
Fast and Robust GPS Fix Using One Millisecond of Data
Pascal Bissig

ETH Zurich

bissigp@ethz.ch

Manuel Eichelberger

ETH Zurich

manuelei@ethz.ch

Roger Wa�enhofer

ETH Zurich

wa�enhofer@ethz.ch

ABSTRACT
GPS is used for outdoor localization in a large variety of applications.

Current receivers consume too much power for energy-constrained

situations like continuous location tracking on small wearable de-

vices. Mainly, this is due to the large amount of GPS signal that

has to be decoded to compute the �rst position �x. While Coarse-

Time Navigation (CTN) can reduce the necessary signal to a few

milliseconds, it is not robust to noise. Collective Detection (CD) of

satellites can mitigate noise to some degree, but the basic method

is computationally expensive. We show how CD can be solved

optimally and e�ciently. Furthermore, we improve the accuracy

of CD by exploiting the shape of the likelihood function. All our

results are based on real-world signal observations and we achieve

localization accuracies of less than 25 meters using a single mil-

lisecond of signal. When using 10 consecutive millisecond samples

the accuracy improves to less than 10 meters.
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1 INTRODUCTION
Location sensing has proven to be an important prerequisite for

many applications. For example navigation, tracking, life-logging,

research such as animal tracking, and rescue services. Many classes

of ba�ery powered devices are more useful when position infor-

mation is available, such as smartphones, cameras, �tness trackers,

smart watches and sensor nodes. For most outdoor scenarios, GPS is

the localization system of choice, mainly due to its global coverage

and accuracy.

However, continuous GPS receiver operation still consumes too

much energy for mobile devices such as �tness trackers or even

smartphones, since current receivers cannot be e�ciently duty-

cycled. When the receiver is switched o� for a few minutes to

conserve power, it takes a lot of time and energy to compute a new

position �x once it is turned back on again. �is has far-reaching

consequences for many application scenarios. For example, today’s

GPS receivers make us wait for a �rst �x, which can be annoying

if one wants to navigate an unknown place. Also, geo-tagging

photos is not instant and energy consuming. Due to the energy

consumption issues, many applications, such as long term tracking,

are still out of reach.

In this paper, we present a receiver which requires only a single

millisecond of GPS signal to compute its position. �is means that

the signal can be recorded and stored locally for later processing.

�e signal recording can be sent to a remote server which can

perform the energy consuming position computation. �is trans-

lates to a reduction in power consumption as well as an increase

in convenience for many applications. For example, the initial po-

sition when navigating with your phone can be found within a

few milliseconds depending on network latency. A smartwatch or

�tness tracker may be able to track its location every few seconds

for weeks at a time. When the duty cycle is further reduced, a

tracking device that only requires one position �x per hour may

run for years on a single coin cell ba�ery. Geo-tagging photos

can be simpli�ed to adding a one ms signal recording to the photo

which is stored and the position can be computed later on.

�e GPS signal that reaches the surface of the earth is weak due

to the path loss. To reduce the e�ects of noise, current receivers

track GPS signals over extended periods of time. Since we want to

be able to store the recorded signals for later processing, this is not

a feasible solution for us. To still increase the noise tolerance of

our approach, our solution yields the position �x that best explains

the given signal measurement. �is means that we do not need

to detect satellite ranges which easily can throw o� current GPS

receivers as well as CTN receivers.

�e problem of �nding the position that best explains a given

signal measurement is non convex. Hence, the solution cannot be

found by iteratively improving a candidate solution in all cases.

If the location is approximately known, �nding the most likely
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position can be achieved by computing the likelihoods of all close-

by positions and selecting the most likely one. �e more uncertain

the initial guess about position and time, the larger the search

space (position and time) becomes. Computing all the likelihoods

presents a computationally expensive maximization problem in

this case. However, we show how the global maximum can be

found e�ciently using a branch and bound approach. �e runtime

of the algorithm is correlated with signal quality: In good signal

conditions, the computational load is low. �e worse the signal

conditions become, the higher the computational burden. However,

the best position and time �x is found in any case. �e branch and

bound implementation speeds up the acquisition time and hence

also the time to �rst �x (TTFF).
We exploit the shape of the likelihood function to achieve higher

positioning accuracy and robustness. As a result, under similar

conditions (signal duration and sampling rate), our method leads

to more accurate positioning compared to previous approaches.

Furthermore, we show that there is a trade-o� between the amount

of sampled signal used and the accuracy of the positioning solu-

tion. If we average over two consecutive location �xes from one

millisecond of data each, the median error is reduced from 25 to

15 meters. Averaging over 30 �xes (0.03 s of signal), the median

error is as low as 6 meters. Tracking a user’s position decreases

the computational complexity of each consecutive �x as the search

space (space and time) is much smaller.

2 RELATEDWORK
Van Diggelen [9] has introduced the idea of Coarse Time Navigation
(CTN). Using CTN, a position �x can be found from only a few mil-

liseconds of data without decoding any data from the GPS signal.

�e requirement for this is prior knowledge of the receiver time

and position to within a few seconds and 150 kilometers, respec-

tively. Liu et al. [6] showed that since CTN only requires a few

milliseconds of data, the raw signal can be stored and the computa-

tion can be outsourced or postponed until power is available. �is

mitigates the problem of high energy consumption for acquisition

by not acquiring the satellites on the receiver, enabling duty cycling.

However, due to the short signal duration, accuracy and robustness

is worse than in classic receiver designs relying on acquisition and

tracking stages. Our GPS receiver design extends this idea and can

compute a position from a single millisecond of signal. Our localiza-

tion method counteracts the e�ect of the short signal duration and

improves positioning accuracy compared to existing work on CTN.

