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Abstract

Given a connected graph G and a failure probability p(e) for each edge e in G, the reliability of G is the
probability that G remains connected when each edge e is removed independently with probability p(e). In
this paper it is shown that every n-vertex graph contains a sparse backbone, i.e., a spanning subgraph with
O(n log n) edges whose reliability is at least (1−n−Ω(1)) times that ofG. Moreover, for any pair of vertices
s, t in G, the (s, t)-reliability of the backbone, namely, the probability that s and t remain connected, is also
at least (1 − n−Ω(1)) times that of G. Our proof is based on a polynomial time randomized algorithm for
constructing the backbone. In addition, it is shown that the constructed backbone has nearly the same Tutte
polynomial as the original graph (in the quarter-plane x ≥ 1, y > 1), and hence the graph and its backbone
share many additional features encoded by the Tutte polynomial.

Keywords: network reliability, sparse subgraphs, Tutte polynomial.

1 Introduction

Finding a sparse subgraph that approximately preserves some key attribute of the original graph is fundamental
to network algorithms: any lazy network manager would find the capability to maintain fewer links in a large
network a precious gift. This can also be considered from the perspective of identifying a set of redundant edges
in a graph. Whether an edge is redundant or not depends of course on the attributes that should be preserved.
Spanners [15, 16] for example, approximately preserve pairwise distances in graphs, with a trade-off spectrum
∗Supported in part by Israel Science Foundation (grant 1372/09) and by the Israel Ministry of Science and Technology.
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between the quality of approximation and the number of edges in the spanner. The general graph attribute we
focus on in the current paper is connectivity under random edge failures.

Specifically, we consider the classical setting of network reliability, defined over a graph G whose edges e
are associated with failure probabilities p(e). The reliability of G is the probability that G remains connected
when each edge e of G is removed independently with probability p(e). Clearly, the reliability of a graph is
monotone non-increasing with respect to edge removal. We seek a sparse spanning subgraph (containing all
vertices and only a small subset of the edges) of G, referred to henceforth as a backbone, whose reliability is
almost as good as that of G.

Our main result is a randomized algorithm for constructing a backbone with O(n log n) edges that approx-
imates the reliability of G to within a (multiplicative) factor of 1 − n−Ω(1), where n denotes the number of
vertices. The randomized algorithm allows edge multiplicities, so the original graph G may have significantly
more than

(
n
2

)
edges. This construction is tight: we show that there are graphs whose reliability cannot be ap-

proximated to within any positive factor by any subgraph with significantly less than n log n edges. Moreover,
the backbone graph approximates not only the all-terminal variant of the reliability (the probability that the
whole graph remains connected), but also the (s, t)-reliability of G for any two vertices s and t, defined as the
probability that s and t remain in the same connected component. Our construction is presented first for the
homogeneous case, where the failure probability of every edge is some constant 0 < p < 1, and then extended
to the general heterogeneous case, assuming that there aren’t “too many” edges whose failure probabilities are
very close to 1 (see Sect. 3.2 for a precise statement).

It turns out that our backbone also provides a good approximation for the Tutte polynomial1. Specifically, in
the quarter-plane x ≥ 1, y > 1 the Tutte polynomial of the backbone approximates the Tutte polynomial of the
original graph to within a factor of 1 ± n−Ω(1) after multiplying by a (trivially calculated) normalizing factor
that accounts for the different number of edges. Since the Tutte polynomial encodes many interesting features
of the graph (including its reliability), this result seems to indicate that our backbone construction provides a
good representation of the graph in some deeper sense.

Related work. Network reliability is a fundamental problem in operations research since the early days of
that discipline [13]; see the survey [2] for a comprehensive account. It is also well-known in the area of
computational complexity; various versions of the network reliability problem are listed among the 14 basic
#P-complete problems2 presented in [19]. In particular, both the all-terminal reliability problem and the (s, t)-
reliability problem are known to be #P-hard even when the failure probabilities p(e) are homogeneous. [10]
establishes a fully polynomial time randomized approximation scheme (FPRAS) for the problem of evaluating
the probability that the graph disconnects under random edge failures. Although this disconnection probability
is simply one minus the reliability of the graph, the algorithm of [10] does not translate to a (multiplicative)
approximation for the problem of evaluating the reliability. In fact, the approximability of the all-terminal
reliability and the (s, t)-reliability problems is still an open question.

A notion somewhat related to ours is that of graph sparsifiers [17, 18]: An n vertex weighted graph H is
said to be a κ-sparsifier of an n vertex weighted graph G if xTLGx ≤ xTLHx ≤ κ · xTLGx for every vector
x ∈ Rn, where LH and LG are the Laplacian matrices ofH andG, respectively. Sparsifiers are a generalization
of the compressed graphs of [3], that approximately preserve the total weight of edges crossing any cut in the

1 The Tutte polynomial TG(x, y) is a bivariate polynomial whose coefficients are determined by the graph G. See Sect. 5 for details.
2 The complexity class #P consists of the counting problems whose decision versions are in NP.
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original graph. Indeed, the graph compression condition corresponds to the sparsifier condition restricted to
vectors x ∈ {0, 1}n.

