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Abstract— We define and study the scheduling complexity in
wireless networks, which expresses the theoretically achievable
efficiency of MAC layer protocols. Given a set of communica-
tion requests in arbitrary networks, the scheduling complexity
describes the amount of time required to successfully schedule
all requests. The most basic and important network structure
in wireless networks being connectivity, we study the scheduling
complexity of connectivity, i.e., the minimal amount of time re-
quired until a connected structure can be scheduled. In this paper,
we prove that the scheduling complexity of connectivity grows
only polylogarithmically in the number of nodes. Specifically, we
present a novel scheduling algorithm that successfully schedules a
strongly connected set of links in time O(log4n) even in arbitrary
worst-case networks.

On the other hand, we prove that standard MAC layer or
scheduling protocols can perform much worse. Particularly, any
protocol that either employs uniform or linear (a node’s transmit
power is proportional to the minimum power required to reach
its intended receiver) power assignment has a Ω(n) scheduling
complexity in the worst case, even for simple communication
requests. In contrast, our polylogarithmic scheduling algorithm
allows many concurrent transmission by using an explicitly
formulated non-linear power assignment scheme.

Our results show that even in large-scale worst-case networks,
there is no theoretical scalability problem when it comes to
scheduling transmission requests, thus giving an interesting
complement to the more pessimistic bounds for the capacity in
wireless networks. All results are based on the physical model
of communication, which takes into account that the signal-to-
noise plus interference ratio (SINR) at a receiver must be above
a certain threshold if the transmission is to be received correctly.

I. INTRODUCTION

A most important lesson in wireless multi-hop networking
is that concurrent transmissions may cause interference. In
a network, if too many devices transmit simultaneously, the
interference caused by these transmissions will prevent an
intended receiver from receiving the signal, i.e., the message is
lost. On the other hand, if too few nodes transmit at the same
time, valuable bandwidth is wasted and the overall throughput
may suffer. Hence, the classic problem faced by any MAC
layer or scheduling protocol is that neither selecting too many
nor too few devices for concurrent transmission is acceptable.
Instead, it is necessary to find the subtle balance, in which
a large number of devices transmit in parallel and yet, the
interference does not cause messages to be lost.

The measure that captures and quantifies this equilibrium
is time. More specifically, assume that we are given a set
of directed links between pairs of nodes that indicate com-
munication requests. How much time is required to schedule
all these requests? In this paper, we define and study this
scheduling complexity in wireless networks. Like, for instance,
the notion of network capacity [12], the scheduling complexity
expresses a fundamental law that governs communication in
wireless multi-hop networks. While roughly speaking, the
capacity of a wireless network describes the maximum amount
of information that can be transmitted in the network, the
scheduling complexity indicates the minimum amount of time
required to transmit over a set of communication links. As it
turns out, studying the scheduling complexity of wireless net-
works reveals previously unknown aspects of communication
in wireless networks.

In order to obtain results that capture the inherent char-
acteristics of wireless networks, much care has to be taken
when choosing the communication model. Multi-hop wireless
networks have often been modeled as graphs. The nodes
of this communication graph typically represent the physical
devices, two nodes being connected by an edge if and only if
the respective devices are within mutual transmission range.
In this graph-theoretic model a node is assumed to receive
a message correctly if and only if no other node in close
physical proximity transmits at the same time. It is therefore
not surprising that in graph theory, interference-free concur-
rent transmissions typically boil down to solving variants of
coloring or independent set problems (e.g. [25]).

Clearly, this graph-theoretic notion of interference is a
tremendous simplification of the physical reality faced in
wireless networks [10], [2]. Particularly, the interference
caused by different transmitters may accumulate and is not
binary, i.e., does not stop at a any specific border. Moreover,
when transmission powers are properly assigned, a node
may successfully receive a message in spite of being in the
transmission range of other simultaneous transmitters. In fact,
a message is successfully received by a node if the ratio
between the received signal strength on the one hand and
the ambient noise plus interference from other nodes on the
other hand exceeds a certain hardware-specific threshold. The
communication model adopting this notion of signal-to-noise-



plus-interference ratio (SINR) is also known as the physical
model [12].

In this paper, we adopt this physical model of communica-
tion and study the scheduling complexity, i.e. the question of
how much time is required in order to successfully transmit
messages over a given set of communication links. Formally,
we are given an arbitrary (i.e., not randomly distributed) net-
work, and a set of directed links representing communication
requests. For each such link we assign a time slot and a power
level such that all simultaneous transmissions are successful,
i.e., not violating the signal-to-interference plus noise ratio at
any receiver. In particular, we want an assignment that uses as
few time slots as possible, which is precisely the task faced
by MAC layer or scheduling protocols.

In practical scenarios, it is often not known in advance
where and when communication requests arise. Certain funda-
mental types of network structures, however, play a vital role
in many applications of wireless networks. Most basically, it
is typically required that a message can be routed between
any pair of nodes in the network. That is, all nodes should
be connected by a communication backbone, such as a tree or
any other suitable network topology.