Also, we show how accurate position �xes can be computed from

inaccurate time estimates. �is allows us to drop the heavy and

power consuming DCF-77 clock receiver required by Liu et al. [6].

As a result, our receiver can be miniaturized and can function for

years even when there is no clock synchronization except at the

very beginning.

A second branch of research is concerned with improving the

robustness of GPS receivers. In classical GPS, the receiver location

is determined based on signal parameters. �e most important

ones being Doppler shi� and code delay for each satellite. From

these parameters, a position in space is computed. Clearly, signal

parameters may be erroneously detected which leads to unusable

position estimates.

Instead of estimating the signal parameters, Closas et al. [4]

showed how the receiver position can be estimated directly and

how this can improve the robustness of GPS receivers.

We refer to the basic idea as Collective Detection (CD), but it is

also called Direct Positioning or Combined Detection in the literature.

Evaluations of CD have been performed in both simulation and

practice [2–4]. �e main concern is the computational complexity

introduced by the high-dimensional search space. Also, the likeli-

hood function is generally non convex, prohibiting standard greedy

maximization methods. Optimizations such as the one proposed by

Axelrad et al. [2] reduce the computational complexity but cannot

guarantee that the best possible position is found. We improve

the robustness of our approach by applying CD. Especially so in

multipath environments because CD �nds the globally best solution

whereas classical receiver designs depend on correct pseudorange

estimates for each individual satellite. Hence, one bad pseudor-

ange estimate can throw o� the classical solution whereas the most

likely position (in CD) may still remain una�ected. However, CD

is expensive in terms of computation. To alleviate this drawback

of CD we introduce a branch and bound algorithm which yields

reduced computational complexity while still guaranteeing that the

best possible solution is found.

3 GPS FUNDAMENTALS
�e GPS system conceptually consists of three parts: the control

segment, the space segment and the user segment. �e space seg-

ment nominally consists of 24 satellites orbiting the Earth [5]. A

network of monitor stations and ground antennas makes up the

control segment. It is primarily used to monitor the satellites state

and keep track of their ever changing orbits. �e orbits need to

be known as accurately as possible to improve localization accu-

racy [5]
1
�e third – and for our discussion most important – part

of GPS are the receivers, making up the user segment.

3.1 GPS Signal
�e satellites transmit signals in di�erent frequency bands. �ese

include at least the so-called L1 and L2 frequency bands at 1.57542

GHz and 1.2276 GHz [5]. �e signals are transmi�ed through a helix

array antenna which right-hand circularly polarizes the signals [5].

�is helps suppressing multipath signals at a receiver because a

re�ection of the signal polarizes it in the opposite direction.

In order to distinguish the signals from di�erent satellites and

to extract the signals from the background noise, code division

multiple access (CDMA) is used.

Figure 1 shows the modulation scheme utilized in GPS. �e

Coarse/Acquisition code (C/A code) is a sequence of 1023 bits which

is unique for each satellite. Speci�cally, Gold codes are used to

achieve favorable correlation and cross-correlation properties [9].

Because Gold codes look like random bit strings, C/A codes are

also called pseudo-random noise (PRN) sequences. �e C/A code is

transmi�ed at 10.23 MHz which means it repeats every millisecond.

�e data is transmi�ed at 50
bit

s
and hence, each bit contains 20

complete C/A cycles. �e data and C/A code are merged using an

XOR before being mixed with the L1 or L2 carrier. Figure 1 shows

how the GPS signal is generated. Note that for be�er readability,

1
Further information can be found at h�p://www.gps.gov/systems/gps/control/

http://www.gps.gov/systems/gps/control/
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Figure 1: �e structure and modulation of the GPS Signal.
�e binary data and C/A code are mixed with the carrier fre-
quency (L1) using the BPSK modulation scheme.

the C/A frequency and the L1 frequency do not have the correct

ratio. �e data that is broadcast contains a timestamp (called HOW)

which can be used to compute the location of the satellite when

the packet was transmi�ed. However, to do this, the receiver needs

accurate orbital information (called ephemeris) about the satellite

which changes over time. While the HOW timestamp is broadcast

every six seconds, the ephemeris data can only be received if the

receiver can decode at least 30 seconds of signal.

3.2 Localization
Conventional GPS receivers use three stages when obtaining a

location �x.

Acquisition. First, the set of available satellites has to be found.

�is can be achieved by correlating the received signal with the

known C/A codes from the satellites. Since the satellites move at

considerable speeds, the signal frequency is a�ected by a Doppler

shi�. Hence, receivers usually correlate the received signal with

C/A codes with di�erent Doppler shi�s.

Tracking. A�er a set of satellites has been acquired, the data

contained in the broadcast signal is decoded. Doppler shi�s and

C/A code phase are tracked using tracking loops. A�er the receiver

obtained the ephemeris data and HOW timestamps from at least

four satellites, it can start to compute its location.

Localization. Localization in GPS is achieved by multilateration, a

technique using time di�erence of arrival (TDOA) measurements to

compute a position. �e arrival times of the HOW timestamps re-

ceived in the tracking phase are used to compute the set of TDOAs.

In trilateration, the distances between a mobile station and some

stations with known position are measured. �is can for instance be

done through time of arrival (TOA) measurements, when the signal

transmission times are known and all the stations are synchronized

in time. �e position of the mobile station lies at the intersection

of the spheres around the stations with �xed position with the

corresponding radii.

While the satellites operate on an atomic frequency standard,

the receivers are not synchronized to the GPS time. �erefore, the

local time at a receiver is unknown. Due to that, the distance of

the receiver to the satellites cannot be directly computed from the

local arrival time of the signals at the receiver. Instead, only the

time di�erences of the arrival times can be measured. �erefore,

the multilateration method is applied. From a computational view,

there is not a large di�erence between the trilateration and the

multilateration approach. �e la�er problem just contains one more

variable, which is the receiver time, and hence needs measurements

from at least four instead of three satellites for the problem to be

well-de�ned. �e receiver position is found through a least squares

optimization.

