
eQuus: A Provably Robust and Locality-Aware Peer-to-Peer System

Thomas Locher, Stefan Schmid, Roger Wattenhofer
{lochert, schmiste, wattenhofer}@tik.ee.ethz.ch

Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 8092 Zurich, Switzerland

Abstract

Peer-to-peer systems (p2p) are highly dynamic in nature.
They may consist of millions of peers joining only for a lim-
ited period of time, resulting in hundreds of join and leave
events per second. In this paper we introduce eQuus, a novel
distributed hash table (DHT) suitable for highly dynamic en-
vironments. eQuus guarantees that lookups are always fast—
in terms of both the delay and the total number of routing
hops—, although peers may join and leave the network at
any time and concurrently.

1 Introduction

Much research in the last few years has been devoted to
the development of efficient, structured peer-to-peer network
overlays,and a plethora of peer-to-peer (p2p) systems [8, 11,
13, 16, 18] has been proposed. All these systems belong to
the class of distributed hash tables (DHT). A DHT is a de-
centralized and distributed system that partitions an ID space
among all participating peers, which are responsible for all
keys that lie in their respective fraction of the ID space. The
resulting structure is referred to as an overlay network, a com-
mon term for a network built on top of an underlying net-
work. In a DHT, looking up the peer that is responsible for
any key can be done efficiently, typically requiring O(log n)
hops, where n denotes the current number of peers in the sys-
tem. Practically all of the proposed DHTs further guarantee
small routing tables at each participating peer and also a good
load balancing among all peers.

Unfortunately, most proposed peer-to-peer architectures
only maintain these properties in static environments. It has
been pointed out [15] that p2p systems are usually highly dy-
namic in the sense that peers join and leave the system fre-
quently and concurrently. Therefore, the performance—and
success!—of a peer-to-peer system in practice crucially de-
pends on the system’s capability to handle churn1.

In this paper, we present a novel DHT, called eQuus,
which is specifically designed to cope with high dynamics
and failures. eQuus provably maintains properties such as a
low peer degree and lookup operations in O(log n) hops in
the presence of highly transient peers. In particular, unlike
other systems, our system does not require a large message
overhead in order to adapt itself quickly to changes, detect-
ing and compensating both random and correlated failures
efficiently. Finally, a redundancy mechanism is employed to

1In p2p lingo, the fast and permanent joining and leaving of peers is
called churn.

minimize the probability of data loss. Note that, in eQuus,
only indexing information is stored. In the remainder of this
paper, the terms “data” and “data item” always refer to the
index data stored at each node2.

Besides the optimization of the classic p2p criteria de-
scribed so far under churn (peer degree, network diameter,
etc.), an important design goal of eQuus is locality aware-
ness. The locality awareness criterion is somehow comple-
mentary to the network diameter (expressed in the number
of hops), and captures the latency of a lookup operation: If
in each hop during the lookup operation, a packet is sent be-
tween geographically distant peers, the total latency is large.
By means of a smart neighbor selection policy, eQuus’ rout-
ing scheme guarantees that the distance traveled by a packet
in the network is not much larger than the shortest distance
between the source and the destination peer. As a result, ex-
cellent response times for the lookup operations are achieved.

As in many existing systems, the nodes in eQuus are ar-
ranged in a hypercubic topology. However, groups of nodes
that are close to each other according to the chosen proximity
metric form the vertices of a partial hypercube. Within such
a group, all nodes share the same node ID and all nodes know
about each other3. Since the nodes in each group form a com-
plete graph, these groups are denoted cliques (cf Fig. 1).

In addition to the links to all other clique members, i.e.
nodes that belong to the same clique, each node has links
to nodes in other cliques. These additional links ensure that
the entire system is connected and that paths from any node
to another node are short. Data items are replicated among
all nodes of a particular clique thereby introducing a natural
form of redundancy. Since these nodes are geographically
close to each other (in terms of latency), consistency can be
maintained efficiently. What is more, this approach reduces
the communication overhead in the network in general, since
nodes joining and leaving cliques only trigger communica-
tion among the nodes in the same clique; all other nodes in
the system are not affected. Changes in the routing tables
are only necessary if entire cliques appear or disappear, due
to the arrival or departure of a large number of nodes. This
entails that the dynamics of the network can be controlled
better, for the life time of cliques is much longer than the life
time of individual nodes.

Throughout this paper, we assume that all nodes are uni-

2Throughout this paper, the terms node and peer are used interchange-
ably.

3We will say that “node v knows about w” or alternatively “there is a
link from node v to w,” if node v stores the address of node w in its routing
table.

Figure 1. An example network consisting of 5
cliques is shown. Nodes that are close-by be-
long to the same clique and share the same ID.
All nodes within the same clique are responsi-
ble for the same set of data items.

formly distributed in a two dimensional Euclidean space.
While this assumption is clearly not an ideal approximation
of the node distribution in large networks such as the Internet,
it allows for a simple formal analysis of some of the system’s
properties. Moreover, we believe that our results indicate that
eQuus also performs well in any real network.

The rest of the paper is organized as follows. In Section 2,
related work in this field is summarized. The design of the
entire DHT is described in detail in Section 3. The ability
of eQuus to cope with random failures and highly dynamic
networks is treated in Section 4. The results of the simula-
tions that have been run to show the good locality properties
as well as the theoretical results are presented in Section 5,
and Section 6 concludes.

2 Related Work

Subsequent to the seminal work of Plaxton et al. [10],
many p2p systems have been developed, e.g. [8, 11, 16, 18].
All of these systems are scalable and provide fast lookups
while each individual peer needs to store only a small amount
of information about other peers in the network. In order to
effectively cope with churn, any p2p system further has to
provide specific mechanisms ensuring a high degree of fault-
tolerance. While some solutions have been analyzed in this
respect, it seems that only a few systems inherently incorpo-
rate fault-tolerance in the sense that robustness was a clear
design goal from the beginning. We believe that this stands
in contrast to the high dynamics observed in today’s p2p net-
works (e.g. [15]).