In the main part of this paper we therefore study the
scheduling complexity of connecting a given number of nodes
located at arbitrary positions by some communication tree.
For this basic connectivity problem, we present an algorithm
which constructs a spanning tree, and assigns power levels and
time slots to each link of the tree such that in polylogarithmic
time, all transmissions are received correctly, i.e., without
violating the signal-to-interference plus noise ratio at any
receiver. In other words, we prove that for the most basic of all
network properties, connectivity, the scheduling complexity is
polylogarithmic in the number of network nodes. This result
is astonishing because it shows that even in the harsh SINR
model and in large-scale networks, scheduling communication
requests (even if they must result in a connected structure!)
can be achieved efficiently. Hence, theoretically, there is no
fundamental scalability problem in wireless networks when it
comes to scheduling communication requests.

Our upper bound is intriguing because standard MAC layer
protocols and power assignment schemes can perform much
worse. In particular, two different power assignment schemes
have typically been studied and adopted in wireless networks.
In uniform power assignment schemes, all nodes transmit with
the same transmission power [11]. In linear power assignment
schemes, it is assumed that if a node x wants to transmit
a message to a node that is located in distance d, then x
should send with a transmission power of Px = ρ · dα, for
some constant ρ, where α is the so-called path-loss exponent.
In other words, the strategy of most MAC layer or power
control protocols (e.g. [26], [20], [22], [32], [30], [1], [29])
is to either let all nodes send at the same power, or to adjust
the transmission power level of a packet to be proportional to
Pmin, where Pmin is the minimum power required such that
in the absence of interference from other nodes, the SINR at
the intended receiver is just enough for decoding the packet.

In this paper, we show that the result of both of these
power assignment schemes can be disastrous. In a network
consisting of n nodes, we prove that any scheduling approach
that uses a uniform or linear power assignment potentially
requires up to time Θ(n) in order to schedule links that
constitute a connected structure. This is exponentially slower
than the scheduling complexity achieved by our polyloga-
rithmic algorithm. In fact, we even show that any protocol
that uses uniform or linear power assignment may need up
to time Θ(n) until every node has been able to transmit
successfully once. This holds even if the receiving node for
every sender is selected best-possible, e.g. when each node
transmits to its closest neighbor. Note that this result places
a strong lower bound on the amount of time required by any
MAC layer protocol (even an imaginary MAC protocol that
optimally schedules the communication requests) if it assigns
transmission powers uniformly or linearly.

Besides being of theoretical interest, the bad scheduling
complexity achieved by uniform and linear power assignments
has practical relevance: It shows that in order to obtain a fast
scheduling of sending requests in wireless networks, MAC
layer and scheduling protocols should adopt neither uniform
nor linear power assignment. Instead, the remedy against this
loss of efficiency is a highly non-linear assignment of power
levels. That is, our polylogarithmic scheduling algorithm uses
an explicitly defined power scheme that lies “in between”
uniform and linear power assignment. Particularly, many dif-
ferent power levels are required in order to achieve an efficient
schedule.

The rest of this paper is organized as follows. In Section II,
we formally introduce and define the communication model
and the scheduling complexity, respectively. The limitations
of uniform and linear power assignments are studied in subse-
quent Section III. We then propose an efficient polylogarithmic
scheduling algorithm in Section IV. The performance of a
simple and natural, but worst-case inefficient linear power
assignment algorithm is analyzed in Section V. An overview
of related previous work is given in Section VI and finally,
Section VII concludes the paper.

II. SCHEDULING COMPLEXITY

We consider the network nodes X = {x1, . . . , xn} to be
located arbitrarily (even worst-case) in the Euclidean plane.
The Euclidean distance between two nodes xi, xj ∈ X , is
denoted by d(xi, xj). For a (directed) link fij = (xi, xj),
�(fij) = d(xi, xj) denotes the distance between its endpoints.
Finally, the ball B(xi, r) of radius r around node xi contains
all nodes xj ∈ X for which d(xi, xj) ≤ r. For simplicity and
without loss of generality, we assume that the minimal distance
between any two nodes is 1 and we define Δ = log(�max),
where �max is the largest distance between two nodes.

With what power level should nodes send in a certain time-
slot? Intuitively, if the power level is large, more nodes can be
covered, at the same time causing an increase in interference
faced by other nodes. In the following, we formally define the
notion of a power assignment.



