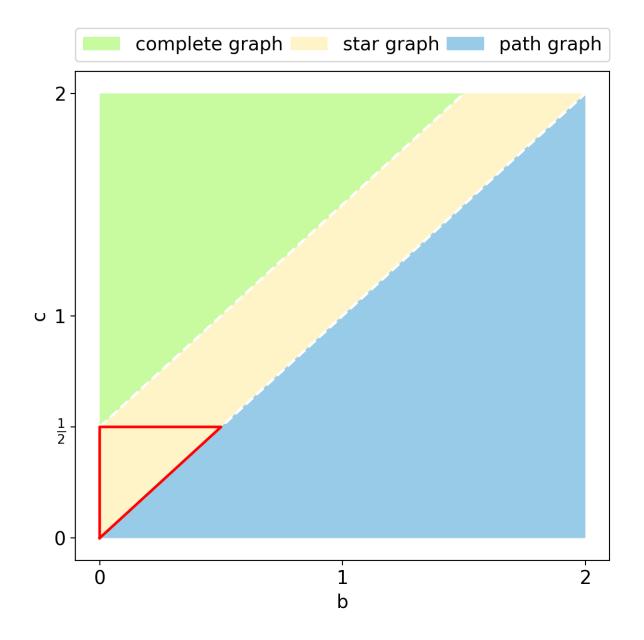






$$cost(s) = \sum_{u \in [n]} cost_u(s)$$

 $\min_{s} \text{cost}(s)$

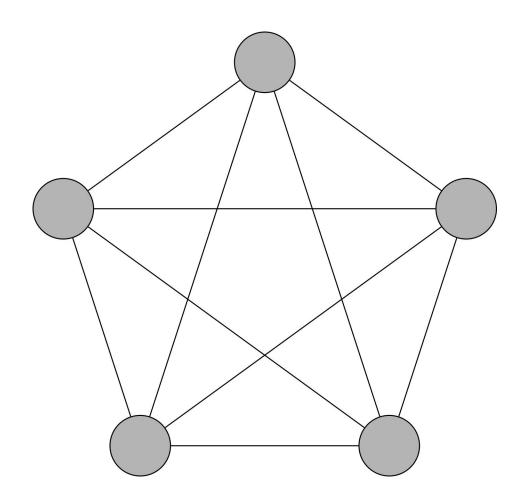


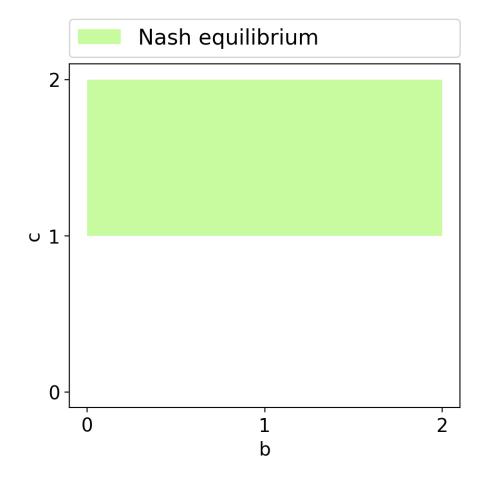
Nash equilibria

Complete Graph

Star Graph Complete Bipartite Graph Complete Graph Star Graph Complete Bipartite Graph

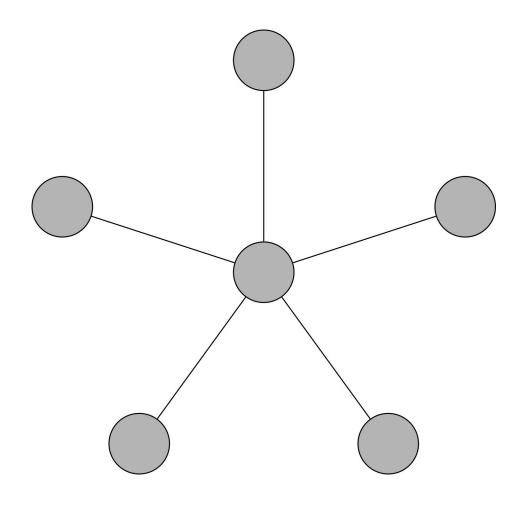
Complete graph

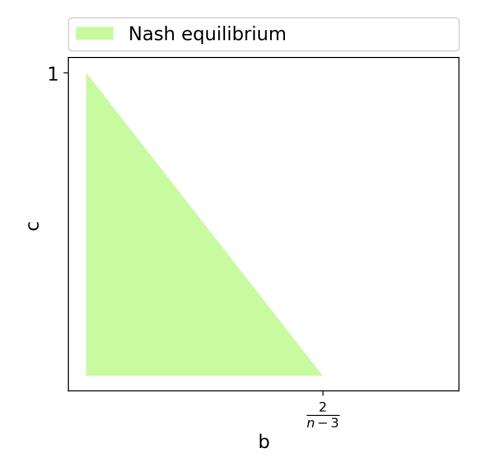




Complete Graph Star Graph Complete Bipartite Graph

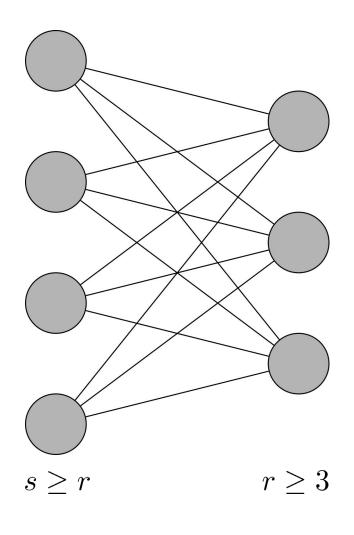
Star graph

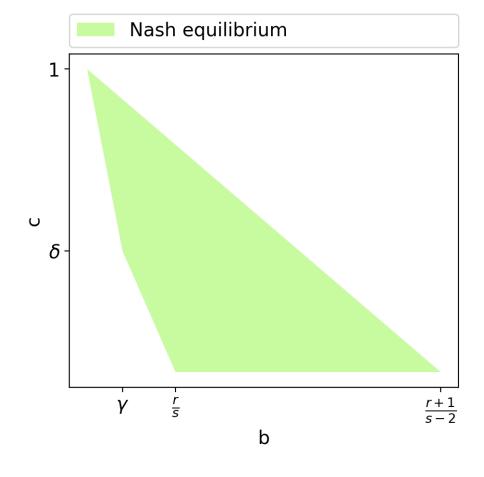


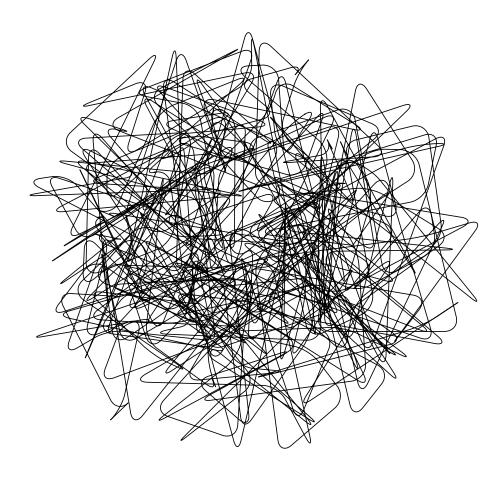


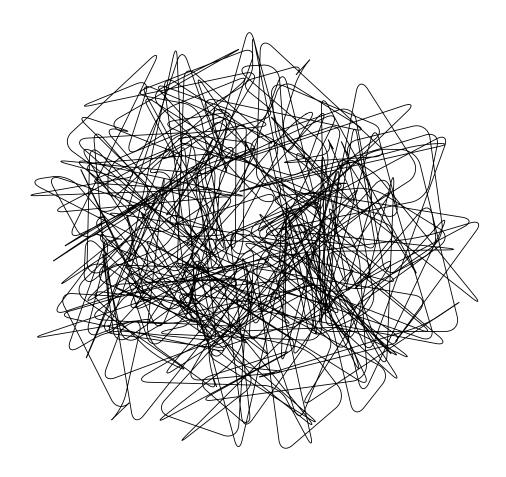
Complete Graph Star Graph Complete Bipartite Graph