In the following, we first review relevant related work on
fault-tolerance. Fiat et al. [4, 14] have studied peer failures
occurring in a worst-case fashion, for example caused by
an adversary or a p2p worm exploiting the overlay network
structure. The authors introduce a system where, with high
probability, (1 − ε)-fractions of peers and data survive the
adversarial removal of up to half of all nodes. However, the
whole network has to be rebuilt from scratch if the total num-

ber of peers changes by a constant factor. Also Li et al. [7]
analyze their system from a worst-case perspective. Using
rigorous, formal proofs they show that their system tolerates
concurrent, ongoing and asynchronous joins and leaves of
peers. Unfortunately, leaving peers are not allowed to crash;
instead, they have to execute an appropriate exit protocol.
A more practical study by Rhea et al. [12] compares DHTs
by simulation and shows that several structured p2p overlays
cannot handle churn rates as high as those observed in today’s
p2p networks.

eQuus shares the most commonalities with the work by
Kuhn et al. [6]. Similarly to eQuus, [6] achieves a better ro-
bustness by having more than one peer responsible for each
ID, as opposed to assigning a unique ID to each node. In con-
trast to our work, their system has higher maintenance costs
as it requires a background process estimating the current net-
work size in order to balance the ID assignment through a
global operation. On the contrary, eQuus reacts to imbal-
ances using local merges or splits of adjacent IDs only. An
additional advantage of eQuus is that it has a low expected
stretch, as described in a later section.

In order to evaluate the performance of lookup operations
in p2p systems, usually only the total number of hops is con-
sidered. In systems such as [6] or [16], the neighbors of
a given peer are determined by applying hash functions to
the peer’s IP address and potentially other parameters. Thus,
the resulting structure is completely independent of the ac-
tual geographic peer locations. It is therefore possible that,
with each hop, a node on a different continent is contacted,
even if the target node is close-by, which is clearly not de-
sirable. Furthermore, when data items are replicated among
nodes with numerically close identifiers, constantly ensuring
that the data items are stored on the correct nodes is poten-
tially a costly operation, since these nodes might be very far
away.

The approach taken by Pastry [13] when performing a
lookup is to choose the peer that is the geographically clos-
est among a possible set of neighbors. According to their
simulations, Pastry achieves a low stretch of around 1.3 to
1.4. This is a heuristic approach, and there is no guarantee on
the worst-case stretch. Using results from name-independent
routing (e.g. [9]), Tulip [1] and LAND [2] achieve provably
low stretches. Unfortunately, however, these systems lack the
robustness property.

The main contribution of eQuus is to unify well-known
and novel techniques, resulting in an efficient, structured
overlay that comprises both provable fault-tolerance and
provable locality-awareness. As an additional feature, our
system strives to achieve these goals with a minimal main-
tenance overhead by carefully specifying the granularity at
which synchronization is required between nodes that share
data.

3 System Overview

In eQuus, groups of nodes that are close-by form cliques.
Within such a clique, each node has the same ID, which is a
bit string of a predefined length d. The length d of the IDs is
referred to as the dimension of the network. Every clique has
its own unique ID. Since these nodes share the same iden-
tifier, they are also responsible for the same fraction of the

ID space. This has two interesting properties. First of all,
these nodes ensure a certain degree of redundancy that is re-
quired lest data is lost due to the sudden departure or failure
of a particular node. Second, if those nodes storing the same
information are close to each other, establishing consistency
among these nodes can be done quickly due to the short dis-
tance between those nodes.

Since the degree of each node should not exceedO(log n),
the number of nodes in a clique has to be limited. Once the
number of nodes undershoots a certain threshold, we are con-
fronted with a higher probability of data loss. This observa-
tion entails that, once the number of nodes reaches a spe-
cific upper bound, this clique has to be split into two cliques.
Likewise, if the number of nodes reaches a certain lower
bound, the remaining nodes in the clique have to join another
clique, thus the two cliques have to merge. Hence it follows
that, apart from the standard operations, such as JOIN and
LOOKUP, two additional operations, namely MERGE and
SPLIT, are essential in eQuus.

We will first present the link structure that guarantees con-
nectivity and fast lookups. Subsequently, the JOIN proce-
dure is specified, followed by a detailed description of the
MERGE and SPLIT procedure. In the last part of this sec-
tion, the LOOKUP procedure is presented.

Note that there is no need for a specific LEAVE protocol.
After a node could not be contacted by any clique member
for a certain period of time, it is simply excluded from the
clique and thus from the system.

3.1 Link Structure

A certain amount of links between the nodes in the net-
work has to be maintained and updated periodically, in order
to establish a structured network in which lookups are fast,
the permanent joining and leaving of nodes is handled effi-
ciently and a high degree of resilience to random as well as
correlated failures is guaranteed.

As mentioned in the previous section, each node v knows
about all other members of its clique c. Apart from these
links, each node v has links to nodes in other cliques in order
to guarantee connectivity and fast lookups in the network.

The routing mechanism is basically a generalized form of
routing on hypercubes, where b bits are corrected in each hop.
The number of bits b that can be corrected in a single hop is
denoted the base of the system. This procedure is very sim-
ilar to the one described for instance in [13], the main dif-
ference being that in eQuus, each entry represents an entire
clique and not a single node. Let N denote the total number
of cliques in the system. In order to ensure permanent con-
nectivity, a constant number of k nodes are known in each of
the approximately (2b − 1)�log2b N� cliques in the routing
table, thus in total k(2b − 1)�log2b N� links are stored in the
routing table, for a given base b. The average lookup path re-
quires about �log2b n� hops, as we will show in Section 3.4.
It is checked periodically if the cliques in the routing table are
still alive. Every time a node in a specific clique is contacted,
it returns a fresh, random list of k live nodes in the corre-
sponding clique and this list is stored, replacing the old list in
the routing table. In case all k nodes of a certain clique stored
in the routing table have failed since the last request, which is
an improbable event, another node in the own clique can be
contacted in order to get a fresh list of nodes in this clique.