As in [12], we assume without loss of generality that
transmissions are slotted into synchronized slots of equal
length. In each time-slot t, a node x can either transmit
or not transmit a message. A power assignment determines
the power level chosen by each node in a certain time-slot.
Formally, a power assignment φt is a function φt : X �→ R

+

which maps every node in the network to a power level. We
denote by φt(xi) the power level of node xi in time-slot t.
If a node is not scheduled to transmit in this time-slot, then
φt(xi) = 0. In case it is clear from the context which time-slot
t is meant, we also use the notational short-cut Pi = φt(xi).
A schedule S = (φ1, . . . , φT (S)) is a sequence of T (S) power
assignments, where φi denotes the power assignment in time-
slot i. Finally, we call T (S) the length of schedule S. That is,
a schedule S of length T (S) determines the power level Pi

for every node xi ∈ X for T (S) consecutive time-slots.
A major aspect of the model is the description of the cir-

cumstances under which a message is received by its intended
recipient. As mentioned in the introduction, in this paper
we adopt the signal-to-interference plus noise ratio (SINR)
model (physical model [12]) in order to determine whether
a transmission is successfully received. In this model, the
successful reception of a transmission depends on the received
signal strength, the ambient noise level, and the interference
caused by simultaneously transmitting nodes. Let Pr be the
signal power received by a node xr and let Ir denote the
amount of interference generated by other nodes. Finally, let
N be the ambient noise power level. Then, a node xr receives
a transmission if and only if Pr

N+Ir
≥ β, where β denotes

the minimum signal to interference ratio that is required for a
message to be successfully received.1

In wireless networks, the value of received signal power
Pr is a decreasing function of the distance d(xs, xr) between
transmitter node xs and receiver node xr. More specifically,
the received signal power can be modeled as decaying with
distance d(xs, xr) as 1

d(xs,xr)α . The so-called path-loss expo-
nent α is a constant between 2 and 6 and depends on external
conditions of the medium, as well as the exact sender-receiver
distance. As customary, we assume that α > 2 [12].

Let Pi be the power level assigned to node xi in a time-slot.
A message transmitted from a node xs ∈ X is successfully
received by a node xr if

Ps

d(xs,xr)α

N +
∑

xi∈X\{xs}
Pi

d(xi,xr)α

≥ β. (1)

As for notation, Ir(xv) = Pv

d(xv,xr)α denotes the amount of
interference encountered at xr caused by a node xv that is con-
currently transmitting. Finally, the total interference Ir experi-
enced by a receiver xr is the sum of the interferences created
by all nodes (except the intended sender xs) in the network,
i.e., the total interference at xr is Ir =

∑
xi∈X\{xs} Ir(xi).

Definition 2.1: Consider a time-slot t and a power assign-
ment φt. We say that a directed link (xi, xj) is successfully

1Note that all our results can directly be generalized to the case in which
nodes can use multiple non-interfering frequencies simultaneously.

scheduled at time-slot t if xj successfully receives a message
from xi according to the SINR Inequality (1).

Let Et be the set of all successful links in time-slot t.
We want that after as few time-slots as possible, the union
of all link-sets Et forms the desired network topology, e.g.,
connectivity. We therefore define the scheduling problem for
a given network property as follows.

Definition 2.2: The scheduling problem for a network prop-
erty Ψ is to find a schedule S of minimal length T (S),
such that the union of all successfully transmitted links Σ =⋃T (S)

t=1 Et satisfies property Ψ.

As an example, the scheduling problem when Ψ is connec-
tivity translates to finding a schedule S of minimal length in
which all successfully transmitted links strongly connect the
network, i.e., there exists a path between all pairs of nodes.
Finally, we define the scheduling complexity of a network
property Ψ.

Definition 2.3: The scheduling complexity of a network
property Ψ is the minimal number of time-slots T , such
that there always exists a valid schedule S for Ψ of length
T = T (S).

With regard to a scheduling algorithm A, we also refer to
the scheduling complexity of A as the number of time-slots
required by this algorithm in the worst-case to schedule the
desired network property.

The scheduling complexity in wireless networks is a fun-
damental measure that indicates how quickly communication
requests can be established. In this regard, the scheduling-
complexity complements the notion of capacity in wireless
networks that has been studied in the past. While capacity
captures the amount of information that can maximally be
sent in a best-case scenario (i.e., without assuming worst-
case restrictions on the network topology over which messages
must be sent), the scheduling-complexity of a wireless network
describes how fast information can be transmitted in a worst-
case scenario, i.e., if communication links must satisfy a
certain property such as connectivity. Hence, the scheduling
complexity describes the theoretically achievable efficiency of
any MAC layer or scheduling protocol.

Note that we could define the scheduling complexity of
wireless networks in an alternative, but equivalent way. Par-
ticularly, the scheduling complexity also captures the minimal
number of non-interfering frequencies that are required in
order to schedule a desired network property in a single time-
slot. Throughout the paper, we will focus on the time aspect of
the scheduling complexity, but all our upper and lower bound
results immediately apply to frequencies as well.