One is interested in constructing sparse sparsifiers (hence the name) and the state of the art in that context
is the recent construction of (1 + ε)-sparsifiers with O(n/ε2) edges presented in [6]. Note that unlike the
backbone constructed in the current paper, sparsifiers are not required to be subgraphs of the original graph.
Furthermore, even if a sparsifier edge is present in the original graph, its weight may be different. In fact, there
exist unweighted graphs for which every good sparsifier must introduce edges of widely varying weights [18].

A brief overview of the Tutte polynomial is given in Sect. 5. Here we comment that the computational
complexity of evaluating the Tutte polynomial on various points (x, y) ∈ R2 is almost completely understood.
The problem admits an efficient algorithm if (x, y) ∈ {(1, 1), (−1,−1), (0, 1), (−1, 0)} or if (x−1)(y−1) = 1;
otherwise it is #P-hard [8]. An FPRAS exists for the y > 0 portion of the “Ising” hyperbola (x− 1)(y− 1) = 2

[9]; and unless RP = NP, an FPRAS does not exist if x < −1 or if y < −1 except for the aforementioned
easy-to-compute points, the ray x < −1, y = 1, and the y < −1 portion of the hyperbola (x− 1)(y − 1) = 2

[7]. An FPRAS also exists for the quarter-plane x ≥ 1, y ≥ 1 if the minimum degree in G is Ω(n) [1] and for
the half-plane y > 1 if the size of a minimum cut in G is Ω(log n) [10].

Technique. Our backbone construction samples each edge with probability inverse proportional to its strength,
a parameter closely related to edge connectivity. This technique was introduced in [3] for the construction of
compressed graphs. In [3], the weights of the selected edges are then modified to meet the graph compression
condition. This cannot be done when constructing a backbone: we can only remove edges, and are not allowed
to change intrinsic attributes (namely failure probabilities) of the remaining ones. Nevertheless, we show that
with high probability, the resulting backbone approximately preserves the reliability of the original graph. The
main ingredient in our analysis is the fact that graphs with logarithmic edge connectivity are highly reliable
[12, 10]. (Note that we do not make any assumptions on the connectivity of the original graph.) The Tutte
polynomial analysis is slightly more involved and it essentially relies on an observation of [1] combined with a
theorem of [10].

Paper organization. The remainder of this paper is organized as follows. Sect. 2 includes the preliminaries
used throughout the paper. The backbone construction is presented in Sect. 3 and the matching lower bound is
established in Sect. 4. In Sect. 5 we prove that our backbone also provides a good approximation for the Tutte
polynomial.

2 Preliminaries

Unless stated otherwise, all graphs mentioned in this paper are undirected and not necessarily simple (i.e., they
may contain parallel edges and self loops). We denote the vertex set and edge set of a graph G by V (G) and
E (G), respectively. The graph induced on G by a vertex subset U ⊆ V (G) is G(U) = (U,E (G) ∩ (U × U)).
The graph induced on G by an edge subset F ⊆ E (G) is simply G(F ) = (V (G), F ). Consider some partition
of V (G) into V (G) = U1∪ · · · ∪Ur and let U = {U1, . . . , Ur}. We refer to the edges in E (G)∩

⋃r
i=1 Ui×Ui

as the internal edges of U and to the edges in E (G) ∩
⋃
i 6=j Ui × Uj as the external edges of U .

A cut C of a graph G is a partition of V (G) into two non-empty subsets, that is, C = {U1, U2}, where
U1 ∩ U2 = ∅ and U1 ∪ U2 = V (G). We say that an edge e ∈ E (G) crosses C if e ∈ U1 × U2. The set of
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edges crossing C is denoted by E (C). The cardinality |E (C)| is referred to as the size of C; if the edges of G
are associated with weights, then the total weight of all edges in E (C) is referred to as the weight of C. A min
cut (respectively, min weight cut) is a cut of minimum size (resp., weight).

3 Backbone Construction and Reliability Analysis

A network reliability instance consists of a connected graphG and a failure probability 0 < p(e) < 1 associated
with each edge e ∈ E (G). The network is assumed to occasionally undergo an edge failure event F . Upon
such an event, each edge e ∈ E (G) fails, i.e., is removed from the graph, with probability p(e) independently
of all other edges. In the all terminal network reliability problem, one is interested in the probability that G
remains connected following the failure event F , whereas in the two terminal network reliability problem one
is interested in the probability that two designated vertices s and t remain in the same connected component of
G following the event F . The former probability, denoted REL(G, p), is referred to as the reliability of G and
the latter, denoted REL(G, s, t, p), is referred to as the reliability of s and t in G. Our goal in this section is
to establish the existence of a backbone with O(n log n) edges that approximates the reliability of the original
graph.