Because all nodes in a clique store links to the same cliques,
however they do not share the same subset of nodes in this
clique, it is very likely that there is another clique member
storing the address of a node in the corresponding clique that
is still alive.

Additional k links lead to nodes in the clique that is the
predecessor in the ID space and another k links lead to nodes
in the successor clique. Thus, the total number of links is
bounded by U + k(2b − 1)�log2b N�+ 2k = O(log n) links,
where U denotes the upper bound on the number of nodes
in a clique. Knowing both the predecessor clique and the
successor clique is necessary for the MERGE and also the
SPLIT operation. We say that a clique c, or any node in
clique c, is responsible for a data item, if its key is in the range
[c.id, c.successor.id), where c.id and c.successor.id denote
the ID of the clique c and the ID of the successor clique of
c, respectively. In the following, let Nv denote the neighbor-
hood of node v consisting of all cliques in its routing table.

3.2 JOIN Procedure

In order to ensure that all nodes belonging to the same
clique are close to each other and also that good locality prop-
erties such as a low stretch are maintained, a newly arriving
node must join the closest clique in the system.

How a given node determines the closest clique is straight-
forward. The overall procedure is similar to the mechanism
described in [17]. In the first step, a node contacts an arbi-
trary bootstrap node. The contacted node returns the address
of one node of each clique in its routing table. The new node
then contacts all those nodes and determines the closest one,
e.g. by sending several ping messages and waiting for the
replies. Subsequently, a JOIN request is sent to the closest
node which again returns addresses of cliques in its routing
table. This step is repeated until the closest clique has been
found, which will happen in O(log n) rounds. After sending
a JOIN message to a node in the closest clique, this contacted
node will inform all the other nodes in the clique about the
arrival of a new node and give the new node all the infor-
mation it needs to become a fully integrated clique member,
which includes the ID of the clique, the addresses of all other
clique members, the routing table and also the necessary in-
formation about all data items whose key lies in this clique’s
fraction of the ID space. The routing table can be copied
from any other clique member, since they all share links to
the same cliques. The total message complexity is obviously
O(log2 n), since O(log n) messages have to be sent in each
of the O(log n) rounds.

The first clique in the system bears the ID 0d. As soon
as it contains U nodes, it is split into two cliques, each ob-
taining half of the nodes. One clique keeps the ID 0d while
the other clique gets the new ID 10d−1. The new clique with
ID 10d−1 is the predecessor clique and the successor clique
of the clique with ID 0d and vice versa. How cliques are
split is treated in greater detail in the next section. The nodes
with ID 0d are then responsible for all data items whose key
is in the range [0d, 01d−1] and the nodes with ID 10d−1 are
responsible for the keys in the range [10d−1, 1d] in the ID
space. A newly arriving node always joins the closest clique.
This clique is split again once its size reaches U and the new
clique gets the ID in the middle between the ID of the current

Figure 2. This figure visualizes the differ-
ent prefix areas (nodes sharing a 5-bit pre-
fix have the same color) after the joining of
10,000 nodes. We have additionally connected
the prefix areas in increasing binary order,
demonstrating that the prefix areas of the
same order are indeed close to each other
(“space filling curve”).

clique and the successor clique etc.

Nodes within a clique have to communicate regularly in
order to keep their routing tables fairly consistent. This repli-
cation does not incur a large overhead for several reasons.
As mentioned before, nodes need to have links to the same
cliques, but not to the same set of nodes within those cliques,
thus no communication is required until a clique in the rout-
ing table is split or merged. Likewise, the index tables have
to be consistent, but the information about which nodes in
the network actually possess a copy of the indexed data items
only has to be loosely synchronized, as it is sufficient if each
node knows a subset of these nodes. The information about
newly arriving and leaving nodes can be broadcast quickly
within the clique, thus it is also fairly cheap to maintain
consensus about the current set of nodes belonging to the
clique. The only resource- and time-consuming operations
are MERGE and SPLIT, which are rather infrequent, as we
will show in Section 4.2. Thus, a high degree of redundancy
is introduced at the cost of a modest message and space over-
head. Furthermore, since all members of a clique are likely
to be close to each other according to the chosen proximity
metric and since links to cliques far away have to be checked
only occasionally, a high percentage of the generated traffic
is over short distances.

Fig. 2 depicts an example network after 10,000 joins. In
this figure, the areas are highlighted where peers of certain
prefixes (up to 5 bits) are located. Additionally, we have
manually connected the areas of (binary) increasing prefixes.
This “space filling curve” indicates that peers of prefixes of
the same order are indeed close to each other.

3.3 MERGE and SPLIT Procedure

In case a node joins or leaves a clique, it has to be veri-
fied that the number of nodes in the clique is still in the range
[L,U], where L and U denote the lower and upper bound on
the number of nodes in a clique, respectively. It is important
to set bothL and U to reasonable values, such that enough re-
dundancy is introduced and data loss can be avoided, but the
routing tables do not become too large. As the synchroniza-
tion between clique members does not impose a substantial
burden on the system, it is expedient to set L and U to values
that are at least logarithmic in the number of nodes. Thus, we
can choose constants l1, l2 and u1, u2 such that L := l1d+ l2
and U := u1d+u2, since d = Ω(log n). For simplicity, in the
remainder of the paper, we set L := d

2 + 1 and U := 2d − 1.
When setting the constants to other values of the same mag-
nitude, all theorems are still correct up to small constant fac-
tors.