III. LIMITATIONS OF UNIFORM AND LINEAR POWER

ASSIGNMENT

In this section, we prove the deficiency of the power
assignment schemes that have been widely studied in the field
of wireless networks (and that have also been adopted by
most standard MAC layer protocols). We study the scheduling
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Fig. 1. Example with nodes xi being located at position xi = 2i, i =
1, . . . , n.

complexity of the following property Ψmin: Every node x ∈
X can send at least one message successfully. Note that
property Ψmin does not restrict to which other node a node
must send, i.e., nodes can for instance select their nearest
neighbors as receivers. In other words, we investigate the
following simple and fundamental problem: How much time
is required until every node can successfully transmit one
message, when the receivers for each sender are selected best
possible.

Because of its simplicity, achieving good solutions for
this problem (i.e., good scheduling complexity for property
Ψmin) seems to be easy and intuitively, one would expect
that simple MAC layer protocols achieve a good performance.
Surprisingly, however, the opposite is true. We prove in this
section that generally accepted power assignment schemes are
incapable of achieving a reasonable scheduling complexity
even for the simple problem Ψmin. In the worst case, such
protocols have the same asymptotic performance as a protocol
that schedules each single network node individually.

One way of assigning power levels in a radio network is to
let every node transmit at the same power. Such uniform power
assignment schemes have been widely studied [26], [11], [13]
and adopted in practical systems. However, the following
theorem states that even for property Ψmin, the scheduling
complexity of a uniform power assignment algorithm is linear
in n.

Theorem 3.1: Assume that every node vi has the same
transmission power. The scheduling complexity for problem
Ψmin in such a uniform power assignment is at least n· β

2α+β ∈
Ω(n), even in the absence of ambient noise.

Proof: Consider the example given in Figure 1, in
which nodes x0, . . . , xn−1 are placed on a straight line with
exponentially increasing distances between them. We prove
that in each time-slot, at most 2α

β + 1 nodes can send
successfully if the transmission power is uniform. Assume
for contradiction that there are L = 2α

β + 2 nodes sending
successfully in the same time-slot, and let xs be the right-most
of these transmitters. Further, assume that xs’s transmission is
successfully received by node xr. On an exponential line, if xr

is to the left of xs, it holds that d(xi, xr) ≤ d(xs, xr) for each
simultaneously transmitting node xi. If xr is on xs’s right, it
holds that d(xi, xr) ≤ 2d(xs, xr) for each such xi. Because
all transmission powers P are equal and xs is the right-most
sender, the SINR at xr is therefore at most

P
d(xs,xr)α

N + (L − 1) · P
(2d(xs,xr))α

≤ 2α

L − 1
=

2αβ

2α + β
< β,

which is not sufficiently high for a correct reception of the
message at xr, which yields the contradiction. Because at most
2α

β + 1 links can be simultaneously scheduled in any time-

slot, the algorithm requires at least n · (2α+β
β )−1 time-slots

to schedule all nodes at least once, from which the theorem
follows.

The other intuitive and frequently adopted way of assigning
power levels when scheduling a set of nodes is the following:
Intended senders transmit at a power level that is propor-
tional to the minimal power required for transmitting over
the wireless link (e.g., [20], [29], [1]). In other words, for
a pair of sender si and receiver ri, si sends with power
Ps = ρ · d(si, ri)α, where ρ is a constant which depends on
the values of α, β, and the ambient noise N . Since d(si, ri)α

is the minimal amount of power necessary to reach ri from
si, it seems natural to let nodes send with a power that is
proportional to d(si, ri)α. We call such a power assignment
linear, because the power assigned to a node depends linearly
on the minimal power required for its link. Linear power
assignments have been assumed in many papers written on
topology control (e.g. [24]), in papers that study the issue of
energy efficiency in wireless networks (e.g. [29], [1]), and in
some MAC layer protocols [20]. However, like in the uniform
case, protocols using linear power assignment can perform
badly even for the basic requirement Ψmin.

Theorem 3.2: Assume that every node xi that intends to
send a message over a link of length �i transmits with power
Ps = ρ · �α

i , for an arbitrary constant ρ which may depend on
α, β, or N . The scheduling complexity for problem Ψmin in
such a linear power assignment is n · min{1, β/2α} ∈ Ω(n),
even in the absence of ambient noise.

Proof: Consider again the example given in Figure 1.
Let xi be a transmitting node in an arbitrary time-slot t. In
a linear power assignment, it transmits at least with power
Pi = ρ · d(xi, xi−1)α, for some constant ρ. As a consequence
of this transmission, all nodes xj , j < i face an interference
of at least

Ij(xi) ≥ ρ · d(xi, xi−1)α

(2d(xi, xi−1))α
=

ρ

2α

because the distance d(xi, xj) is at most 2d(xi, xi−1) in
the exponential line. Because at least the same amount of
interference is caused by all simultaneous senders xi, a node
xj faces a total interference of at least Ij ≥ R · ρ

2α , where R
is the number of sending nodes to the right of xj . Now, let
xs be the left-most node that sends a message in time-slot t,
and let xr be its receiver. Because the SINR at every xr must
be at least β, i.e.,

ρ·d(xs,xr)α

d(xs,xr)α

N + R · ρ
2α

≥ ρ2α

2αN + ρR
≥ β.