3.1 Homogeneous failure probabilities

We first focus on the homogeneous case, proving Theorem 3.1; the extension to heterogeneous failure proba-
bilities is discussed in Sect. 3.2.
Theorem 3.1. There exists an efficient randomized algorithm that given a connected graphG, failure probabil-
ity 0 < p < 1, and performance parameters δ1, δ2 ≥ 1, outputs a backbone G′ of G that satisfies the following
three requirements with probability 1−O(n−δ1):

(1) |E (G′)| = O
(
n log n ·

(
δ1 + δ2

1−p

))
;

(2) REL(G′, p) ≥ REL(G, p) ·
(
1−O

(
n−δ2

))
; and

(3) REL(G′, s, t, p) ≥ REL(G, s, t, p) ·
(
1−O

(
n−δ2

))
for every s, t ∈ V (G).

Our technique derives from that presented in [3]; for completeness, we describe some ingredients in detail.

Strong components. A graph G is said to be k-connected if the size of every cut in G is at least k. Fix some
vertex subset U ⊆ V (G). The vertex induced subgraph G(U) is called a k-strong component of G if it is
k-connected and G(U ′) is not k-connected for any vertex subset U ′ ⊆ V (G) such that U ′ ) U . If G(U1) and
G(U2), U1 6= U2, are k-strong components of G, then U1 and U2 must be disjoint, as otherwise G(U1 ∪ U2)

is k-connected. Therefore, if the size of a minimum cut in G is c, then the k-strong components of G for
k = c, c+1, . . . define a unique laminar family over V (G), that is, G itself is the sole c-strong component, and
for every k ≥ c, the collection Uk of vertex sets of the k-strong components forms a partition of V (G), refined
by the partition Uk+1.

The strength of an edge e = (u, v) ∈ E (G), denoted ke, is defined to be the maximum k such that u and
v belong to the same k-strong component of G. Note that ke ≥ k for every internal edge of Uk and ke < k
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for every external edge of Uk. Moreover, if G(U) is a k-strong component, then the strength in G(U) of every
edge e ∈ E (G) ∩ (U × U) is equal to its original strength ke in G.

Edge sampling. Consider some n-vertex graph G and let q : E (G) → [0, 1] be a mapping that assigns some
sampling probability q(e) to each edge e ∈ E (G). Given some edge subset F ⊆ E (G), let F q be a random
subset of F that contains each edge e ∈ F with probability q(e) independently of all other edges and let
Gq = (V (G),E (G)q) be the random graph obtained from G by selecting each edge e ∈ E (G) in that manner.
The expected graph Ḡq of Gq is the weighted graph obtained from G by associating a weight q(e) with each
edge e ∈ E (G). As the name implies, for each cut C in G, the weight of C in Ḡq reflects the expected size
of C in Gq. The following theorem, established in [11], guarantees that if every cut in the expected graph is
sufficiently heavy, then the sizes of cuts in Gq can be “predicted” with high probability.
Theorem 3.2 ([11]). Let c̄ be the weight of a min weight cut in Ḡq and fix some 0 < ε < 1 and d > 0. If
c̄ ≥ 3(d + 2) ln(n)/ε2, then with probability 1 − O(n−d), every cut in Gq has size between 1 − ε and 1 + ε

times its expected size (i.e., its weight in Ḡq).

Consider some r disjoint graphs G1, . . . , Gr. Let ni = |V (Gi)| for every 1 ≤ i ≤ r and let n =
∑r

i=1 ni.
For i = 1, . . . , r, let qi : E (Gi) → [0, 1] be a mapping that assigns some probability qi(e) to each edge
e ∈ E (Gi). The statement of Theorem 3.2 can be extended to hold for all graphs Gi simultaneously. This
extension can be established by a careful examination of the proof in [11]; for completeness, we provide here a
“black-box” proof for this extension.
Corollary 3.3. Let c̄i be the weight of a min weight cut in Ḡqii for i = 1, . . . , r and fix some 0 < ε < 1 and
d > 0. If min1≤i≤r c̄i ≥ 3(d+2) ln(n)/ε2, then with probability 1−O(n−d), every cut inGqii has size between
1− ε and 1 + ε times its expected size (i.e., its weight in Ḡqii ) for all 1 ≤ i ≤ r.

Proof. Let vi be an arbitrary vertex in V (Gi) for every 1 ≤ i ≤ r. Consider the graph G obtained by
augmenting the union of G1, . . . , Gr with sufficiently many sturdy “connector edges” connecting vi to vi+1 for
every 1 ≤ i ≤ r − 1, that is, V (G) =

⋃r
i=1 V (Gi) and E (G) =

⋃r
i=1 E (Gi) ∪

⋃r−1
i=1 Fi, where Fi consists of

m parallel (vi, vi+1) connector edges for some sufficiently large m. Let q : E (G) → [0, 1] be a mapping that
agrees with qi(e) on every edge e ∈ E (Gi), 1 ≤ i ≤ r, and assigns sampling probability q(e) = 1 to every
edge e ∈ Fi, 1 ≤ i ≤ r − 1.