Once the size of a clique reaches L − 1, it has to merge
with the preceding clique in the ID space. For that purpose,
the preceding clique is informed and the two cliques are com-
bined into one, by adjusting the predecessor of the merging
clique and the successor of the preceding clique. Further-
more, all nodes in the merging clique have to adapt the ID
and the routing table from the members of their new clique.
Before merging, both cliques were responsible for a particu-
lar fraction of the ID space. The new clique consisting of both
cliques is then responsible for the combination of the two ad-
jacent fractions of the ID space. It is therefore necessary to
transfer the corresponding information between members of
the two cliques. In addition, the successor clique of the merg-
ing node has to be informed about the topology change.

In case the size of a clique exceeds U , the SPLIT proce-
dure is initiated in which half of the nodes form a new clique.
The nodes in the old and the newly created clique are then re-
sponsible for approximately half of the data items they were
responsible before. In order to ensure a certain locality, the
nodes closer to the preceding clique in the ID space keep their
ID while the others get the new, higher ID, which is the ID
between the current ID and the ID of the successor clique.
Nodes store information about the average delay to nodes in
the predecessor clique for this purpose. The U

2 nodes with
the lowest average distance to nodes in the predecessor clique
keep their ID. However, if there is only one clique in the sys-
tem, the node with the highest average distance to the other
nodes is determined. This node and the U

2 − 1 nodes clos-
est to itself keep the old ID and the remaining nodes form
the new clique. Note that no data has to be copied between
members of the two newly created cliques. After the splitting
procedure is completed, both cliques can simply remove all
data items associated with the fraction of the ID space that
they are no longer responsible for.

It is possible that after the merging of two cliques, they
are split again shortly thereafter. This is the case if the two
cliques combined contain more than U nodes. By merging
two cliques and splitting them again, as opposed to merely
moving nodes from the clique with fewer nodes to the larger
clique, the ID space is continuously partitioned locally in an
optimal manner, because the new clique always gets the ID
between its old ID and the ID of its successor clique. This
subsequent splitting has to be delayed for a short period of

time, as the new nodes in the overcrowded clique first have
to gather information about the distance to their new prede-
cessor clique. This short delay is not crucial, as the MERGE
and SPLIT operations have to be performed rarely. Even if
by chance several cliques collapsed almost instantly, split-
ting the resulting clique would not be particularly harder than
splitting any other clique and would merely entail more net-
work traffic at the predecessor clique until the large clique is
split.

The nodes in the new clique have to build a new routing
table; however, they can very likely keep the higher entries
in the old table. It is easy to see that the length of the prefix
shared with the old ID determines the number of routing table
entries that can be kept. While many entries can be kept im-
mediately after the splitting, it is appropriate to update them
continuously according to the following rule. The remain-
der of the ID following a given prefix is called suffix. For
any relevant prefix, the clique whose ID has the longest suf-
fix shared with the own ID following this specific prefix has
to be stored in the routing table. When refreshing the rout-
ing table entries, the contacted nodes verify whether there is
a clique in its routing table whose ID has the same prefix, but
whose suffix is longer. If there is such a clique, this informa-
tion is returned and the corresponding routing table entry is
replaced in this clique. The goal of this scheme is to bound
the number of cliques storing links to any particular clique.
For example, the clique whose ID starts with 1011 prefers the
clique whose ID starts with 0010 to a clique whose ID has the
prefix 0000 for the prefix 00.

As far as the entries that cannot be kept are concerned, the
following strategy allows for a quick replenishment. For each
invalid entry in the routing table, a node in the corresponding
clique is asked for a suitable replacement, i.e. a clique whose
ID has the desired prefix for this entry and the new ID. The
contacted node is much closer to the desired clique and can
thus very likely answer this query. If it cannot, it can forward
the request to an even closer clique etc., until a suitable clique
is found. This operation is basically a regular lookup, which
will be treated next.

3.4 LOOKUP Procedure

The main operation that the network has to be able to per-
form is lookup a clique, given a specific key s ∈ {0, 1}d.
We define the metric δ : {0, 1}d × {0, 1}d → {0, . . . , d} as
follows. For any bit two strings s, s′ of length d, δ(s, s′) =
i ⇐⇒ s[d, i + 1] = s′[d, i + 1] ∧ s[i] 	= s′[i], where
s[i, j], i > j, denotes the substring of s in the range [i, j].
Thus, δ(s, s′) is the position of the highest order bit at which
the two bit strings s and s′ differ. This metric allows for
a simple specification of the lookup protocol. It is further
useful when it comes to analyzing the locality properties of
eQuus.

The following simple algorithm performs this task inde-
pendent of the chosen base, see Algorithm 1. The algorithm
is similar to the lookup procedure described in [13]. The
main difference is that our algorithm exploits the knowledge
of the predecessor and the successor clique. It is first checked
if node v in clique c is responsible for the key s, by testing
if s lies between its ID and the ID of the successor clique. If
this is not the case, it will forward the request to a node in
a clique with a longer matching prefix. If there is no such

node in the routing table, two cases have to be considered.
If s > v.id, the request is forwarded to the clique with the
largest ID in Nv , subject to the constraint that the length of
the matching prefix is not reduced. Otherwise, i.e. v.id > s,
the request is simply forwarded to a node in the predecessor
clique.

Algorithm 1 LOOKUP (Code for node v in clique c)

1: {u started LOOKUP request for key s}
2: if s ∈ [c.id, c.successor.id) then
3: send(LOOKUP DONE,c.id) to u;
4: else
5: c̃ = argminc′∈Nv δ(c′.id, s);
6: if not δ(c̃.id, s) < δ(c.id, s) then
7: if s > c.id then
8: c̃ = argmaxc′∈Nv :δ(c′.id,s)=δ(c.id,s) c′.id;
9: else

10: c̃ = c.predecessor;
11: end if
12: end if
13: w =getNodeFromClique(c̃);
14: send(LOOKUP,u, s) to w;
15: end if

The following theorems summarize the properties of the
LOOKUP algorithm. In this analysis, it is assumed that all
routing tables are accurate, i.e. each node knows about all
other cliques that are relevant for its routing table. Note
that this does not mean that all lists of k nodes for each
clique must be up to date. Merely the information about the
existence of cliques must be accurate and at least one of the
k nodes of each clique stored in the routing table must be
still alive.