3.3 Assisted GPS
One of the main disadvantages of GPS is the low bit rate of the

navigation data encoded in the signals transmi�ed by the satel-

lites. �e minimal data necessary to compute a position �x, which

includes the ephemerides of the respective satellites repeats only

every 30 seconds. In order to decode all that data, the receiver

has to continuously track and process the satellite signals which

induces a high energy consumption. Furthermore, upon starting up

a receiver, a position will not be instantly available. To overcome

this drawback, receivers can run continuously, but this consumes

even more power.

Assisted GPS (A-GPS) drastically reduces the startup time by fetch-

ing the navigation data over the Internet, commonly by connecting

via a cellular network. Data transmission over cellular networks

is faster than decoding the GPS signals and normally only takes a

few seconds. Using this data, the acquisition time can be reduced

since the set of available satellites can be estimated along with their

expected Doppler shi�. �is is possible because the exact arrival

time of the navigation data is not required for the localization. Also,

ephemeris data is valid for at least 30 minutes. However, the re-

ceiver still needs to extract the HOW timestamps from the signal

but since they are transmi�ed every six seconds, this is roughly

how much time it takes an A-GPS receiver to compute a position

�x.

3.4 Coarse-Time Navigation
Coarse-Time Navigation (CTN) is an A-GPS technique which drops

the requirement to decode the HOW timestamps from the GPS

signals. Van Diggelen [9] describes the concept in detail. �e only

information used from the GPS signals are the phases of the C/A

code sequences which are detected using a matched �lter. �ese

arrival times are directly related to the sub-millisecond parts of the

corresponding TDOAs. �e number of whole milliseconds of the

signal propagation time are resolved with a known approximate

location and time. Because the signals travel at the speed of light,

which is about 300 km per millisecond, in order to be able to resolve

the number of whole milliseconds unambiguously, the deviation
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(a) Original (not shi�ed). (b) Shi�ed (circularly) according to the distance from
the receiver to the corresponding satellite.

Figure 2: Correlation functions for four satellites. On the le� there are the correlations of the received signal with the PRN
sequences of four di�erent satellites. �e spikes indicating the beginning of the PRN codes in the received signal are marked
with red arrows. If we shi� the correlation vectors according to the true distance to the satellites, we see on the right hand
side that the peaks all align.

may at most be 150 km from the correct values. Here, the devia-

tion is de�ned as the time o�set multiplied by the speed of light

plus the position distance. Since the PRN sequences repeat every

millisecond, without considering navigation data bit �ips in the

signal, CTN can in theory compute a position from one millisecond

of the sampled signal. But since bit �ips can happen, to make sure

all visible satellites can be used, two milliseconds are necessary.

With such short signal recordings, clearly noise becomes a major

issue, because noise cannot be �ltered out as easily as with much

longer recordings of several seconds. But the advantage of this

extremely short recording period is that the signal processing is

fast and power-e�cient and thus also the latency of a �rst �x. Also,

since no metadata has to be extracted from the GPS signal, CTN

may be able to compute a location even if the GPS signal cannot be

decoded anymore due to noise or a�enuation.

3.5 Collective Detection
Collective detection builds upon the observation that detecting

peaks in the correlation functions of individual satellites might

yield sets of pseudoranges which are not consistent with the laws

of physics. By searching a solution in space and time directly, this

can be avoided. �e problem then consists of �nding the most

likely position given the received signal. From a given hypothetical

position and time (referred to as hypothesis in the following), the

corresponding ranges of the satellites can be inferred, which are

then used to determine the arrival times of the signals. Figure 2

shows how the correlation functions of the received signal with

PRN codes of di�erent satellites on the le�. On the right, the same

correlation functions are circularly shi�ed by the expected time

di�erence of arrival at the correct location. Clearly, the correlation

peaks of all four satellites align. A receiver can exploit this by

combining corresponding correlation values from all the satellites to

compute a likelihood measure. �is is essentially what our receiver

does. Erroneous peaks in the correlation function most likely never

align which improves noise resistance. Commonly, the hypothesis

pseudo-likelihood is de�ned as the sum of the satellite pseudo-

likelihoods, but one could also use other measures, for instance the

product.

4 LOCALIZATION METHOD
�e basic idea of our method is to asses the quality of many hypo-

thetical receiver states h = (hp ,ht ) which consist of the receiver

position hp and time ht . �e quality of a hypothesis is determined

through a likelihood function which assigns a pseudo-likelihood to

the hypothesis given external information and the observed signal.

�is likelihood L (h) is a measure of how well the observed signal

matches the signal expected at a hypothesis h.

4.1 Likelihood
Given a hypothesish, we can use the knowledge about the satellites’

signal transmit times and orbits (from the navigation data) to com-

pute the expected signal phase ϕi (h) arriving at the receiver from

the ith satellite. �is is discussed in detail in Section 4.2. Hence,

for any hypothesis h we can expect a C/A code with phase ϕi (h)
from satellite i in the arriving signal. We can check how well the

received signal r (t ) matches this expectation by computing a single

correlation value with satellite i’s C/A code cai (t ).

ci (h) =
1ms∑
τ=0

|r (τ ) · cai (τ − ϕi (h)) | (1)

If our hypothesis h is correct, we expect large correlation values

ci for satellites whose signal can be received, because the code phase

of the C/A code in the received signal match the expected code

phase ϕi (h). For satellites that are heavily a�enuated or re�ected,

ci will be almost completely random. We de�ne our likelihood



Fast and Robust GPS Fix Using One Millisecond of Data IPSN 2017, April 2017, Pi�sburgh, PA USA

function as the sum of the correlation values for a given hypothesis

over all visible satellites, whose indices are denoted by the set V .