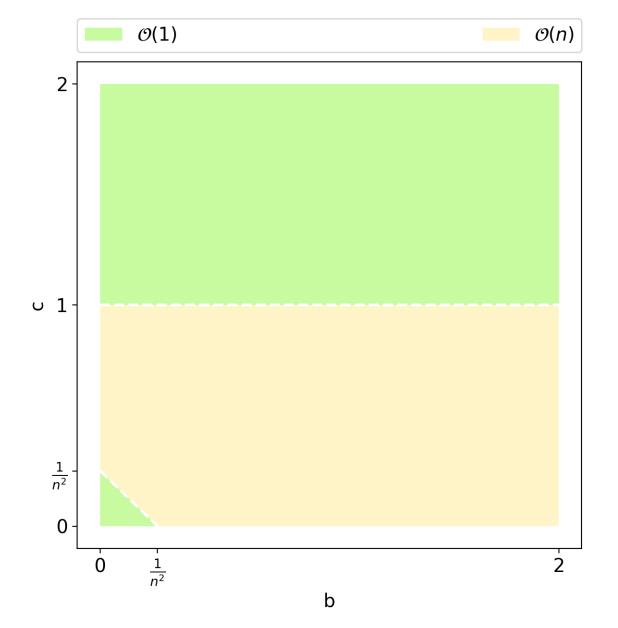
Complete bipartite graph

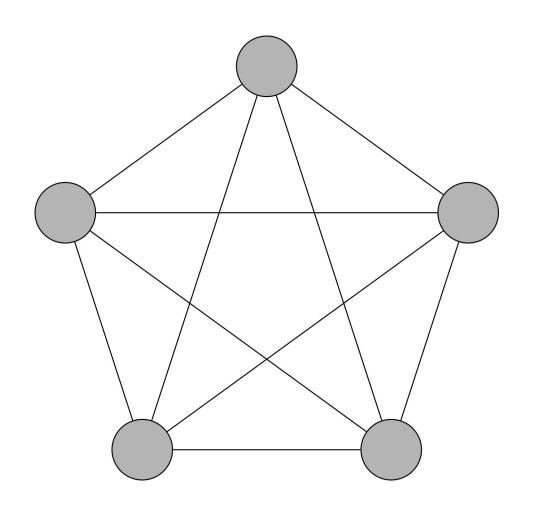


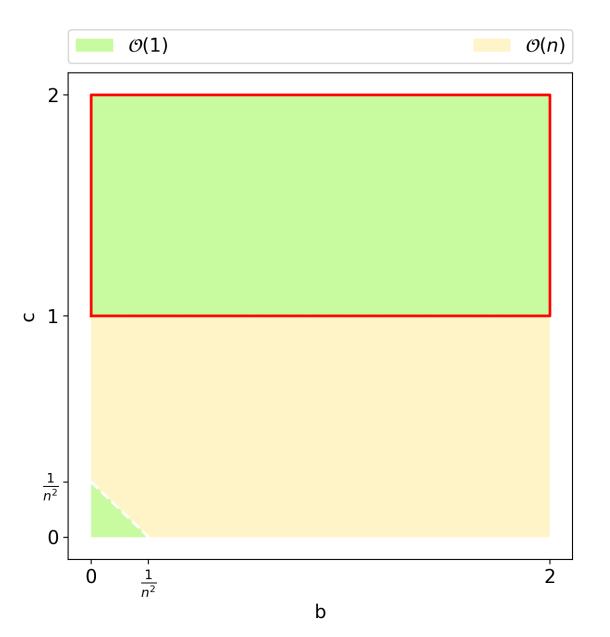


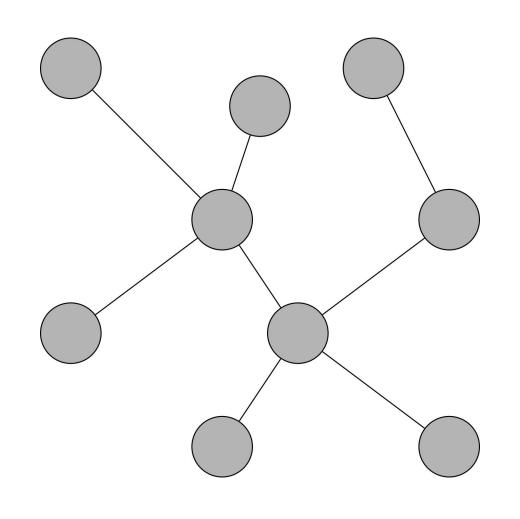


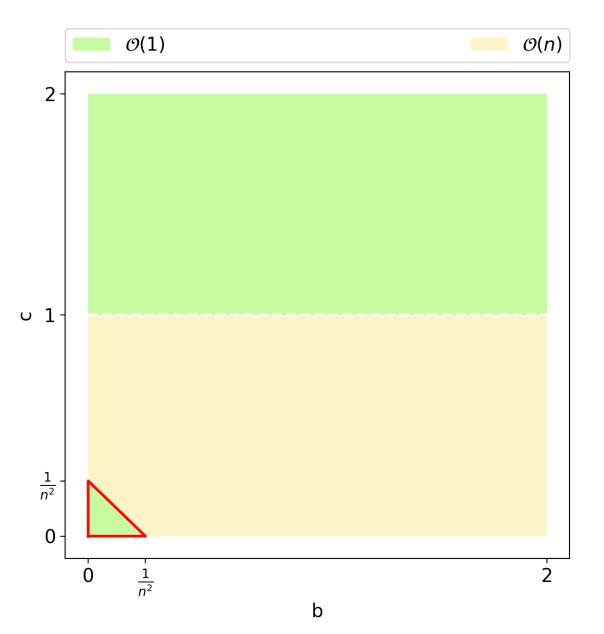


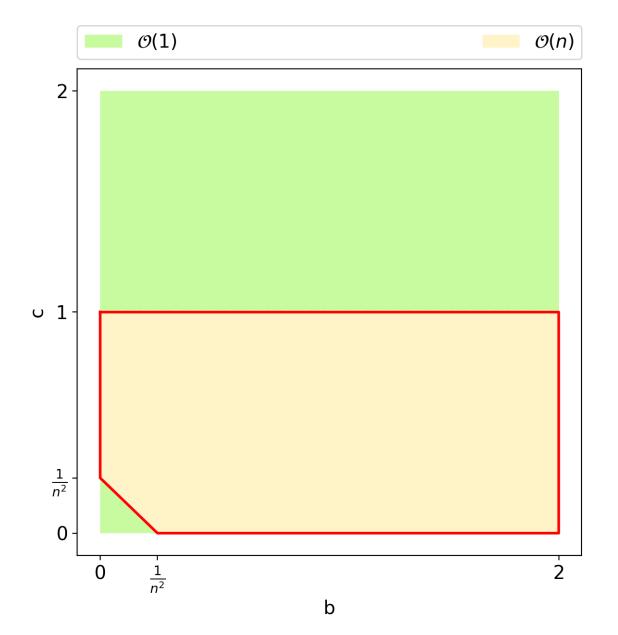




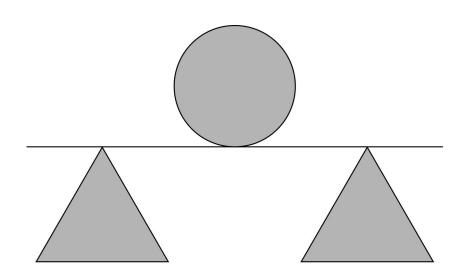




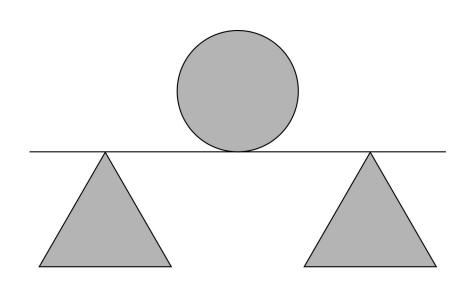


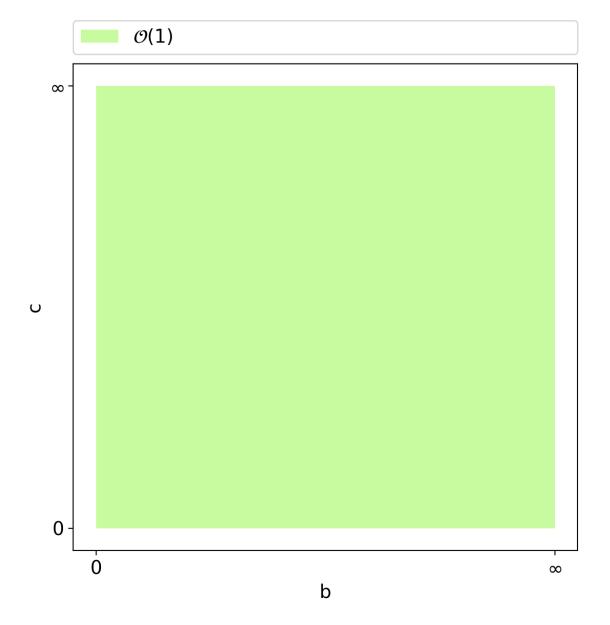