We argue that the weight of every cut in Ḡq is at least 3(d+ 2) ln(n)/ε2; the assertion follows by applying
Theorem 3.2 toG and q. To that end, consider some cutC = {U1, U2} of Ḡq. If there exists some 1 ≤ i ≤ r−1

such that vi ∈ Uj and vi+1 ∈ U3−j , j ∈ {1, 2}, then E (C) contains at leastm connector edges and the weight of
C is at least m. Otherwise, there must exist some 1 ≤ i ≤ r and some cut Ci of Ḡqii such that E (Ci) ⊆ E (C),
hence the weight of C is at least c̄i ≥ 3(d+ 2) ln(n)/ε2.

Sampling edges by their strength. We now turn to describe Algorithm SRGB (acronym for the paper’s title),
performing the actual construction of the sparse reliable backbone. The algorithm is given an n-vertex graph G
with edge failure probability p and two performance parameters δ1, δ2 ≥ 1. Let

ρ =

⌈
12 lnn ·max

{
δ1 + 2, 2

δ2 + 2

1− p

}⌉
(1)

and define q(e) = min{1, ρ/ke} for every e ∈ E (G), where ke is the strength of e in G. The algorithm
constructs the backboneG′ ofG by selecting each edge e ∈ E (G) independently with probability q(e), namely,
G′ ← Gq.
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We need to show that Algorithm SRGB guarantees the requirements of Theorem 3.1. The authors of [3]
analyze a similar construction3 and establish, among other things, the following lemma whose proof is included
here for completeness.
Lemma 3.4 ([3]). The edge strengths satisfy

∑
e∈E(G) 1/ke ≤ n− 1.

Proof. Consider some vertex subset U ⊆ V (G). Let C be a min cut of the subgraph G(U) induced by U
on G and assume that |E (C)| = k. Since the strength of every edge in G(U) is at least k, it follows that∑

e∈E(C) 1/ke ≤ 1. On the other hand, as C is a cut, by removing the edges crossing C, the subgraph
G(U) breaks down into several connected components. Therefore, the edges in E (C) contributes at most 1

to
∑

e∈E(G) 1/ke, whereas their removal increases the number of connected components by at least 1. This
gives rise to the following recursive process: find a min cut in G and remove its edges; continue recursively
with the resulting connected components. As every application of this recursive process increases the number
of connected components by at least 1, it cannot be applied more than n− 1 times. The assertion follows since
every application removes a subset of the edges that contributes at most 1 to

∑
e∈E(G) 1/ke.

Since Algorithm SRGB takes each edge e ∈ E (E) into G′ with probability at most ρ/ke, Lemma 3.4
implies that the expected number of edges in G′ is E[|E (G′)|] ≤ ρ(n − 1); as these random experiments are
independent, a standard Chernoff bound argument (see, e.g., [14]) shows that the probability that |E (G′)| is
greater than, say, twice its expected value is exponentially small. Part (1) of Theorem 3.1 follows. Our goal
in the remainder of this section is to prove that with probability 1 − O(n−δ1), the random graph G′ satisfies
REL(G′, p) ≥ REL(G, p) · (1 − O(n−δ2)). Proving Part (3) of the theorem, namely, showing that with
probability 1−O(n−δ1) the random graph G′ satisfies REL(G′, s, t, p) ≥ REL(G, s, t, p) · (1−O(n−δ2)) for
every s, t ∈ V (G), is analogous.

Let G(U1), . . . , G(Ur) be the ρ-strong components of G and consider some G(Ui), 1 ≤ i ≤ r. Let C be a
cut in G(Ui) and let e be some edge in E (C). Recall that the strength of e in G(Ui) is equal to its strength in
G, denoted ke. Since e crosses a cut of size |C| in G(Ui), it follows that ke ≤ |C|, thus

∑
e∈E(C) 1/ke ≥ 1.

On the other hand, G(Ui) is ρ-connected, hence ke ≥ ρ and q(e) = ρ/ke. Therefore, the weight of C in the
expected graph Ḡq is ∑

e∈E(C)

q(e) = ρ
∑

e∈E(C)

1/ke ≥ ρ .

By Eq. (1), ρ ≥ 12(δ1 + 2) lnn, so Corollary 3.3 can be applied to G(U1), . . . , G(Ur) to conclude that with
probability 1 − O(n−δ1), every cut in G′(Ui), 1 ≤ i ≤ r, has size at least ρ/2 (this probability is with respect
to the random choices of Algorithm SRGB) — condition the subsequent analysis on that event. Since Eq. (1)
also implies that (1− p)ρ/2 ≥ 12(δ2 + 2) lnn, an application of Corollary 3.3 to G′(U1), . . . , G′(Ur) derives4

the following corollary.
Corollary 3.5. By setting ρ =

⌈
12 lnn ·max

{
δ1 + 2, 2 δ2+2

1−p

}⌉
, we ensure that with probability 1−O(n−δ2),

all the components G′(U1), . . . , G′(Ur) remain connected following an edge failure event F (in fact, the size
of every cut in these components decreases by at most half).

3 The construction in [3] assigns (new) weights to the edges of the random graph, and hence its analysis follows a different path that
requires some additional complications.