Theorem 3.1 The LOOKUP algorithm is correct, i.e. it
always finds the clique responsible for any key, if the routing
table entries are accurate.

PROOF. Let the start node be v in clique c. It tries to find
the clique responsible for the key s. If the key is in its own
fraction of the ID space, i.e. s ∈ [c.id, c.successor.id), then
the LOOKUP procedure terminates correctly. Otherwise, it
checks its routing table for a clique whose ID has a longer
matching prefix. If such a clique exists, then the request will
be forwarded to this clique. The new clique is closer to the
responsible clique, since the matching prefix is at least one
bit longer.

If there is no such clique in Nv , two cases have to be dis-
tinguished. If s > c.id, then we have to forward the re-
quest to a clique with a larger ID. Let i = δ(c.id, s), thus
c.id[i] = 0, s[i] = 1 and c.id[j] = s[j] for all i < j ≤ d.
We assume that routing tables are accurate, thus there is no
clique c̃ in the network whose ID is larger than the ID of c,
δ(c̃, s) = i and c̃.id[i] = 1, otherwise v would know about
it. Thus, it is best to forward the request to the clique with
the largest ID among all cliques c̃ in Nv for which it holds
that δ(c̃, s) = i. There is always at least one clique satisfying
this constraint. Assuming no such clique exists in the routing
table, then it follows that δ(c.successor.id, s) > i and there-
fore c.successor.id > s, in contradiction to the assumption
that s /∈ [c.id, c.successor.id).

Similarly, if c.id > s, it holds that c.id[i] = 1 and s[i] =
0. If there is no clique c̃ such that δ(c̃.id, s) < δ(c.id, s),
then it holds for all cliques with a lower ID than c that their
identifiers are lower than s. Naturally, this also holds for the
predecessor of c and thus the lookup terminates at the prede-
cessor, because c.predecessor.id < s < c.id.

Therefore, requests are routed closer and closer to the des-
tination in every step, which concludes the proof. �

It is also essential to bound the number of hops required
to reach the target clique. The following theorem states that,
w.h.p.4, the number of hops does not exceed �log2b n� plus a
small constant.

Theorem 3.2 If all n nodes are uniformly distributed,
then a LOOKUP terminates successfully after at most
�log2b n� + o(1) hops w.h.p., if the routing table entries are
accurate.

PROOF. In the first step, we will show that the number of
hops is upper bounded by the number of bits that are needed
to uniquely identify all cliques.

Let node v in clique c be the node initiating the LOOKUP
call for key s and let δ(c.id, s) = i. Note that if there is no
clique c̃ such that δ(c̃.id, s) < δ(c.id, s), we cannot correct
the ith bit, thus we cannot argue that the distance measured
with the metric δ decreases in each step. However, we can
argue that the number of bits that still have to be considered
is decreasing with each hop. Apparently, if there is a clique
c̃ such that δ(c̃.id, s) < δ(c.id, s), forwarding the request to
this clique will fix at least the ith bit and all bits in the range
[i, d] do not have to be considered anymore, thus the search
space will be reduced by at least one bit. If we are in the
situation that there is no such clique, then we know that the
ith bit does no longer have to be corrected, since there is no
clique that could fix it. Hence, the search space is reduced by
at least one bit in each step.

Similarly, for general bases b, each step reduces the search
space by at least b bits, if all cliques in the routing table are
still alive.

Now we will show that �log n + 4� bits suffice with
high probability to uniquely identify all cliques. Let
the ball Bv(α) denote the set of nodes around node v
at a distance of at most α. For all x ∈ [0, 1], it
holds that p(|Bv(xΔ)| ≥ 2d) =

∑n
i=2d

(
n
i

)
(x2π)i(1 −

x2π)n−i <
(

n
2d

)
(x2π)2d <

(
ne
2d

)2d (x2π)2d, where Δ de-
notes the diameter of the network. Let the random vari-
able X denote the event that there is a node v such that

|Bv(xΔ)| ≥ 2d. Setting x :=
√

2(d−lnn)
neπ , it follows that

p(X) ≤ ∑
v∈V p(|Bv(xΔ)| ≥ 2d) <

(
nex2π

2d

)2d

n =
(

ne2(d−ln n)π
neπ2d

)2d

n =
(
1 − 2 ln n

2d

)2d
n < e−2 ln nn < 1

n .

Thus, with high probability, there are less than 2d nodes at
a distance of at most xΔ for each node. All cliques and con-
sequently all IDs are spread in a two dimensional Euclidean
space. Whenever a clique splits into two, both cliques oc-
cupy half of the original space and the diameter of each of

4By “with high probability,” or short “w.h.p.,” we mean with probability
at least 1 − 1

n
, where n is the number of nodes in the system.

Figure 3. The average number of hops de-
pending on the number of nodes in the sys-
tem and the chosen base b is displayed. For
each number of nodes n and for each base
b, 10,000 lookups initiated at a random node
and searching for a random key have been per-
formed. The dimension d of the network is 64
in each run.

those two subspaces is only a factor of 1√
2

of the original
diameter in expectation. It has to be determined how often
the Euclidean space must be partitioned until the diameter
of each subspace is at most xΔ. If this is the case, there
is no subspace that contains 2d or more nodes and thus no
subspace has to be divided any further, with high probabil-
ity. The Euclidean space must be partitioned i times so that

1√
2

i Δ ≤ xΔ. This holds if i := log n+4, and thus log n+4
bits suffice, since each splitting costs one bit.