L (h) =
∑
i ∈V

ci (h) (2)

�e receiver position and time are estimated by selecting the

hypothesis h∗ which maximizes the likelihood measure:

h∗ = arg max

h∈F
L (h)

where F is a set of feasible (position, time) tuples.

4.2 Computing the C/A Code Phase
To compute the likelihood of a hypothesis h, we need to know

the C/A code phases ϕi (h) of the visible satellites. In the follow-

ing, we assume that the signal propagation delay di (h) is mainly

determined by the distance between receiver and satellite. Note

that the maximum signal propagation delay to a receiver on Earth

is 87 ms [8]. During this time, a receiver’s movement does not

have a signi�cant e�ect on the propagation delay. However, the

much faster satellite movement has. �erefore, we compute the

propagation delay at the transmit time ti of a signal even though

the receiver may still travel for an additional 87 ms.

�e code phase ϕi (h) relates to the transmit time ti (h) of the

received as follows:

ϕi = ti (h) mod 1 ms

�e transmit time ti (h) of the received signal at time ht are

related by the propagation delay di (h) between the hypothetical

position and the satellite position.

ti (h) = h
t − di (h) (3)

�e propagation delay can be found by dividing the spatial dis-

tance between the hypothetical positionhp and the satellite position

pi by the speed of light C:

di (h) =
| |hp − pi (ti (h)) | |

C
(4)

�e propagation delay di (h) depends on the distance between

the satellite position pi at the time of transmission ti (h) and the

hypothetical position hp . �e satellite position pi (ti (h)) at a given

time can be computed from the ephemeris.

So the propagation delay di (h) can be found knowing the trans-

mit time ti (h) which itself can be found knowing the position of the

satellite pi (ti (h)) which can only be found knowing the transmis-

sion time ti (h) for which the propagation delay di (h) needs to be

known. �is circular dependency can be resolved by a short �xed

point iteration which exploits the di�erence between the speed of

light and the speed that the satellites travel with.

Namely, the signal propagation times from a satellite to a receiver

on Earth range between 67 and 86 ms [8]. If we compute the signal

transmit time using Equation 3 and this crude estimate we get

ti ≈ ht − (67 + 86)/2 ms ≈ ht − 76.5 ms. �e estimation error in

the transmit time ti (h) is at most 9.5 ms. �e maximum satellite

speed relative to a receiver on Earth is 929 m/s [8]. �is means

that our estimate for ti (h) of 9.5 ms leads to a worst case satellite

position estimation error of 9.5 ms · 929 m/s = 8.83 m. Using this

new satellite position error, the second iteration starts with a new

estimate of the transmit time ti (h), based on a satellite position error

which is at most 8.83 m. Hence, the propagation delay estimation

error is at most 8.83 m/C = 19.4 ns. �e satellite position estimate

that can be achieved using this propagation delay estimate already

has a negligible error of 19.4 ns · 929 m/s = 18 µm.

4.3 Search Region
To guarantee the uniqueness of the solution, we limit the search

region in which the set F of feasible hypotheses is contained. As

GPS signals travel at the speed of light C , the C/A code phase of

a satellite are the same for two hypotheses if their distances to

the satellite di�er by k ·C · 1ms ≈ 300km for integer values for k .

To avoid this a�ecting our results, we bound the search region in

which the set F of feasible hypotheses is contained to a diameter

of 300 km. Most likely the correct solution can still be found in

larger areas, especially when more than four satellites are visible.

Note that the correspondence between time error and range error

is given by the maximum relative satellite speed against a receiver,

which is less than 1
km

s
on the Earth surface [8]. For instance, a

position range of 100 km and a time range of 50 km / 1
km

s
= 50 s

are guaranteed to deliver a unique solution.

For bounding the solution domain, one can use the antenna

position of a cellular network as a reference. When the signal of

the satellites is strong enough, we can also �nd the approximate

receiver location with an idea presented by Liu et al. [6]. �e

authors show how the measured Doppler shi� of a signal limits

the receiver position to a cone. �e receiver positions is then at

the intersection of the cones from each satellite. If we do not

compute an initial �x, we can use the last computed position as an

approximation for the new position.

4.4 Visible Satellites
�e setV contains the indices of all potentially visible satellites. It is

assumed to be the same for all hypotheses h ∈ F and is determined

as all the satellites with an elevation above the horizon larger than

�ve degrees, as seen from the center of the search region. In theory,

V is a function of a hypothesis h and the ephemerides, from which

the elevation angles can be computed. However, it is safe to assume

V is �xed with respect to all hypotheses since the elevation angles

barely change within the search regions we consider. Also the

Earth’s rotation during the signal transmission can be neglected

when computing the elevation angle of a satellite.

4.5 Space Discretization
�e computation of the correlation values given in Equation 1 shi�s

the locally generated C/A code by its expected phase. In our case,

the expected phase is rounded such that we shi� by an integer

value corresponding to one sampling interval Ts of the receiver.

�is helps to simplify the computation of the likelihood function

as no signal interpolation is required. Due to the rounding, the

likelihood of two hypotheses that are close may lead to the exact

same set of C/A code phases ϕi for all visible satellites.

Ideally, we spread hypotheses in the search range such that no

two hypotheses correspond to the same set of C/A codes to conserve

computation resources. Also, we would like to have one hypothesis
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λs

x

y

Figure 3: Two dimensional example of search space dis-
cretization. In this example, three satellites are visible
which cause three groups of parallel lines slicing the search
space. When crossing a line, the expected C/A code phase
ϕi for the corresponding satellite is rounded to the previous
or next sampling period Ts . All positions inside a bounded
area have the same likelihood. Very small regions may exist
(indicated by the red circles).

for every set of C/A code ranges which can be achieved within the

search region.