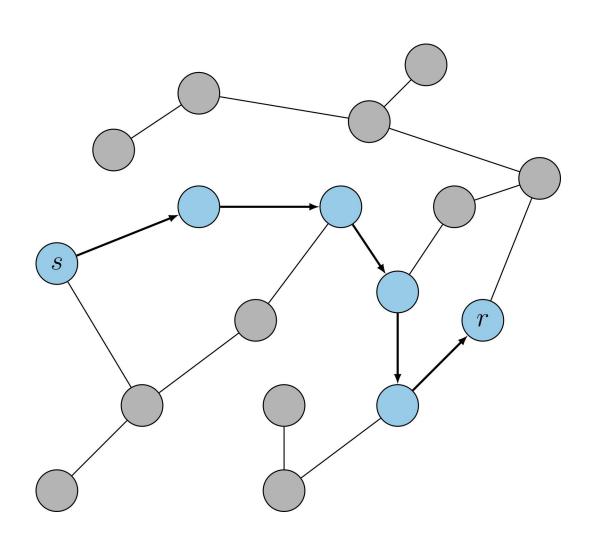
Price of stability

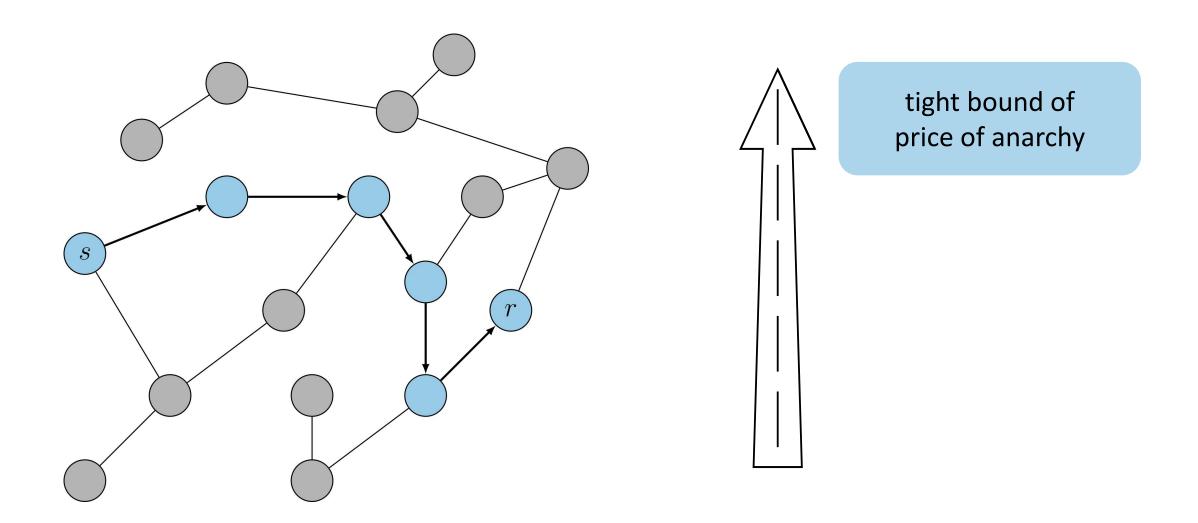


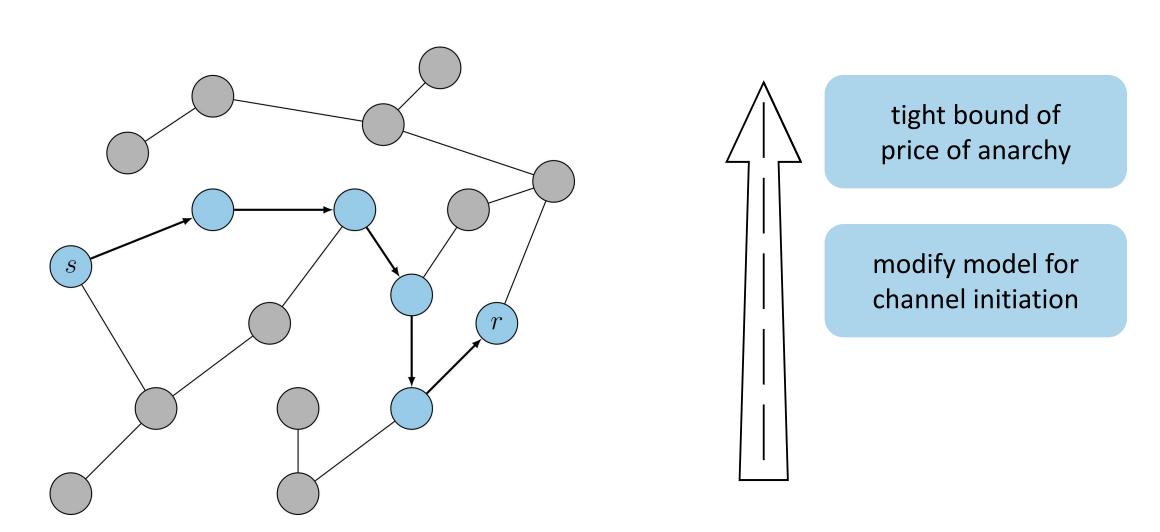
Price of stability

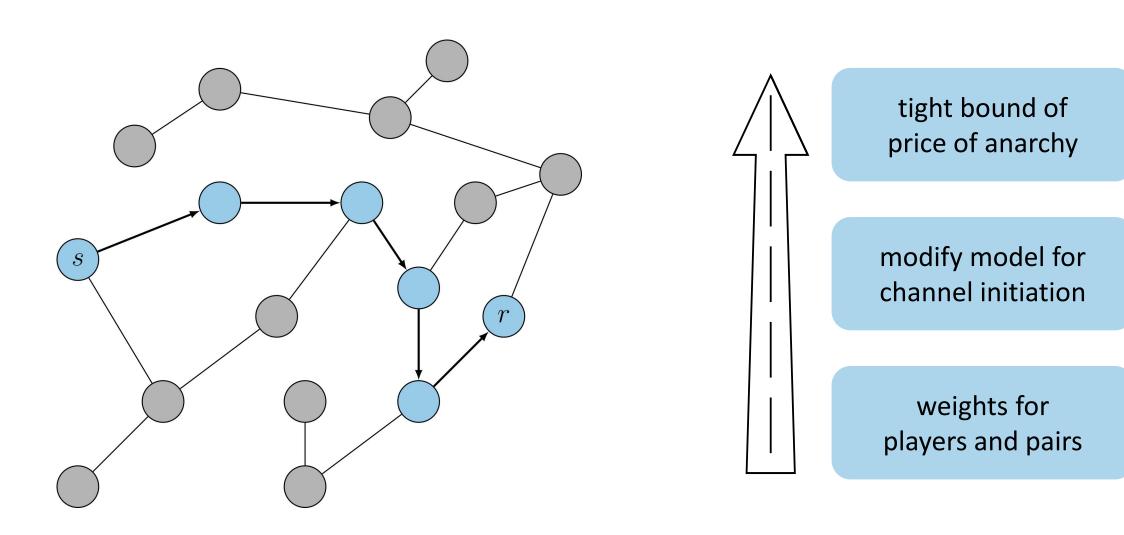






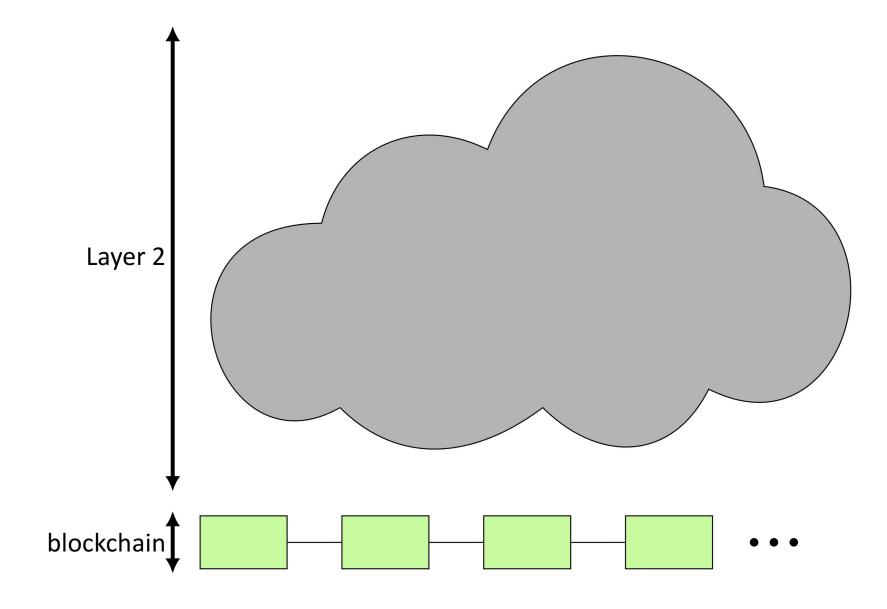




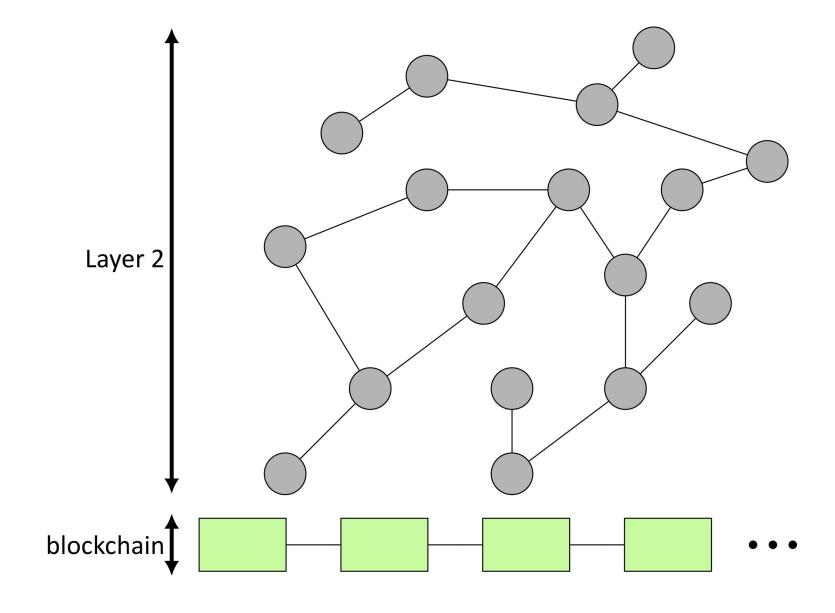


Zeta Avarikioti, Lioba Heimbach, Yuyi Wang, Roger Wattenhofer ETH Zurich – Distributed Computing – www.disco.ethz.ch