4 The fact that components of large edge connectivity admit high reliability was originally discovered by [12] and later on restated
in [10]. Using their frameworks instead of Corollary 3.3 would have resulted in slightly better constants.
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Let A (respectively, A′) denote the event that G (resp., G′) remains connected after an edge failure event F
and let B (resp., B′) denote the event that all the components G(U1), . . . , G(Ur) (resp., G′(U1), . . . , G′(Ur))
remain connected after an edge failure event F . We argue that P(A′) ≥ P(A) · (1 − O(n−δ2)). Corollary 3.5
implies that P(B′) ≥ 1 − O(n−δ2) and by definition, P(B′) ≤ P(B) ≤ 1. Let EX ⊆ E (G) be the set of
all edges external to {U1, . . . , Ur}. Note that every edge e ∈ EX has strength ke < ρ in G, and therefore
was selected by Algorithm SRGB with probability 1. It follows that all those edges are included in G′, i.e.,
EX ⊆ E (G′), and thus P(A′ | B′) = P(A | B) ≥ P(A | ¬B). The argument follows by observing that

P(A′) ≥ P(A′ | B′) · P(B′) ≥ P(A | B) · (1−O(n−δ2))

and
P(A) ≤ P(A | B) + P(A | ¬B) · P(¬B) ≤ P(A | B) · (1 +O(n−δ2)) .

This completes the proof of part (2) of Theorem 3.1 as REL(G, p) = P(A) and REL(G′, p) = P(A′).

Las-Vegas implementation. As discussed above, our algorithm satisfies all three requirements with high prob-
ability. However, once invoking the algorithm on some instance graph G, one may wish to ensure that indeed
all three requirements are satisfied. As stated above, the approximability of the all-terminal reliability and
(s, t)-reliability problems is still an open question. So, it may seem hopeless to be able to check if requirements
(2) and (3) indeed hold for a specific invocation of our algorithm. However, following our line of arguments,
one can see that to guarantee that requirements (2) and (3) hold, it suffices to check that the minimal cut in all
ρ-strong components G′(U1), . . . , G′(Ur) is at least ρ/2. This, of course, can be done in polynomial time.

Running Time. The running time of our algorithm is dominated by finding the strength of the edges. It is not
hard to see that this can be done in polynomial time (by hierarchically decomposing the graph via n minimum
cut computations). However, this could be too slow for certain applications. Luckily, our algorithm does not
require the exact values ke; rather, one can settle for approximate values k̃e satisfying some desired properties.
This can be done, using some ideas presented in [3], so as to improve the overall running time to O(m log2 n).

Specifically, it is shown in [3] (Section 4) how to find in O(m log2 n) time approximate values k̃e obeying
the following two requirements: (R1) k̃e ≤ ke; and (R2)

∑
1/k̃e = O(n). Using the estimates k̃e rather than ke

in our construction can be implemented to run in time O(m log2 n). Moreover, observe that by (R1), each edge
e is now taken with higher probability, therefore the probability that requirements (2) and (3) of Theorem 3.1
still hold may only increase. In addition, by (R2), the number of edges in our resulting subgraph may only
increase by a constant factor, hence requirement (1) of Theorem 3.1 is also satisfied.

3.2 Heterogeneous failure probabilities

We now turn to discuss the heterogeneous case, where each edge e has a different failure probability p(e). It’s
not hard to verify that setting ρ =

⌈
12 lnn ·max

{
δ1 + 2, 2 δ2+2

1−p̂

}⌉
, where p̂ is the highest failure probability

in G, yields the same analysis and results as for the homogeneous case. However, if p̂ is close to 1, then this
would result in a backbone G′ with too many edges. Consider, for example, an arbitrary graph G− where all
edges have the same (constant) failure probability 0 < p < 1, and augment it into a graph G by adding a
single new edge with very high failure probability, say, p̂ = 1 − 1/n2. Clearly, applying Algorithm SRGB
to G− will generate, with probability at least 1 − O(n−δ1), a backbone G′− with O(n log n) edges such that
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REL(G′−, p) ≥ REL(G, p) · (1−O(n−δ2)). Using the algorithm with p̂, however, will yield a very high value
for ρ, and the resulting backbone G′ is likely to contain Ω(n2) edges.

Hence, we are interested in constructing a backbone G′′ with O(n log n) edges that approximates the reli-
ability of G even when some of the failure probabilities are close to 1. Define the average failure probability
of cut C in G as

∑
e∈E(C) p(e)/|E (C)|. We show that if the average failure probability of every cut in G is at

most p̄, then it is possible to construct a backbone G′′ such that with probability at least 1 − O(n−δ1), G′′ has
O
(
n logn
1−p̄

(
δ1 + δ2

1−p̄

))
edges and REL(G′′, p) ≥ REL(G, p) · (1−O(n−δ2)).