Depending on the sampling interval Ts , we can compute the

range di�erence that is required to change the value of the rounded

C/A code phase ϕi . Namely, the corresponding “length” of a sample

is λs = Ts · C , where C is the speed of light (λs ≈ 37 m for Ts =
1

8MHz
). �us, for each satellite, the solution space is sliced into

spherical shells with a slice width of λs . Each hypothesis in such a

slice produces the same rounded expected C/A code phase ϕi .
With multiple satellites, the space is sliced in several directions

as shown in Figure 3. �is divides the solution space into volumes

in which all the hypotheses correspond to the same rounded C/A

code phase and therefore equal likelihoods. Figure 3 shows a two-

dimensional example.

Since we do not know the exact shape of the division of the

search space in the volumes of equal observations, we sample the

space with a regular grid. Ideally, this grid would be dense enough

to “capture” all these volumes. However, some of these volumes

can be in�nitely small and thus, with any �xed grid density, we

might not sample some volumes and therefore not �nd the most

likely hypothesis.

�is means that we cannot guarantee that we sample the volume

which corresponds to the highest likelihood that is achievable given

the observations. Luckily we can make sure that we do not miss the

correct solution completely because no hypothesis is close enough

by selecting the grid such that neighboring points are λs apart.

In this case, each hypothesis represents a cube of side length

lambda. Such a cube has a diameter of

√
3 · λs ≈ 1.7 · λs < 2 · λs .

Since the space is divided into those cubes, an uncovered area can

at most be half a diameter apart from the nearest hypothesis, that

is the distance to the nearest hypothesis is less than λs . Note that a

distance smaller than λs can at most cross one slice boundary for

each satellite. �is means that for an uncovered area and its nearest

hypothesis the expected code phases ϕi are at most one sampling

interval Ts apart.

�e key observation is that our (and also common) GPS receivers

oversample the GPS signals. For the correlation, this means that the

peaks are not con�ned to a single sample of length Ts , rather their

neighboring values are quite high as well and form a triangle-like

pa�ern. Without noise, the correlation values at a distance of k
samples from the peak have a value of at least (1 − k · 2 · fPRN/fs )
times the value of the peak. fPRN is the rate of the PRN sequences

(1.023 MHz). fPRN/fs is the fraction of the locally generated PRN

sequence which does not match the correct part of the PRN in

the signal. For a sampling rate of 8 MHz (fs =
1

Ts ) for instance,

the directly neighboring values of the peak are at least 74 % as

high as the peak itself, for a sampling rate of 56 MHz at least 96 %.

Assuming the used sampling rate is at least 8 MHz, the found

correlation values may at most be 26 % smaller compared to the

largest one. Alternatively, we could �lter the correlation values

such that the correlation value at an index contains the highest

correlation values amongst its direct neighbors. In this case, we

are guaranteed to �nd the highest achievable likelihood, but the

likelihood function is less sharp. �e trade-o� that we make here

is a decrease in the likelihood at the correct position.

4.6 Time Discretization
�e hypotheses also have to be spread in the time domain. As

in the spatial discretization above, we have to make sure that we

sample densely enough, such that we do not miss the most likely

position. If the hypothetical time for the correct location hp is

o� by as few as 10 · Ts , its likelihood will be completely random

(assumingTs = 8MHz). �is follows from the same argument about

the shape of the PRN autocorrelation function above. In order to

allow for more coarse sampling in the time domain, we exploit

the fact that the expected C/A code phase ϕi (h) is approximately

constant when varying the hypothetical time ht by less than one

ms. Hence, we simplify the computation of the correlation values

ci (h) for hypotheses that are identical up to a di�erence in time tµ
which is smaller than 1 ms.

ci (h, tµ ) =
1ms∑
τ=0

|r (τ ) · cai (τ − ϕi (h) − tµ ) | (5)

We can simplify the computation of ci (h, tµ ) for all tµ ∈ [0,Ts , 2 ·
Ts , . . . , 1ms] using the correlation function Ci :

Ci (tµ ) =
1ms∑
τ=0

|r (τ ) · cai (τ − tµ ) | (6)

Note that the correlation function Ci (tµ ) can be computed in-

dependent of the hypothesis. By shi�ing the correlation function

Ci (tµ ) of the received signal with the C/A code according to the

expected phase ϕi (h), we can simplify the computation of the like-

lihood as follows:

L (h) = max

tµ

∑
i ∈V

Ci (tµ − ϕi ) (7)
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Figure 4: In situations with line of sight between receiver and satellites, the likelihood function is smooth and unambiguous.
�e �gures shown are a cut through the search space where the time and height of the receiver have been �xed at the values
corresponding to the most likely hypothesis. �e distance between two points in the grid is approximately 37 meters.

�is allows us to choose the time domain to be sampled at up to

1 ms intervals without leaving a good solution undetected.

In the worst case, an inaccurate time hypothesis shi�s the most

likely position by the maximal speed of the satellites relative to

the earth’s surface (1
km

s
). �is means that the localization error is

expected to increase less than 1 m if the hypothetical time is o� by 1

ms. Hence, we can further increase the intervals at which the time

domain is sampled. �is does not negatively a�ect the observations

about the spatial discretization. We are still guaranteed to observe

hypotheses that are very close to the highest achievable likelihood.