Hence, with high probability, the number of hops is at
most � log n+4

b �, for a specific base b. �
While the number of hops is already small with high prob-

ability, even fewer hops are required on average. Accord-
ing to simulations, the average number of hops is lower than
�log2b n�, if nodes are uniformly distributed. Fig. 3 depicts
the average number of hops required in a network of dimen-
sion d = 64, consisting of up to one million nodes. 10,000
lookups initiated at a random node and searching for a ran-
dom key s have been performed for base b = 1, 2, and 4.
As long as the number of nodes is lower than 2d = 128,
the entire network is a complete graph in which each node is
responsible for the entire ID space, therefore the number of
hops is always 0. The main reason why the average number
of hops is less than �log2b n� is because there are only Θ(n

d)
cliques.

It is worth noting that the distribution of the number of
hops required varies remarkably, depending on the base b.
While the distribution resembles a normal distribution for
b = 1, the distribution for b = 4 is one-sided and a large
fraction of all lookups require about the average number of
hops.

Since each node has k links to all cliques in its routing
table, it is very likely—this probability depends on the choice
of k—that the lookup will reach the destination, because the

request can be forwarded to another node, in case one node
on the path does no longer respond.

So far, we have assumed that all routing entries contain
correct information about the state of the network, which is—
even though changes, i.e. MERGE and SPLIT operations can
be performed fast and do not occur often locally—overly op-
timistic.

For example, it is possible that a clique has just been split
and the ith bit could have been corrected directly, had the
node forwarding the request already learnt about it, resulting
in an additional hop. The LOOKUP algorithm, however, is
still correct. More accurate lookups can be achieved by ask-
ing for an update in case the request cannot be forwarded to
a clique that reduces the distance according to the metric δ.
The drawback of this approach is that more messages have to
be exchanged and, as a result, searching takes longer. Since
this situation rarely occurs and the LOOKUP algorithm be-
haves correctly in each scenario, this matter is not further
investigated.

4 Fault Tolerance

Replicating data by creating cliques of nodes that all cover
the same portion of the ID space ensures a certain degree of
robustness by itself. Even in case of a correlated failure of
L−1 nodes, there is at least one node left that can merge with
the previous clique, because each clique consists of more than
L − 1 nodes. Ensuring that no data is ever lost is one of
the main objectives of any fault-tolerant system. In the first
part of this section, we will show that the probability of data
loss is very low, even if communication in the entire network
failed for a relatively long period of time.

Apart from preventing data loss, it is essential to keep up
the network structure, even in the presence of churn. In order
to quantify the resilience of eQuus to churn, it is desirable to
derive bounds on the induced message overhead, depending
on the number of JOIN and LEAVE events and the size of the
network. This is the subject of the second part of this section.

4.1 Communication Failures

Under normal operation, each node refreshes its routing
table by regularly requesting new lists of k live nodes from
each clique stored in its routing table. By performing this
update frequently, the probability that a considerable fraction
of the nodes whose addresses are stored in the routing table
are no longer alive is negligible.

In fact, the probability that any data is lost is even very low
in case all communication ceases for a long period of time.
Let λ(p) be the period in which each node disappears with
probability p. For instance, in a network of dimension d = 64
consisting of one million nodes, the probability that no data
is lost, if no communication occurs in a period of λ(1

2) is
higher than 0.99999. This holds because an entire clique has
to fail before being able to merge and the probability that any
clique fails is less than p

d
2 . The total number of cliques is

lower than 2n
d and thus the probability that no data is lost is

higher than (1 − p
d
2)

2n
d .

If the life time of nodes and the total number of nodes
that will ever participate simultaneously can be estimated, the
probability of data loss will be arbitrarily small by setting the
update frequency to an appropriate value.

4.2 Dealing with Churn

eQuus effectively deals with churn, by reducing the num-
ber of topology changes that affect nodes in different cliques.
Whenever a node joins or leaves the network, communication
is primarily needed between members of the corresponding
clique and no other routing table update is required due to
this event. Changes in the routing tables of various cliques
are only required if a clique either splits or merges with its
predecessor. Hence, in order to evaluate the resistance to
churn, it suffices to show that it takes a large number of join
and leave events globally, before any clique either has to split
or merge.

Let N denote the number of cliques in the network and let
m denote the number of JOIN/LEAVE events. The probabil-
ity that the next event occurs at any given clique is 1

N , accord-
ing to our uniform distribution model. It is essential to esti-
mate the expected maximum number of JOIN and LEAVE
occurring at any clique.

Lemma 4.1 If the network consists of N cliques and m
JOIN/LEAVE events occur, the expected maximum number
of JOIN/LEAVE events on any clique is bounded by O(m

N +
log N).

PROOF. Let the random variable X i
N (m) denote the

number of events occurring at clique i in a network
consisting of N cliques in which m JOIN/LEAVE
events occur. We want to derive a bound for
E[max1≤i≤N X i

N(m)]. It holds that E[2max1≤i≤N Xi
N (m)] ≤

E[
∑N

i=1 2Xi
N (m)] = N · (

∑m
j=0 2j

(
m
j

)
(1

N)j(1 −
1
N)m−j) ≤ N · (1 +

∑m
j=1(

2me
jN)je−

m−j
N) ≤

N · (1 +
∑m

j=1 e−(1− 2me
jN)je−

m−j
N) ≤ N ·

(e
(2e−1)m

N

∑m
j=0 e(1

N −1)j) = O(N2O(m
N)). Hence it follows

that E[max1≤i≤N X i
N(m)] ≤ log(E[2max1≤i≤N Xi

N (m)]) =
O(m

N + log N). �
Now we are in the position to derive a lower bound for

the expected number of global events before any clique has
to either merge or split, depending on the number of nodes
currently in the system.