Let Ĝ be the graph obtained from G by erasing all edges with failure probability greater than 1/2 + p̄/2.
Set

ρ =

⌈
12 lnn ·max

{
δ1 + 2, 2

δ2 + 2

1/2− p̄/2

}⌉
(2)

and construct the backbone G′ by applying Algorithm SRGB (with ρ as defined in Eq. (2)) to Ĝ. Let
Ĝ(U1), . . . , Ĝ(Ur) be the ρ-strong components of Ĝ and fix Û = {U1, . . . , Ur}. Denote the set of external
edges of Û in the graph G by EX . Enhance G′ by augmenting it with all edges in EX that are not already in
E (G′) — set G′′ to be the resulting graph.

Let A (respectively, A′′) denote the event that G (resp., G′′) remains connected following an edge
failure event F and let B (resp., B′′) denote the event that all the components G(U1), . . . , G(Ur) (resp.,
G′′(U1), . . . , G′′(Ur)) remain connected following an edge failure event F . Since every edge in Ĝ has fail-
ure probability at most 1/2 + p̄/2, Corollary 3.5 guarantees that 1 − O(n−δ2) ≤ P(B′′) ≤ P(B) ≤ 1. Since
EX ⊆ E (G′′), it follows that P(A′′ | B′′) = P(A | B). Therefore, by the line of arguments used in Sect. 3.1, we
conclude that P(A′′) ≥ P(A) · (1−O(n−δ2)). So, it remains to show that E[|E (G′′)|] = O(ρ(n− 1)/(1− p̄)).

Denote the set of external edges of Û in the graphG′ byE1 and the set of external edges of Û inG that were
subsequently added to G′′ by E2 = EX \ E1 = E (G′′) \ E (G′). By the line of arguments used in Sect. 3.1,
we get |E1| ≤ ρ(n − 1). Note that the removal of EX = E1 ∪ E2 disconnects G. This does not mean that
E1∪E2 are the crossing edges of some cut inG, as its removal may disconnectG into more than two connected
components. Nevertheless, we argue that the average failure probability over all edges in E1 ∪ E2 is at most
p̄. To see this, let Ci = {Ui,V (G) − Ui} be the cut that disconnects Ui from the rest of the graph. Then⋃
i E (Ci) = EX , where each edge of EX appears exactly twice in

⋃
i E (Ci). As the average failure probability

on each cut Ci separately is at most p̄, we get the same bound also for the average over EX = E1 ∪ E2.

So, we know that
∑
e∈E1

p(e)+
∑
e∈E2

p(e)

|E1|+|E2| ≤ p̄ and recall that p(e) > 1/2 + p̄/2 for every e ∈ E2. Therefore,

we can apply a Markov type argument to conclude that |E2|
|E1|+|E2| <

p̄
1/2+p̄/2 = 2p̄

1+p̄ . Plugging in the fact that

|E1| ≤ ρ(n− 1), we get that |E2| < 2p̄/(1+p̄)
1−2p̄/(1+p̄)ρ(n− 1) = 2p̄

1−p̄ρ(n− 1). We summarize as follows.
Theorem 3.6. There exists an efficient randomized algorithm that given a connected graph G, failure prob-
ability p(e) for each e ∈ E (G), where the average failure probability of every cut in G is at most p̄, and
performance parameters δ1, δ2 ≥ 1, outputs a backbone G′ of G that satisfies the following three requirements
with probability 1−O(n−δ1):

(1) |E (G′)| = O
(
n log(n)

1−p̄

(
δ1 + δ2

1−p̄

))
;

(2) REL(G′, p) ≥ REL(G, p) ·
(
1−O

(
n−δ2

))
; and
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(3) REL(G′, s, t, p) ≥ REL(G, s, t, p) ·
(
1−O

(
n−δ2

))
for every choice of s, t ∈ V (G).

4 A tight lower bound

We now turn to show that the O(n log n) upper bound on the number of edges is indeed tight. Consider some
graph G and let SG be the collection of all spanning subgraphs of G. Given some failure probability 0 < p < 1

and some real ε > 0, let

ψp,ε(G) = max
{

REL(H, p) | H ∈ SG, |E (H)| ≤ (1− ε)n log1/p n
}
.

We establish the following theorem.
Theorem 4.1. For every failure probability 0 < p < 1, the family {Kn,n}∞n=1 of complete bipartite graphs
with n vertices on each side satisfies

(1) limn→∞REL(Kn,n, p) = 1; and

(2) for every constant ε > 0, limn→∞ ψp,ε(Kn,n) = 0.

Proof. Requirement (1) is immediately satisfied by Theorem 3.2, so it remains to establish requirement (2).
To that end, fix some n and consider some constant ε > 0 and some spanning subgraph H of Kn,n such
that |E (H)| ≤ (1 − ε)n log1/p n. The subgraph H is bipartite as well; let Z = {v1, . . . , vk} be the set
of vertices of degree at most (1 − ε/2) log1/p n on its left side. By a straightforward counting argument,

k ≥ n
(

1− 1−ε
1−ε/2

)
> εn/2.

Let Ai be the event that vi becomes an isolated vertex under an edge failure event F . By definition,
P(Ai) ≥ p(1−ε/2) log1/p n = n−(1−ε/2). Since H is bipartite, the events A1, . . . , Ak are independent (each
determined by a disjoint set of edges), hence the probability that none of them occurs is at most(

1− n−(1−ε/2)
)k
≤
(

1− n−(1−ε/2)
)εn/2

≤ e−εnε/2/2 ,

which tends to 0 as n→∞. The assertion follows as REL(H, p) ≤ P(¬A1 ∧ · · · ∧ ¬Ak).