From this, it follows that the maximum number of simul-
taneous senders Rmax can be at most Rmax ≤ 2α

β and
consequently, the algorithm requires at least n ·min{1, β/2α}



for scheduling all nodes. Note that this result holds even if
there is no noise N .

In reality, both α and β are small constant values. Hence,
Theorems 3.1 and 3.2 show that even in the most basic
scheduling problem Ψmin, only a small constant number of
links can be simultaneously scheduled when adopting uniform
or linear power assignment schemes. For α = 4 and β = 7dB,
for instance, at most 4 links can be scheduled in parallel. It
follows that any MAC layer or scheduling protocol that assigns
transmission powers according to either of these two policies
performs disastrously in the worst-case. In the subsequent
section, we show how a non-linear power assignment yields
much more efficient schedules. Specifically, we prove that in
every network (including the one shown in Figure 1), no fewer
than Ω(n/ log4n) links can simultaneously be scheduled in
each time-slot.

IV. THE COMPLEXITY OF CONNECTIVITY

In this section, we present an algorithm which, for every
possible placement of n nodes in the plane, successfully
schedules a strongly connected subgraph in O(log4n) time-
slots. This proves that in wireless networks, the scheduling
complexity of strong-connectivity is at most polylogarithmic
in the number of nodes.

Theorem 4.1: The scheduling complexity of strong-
connectivity in wireless networks is at most O(log4n).
This theorem captures a fundamental characteristic of wireless
networks: scheduling a strongly connected topology theoreti-
cally remains efficient in every wireless network, even when
n becomes large. As shown in Section III, this is in contrast
to the Ω(n) scheduling complexities achieved by uniform and
linear power assignment protocols.

Algorithm 1 proceeds in phases, each phase corresponding
to an iteration of the outermost loop. The purpose of this
outer loop is to gradually reduce the number of active nodes
xi ∈ A. Initially, the set of active nodes A contains all nodes,
and whenever a node becomes passive (by being discarded
from A), it does not transmit in any subsequent time-slot.
At the outset of a phase p (line 5), every active node xi

chooses its closest active neighbor, say xj , and the directed
link fij = (xi, xj) becomes designated to be scheduled in
phase p. After breaking cycles of length 2 (i.e. two nodes that
are mutually closest neighbors) in Line 7, Fp is the set of
all selected links that are scheduled in phase p. Fp forms a
nearest neighborhood forest consisting of a set of trees, from
each of which only the root remains active in the next phase
p+1. This process is repeated until there remains only a single
active node. At this point, the scheduled links form a directed
tree towards a single node, which can then complete the strong
connectivity requirement in a single additional time-slot.

The main challenge is how to efficiently schedule the forest
Fp. As we have seen in Section III, neither standard linear nor
uniform power assignments lead to acceptable solutions. So,
the problem is: How do we choose the sending nodes and at
what power levels should they send? As we will see, both of
these subproblems are strongly interrelated.

Algorithm 1 Polylogarithmic Scheduling Algorithm
Input: An arbitrarily located set of nodes X
Output: A schedule S satisfying strong-connectivity

1: A := X; t := 1; ν > 4N ; μ := 3 + 2
7
α +2 α

√
β α−1

α−2 ;

2: while |A| > 1 do {∗ Phase p ∗}
3: Fp := ∅;
4: for each xi ∈ A do
5: choose xj ∈ A \ {xi} minimizing d(xi, xj);
6: fij := (xi, xj);
7: if fji /∈ Fp then Fp := Fp ∪ fij ; fi
8: end for
9: Let L = L0, . . . , LΔ−1, such that Lk is the set

of links fij of length 2k ≤ �(fij) < 2k+1;
10: Delete all empty length classes Lk and rename L

such that Lk is the kth largest non-empty length-class;
11: for each xi ∈ A with fij ∈ Fp do A := A \ {xi};
12: for j = 0 to log(4βn) − 1 do

13: Schedule all fij ∈ Fp ∩
(⋃ n

log(4βn)−1

h=0 Lh log(4βn)+j

)
using subroutine Schedule();

14: end for
15: end while
16: φt(xi) := Nβ · �α

max for xi ∈ A
17: S := {φ1, . . . , φt−1};

Subroutine Schedule() :

1: Let F be the set of links to be scheduled,
classified in at most p = � n

log(4βn) − 1� length classes
L′ = L′

1, . . . , L
′
p;

2: for each fuv ∈ F ∩ L′
k do τ(xu) := p − k + 1;

3: while F 
= ∅ do
4: for each xi ∈ A do φt(xj) := 0; end for
5: Ft := F ; Et := ∅;
6: while Ft 
= ∅ do
7: choose the link f∗

ij ∈ Ft of minimal length;
8: Et := Et ∪ {f∗

ij}; Ft := Ft \ {f∗
ij};