Theorem 4.1 If all n nodes are uniformly distributed, then
Ω(n) JOIN/LEAVE events are required in expectation before
either a MERGE or a SPLIT operation has to be performed.

PROOF. In expectation, Θ(d) events are required before
any clique has to either merge or split. This holds, since the
expected number of nodes in a clique is Θ(d) and thus Θ(d)
nodes have to either join or leave, independent of the proba-
bilities of those events, before a MERGE or SPLIT operation
has to be performed. By Lemma 4.1, it follows that m =
Ω(Nd − N log N). Since N = Θ(n

d) and d = Ω(log n), it
holds that m = Ω(n − n

d log n + n
d log d) = Ω(n). �

This theorem shows that, in expectation, a large number
of JOIN and LEAVE events is required before any relevant
topology change occurs. Consequently, in large networks,
the permanent joining and leaving can be handled efficiently.
Due to the rare occurrence of those relatively costly opera-
tions, it is simple for the network to update the routing tables
in due time and thus maintain the desired structure.

5 Locality

In the first part of this section, the locality properties
of eQuus are analyzed formally in the uniform distribution
model. The second part presents results of the system in
the same model obtained by simulation. The goal of the for-
mal analysis is to derive upper bounds on the expected total
path lengths and the expected stretch, while the second part
presents results of several simulations run in order to deter-
mine the locality properties in an emulated environment.

5.1 Formal Analysis

Some other DHTs do not consider the problem of having
potentially long lookup paths. In expectation, each hop in-
curs a delay of Δ

2 , where Δ denotes the network diameter,
thus the expected path length of a path consisting of h hops
is h

2 Δ. If h is large, these paths can become very long, al-
though the destination node might be very close to the node
initiating the lookup call. The goal is to guarantee that all
paths are only a small factor longer than the direct paths. Un-
fortunately, our JOIN procedure does not yield a good worst-
case bound on the stretch. In order to estimate the quality of
our mechanisms, it is appropriate to analyze the average case
behavior.

In this section, we assume an Euclidean metric space, a
special case of the well-known doubling (e.g. [3]) and growth
bounded (e.g. [5]) metric spaces. Concretely, we assume that
all nodes lie in a two dimensional plane and have Euclidean
distances to each other, i.e. c(u, v) = ||u − v||2. This as-
sumption is obviously not an optimal approximation for large
networks such as the Internet. However, if the delay is used
as the proximity metric, then our assumption is reasonable,
since there is a correlation between distance and delay [19].

Let Δ(S) denote the diameter of the network consisting
of all nodes in the set S. If node v in clique c performs
a lookup for key s, where δ(c.id, s) = i, only the subset
Bi

v of all nodes u in any clique c̃ for which it holds that
δ(c̃.id, s) ≤ i have to be considered, due to the property of
the LOOKUP procedure that the length of the shared prefix
can only increase with each hop. More formally, let V be the
set of all nodes in the network, then B i

v := {u ∈ V | u ∈
c̃ ∧ δ(c̃.id, s) ≤ i}.

The following lemmas are used in order to establish our
main result. The first lemma states that the expected diameter
of the network consisting of all nodes in B i

v is small if and
only if i is small, i.e. the key s and the ID of clique c that
node v belongs to share a long prefix.

Lemma 5.1 Let node v in clique c be the node initiating the
lookup call for key s. If δ(c.id, s) = i, then it holds that
E[Δ(Bi

v)] ≤ Δ
(
√

2)d−i
.

PROOF. After a clique split into two, the area both cliques
are responsible for is only half of the original area in expecta-
tion. A clique is responsible for a certain area if newly arriv-
ing nodes in this area send a JOIN message to a node in this
clique. Since the area is halved in expectation, it holds that
the diameter is a factor of

√
2 shorter in expectation. There-

fore it holds that E[Δ(Bi−1
v)] = 1√

2
E[Δ(Bi

v)], and due to

the fact that Δ(Bi
v) ≤ Δ for all v ∈ V , the claim follows. �

For the keys are random, any node in B i
v has an equal

chance to be the destination node of the lookup. Due to the
uniform distribution of all nodes, the expected distance to the
destination node is half of Δ(B i

v).

Lemma 5.2 Let v in clique c be the node initiating the
lookup call for key s and let u be the destination node. If
δ(c.id, s) = i, then the expected distance between v and u is
Δ(Bi

v)
2 .

These lemmas suffice to prove the following upper bound
on the expected stretch.

Theorem 5.1 The expected stretch of a lookup call in eQuus

is at most 2
b
2+1

2
b
2 −1

for a particular base b.

PROOF. Let node v in clique c be any node initiating
a lookup call for key s, let u be the destination node of
the lookup and let δ(c.id, s) = i. Lemma 5.2 states that

E[c(v, u) | d(c.id, s) = i] = Δ(Bi
v)

2 . This is true independent
of the base b.

Since b bits are corrected with the first hop to node w in
clique c̃, it holds that δ(c.id, c̃.id) ≤ i − min{b, i} and, ac-

cording to Lemma 5.1, the expected diameter of B δ(c̃.id,s)
w ⊆

Bi
v is bounded by 2− b

2 Δ(Bi
v).

Inductively, the total path length is therefore at most
1

1−2− b
2
Δ(Bi

v). The expected stretch is upper bounded by the

ratio between the expected maximum total path length and
the expected distance to the destination. Hence, it holds that

E[Stretch] ≤
1

1−2
− b

2
Δ(Bi

v)

Δ(Bi
v)

2

= 2
b
2+1

2
b
2 −1

. �
Note that the expected total path length between any two

nodes is at most 2
b
2

2
b
2 −1

Δ in expectation, independent of the

dimension d and the number of hops. Setting b to a moder-
ately large value will incur an expected stretch of around 2.
If b = 4, the expected stretch is already less than 3, which
is already a satisfactory result. In the following section, this
result is supplemented and affirmed by simulation.