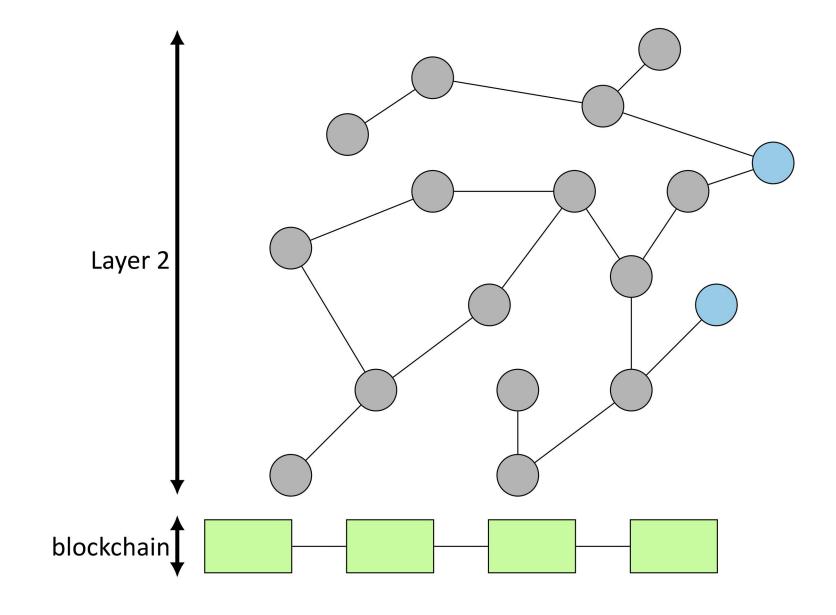
Payment channels network



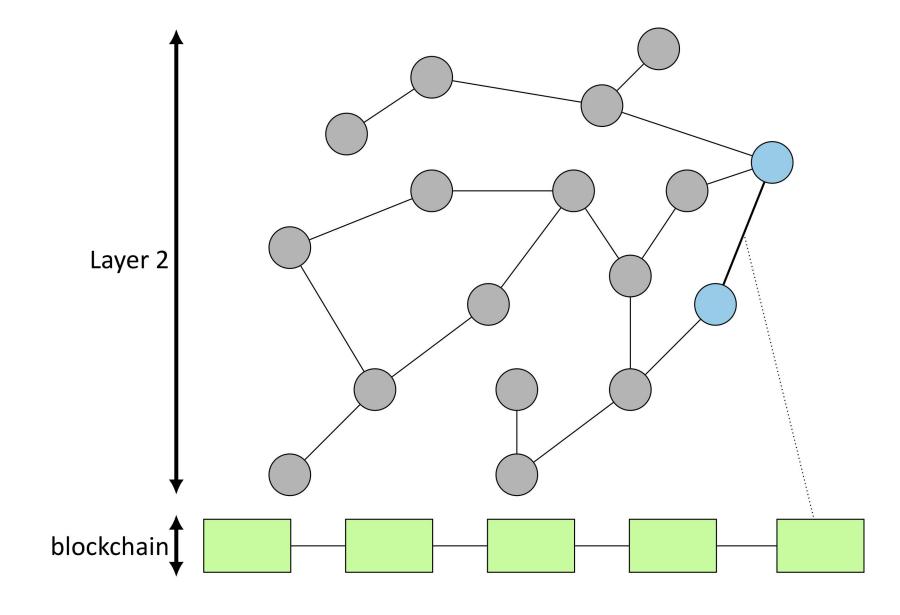
Payment channels network

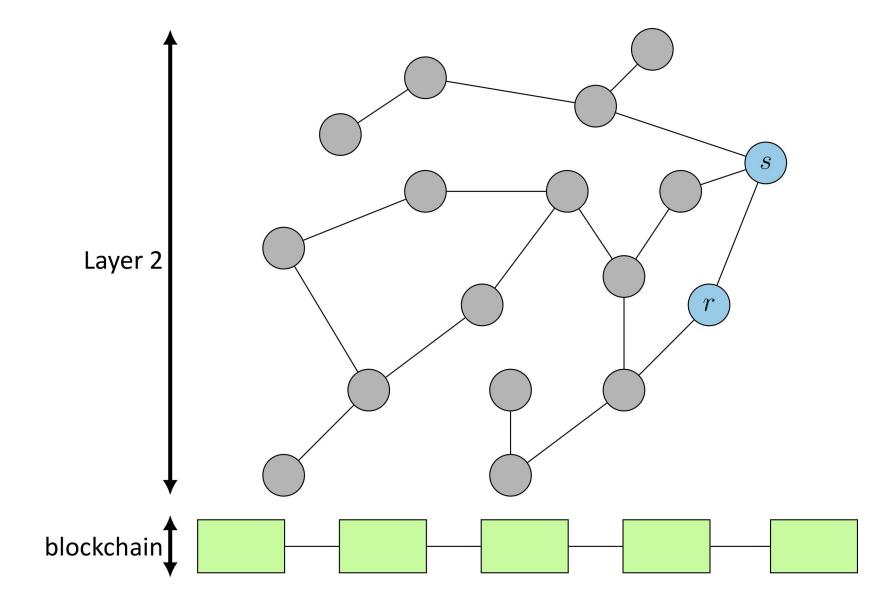


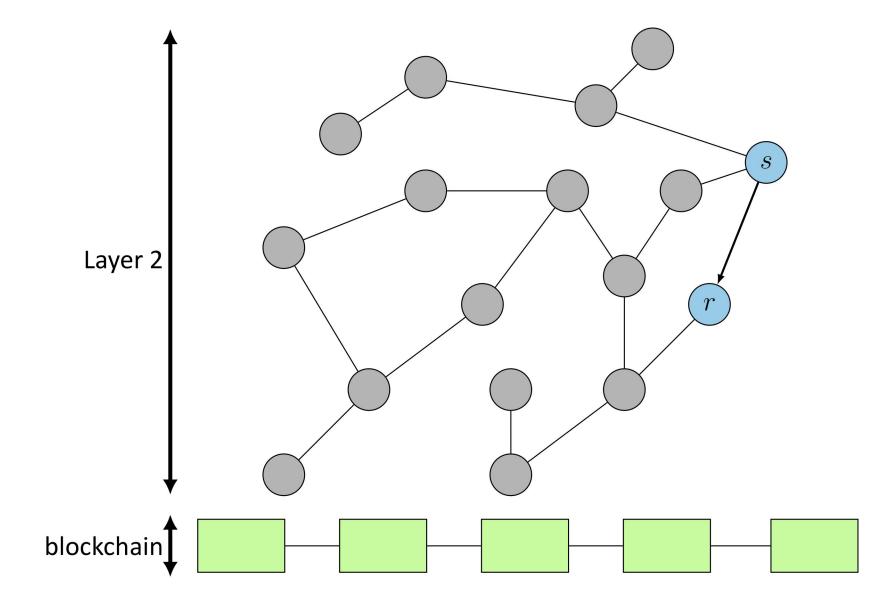
On-chain channel creation

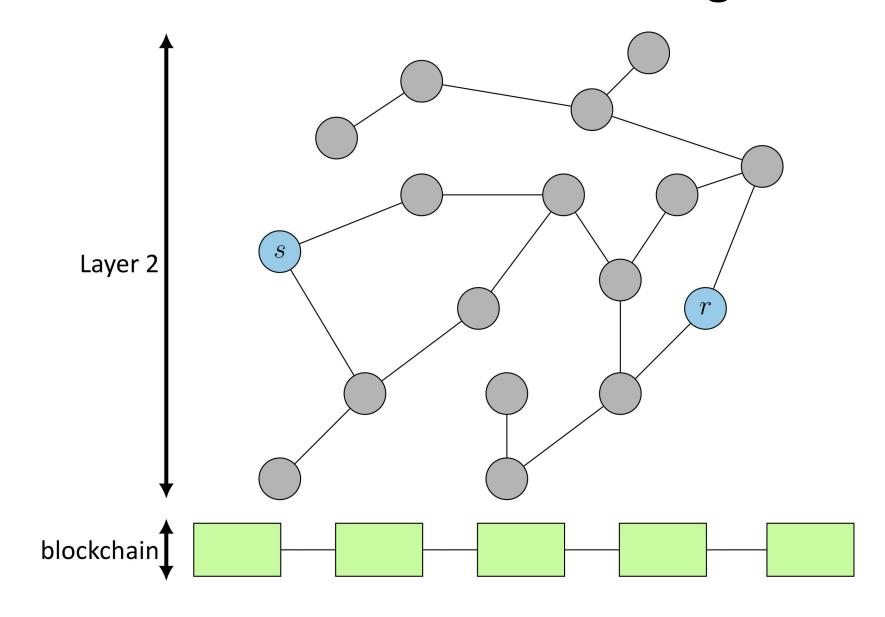


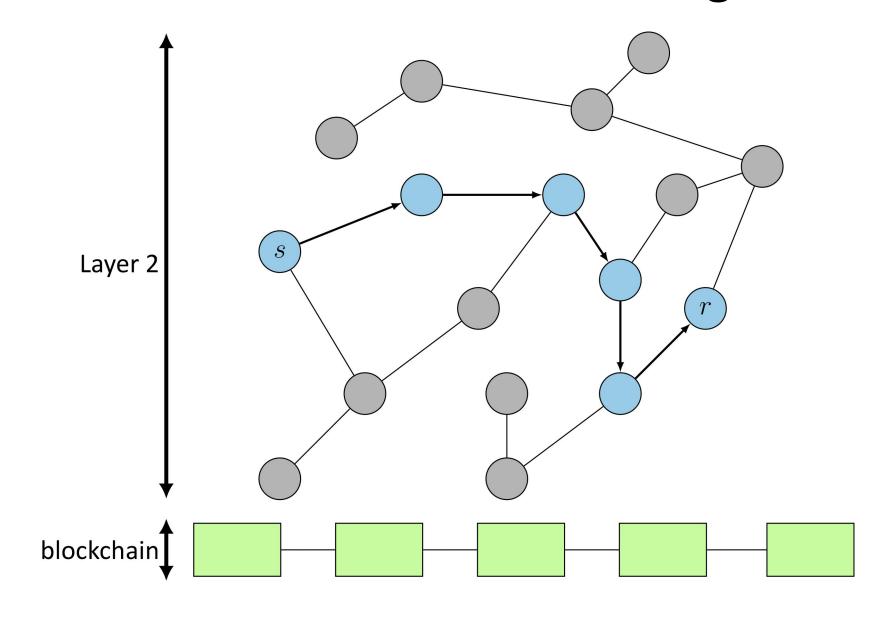
On-chain channel creation











$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

betweenness_u(s) =
$$(n-1)(n-2) - \sum_{\substack{s,r \in [n]:\\s \neq r \neq u, m(s,r) > 0}} \frac{m_u(s,r)}{m(s,r)}$$

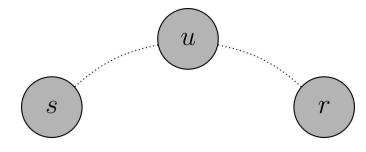
$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

betweenness_u(s) =
$$(n-1)(n-2)$$
 - $\sum_{\substack{s,r \in [n]:\\s \neq r \neq u, m(s,r) > 0}} \frac{m_u(s,r)}{m(s,r)}$

ensures positivity of cost function

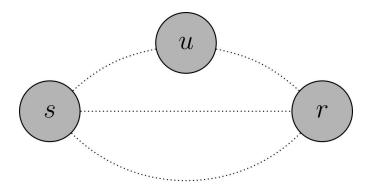
$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

betweenness_u(s) =
$$(n-1)(n-2) - \sum_{\substack{s,r \in [n]:\\s \neq r \neq u, m(s,r) > 0}} \frac{m_u(s,r)}{m(s,r)}$$



$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

betweenness_u(s) =
$$(n-1)(n-2) - \sum_{\substack{s,r \in [n]:\\s \neq r \neq u, m(s,r) > 0}} \frac{m_u(s,r)}{m(s,r)}$$



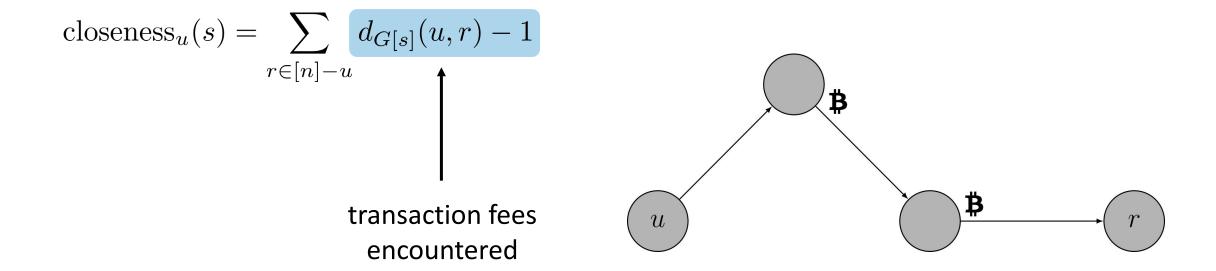
Closeness centrality

$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$

$$closeness_u(s) = \sum_{r \in [n]-u} d_{G[s]}(u,r) - 1$$

Closeness centrality

$$cost_u(s) = |s_u| + b \cdot betweenness_u(s) + c \cdot closeness_u(s)$$



Social cost

$$cost(s) = \sum_{u \in [n]} cost_u(s)$$

$$= |E(G)| + b \sum_{u \in [n]} betweenness_u(s) + c \sum_{u \in [n]} closeness_u(s)$$

$$= |E(G)| + b \cdot n \cdot (n-1)(n-2) + (c-b) \cdot \sum_{u \in [n]} closeness_u(s)$$

Social cost

$$cost(s) = \sum_{u \in [n]} cost_u(s)$$

$$= |E(G)| + b \sum_{u \in [n]} betweenness_u(s) + c \sum_{u \in [n]} closeness_u(s)$$

$$\stackrel{*}{=} |E(G)| + b \cdot n \cdot (n-1)(n-2) + (c-b) \cdot \sum_{u \in [n]} closeness_u(s)$$

$$\bigstar \overline{B}(G) = (n-1)(\overline{l}(G)-1)$$

 $\overline{B}(G)$ average betweenness

 $ar{l}(G)$ average distance

Social optimum $(b \le c)$

$$cost(s) = |E(G)| + b \cdot n \cdot (n-1)(n-2) + \underbrace{(c-b)}_{\geq 0} \sum_{u \in [n]} \sum_{r \in [n]-u} (d_{G[s]}(u,r) - 1)$$

$$\geq |E(G)| + b \cdot n \cdot (n-1)(n-2) + (c-b)(n \cdot (n-1) - 2|E|)$$

$$= (1 - 2 \cdot (c-b)) \cdot |E(G)| + b \cdot n \cdot (n-1)(n-2) + (c-b)(n \cdot (n-1))$$

Social optimum $(b \le c)$

$$\cot(s) = |E(G)| + b \cdot n \cdot (n-1)(n-2) + \underbrace{(c-b)}_{\geq 0} \sum_{u \in [n]} \sum_{r \in [n]-u} (d_{G[s]}(u,r) - 1)$$

$$\geq |E(G)| + b \cdot n \cdot (n-1)(n-2) + (c-b)(n \cdot (n-1) - 2|E|)$$

$$= (1 - 2 \cdot (c-b)) \cdot |E(G)| + b \cdot n \cdot (n-1)(n-2) + (c-b)(n \cdot (n-1))$$

 \Rightarrow

all nodes that are not connected by an edge are at least distance two apart

Social optimum $(b \le c)$

$$cost(s) = |E(G)| + b \cdot n \cdot (n-1)(n-2) + \underbrace{(c-b)}_{\geq 0} \sum_{u \in [n]} \sum_{r \in [n]-u} (d_{G[s]}(u,r) - 1)$$

$$\geq |E(G)| + b \cdot n \cdot (n-1)(n-2) + (c-b)(n \cdot (n-1) - 2|E|)$$

$$= (1 - 2 \cdot (c-b)) \cdot |E(G)| + b \cdot n \cdot (n-1)(n-2) + (c-b)(n \cdot (n-1))$$

$$c > \frac{1}{2} + b$$
 complete graph

$$b \le c \le \frac{1}{2} + b$$
 star graph

Social optimum (b > c)

$$cost(s) = |E(G)| + b \cdot n \cdot (n-1)(n-2) - (b-c) \cdot \sum_{u \in [n]} \sum_{r \in [n]-u} (d_{G[s]}(u,r) - 1)$$

$$= |E(G)| - 2 \cdot (b-c) \cdot d(G) + b \cdot n \cdot (n-1)(n-2) + (b-c) \cdot n \cdot (n-1)$$

$$\geq \left(1 + b \cdot n \cdot (n-2) + \frac{b-c}{3}n \cdot (n-2)\right) (n-1)$$