9: φt(xi) := ν(4βn)τ(xi)�(f∗
ij)

α; {∗Schedule f∗
ij∗}

10: for each fk� ∈ Ft do
11: δik := τ(xi) − τ(xk);
12: if δik = 0 and x� ∈ B

(
xi, μ�(f∗

ij)
)

then
13: Ft := Ft \ {fk�};

14: else if x� ∈ B
(
xi, (4nβ)

δik+1
α · �(f∗

ij)
)

then
15: Ft := Ft \ {fk�};
16: end if
17: end for
18: end while
19: F := F \ Et; t := t + 1;
20: end while

The links in Fp are classified into at most n different
non-empty length classes Lk, such that the length of links
in the same class differ by at most a factor of 2 (Lines 9
and 10). The algorithm schedules these links using log(4βn)
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Fig. 2. Illustration of Algorithm 1. In the example, links f1, f4, and f5 are
dropped from Ft. Note that f2 is not dropped because its receiver is outside
the critical ball, even though its sender is close from xs.

calls to a schedule() subroutine, which lies at the heart of
our algorithm. In the first call to the subroutine, it schedules
all links in length classes L0, Llog(4βn), L2 log(4βn), . . ., in the
second call, L1, Llog(4βn)+1, L2 log(4βn)+1, . . ., and so forth.
In other words, the length classes scheduled in the same
subroutine call are always separated by log(4βn) − 1 length
classes. The idea is that the length of simultaneously scheduled
links should be either similar (same length class) or very
different, but not in between.

At the outset of the subroutine, the p = � n
log(4βn) − 1�

received length classes are renamed to L′
1, L

′
2, . . . , L

′
p and the

set F denotes the links that must be scheduled. Scheduling
this forest F is done as follows. Each outer-loop iteration of
the subroutine corresponds to a time-slot t in which a subset
of the links of F (denoted by Et) is chosen to be scheduled
simultaneously. The selection of Et from F proceeds as
follows. Starting from the shortest link, the algorithm greedily
picks links f∗

ij (Line 7) from Ft, a set denoting the links from
F that are still eligible to be selected in time slot t. Initially, all
links are eligible, Ft = F , but whenever a link is selected, as
shown in Figure 2, links whose distance-to-receiver vs. length
ratio is too small are removed from Ft (Lines 12-15). Such
links become eligible again in the next time-slot.

As we show in Lemma 4.8, this distance-length threshold
avoids that too many links are discarded from Ft in any time-
slot. The specific distance-length ratio of a link fij depends on
the value τ(xi), which expresses that length class containing
fij is the τ(xi)th shortest length-class of the phase. For
two intended senders xi and xu, the value δiu denotes the
difference between τ(xi) and τ(xu), i.e., the number of length
classes separating xi and xu. When scheduling the link f∗

with sender xs and ys in a time-slot, larger links fi are
deleted from Ft if the intended receiver is located in the ball
B(xi, (4nβ)

δsi+1
α · �(f∗)). The intuition is not to schedule a

link in F if its receiver is in physical proximity of a much
shorter, concurrently scheduled link. Note that the radius of
the ball depends exponentially on the two links’ relative length
classes. Using a simple distance function instead would either
ruin the schedule’s complexity or correctness.

Of particular interest is the power assignment adopted in
Line 9 of the subroutine. In comparison to a linear power
assignment, the transmission power assigned to an intended
sender xi is scaled by a factor of ν(4βn)τ(xi), thus dispro-
portionally favoring short links over long ones! That is, nodes
transmitting to close nodes “overpower” their receivers much
more than transmitters of a long link. Note, however, that
the scaling factor does not directly depend on the length of
f∗

ij relative to other links.2 Instead, the power level depends
on the length-class to which f∗

ij is assigned. Because empty
length classes were deleted from L before the subroutine,
a node’s power scaling factor does not depend directly on
its length. Rather, it depends on the relative position of its
length class L′

k in L′. This somehow counter-intuitive power
assignment in combination with the greedy procedure for
selecting transmitters is the key to our algorithm. It keeps the
SINR high for all intended receivers, while still allowing to
schedule many links in parallel.

As shown in Section III, neither linear nor uniform power
assignment schemes result in an efficient schedule. In contrast,
our algorithm’s power assignment lies in between these two
extreme cases. Unlike in linear power assignment schemes, it
favors short links over long ones in the sense that they transmit
at a higher power than actually required to reach the receiver.
But unlike in uniform power schemes, nodes having long links
still use a higher absolute transmission power than short ones.

Analysis: We now show that Algorithm 1 is both correct
and efficient. We start with a simple lemma that characterizes
the length ratio between two links that are to be scheduled in
the same execution of the scheduling subroutine.

Lemma 4.2: Let fxy and fuv be two links that are consid-
ered in the same subroutine call, and let τ(x) ≥ τ(u), where
x and u are the intended transmitting nodes. Then, the length
of fuv is at least �(fuv) ≥ 1

2 (4nβ)δxu · �(fxy).