4.7 Averaging Over Likely Hypotheses
So far, we only discussed choosing the hypothesis with the largest

likelihood as the solution. As described in Section 4.5, hypotheses

that are near the correct solution should get a high likelihood

as well, because the PRN is oversampled and therefore its auto-

correlation function has a triangular shape around the peak. To

improve localization accuracy, we consider the set of hypotheses H
with the highest likelihoods. �e set of most likely hypotheses is

then combined using a weighted average.

¯hp =
∑
h∈H

L (h) · hp

In Section 5 we discuss the performance impact of the averaging

as opposed to only selecting the most likely hypothesis.

4.8 E�cient Implementation with
Branch-and-Bound

Figure 4 shows horizontal cuts of example distributions of our

likelihood computed from a one millisecond window of samples

in good signal conditions. Our branch and bound method exploits

this shape of the likelihood function under clear signal conditions,

avoiding the computation of all likelihoods in the search space. �e

Algorithm 1 Finding the n most likely points given a search

space de�ned by a hypothesis h.

procedure S = GetMostLikelyPoints(n,h)

n: the number of likely points contained in S.

h: the initial hypothesis de�ning the search space.

h
lmax

= maxLikelihood( h )

queue.add(h)

S = ∅

while queue.hasElement() do
h = queue.popMostLikely()

if h
lmax

≤ minn (h
lmin
∈ S) then

continue

end if
h

lmin
= likelihood( h )

h
lmax

= maxLikelihood( h )

S.add(h)

h[1] . . . h[16] = splitHypothesis( h )

for h[i] = h[1] . . . h[16] do
h[i]

lmax
:=h

lmax

queue.add(h[i])

end for
end while

end procedure

search space as discussed in Sections 4.3 and 4.5 is large as the

hypotheses are spread at a distance of 37 m from each other and

the search space spans 200 km × 200 km × 30 km. In addition to

this, the time domain is searched within 10 s at intervals of 40 ms.

�is means that there are roughly 2 · 10
12

hypotheses which need

to be tested. To reduce the number of hypotheses for which we

need to compute the likelihood, we employ a branch and bound

method as described in Algorithm 1. To do so, we need a method
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to compute both an upper- and lower-bound on the achievable

likelihood (indicated by h
lmax

and h
lmin

) within an area de�ned by

a hypothesis. Note that in the algorithm, a hypothesis h contains

the center position in x,y,z, and t and also the size of the search space

around it in all dimensions (x,y,z,t). �e initial hypothesis covers

the entire search space i.e. it extends over 200 km × 200 km × 30 km

× 10 s. We approximate the lower bound of achievable likelihoods

within an area as the likelihood of the hypothesis itself (likelihood(

h ) in the Algorithm). For the upper bound (maxLikelihood( h ) in

the Algorithm), we use the expected code phases ϕi along with the

size of the area covered by the hypothesis. Note that the larger the

area covered by a hypothesis, the larger the uncertainty about the

possible code phases ϕi . �e uncertainty is given by the diagonal of

the area covered divided by the speed of light. For a hypothesis with

a diagonal of 10 km, the uncertainty is roughly 33 microseconds

which corresponds to roughly 270 sample intervals Ts at 8 MHz.

�is can e�ciently be taken into account when computing the

likelihood as described in Equation 7. Instead of utilizing the corre-

lation function as described in Equation 6, we apply a max-�lter

�rst.

C ′i (tµ ) = max

τ ∈R
Ci (tµ ) (8)

R is the set of possible shi�s that can be expected within the

region covered by a hypothesis. In the example above with 10

km diagonal, R = [−16.5µs, 16.5µs]. �e likelihood computation

stays the same as in Equation 7 but using C ′i (tµ ) instead of Ci (tµ ).
�is yields the highest possible likelihood. To further speed up

the computation, the max-�ltered correlation functions can be pre-

computed as it is the same for all hypotheses covering areas of the

same size.

Hypotheses in the queue are processed according to their maxi-

mum achievable likelihood h
lmax

(popMostLikely()). �is is crucial

as areas with great potential are explored �rst, making it more

likely that bad areas are not further explored. Each processed hy-

pothesis is split in two in all dimensions (x,y,z,t) which leads to 16

new hypotheses, covering a smaller volume of the search space

each. As soon as a hypothesis cannot achieve a higher likelihood

than the n best hypotheses already observed, it is not further split

up and discarded. �e method guarantees that the n most likely

points are found as only hypotheses are discarded which cannot

possibly achieve a high enough likelihood.

Clearly, the performance of the algorithm depends on the quality

of the received signal as the bounds will be more accurate for

a smooth likelihood function. We will analyze the performance

degradation as the signal quality deteriorates in Section 5.

4.9 Local Oscillator Frequency Bias
In practice, one of the problems we have to deal with is the fre-

quency error of the local oscillator (LO) in the front end. �e LO is

not only used for the generation of the reference frequency for the

frequency down-conversion, but also as the clock of the ADC. �ere-

fore, the LO error in�uences two parameters. First, the observed

frequencies of the signals from the satellites change. Second, the

e�ective sampling rate or the time that passes per sample changes.

Akos [1] states that the frequency for the locally generated C/A

code should match the actual frequency with an accuracy be�er

than 250 Hz. Otherwise, correlation peaks are hard to �nd even

under good signal conditions. To get an SNR close to the optimum

possible, the accuracy of the frequency should be much be�er.

During the acquisition phase in conventional receivers, the

Doppler shi� of each satellite is estimated by correlating the re-

ceived signal with multiple frequency shi�ed versions of the C/A

code. �e frequency shi�ed C/A code which matches the received

signal the best is used to estimate the arrival time and also gives

information about the sum of the LO o�set and the Doppler shi�.

A�er the acquisition, the Doppler shi�, and hence the LO, is known

only approximately to reduce the computational complexity during

acquisition. �is approach could be replicated in our solution to

estimate the LO o�set.