Social optimum (b > c)

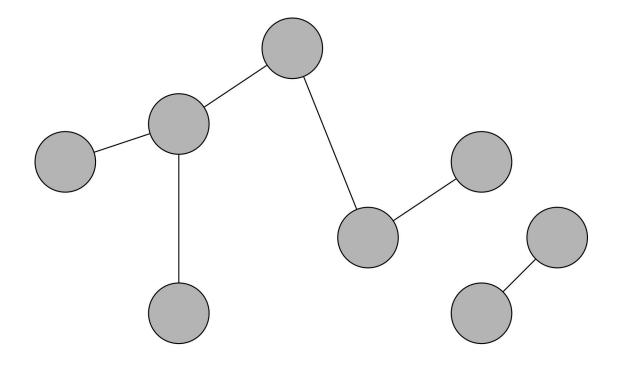
$$cost(s) = |E(G)| + b \cdot n \cdot (n-1)(n-2) - (b-c) \cdot \sum_{u \in [n]} \sum_{r \in [n] - u} (d_{G[s]}(u,r) - 1)$$

$$= |E(G)| - 2 \cdot (b-c) \cdot d(G) + b \cdot n \cdot (n-1)(n-2) + (b-c) \cdot n \cdot (n-1)$$

$$\geq \left(1 + b \cdot n \cdot (n-2) + \frac{b-c}{3}n \cdot (n-2)\right) (n-1)$$

path graph

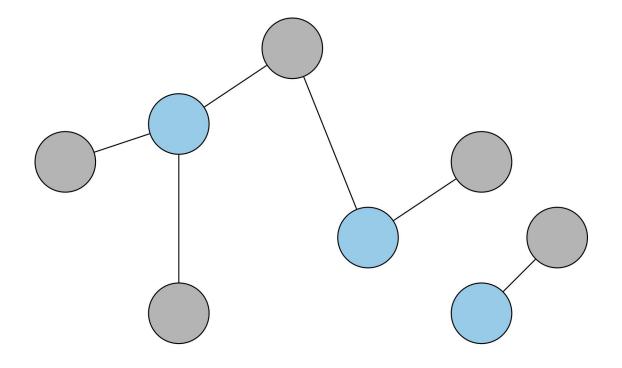
NP-hardness



u

b = 00.5 < c < 1

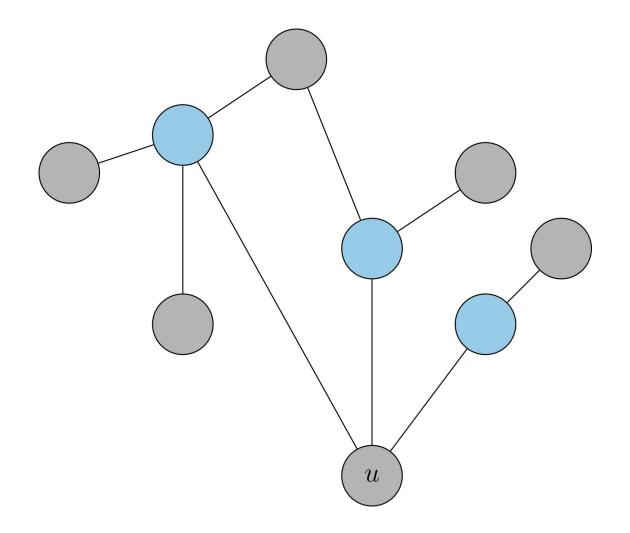
NP-hardness



u

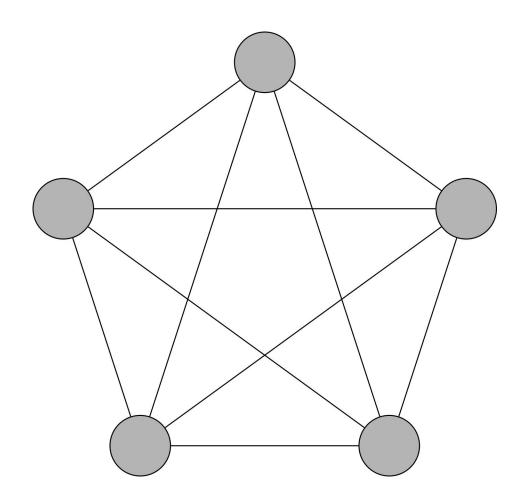
b = 00.5 < c < 1

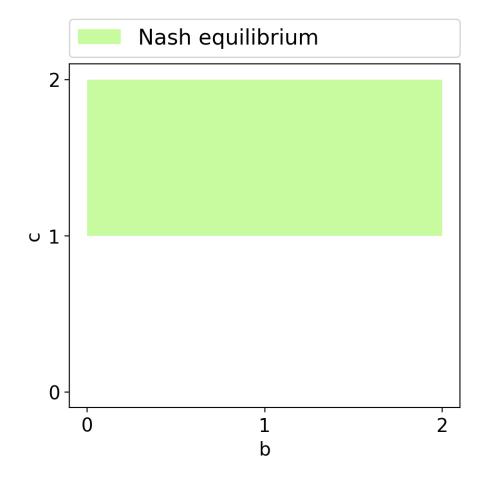
NP-hardness



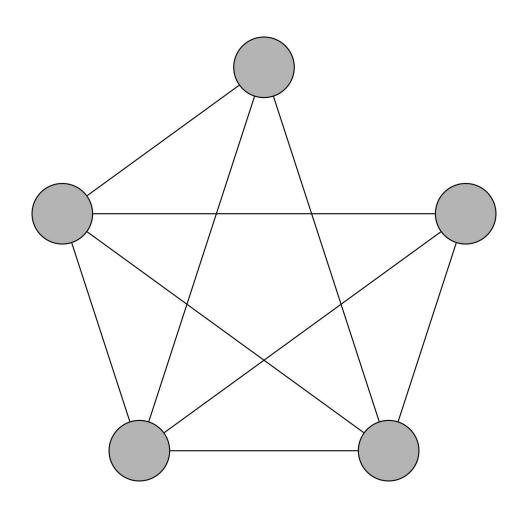
b = 00.5 < c < 1

Complete graph



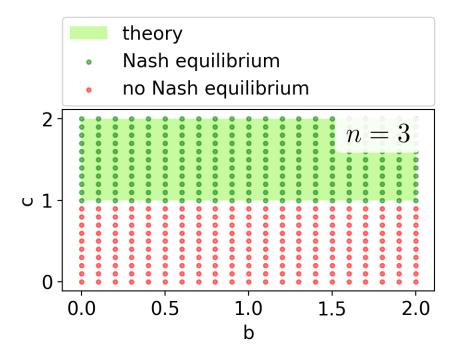


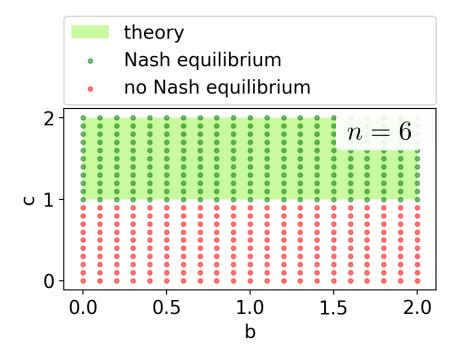
Complete graph

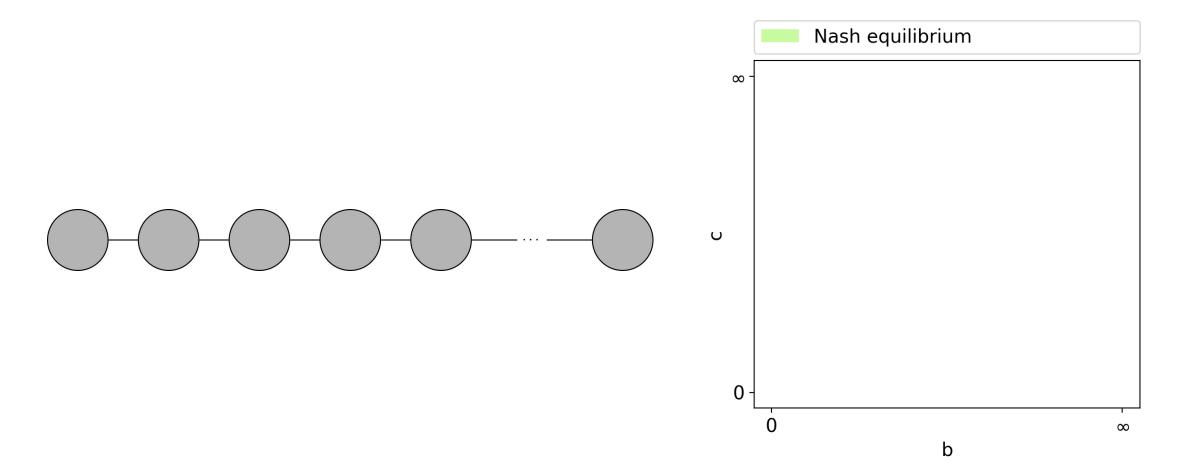


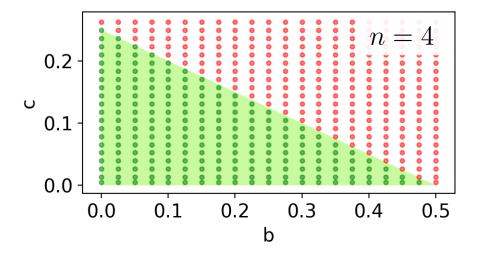
$$\Delta \text{cost} = 1 - c$$

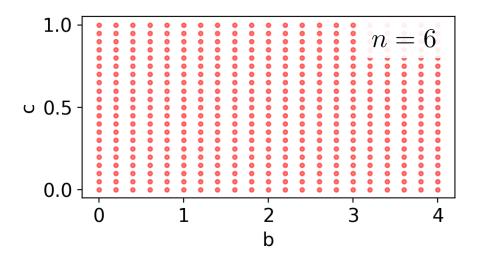
Complete graph



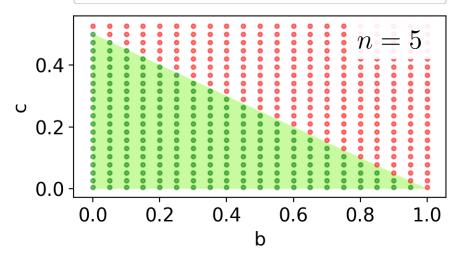


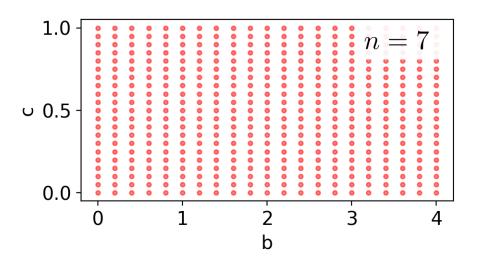




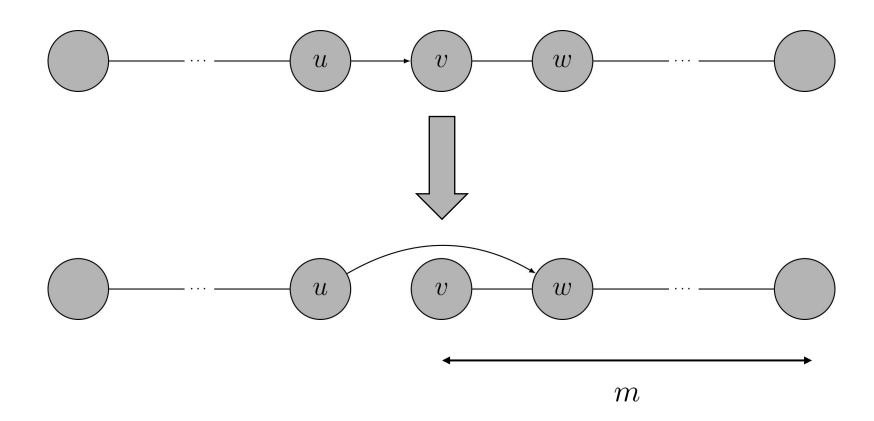


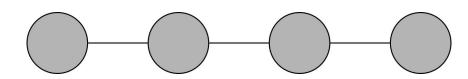
- Nash equilibrium
- no Nash equilibrium