Proof: By Line 13 of the algorithm, only links in length
classes Lj , Llog(4βn)+j , L2 log(4βn)+j , . . . are considered in the
same execution of the subroutine. The value of δxu denotes
the number of non-empty length classes that separate links
fxy and fuv , each incurring at least a doubling of the length.
Taking into account that lengths can differ by at most a factor
of 2 within a length-class, it follows that �(fuv) is at least

�(fuv) ≥ �(fxy) · 2δxu log(4βn)−1 = �(fxy) · 1
2
(4nβ)δxu .

We now show that the schedule obtained by Algorithm
1 is correct. In particular, we prove in Theorem 4.6 that
all transmissions Et scheduled in a time-slot t during the
algorithm are received successfully by the intended receivers.
More specifically, we show that the SINR at every intended
receiver is high enough, i.e., larger than β. In the following
series of Lemmas 4.3, 4.4, and 4.5, we bound the total
interference experienced at a receiver xr that was caused by

2In fact, it can be shown that any power assignment that depends directly
on the relative length of links cannot lead to an efficient schedule.



simultaneously scheduled links from smaller, the same, or
larger length classes, respectively.

Lemma 4.3: Consider a scheduled link fx with intended
sender xs and receiver xr. Let I−r be the total interference
caused at xr by simultaneously transmitting nodes yi for which
τ(yi) > τ(xs). It holds that

I−r <
ν

4
βτ(xs)−1(4n)τ(xs).

Proof: Bounding the interference caused by substantially
shorter links is tricky, because our algorithm’s non-linear
power assignment scheme assigns such nodes a disproportion-
ately large sending power. Consider a link fy with transmitting
node yi. We begin by showing that the interference Ir(yi) at
xr caused by yi is at most

Ir(yi) ≤ ν(4βn)τ(xs)−1. (2)

Assume for contradiction that inequality (2) does not hold,
i.e., assume that

Ir(yi) =
Pi

d(yi, xr)α
=

ν(4βn)τ(yi)�(fy)α

d(yi, xr)α

!
> ν(4βn)τ(xs)−1.

Simplifying the above inequality and defining χ to be the ratio
χ = d(yi,xr)

�(fy) , it must hold that

(4βn)τ(yi)−τ(xs)+1 > χα

and consequently (4βn)
δis+1

α > χ. This means that the
distance between yi and xr is upper-bounded by

d(yi, xr) < �(fy) · (4βn)
δis+1

α .

However, this establishes a contradiction to the definition of
Algorithm 1. In the iteration of the innermost while-loop in
which fy was scheduled, fx would have been deleted from Ft

if d(yi, xr) < �(fy) ·(4βn)
δis+1

α in Line 14. Hence, fx and fy

would not have been scheduled in the same time-slot, which
establishes the contradiction.

Because the number of transmitting nodes is at most n,
the total interference caused by transmitters of substantially
smaller links is

I−r =
∑

yi:τ(yi)>τ(xs)

Ir(yi) ≤ n · ν(4βn)τ(xs)−1

from which the lemma follows.
The next lemma similarly bounds the interference from

nodes that are in the same length-class.

Lemma 4.4: Consider a scheduled link fx with intended
sender xs and receiver xr. Let I0

r be the total interference
caused at xr by simultaneously transmitting nodes yi for which
τ(yi) = τ(xs). It holds that

I0
r ≤ ν

4
βτ(xs)−1(4n)τ(xs).

Proof: By Lemma 4.2, we know that for each link fi,
fi 
= fx, with transmitting node yi and τ(yi) = τ(xs), it
holds that 2�(fx) ≥ �(fi) ≥ 1

2�(fx). In the algorithm, after
scheduling a link fk, all links in the same length-class whose

intended receivers are within distance μ�(fk) of the sender are
deleted from Ft in line 13 of the scheduling subroutine. More
precisely, around each transmitting node yi, there can be no
other scheduled sender yj from the same length class within
distance at least μ�(fi) − �(fj) ≥ (μ − 2)�(fi) ≥ μ−2

2 �(fj).
This means that disks Di of radius μ−2

4 �(fi) centered at
all transmitting nodes yi from the same length class do not
overlap. The area of each such disk is A(Di) = (μ−2

4 �(fi))2π.
Consider rings Rk of width 1

2 (μ − 3)�(fx) around xr,
consisting of all nodes yi for which 1

2k(μ − 3)�(fx) ≤
d(yi, xr) ≤ 1

2 (k + 1)(μ− 3)�(fx). Because the distance from
xr to any scheduled transmitter (in the same length class)
except xs is at least 1

2 (μ − 3)�(fx), the first such layer R0

does not contain any other scheduled sender yi. Consider all
transmitters yi in Rk. All corresponding disks Di must be
entirely located in an “extended” ring of area

A(Rk) =

[(
(k + 1)(μ − 3)�(fi)

2
+

(μ − 2)�(fi)
4

)2

−
(

k(μ − 3)�(fi)
2

− (μ − 2)�(fi)
4

)2
]

π

<
1
4

[(
k +

3
2

)2

−
(

k − 1
2

)2
]

(μ − 2)2�(fi)2π

=
(

k +
1
2

)
(μ − 2)2�(fi)2π.