5 The Tutte Polynomial of the Backbone

The Tutte polynomial, introduced by W.T. Tutte, is a bivariate polynomial whose coefficients are determined
by a given graph. The Tutte polynomial is a central concept in algebraic graph theory, as it captures many
interesting properties of the graph from which it is derived. [4] gives a relatively updated treatment of the
concept. Below, we only review the basic definitions and some key results.

Let G be a graph. The Tutte polynomial of G at point (x, y) ∈ R2, denoted TG(x, y), is defined by

TG(x, y) =
∑

F⊆E(G)

(x− 1)K(F )−K(G)(y − 1)K(F )+|F |−n ,

where n = |V (G)|, and for F ⊆ E (G), K(F ) denotes the number of connected components in the graph
(V (G), F ), and K(G) = K(E (G)). The Tutte polynomial contains many interesting points and lines that
capture combinatorial features of the graph G, including:

9



• TG(1, 1) counts the number of spanning trees of G.

• TG(2, 1) counts the number of spanning forests of G.

• TG(1, 2) counts the number of connected spanning subgraphs of G.

• At y = 0 and x = 1 − λ for positive integer λ, the Tutte polynomial specializes to yield the chromatic
polynomial χG(λ) = (−1)n−K(G)λK(G)TG(1 − λ, 0) that counts the number of legal vertex colorings
of G using λ colors.

• At x = 1 and y = 1/p for 0 < p < 1, the Tutte polynomial specializes to yield the reliability of G,
REL(G, p) = (1− p)n−1p|E(G)|−n+1TG(1, 1/(1− p)).

• Along the hyperbolas (x − 1)(y − 1) = s for any positive integer s, the Tutte polynomial specializes to
the partition function of the s-state Potts model of statistical mechanics.

The reader is referred to the survey [5] for more interpretations.

Our goal in this section is to prove the following theorem.
Theorem 5.1. For every point (x, y) in the quarter-plane x ≥ 1, y > 1, there exists an efficient randomized
algorithm that given a connected graph G and performance parameters δ1, δ2 ≥ 1, outputs a backbone G′ of
G that satisfies the following two requirements with probability 1−O(n−δ1):
(1) |E (G′)| = O

(
n log(n)

(
δ1 + δ2

1−1/y

))
; and

(2) the evaluations of TG(·, ·) and TG′(·, ·) at (x, y) satisfy

TG(x, y) ·
(

1−O
(
n−δ2

))
≤ y|E(G)|−|E(G′)| · TG′(x, y) ≤ TG(x, y) ·

(
1 +O

(
n−δ2

))
.

It is important to point out that the role of the y|E(G)|−|E(G′)| normalizing factor in part (2) of Theorem 5.1
is to compensate for the fact that the number of edges in the backbone G′ is smaller than that of the original
graph G. This can not be avoided since, in general, the more edges a graph has, the larger value its Tutte
polynomial evaluates to at points (x, y) in the quarter-plane x ≥ 1, y > 1. This is best demonstrated at point
(x = 2, y = 2), where the Tutte polynomial merely counts the number of edge subsets, i.e., TG(2, 2) = 2|E(G)|.
The key point here is that this normalizing factor depends only on the number of edges in G and G′ and not on
the topologies of these graphs. In particular, since y|E(G)|−|E(G′)| can obviously be calculated in polynomial
time, the problem of approximating the Tutte polynomial of graphs in the quarter-plane x ≥ 1, y > 1 (which is
still open to the most part) reduces to the case of graphs with O(n log n) edges.

Note first that along the ray x = 1, y > 1, the Tutte polynomial of G specializes to the reliability of G
following the identity

REL(G, p) = (1− p)n−1p|E(G)|−n+1TG(1, 1/p) .

Therefore, when x = 1, Theorem 5.1 follows directly from Theorem 3.1. Assume hereafter that x > 1.

Fix q = 1− 1/y. The construction of G′ is identical to that described in Sect. 3.1 when setting p = 1− q.
In Sect. 3.1 we argued that with very high probability, |E (G′)| = O(nρ), which implies requirement (1) of
Theorem 5.1 by the choice of ρ. Our goal in the remainder of this section is to prove that requirement (2) holds
with probability 1−O(n−δ1).
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The authors of [1] observe that in the quarter-plane x > 1, y > 1, the Tutte polynomial of a connected
graph G with n vertices and m edges can be expressed as

TG(x, y) =
ym

(x− 1)(y − 1)n
E
[
zK(Gq)

]
,

where z = (x− 1)(y − 1). Theorem 5.1 will be established by showing that E[zK(Gq)] ≈ E[zK(G′q)].