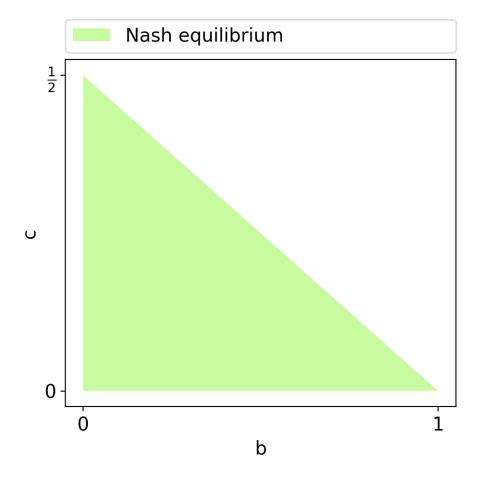


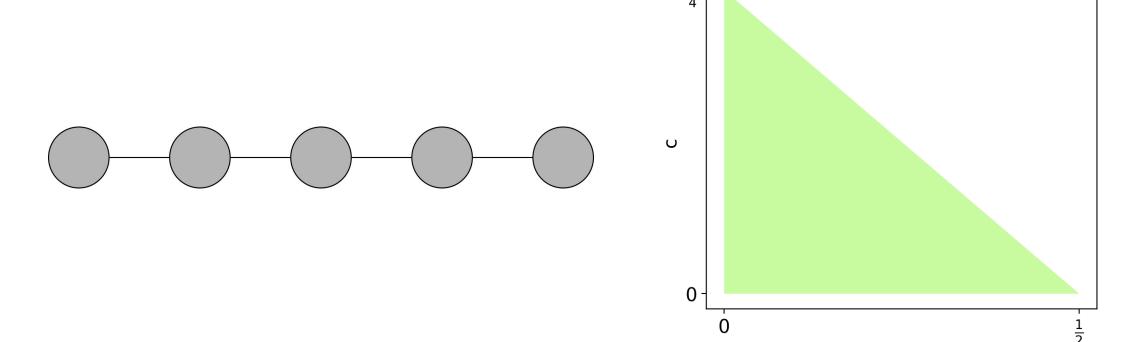


$$\Delta \text{cost}_u(s \text{ to } \tilde{s}) = -c \cdot (m-2)$$



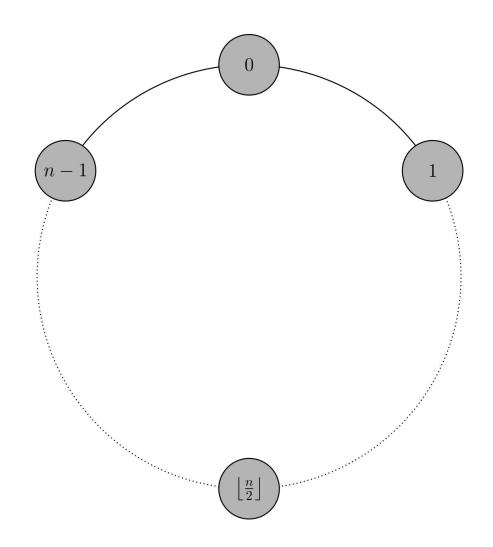


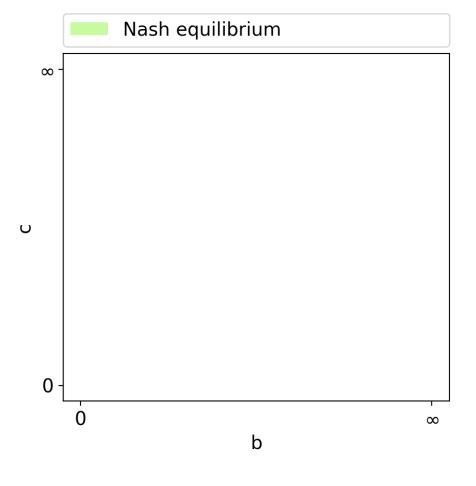


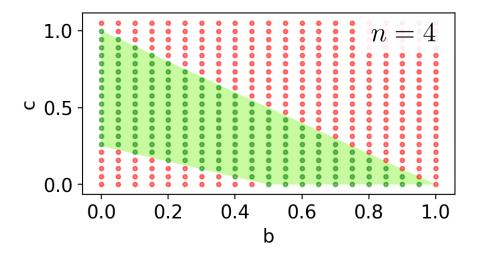


Nash equilibrium

b

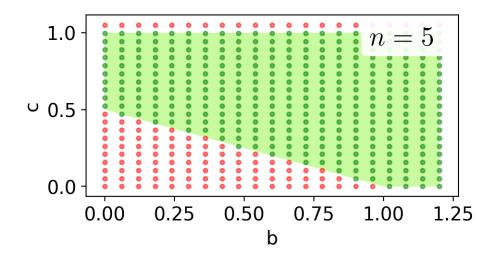


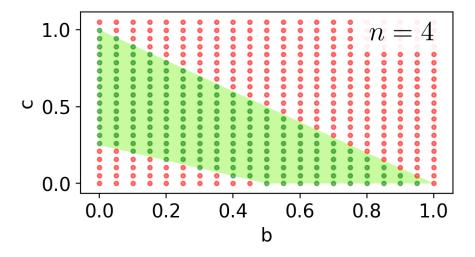


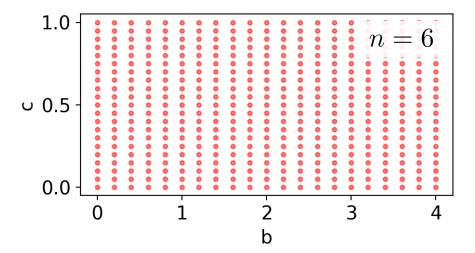


theory

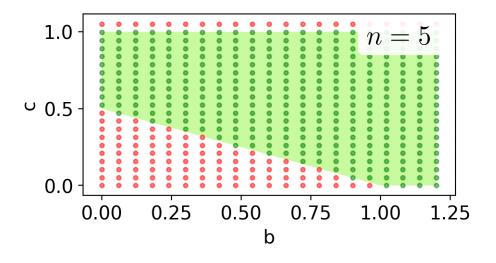
- Nash equilibrium
- no Nash equilibrium

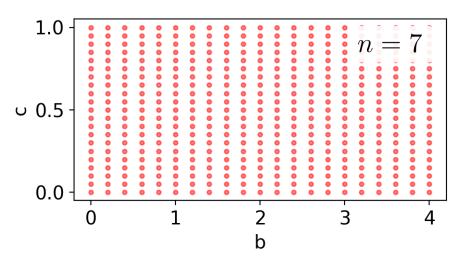


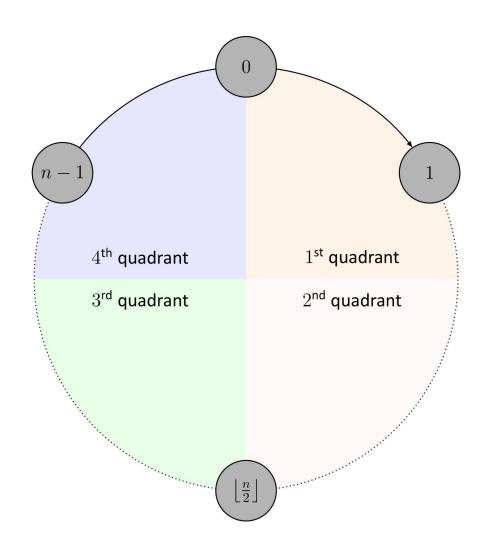




- Nash equilibrium
- no Nash equilibrium

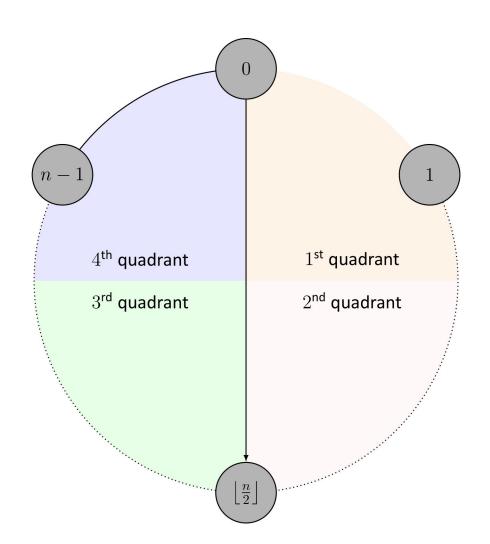






betweenness₀(s) =
$$\frac{3}{4} \cdot n^2 + o(n^2)$$

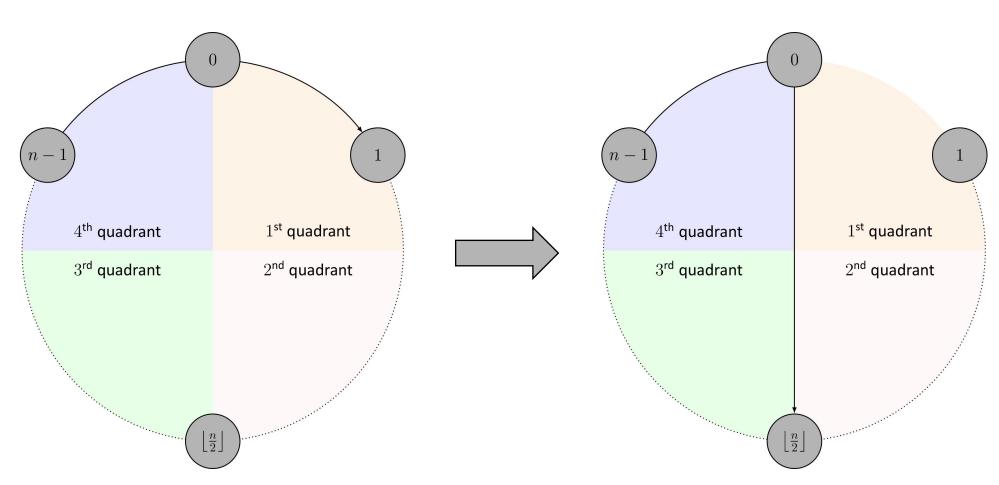
closeness₀
$$(s) = \frac{1}{4} \cdot n^2 + o(n^2)$$