5.2 Simulation

Various simulations have been run in order to study the
locality properties of the system. In particular, the expected
stretch has been analyzed. In Fig. 4, the average stretch of
lookups in networks of dimension d = 64 with up to one
million nodes are depicted for the bases b = 1, 2 and 4.

10,000 lookups have been performed for each network
size and base. Obviously, the stretch factor is 1 as long as
each node has links to nodes in all other cliques. The stretch
slowly increases, as the networks grows because more hops
are needed in order to reach a node in the desired clique.
However, the stretch only grows as long as it is below the
constant expected stretch for the given base, a bound that is
seemingly reached at around 1.5 for base b = 4. This is a
much better result than the upper bound of 8

3 on the expected
stretch for b = 4 derived in the previous section.

In the second simulation, the effect of the dimension d
on the stretch has been tested for d = 32, 64 and 128. As

Figure 4. The average stretch depending on
the number of nodes in the system and the
chosen base b is displayed. For each number
of nodes n and for each base b, 10,000 lookups
initiated at a random node and searching for a
random key have been performed. The dimen-
sion d of the network is 64 in each run.

expected, the stretch does not depend on the dimension di-
rectly. Choosing a large dimension will result in a slightly
lower stretch, mainly due to the lower number of cliques in
the network.

The results of our simulations show that the system has
good locality properties, such as a low expected stretch and
a low expected total path length. They further indicate that
the analytical results are conservative, since the simulations
yield better results.

6 Conclusion

Many existing p2p systems have some form of fault-
tolerance or even locality awareness. The main contribu-
tion of eQuus is that it combines existing and novel build-
ing blocks in a way which yields a system of highly desir-
able properties, such as inherently strong resilience to churn,
or low expected stretch. Another strength of eQuus is that
the maintenance overhead is low, although all data items are
replicated among several peers, as synchronization is only
required on cluster level. Furthermore, most communica-
tion triggered by the maintenance protocols is local in nature,
thus maintenance operations can be performed quickly and
not much wide-area traffic is induced.

Spurred by the promising results, some of which have
been presented in this paper, we have started to implement
the eQuus distributed hash table.

Of course, when building applications on top of eQuus,
many challenges orthogonal to the DHT design will arise.
For example, in order to be robust against massive geograph-
ically correlated failures, one could think of replicating data
in two clusters which are located diametrical to each other in
the identifier space (e.g., the second cluster is given by the
bit-inverse identifier of the first cluster).

Acknowledgements

We would like to thank Thomas Moscibroda for many
fruitful discussions and the anonymous reviewers for their
valuable feedback. This research has been supported by the
Swiss National Science Foundation and the Hasler Stiftung.

References

[1] I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Maloo, and
S. Ron. Practical Locality-Awareness for Large Scale Informa-
tion Sharing. In Proc. 4th IPTPS, 2005.

[2] I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch (1
+ ε) Locality-Aware Networks for DHTs. In Proc. 15th SODA,
pages 550–559, 2004.

[3] H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On Hi-
erarchical Routing in Doubling Metrics. In Proc. 17th SODA,
pages 762–771, 2005.

[4] A. Fiat and J. Saia. Censorship Resistant Peer-to-Peer Content
Addressable Networks. In Proc. 13th SODA, 2002.

[5] D. R. Karger and M. Ruhl. Finding Nearest Neighbors in
Growth-Restricted Metrics. In Proc. 34th STOC, pages 741–
750, 2002.

[6] F. Kuhn, S. Schmid, and R. Wattenhofer. A Self-Repairing
Peer-to-Peer System Resilient to Dynamic Adversarial Churn.
In Proc. 4th IPTPS, 2005.

[7] X. Li, J. Misra, and C. G. Plaxton. Active and Concurrent
Topology Maintenance. In Proc. 18th Ann. Conference on Dis-
tributed Computing (DISC), 2004.

[8] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric. In Proc. 1st
IPTPS, 2002.

[9] D. Peleg. Distributed Computing: A Locality-Sensitive Ap-
proach. SIAM, 2000.

[10] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
Nearby Copies of Replicated Objects in a Distributed Environ-
ment. In Proc. 9th Ann. ACM Symp. on Parallel Algorithms
and Architectures (SPAA), pages 311–320, 1997.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In Proc.
of ACM SIGCOMM 2001, 2001.

[12] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
Churn in a DHT. In Proc. USENIX Ann. Technical Conference,
2004.

[13] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-
ized Object Location and Routing for Large-Scale Peer-to-Peer
Systems. In Proc. 18th IFIP/ACM Int. Conference on Dis-
tributed Systems Platforms (MiddlewareS), 2001.

[14] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu. Dynam-
ically Fault-Tolerant Content Addressable Networks. In Proc.
1st IPTPS, 2002.

[15] S. Saroiu, P. Gummadi, and S. Gribble. A Measurement study
of Peer-to-Peer File Sharing Systems. In Proc. SPIE Multime-
dia Computing and Networking (MMCN), 2002.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications. In Proc. ACM SIGCOMM Conference,
2001.

[17] M. Waldvogel and R. Rinaldi. Efficient Topology-Aware
Overlay Network. In Proc. HotNets-I, Princeton, NJ, USA,
2002.

[18] B. Y. Zhao, L. Huang, J. Stribling, A. D. Joseph, and J. D.
Kubiatowicz. Tapestry: A Resilient Global-scale Overlay for
Service Deployment. IEEE Journal on Selected Areas in Com-
munications, 22(1), 2004.

[19] A. Ziviani, S. Fdida, J. F. de Rezende, and O. C. M. B. Duarte.
Toward a measurement-based geographic location service. In
Proc. of the Passive and Active Measurement Workshop (PAM).