Similar to the search performed in classic receivers, we could

track the LO o�set by computing the C/A code correlation functions

for di�erent frequency o�sets. Note that since we do compensate

for the Doppler shi�s using our prior knowledge, we only need to

estimate the LO o�set instead of the sum of the LO o�set and the

Doppler shi�s of each satellite.

In our test setup described in Section 5, we measured the LO o�-

set initially using the classical GPS approach. We observed that the

o�set stayed almost constant even over more than a year. �erefore,

careful calibration of the LO can reduce the impact of its errors

to an extent that is acceptable. Over the course of 1.5 years, all

experiments were performed with the same, constant LO o�set

(+1.9 ppm).

For an oscillator which does not exhibit such a stable frequency

o�set over a long time, it would be possible to regularly update

the frequency error estimate by correlating with a local signal

with slightly lower and higher frequency – similar to the early-late

tracking of the code phase in traditional receivers – in situations

with good SNR. Since the frequency error will not change quickly,

a low SNR of the received signal can be tolerated for an extended

period of time without signi�cant performance degradation.

5 EVALUATION
For the evaluation of our method, we used an E�us USRP B200

so�ware radio with a standard GPS patch antenna from Trimble

Navigation. Samples were recorded as 8 bit I/Q samples with 8 MHz

sampling frequency. We made recordings of several minutes and cut

out windows with one millisecond length every 0.999 seconds. We

did not choose exactly one second, since bit �ips in the navigation

signal, which severely degrade the signal quality, can occur every

20 milliseconds. To prevent these to always have an in�uence

on the same satellites’ signal, we chose a slightly shorter interval.

Samples with 8 bits were used since this is the lowest number of

bits supported by the board’s driver. However, we expect that the

performance does not signi�cantly vary when only 2 bit samples

are used, because using 2 bit samples degrades the SNR by only

0.55 dB [8] (Section 6.12).

We used navigation data originally broadcast from the satel-

lites, which we downloaded from NASA’s archive of space geodesy

data
2

[7]. For the time synchronization, we determined the time of

the �rst sample received from the RF front-end with the Network

2
We used the “Daily GPS Broadcast Ephemeris Files” data set that can be found at h�p:

//cddis.nasa.gov/Data and Derived Products/GNSS/broadcast ephemeris data.html

http://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html
http://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html
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Figure 5: Accuracy of ourmethod with di�erent numbers of
most likely points used for the weighted averaging. Cumu-
lative distribution functions of positioning error (distance
to ground truth).
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Figure 6: Comparison of positioning accuracy when averag-
ing over di�erent numbers of consecutive �xes.

Time Protocol (NTP). �e start time of subsequent one millisecond

windows was estimated by counting the number of elapsed samples

in the recorded data stream.

To evaluate the accuracy of our algorithm, we placed the receiver

antenna on a survey point located on our university building. �e

location of this point is known accurately. We expect errors in its

location to a�ect our results negatively giving us a lower bound of

the performance.

Unless otherwise indicated, experiments were performed under

good signal conditions (direct line of sight to most satellites above

the horizon) and the search space size was 200 km × 200 km ×

30 km × 10 s. �e reason for the size of the search in the time

dimension is that with a low energy oscillator with maximum dri�

of 5 ppm and an initial time error of 50 ms (easily achievable with

NTP), a range of ±5 seconds covers a duty-cycle interval of more

than 11 days. So, ±5 seconds are a large bound on the time search

especially since time inaccuracies can be compensated when a �x

is computed.
3

For each processed one millisecond window of signal, we varied

the grid of hypotheses uniformly at random in each dimension, up

to half the distance between two points. �is eliminates possible

bias from a speci�c positioning of the grid. For instance, if one

hypothesis always matched the correct receiver position and time

exactly, the results might look much be�er than if the correct posi-

tion and time lie in the center between the closest hypotheses in

each dimension.

5.1 Averaging Over Likely Hypotheses
First, we evaluate how the accuracy depends on the number of most

likely points used to compute the weighted average as described in

Section 4.7. Figure 5 shows the cumulative distribution functions of

3
We think a more reasonable upper bound on the duty-cycle interval would be one

day, which means that with such a large time search, we could tolerate many failed

localizations between two successful ones, for instance when the receiver is indoor

for a long time period.

501 �xes covering approximately 500 seconds with the duty cycle

of 0.999 s. �e shown numbers of points are {1, . . . , 7} to the power

of four, since we expect the points around the correct position to

have the highest likelihoods. So, the idea is that the curves show

the results when averaging over the hypercubes in four dimensions

with side lengths of one to seven hypotheses around the correct

position.

�e best accuracies are achieved with 81 or 256 points. Since

lower number of points correspond to a higher likelihood threshold

to eliminate regions of hypotheses with low maximum likelihood

(see Section 4.8), we use 81 points in the following, as this will save

more computation time.

Note that existing CD methods search for the best point only,

which is clearly suboptimal. �e median position error with 81

points is 23.5 m, which is almost twice as good as the solution

with the best point only, which has a median error of 44.3 m. �e

standard deviation is 17.3 m with 81 points and 27.6 m with the best

point only. �is shows that our weighted averaging is a substantial

improvement over standard CD, substantially improving accuracy.

5.2 Position Averaging over Time
To understand the trade-o� between accuracy and the amount of

data used, we tested the in�uence of averaging multiple positions

computed from di�erent one millisecond long windows (sliding

window average). �e results – obtained again from 501 windows

– are shown in Figure 6. With just a few more milliseconds, we

can gain signi�cant accuracy. For instance, with two milliseconds

of data, the median positioning error drops from 23.5 m to 17.4 m.