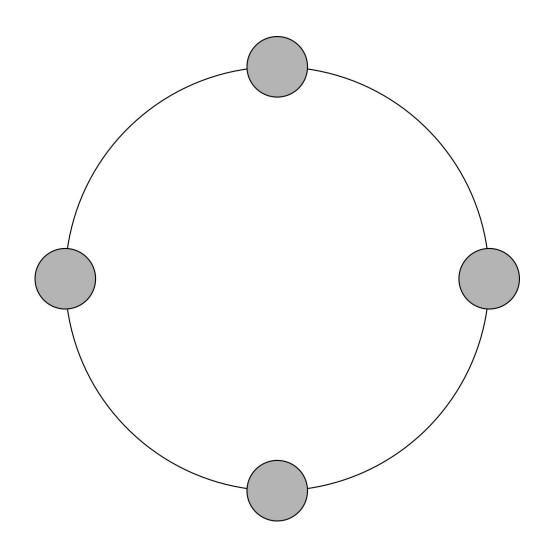


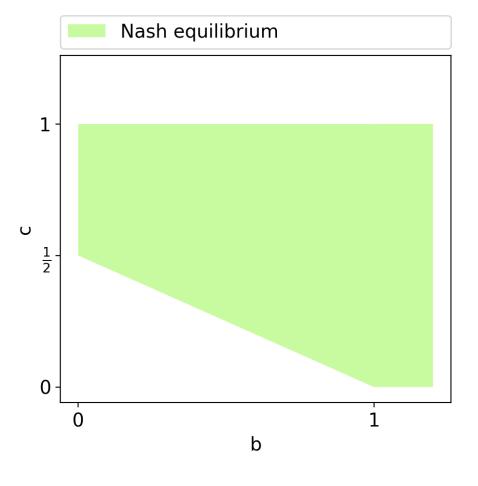
betweenness₀
$$(\tilde{s}) = \frac{11}{16} \cdot n^2 + o(n^2)$$

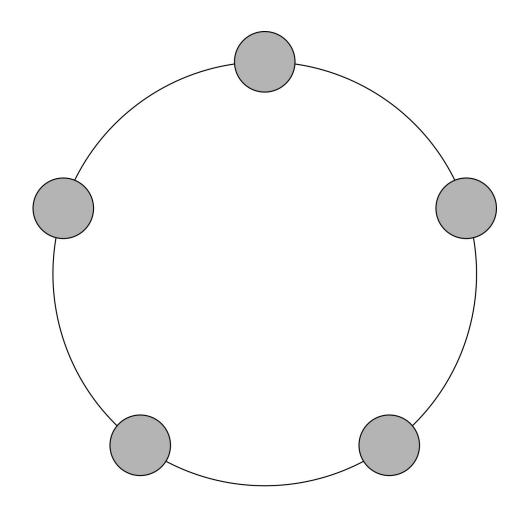
closeness₀
$$(\tilde{s}) = \frac{3}{16} \cdot n^2 + o(n^2)$$

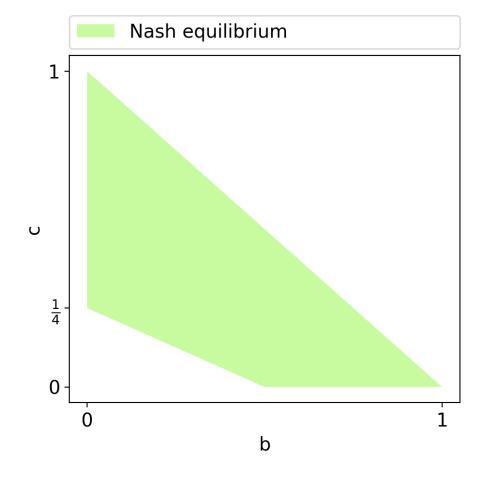
$$\Delta \operatorname{cost}_{u}(s \text{ to } \tilde{s}) = -\left(\frac{1}{16}n^{2} + o\left(n^{2}\right)\right)(b+c)$$



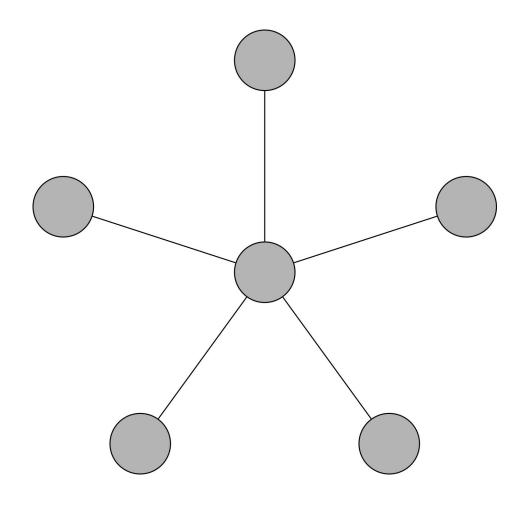


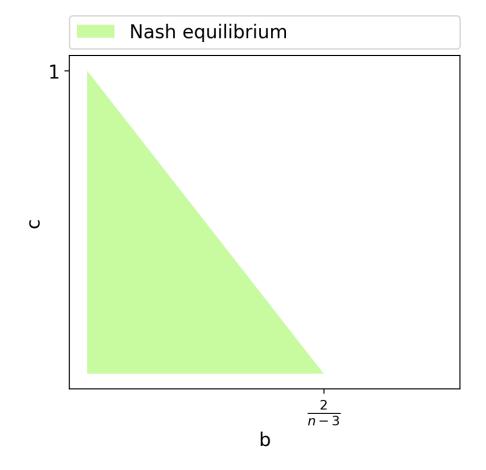




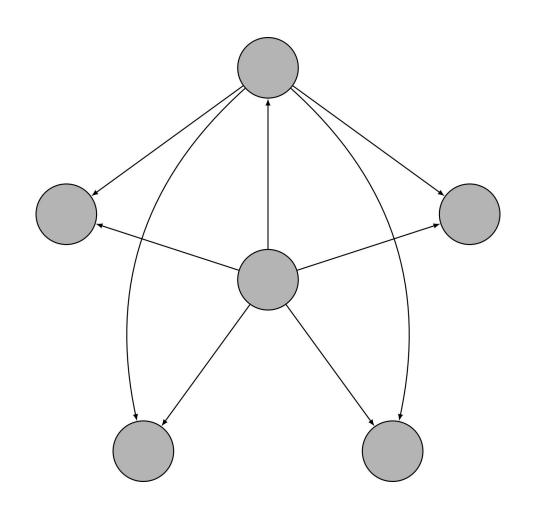


Star graph



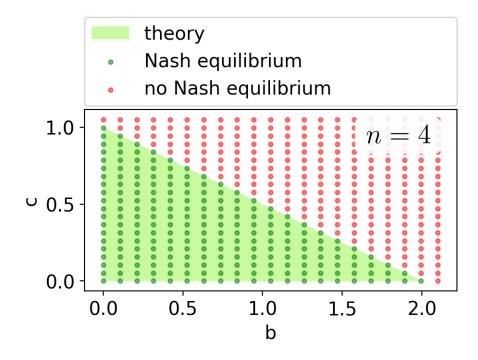


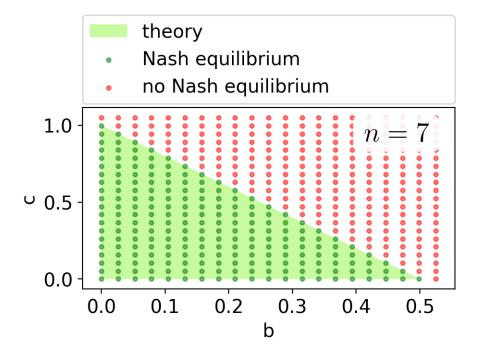
Star graph

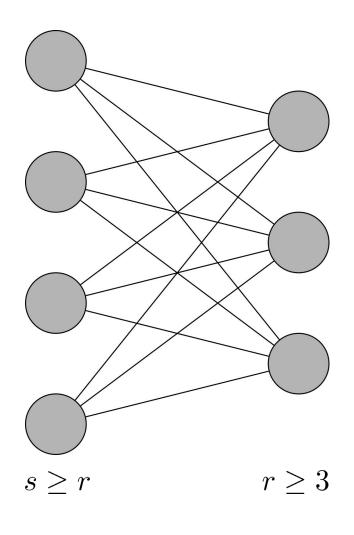


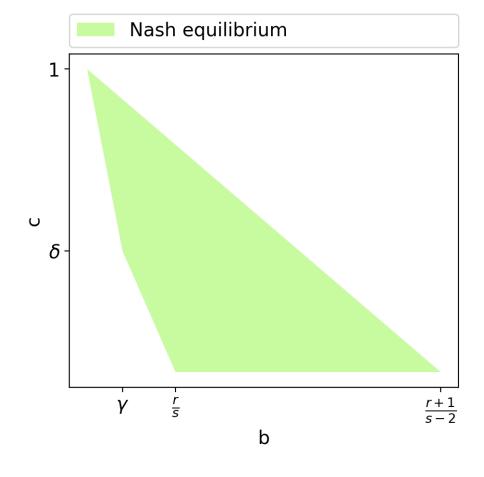
$$\Delta \text{cost} = n - 2 - \frac{(n-2) \cdot (n-3)}{2} b - (n-2) \cdot c$$
$$0 \le 1 - \frac{n-3}{2} b - c$$