Let G(U1), . . . , G(Ur) be the ρ-strong components of G and Let EX ⊆ E (G) be the set of all edges exter-
nal to {U1, . . . , Ur}. Consider the collectionH of all spanning subgraphs H of G such that
(1) EX ⊆ E (H); and
(2) H(Ui) is (ρ/2)-connected for every 1 ≤ i ≤ r.
By definition, G itself is in H. Recall that G′ contains all edges whose strength in G is smaller than ρ. Eq. (1)
implies that ρ ≥ 12(δ1 + 2) lnn, thus we can follow the line of arguments used in Sect. 3.1 and apply Corol-
lary 3.3 to G(U1), . . . , G(Ur) to conclude that with probability 1 − O(n−δ1), G′ is also in H, where the
probability is taken with respect to the random choices of Algorithm SRGB. Our analysis relies on showing
that E[zK(Hq)] is approximately the same for all graphs H ∈ H.

Consider an arbitrary graph H ∈ H. Partition the edges of H into E (H) = EI ∪ EX , where EI =⋃r
i=1 E (H) ∩ (Ui × Ui) and EX = E (H)− EI . We express E[zK(Hq)] as

E
[
zK(Hq)

]
=
∑
F⊆EX

E
[
zK(Hq) | EqX = F

]
· P
(
EqX = F

)
and establish Theorem 5.1 by proving that

E
[
zK(Hq) | EqX = F

]
= zKF

(
1±O

(
n−δ2

))
for every F ⊆ EX , where KF = K(V (H), EI ∪F ) denotes the number of connected components in the graph
induced on H by the edges in EI ∪ F .

Assume first that 0 < z ≤ 1 and fix some edge subset F ⊆ EX . By Eq. (1), qρ/2 ≥ 12(δ2 + 2) lnn,
thus an application of Corollary 3.3 to H(U1), . . . ,H(Ur) implies that with probability 1−O(n−δ2), all these
components remain connected, where the probability is taken with respect to the experiment Hq. Therefore,

zKF
(

1−O
(
n−δ2

))
≤ E

[
zK(Hq) | EqX = F

]
≤ zKF

which establishes the assertion.

Now, assume that z > 1 and fix some edge subset F ⊆ EX . Let Γ = (V (H), EqI ∪F ) be the random graph
obtained fromH by taking the edges in F and selecting each edge e ∈ EI independently with probability q. Let
HI = (V (H), EI) be the graph induced on H by the edges in EI and let κ = K(Hq

I ) −K(HI) be a random
variable that takes on the number of connected components “added” to HI due to the experiment Hq

I . We have

zKF ≤ E
[
zK(Hq) | EqX = F

]
=
∑
j≥0

P (K(Γ) = KF + j) · zKF+j

= zKF ·
∑
j≥0

P (K(Γ) = KF + j) · zj ≤ zKF ·
∑
j≥0

P (K(Γ) ≥ KF + j) · zj

≤ zKF ·
∑
j≥0

P (κ ≥ j) · zj = zKF

1 +
∑
j≥1

P (κ ≥ j) · zj
 ,
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where the last inequality follows from the definition of κ as the event K(Γ) ≥ KF + j cannot occur unless
κ ≥ j. It remains to show that

∑
j≥1 P(κ ≥ j) · zj = O(n−δ2). The following theorem is established in [10].

Theorem 5.2 ([10]). Let G be a connected n-vertex graph and let c be the size of a minimum cut in G. Fix
some reals d > 1 and q ∈ [0, 1] and integer t ≥ 2. If c ≥ (d+ 2) log1/(1−q) n, then P(K(Gq) ≥ t) < n−dt/2.

Theorem 5.2 can be extended to yield the following corollary by following the same “black-box” type of
argument employed in the proof of Corollary 3.3.
Corollary 5.3. Consider some r disjoint graphs G1, . . . , Gr. Let ni = |V (Gi)| for every 1 ≤ i ≤ r and let
n =

∑r
i=1 ni. Let ci be the size of a minimum cut in Gi for i = 1, . . . , r. Set G̃ = (

⋃r
i=1 V (Gi),

⋃r
i=1 E (Gi)).

Fix some reals d > 1 and q ∈ [0, 1] and integer t ≥ 2. If min1≤i≤r ci ≥ (d+ 2) log1/(1−q) n, then P(K(G̃q) ≥
r + t− 1) < n−dt/2.

Recall that we wish to show that
∑

j≥1 P(κ ≥ j)·zj = O(n−δ2). Eq. (1) yields ρ/2 ≥ 12(δ2+2) ln(n)/q >

(δ2 + 2) log1/(1−q) n, so we can use Corollary 5.3 to deduce that P(κ ≥ j) < n−δ2(j+1)/2. Therefore,∑
j≥1

P(κ ≥ j) · zj <
∑
j≥1

n−δ2(j+1)/2 · zj = z−1 ·
∑
j≥2

(
zn−δ2/2

)j
= z−1

(
zn−δ2/2

)2
·
∑
j≥0

(
zn−δ2/2

)j
≤ 2zn−δ2 ,

where the last inequality follows by assuming that n is sufficiently large so that zn−δ2/2 ≤ 1/2. This completes
the proof of Theorem 5.1.
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