With 10 ms, it even drops to 9.2 m. And with 30 ms, all positions

are within 13.9 meters.

5.3 Horizontal Positioning
To evaluate the accuracy when searching in space only horizontally,

we �xed the altitude for the search to that of the ground truth. �is
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emulates scenarios where the receiver is 1) on the Earth surface,

so the height can be determined using an Earth elevation model

(for example the United States Geological Survey (USGS) elevation

model
4
) or 2) the receiver has a barometer, whose measurements

can be used together with meteorological data to determine the

altitude. �e bene�t of such an approach is not only be�er accuracy,

as can be seen in Figure 8, but the search space is reduced by one

dimension, resulting in less hypotheses to test, which translates to

faster and less energy consuming processing. For the positioning

with �xed height, we also �rst determined the best number of points

for weighted averaging with the same procedure as explained in

Section 5.1, although with numbers to the power of three, because

the search space is three dimensional. �e best number of points

turned out to be 64. Also for this experiment, the number of one

milliseconds windows processed was 501.

�e idea of using an Earth elevation model to restrict the possible

solutions has also been used by Liu et al. [6]. Because we do not have

an implementation of CTN available, we cannot directly compare

our results to theirs. However, the box plots in their paper show a

median error of approximately 40 m with 2 ms of data used. Our

median error when using 2 ms of signal and �xing the height of the

solution is 12.1 m. �is suggests that our approach is competitive.

5.4 Computation Time
To show how the performance of our method using branch-and-

bound depends on the signal conditions, we conducted two ex-

periments capturing both very good signal conditions (roo�op) as

well as very bad signal conditions (inside a multistory university

building). We reduce the search space to 10 km × 10 km × 1 km

× 4 s for this experiment, to also be able to test the brute force

implementation which tests every single hypothesis.

Figure 7 shows the cumulative distribution functions in both

indoor and outdoor scenarios as described in the last paragraph. It

4
More information about the USGS elevation model can be found at the “�e National

Map” website: h�p://nationalmap.gov/elevation.html

clearly shows that the indoor scenario did not allow for a meaning-

ful localization.

For the indoor test, the computation time was 240 s, whereas in

very good conditions, the time is only 18.6 s. Note that the indoor

test presents a worst case scenario in both computation time and

localization accuracy. �e brute force implementation takes more

than two hours to complete in any scenario.

�is means that even in situations that make it di�cult to �nd a

�x, we �nd the most likely location in reasonable time compared to

a brute force implementation. For the previous experiments with

the larger grid in good signal conditions, our method takes 31 s of

computation time.

�e performance corresponds to the execution on a current Intel

i7 mobile processor with a single thread. �e runtimes are not

indicative of an optimized implementation of our method, since it

could easily be parallelized because the computation of the likeli-

hood is independent for each hypothesis. In all the above exper-

iments about computation time, roughly 2 · 10
4

hypotheses are

evaluated each second. A working CUDA implementation of the

brute force method revealed that on a Nvidia GTX 1080, roughly

2 · 10
6

hypotheses can be evaluated each second which indicates

that the search can be sped up 100 times. �erefore, an initial �x

can be computed in signi�cantly less than a second under good

signal conditions. Note that tracking a receiver is cheaper because

the search space is smaller.

5.5 Time Dependence of the Likelihood
Function

To test the in�uence of the time parameter in our likelihood func-

tion, we picked a random one millisecond long window of the

sampled signal and searched the position which maximizes the

likelihood given di�erent receiver times. �e results are shown in

Figure 9, other ms windows exhibit the same properties as described

below. �e plot to the le� shows that, at least for signals with good

quality, our likelihood function (in blue) is roughly convex in the

http://nationalmap.gov/elevation.html
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Figure 9: Shape ofL (h) for di�erent time errors as well as the corresponding localization error. For each time o�set, the values
of the hypothesis h with maximum L (h) are indicated.

time dimension. However, we cannot reconstruct the correct time

very precisely because the probability of the best point does not

change signi�cantly when the time is within a second of the correct

time (blue curve in the right hand side plot). However, the posi-

tioning quality varies signi�cantly inside this time range (orange

curve in the right hand side plot). �is is due to the fact that within

the search space, there are points which still match the received

signal very well. Judging from the localization error, the most likely

position passes the correct position in a linear fashion as the time

error is varied from negative to positive. �is suggests that the

likelihood function is quite �at in the time domain which is one

of the reasons why the averaging over the most likely hypotheses

helps to increase the accuracy of our method. As a side note, this

last observation could lead one to think that the correct hypothesis

can also be found at the center of the likelihood plateau. How-

ever, the localization error scales in Figure 9 are relatively large,

meaning that the center would have to be found very accurately. In

fact, we experimented with ��ing di�erent shapes to the likelihood

function, but this yielded results with a large variance.

6 CONCLUSION
We showed how Collective Detection can be optimized to achieve

performance that allows for very coarse initial guesses for both

position and time. Our branch and bound method scales well in both

good as well as bad signal conditions. �e localization performance

is superior to similar approaches due to the averaging which greatly

reduces the e�ect of the �atness of the likelihood function. When

utilizing more than one millisecond of signal, the performance

is very competitive even with classical GPS receivers consuming

much more energy.

Our method allows for a snapshot GPS receiver design, which

only samples one millisecond of signal per �x and can run on a

low power 5 ppm oscillator. �erefore, the energy per �x will be

extremely low - since the computation can be done in the cloud - and

the receiver can also support very small duty cycles, for instance

10ms per �x once every hour. �is gives our method an advantage

in terms of energy usage over the classical approach, which samples

the signal continuously. Note that such a snapshot receiver does

also not need a large and heavy radio time signal antenna like the

design presented by Liu et al. [6].
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