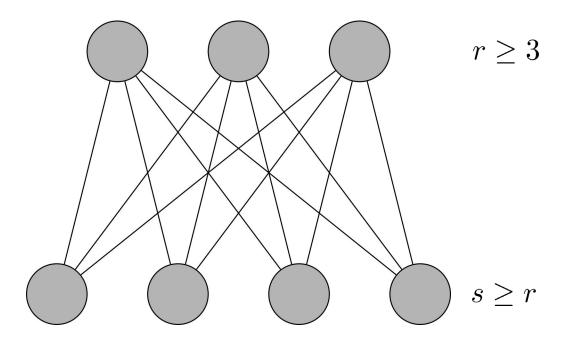
Star graph

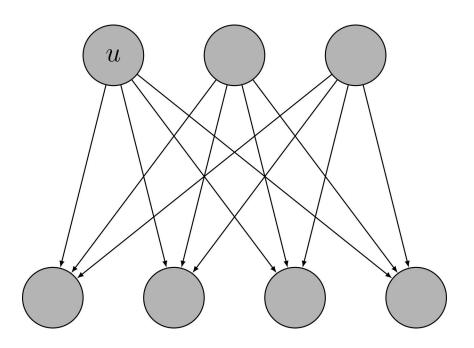






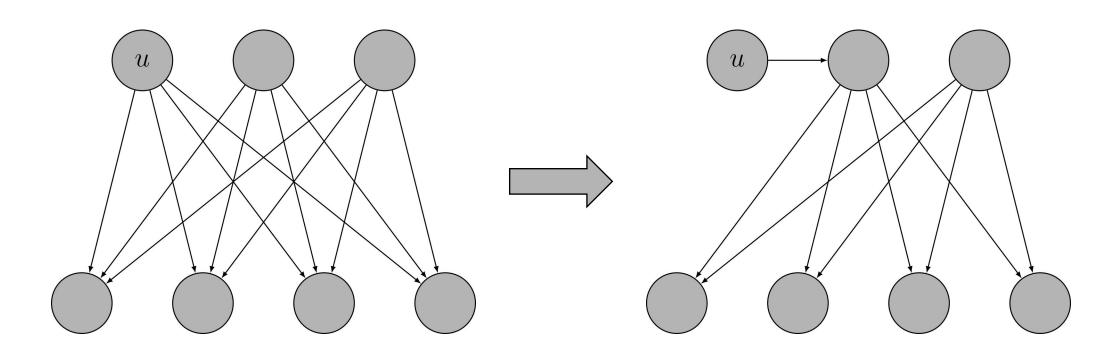






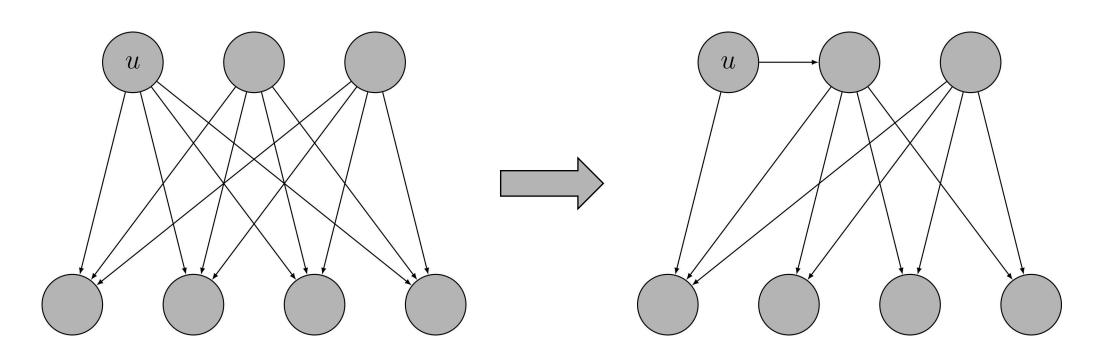
$$\Delta \operatorname{cost}_{u}(s \text{ to } \tilde{s}_{1}) = -(s-1) + \frac{s \cdot (s-1)}{r} b + (s+r-3) \cdot c$$

$$1 \leq \frac{s}{r} b + \frac{s+r-3}{s-1} c$$



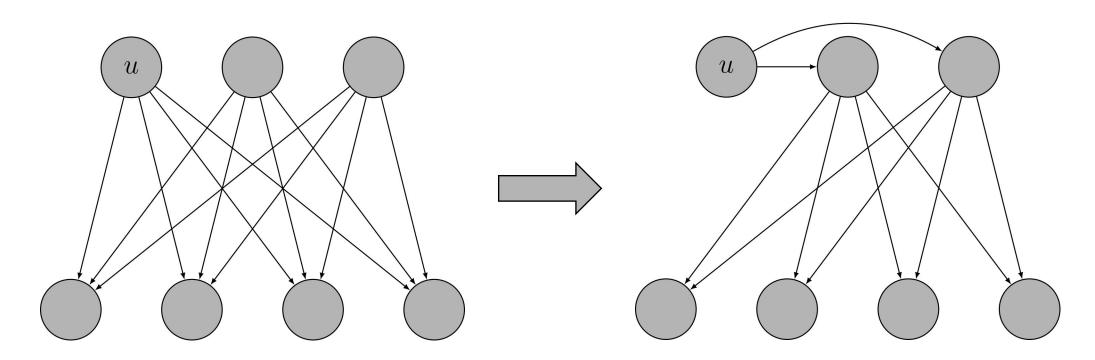
$$\Delta \operatorname{cost}_{u}(s \text{ to } \tilde{s}_{2}) = 2 - s + \left(\frac{s \cdot (s-1)}{r}\right)b + (s-2) \cdot c$$

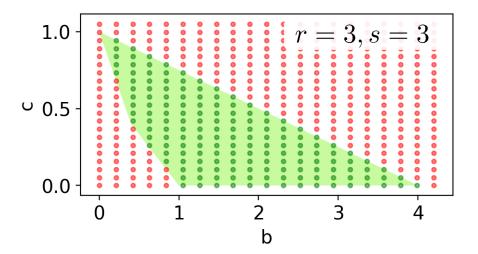
$$1 \leq \left(\frac{s \cdot (s-1)}{r \cdot (s-2)}\right)b + c$$

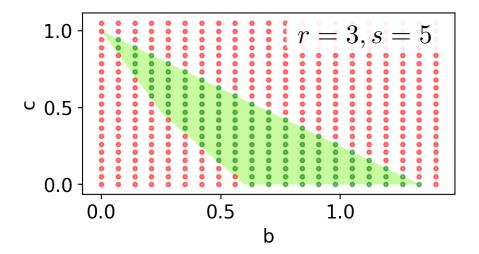


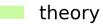
$$\Delta \cot_{u}(s \text{ to } \tilde{s}_{3}) = r - s + 1 + \left(\frac{s \cdot (s - 1)}{r} - \frac{(r - 1)(r - 2)}{s + 1}\right)b + (s - r + 1) \cdot c$$

$$1 \le \frac{1}{(s - r + 1)} \left(\frac{s \cdot (s - 1)}{r} - \frac{(r - 1)(r - 2)}{s + 1}\right)b + c$$

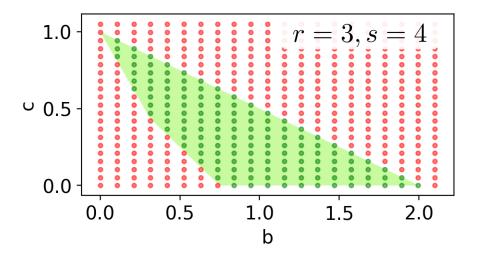


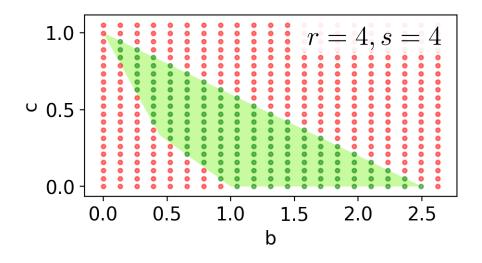






- Nash equilibrium
- no Nash equilibrium





Price of anarchy (c > 1)

$$c > \frac{1}{2} + b$$

$$\rho(G) = \frac{\text{cost(complete graph)}}{\text{cost(complete graph)}} = \mathcal{O}(1)$$

Price of anarchy (c > 1)

$$c > \frac{1}{2} + b$$

$$\rho(G) = \frac{\text{cost(complete graph)}}{\text{cost(complete graph)}} = \mathcal{O}(1)$$

$$b \le c \le \frac{1}{2} + b$$

$$\rho(G) = \frac{\cot(\operatorname{complete graph})}{\cot(\operatorname{star graph})} = \frac{\left(\frac{1}{2} + (n-2) \cdot b\right) \cdot n}{1 + (c+b \cdot (n-1))(n-2)} = \mathcal{O}(1)$$

Price of anarchy (c > 1)

$$c > \frac{1}{2} + b$$

$$\rho(G) = \frac{\text{cost(complete graph)}}{\text{cost(complete graph)}} = \mathcal{O}(1)$$

$$b \le c \le \frac{1}{2} + b$$

$$\rho(G) = \frac{\cot(\operatorname{complete graph})}{\cot(\operatorname{star graph})} = \frac{\left(\frac{1}{2} + (n-2) \cdot b\right) \cdot n}{1 + (c+b \cdot (n-1))(n-2)} = \mathcal{O}(1)$$

c < b

$$\rho(G) = \frac{\text{cost(complete graph)}}{\text{cost(path graph)}} = \frac{\left(\frac{1}{2} + (n-2) \cdot b\right) \cdot n}{1 + \left(\frac{2}{3}b - \frac{1}{3}c\right) \cdot n \cdot (n-2)} = \mathcal{O}(1)$$

Price of anarchy (c + $b \le 1/n^2$)

$$\Delta \text{cost}_u(s) > -n^2 \cdot c - n^2 \cdot b + 1$$

spanning trees

$$cost(s) = \Theta(n)$$

$$\rho(G) = \mathcal{O}(1)$$

Price of anarchy (c $\leq 1 \& c + b \geq 1/n^2$)

$$\rho(G) = \mathcal{O}\left(\frac{|E(G)| + n^3 \cdot b + (c - b) \cdot \sum_{u \in [n]} \sum_{r \in [n] - u} (d_G(u, r) - 1)}{n^3 \cdot b + n}\right)$$

Price of anarchy ($c \le 1 \& c + b \ge 1/n^2$)

$$\rho(G) = \mathcal{O}\left(\frac{|E(G)| + n^3 \cdot b + (c - b) \cdot \sum_{u \in [n]} \sum_{r \in [n] - u} (d_G(u, r) - 1)}{n^3 \cdot b + n}\right)$$

$$d_G(u,r) < \Theta\left(\frac{2}{\sqrt{c+b}}\right) \qquad \qquad \rho(G) = \mathcal{O}\left(\frac{1}{2}\right)$$

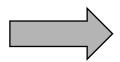
$$\rho(G) = \mathcal{O}\left(\frac{|E(G)| + n^3 \cdot b + n^2 \frac{c - b}{\sqrt{b + c}}}{b \cdot n^3 + n}\right)$$

Price of anarchy (c $\leq 1 \& c + b \geq 1/n^2$)

$$\rho(G) = \mathcal{O}\left(\frac{|E(G)| + n^3 \cdot b + (c - b) \cdot \sum_{u \in [n]} \sum_{r \in [n] - u} (d_G(u, r) - 1)}{n^3 \cdot b + n}\right)$$

$$\mathcal{O}\left(\frac{n^3 \cdot b}{n^3 \cdot b + n}\right) = \mathcal{O}(1)$$

$$\mathcal{O}\left(\frac{n^2 \frac{c-b}{\sqrt{b+c}}}{n^3 \cdot b + n}\right) = \mathcal{O}\left(\frac{c-b}{n^2 \cdot b + 1}\right) = \mathcal{O}\left(1\right)$$



$$\rho(G) = \mathcal{O}(n)$$

$$\mathcal{O}\left(\frac{|E(G)|}{b \cdot n^3 + n}\right) = \mathcal{O}(n)$$