Each transmitter yi in Rk has distance at least 1
2k(μ−3)�(fx)

from xr and sends with a power at most ν(4βn)τ(yi) ·
(2�(fx))α. Using the fact that the disks Di do not overlap,
we can bound the interference at xr from nodes in ring Rk

using a standard area argument.

I0
r (Rk) =

∑
yi∈Rk

Ir(yi)

≤ A(Rk)
A(Di)

· ν(4βn)τ(yi) · (2�(fx))α

( 1
2k(μ − 3)�(fx))α

≤ 16(k + 1
2 )ν(4βn)τ(xs) · 22α

kα(μ − 3)α

≤ 24ν(4βn)τ(xs) · 22α

kα−1(μ − 3)α
.

Summing up the interferences over all rings yields

I0
r <

∞∑
k=1

I0
r (Rk) ≤ 24ν(4βn)τ(xs) · 22α

(μ − 3)α

∞∑
k=1

1
kα−1

<
24ν(4βn)τ(xs) · 22α

(μ − 3)α
· α − 1
α − 2

<
ν

4
βτ(xs)−1(4n)τ(xs),

where the second-to-last inequality follows from a standard
bound for Riemann’s zeta-function and the last one from
plugging in the definition of μ.

Finally, we bound the interference created by links that are
in higher length classes than fx.



Lemma 4.5: Consider a scheduled link fx with intended
sender xs and receiver xr. Let I+

r be the total interference
caused at xr by simultaneously transmitting nodes yi for which
τ(yi) < τ(xs). It holds that

I+
r ≤ ν

4
βτ(xs)−1(4n)τ(xs).

Proof: In F , every sender has a link to its closest
neighbor and hence, �(fy) ≤ d(yi, xr) for all links fy with
intended transmitter yi. The interference at xr caused by yi is
therefore at most

Ir(yi) =
Pi

d(yi, xr)α
≤ ν(4βn)τ(yi)�(fy)α

�(fy)α

= ν(4βn)τ(yi) ≤ ν(4βn)τ(xs)−1.

Summing up over all nodes concludes the proof, i.e.,

I+
r =

∑
yi:τ(yi)<τ(xs)

Ir(yi) ≤ ν

4
βτ(xs)−1(4n)τ(xs).

Having thus bounded the interference caused by links in
all different length classes in Lemmas 4.3, 4.4, and 4.5,
establishing the correctness of the algorithm is now easy. In
particular, we can show that every transmitted message is
successfully received throughout the algorithm.

Theorem 4.6: Consider an arbitrary time-slot t. All sched-
uled transmissions Et in t are received successfully by the
intended receivers. That is, the computed schedule is correct.

Proof: Consider a link fx with intended sender xs

and receiver xr, that is scheduled for transmission in time-
slot t, i.e., φt(xs) > 0. The transmission power of xs is
Px = ν(4βn)τ(xs)�(fx)α. By Lemmas 4.3, 4.4, and 4.5, we
know that the total interference faced at xr is at most

Ir ≤ I−r + I0
r + I+

r ≤ 3ν

4
βτ(xs)−1(4n)τ(xs).

Hence, defining X := βτ(xs)−1(4n)τ(xs) > 1, the SINR at
the xr is lower-bounded by

SINR ≥
ν(4βn)τ(xs)�(fx)α

�(fx)α

N + 3ν
4 βτ(xs)−1(4n)τ(xs)

≥ 4βX

1 + 3X
> β.

In view of Inequality (1), this proves that every transmission
scheduled by Algorithm 1 is successfully received.

Proving correctness (i.e., the absence of collisions) of the
computed schedule is only one side of the story. In order to
obtain an efficient schedule, we must also guarantee that many
links can simultaneously be scheduled, such that all commu-
nication requests can quickly be satisfied. In Lemma 4.8, we
derive a lower bound on the amount of progress achieved in
every single time-step of the algorithm. Specifically, we show
that at each time t, at least a Ω( 1

log n ) fraction of the links in
F that remain to be scheduled are indeed scheduled.

Before proving this claim in Lemma 4.8, however, we
require the following geometric helper lemma.

Lemma 4.7: Consider a disk C with radius rc, and disks
Di with centers ci and radius ri, ri ≥ rc for all i. Let κ be
the maximal number of such disks Di such that both of the
following properties hold:

• Every Di overlaps with C in at least one point.
• No disk Di contains a center cj for i 
= j.

Then, it holds that κ ≤ 12.

Proof: The proof follows a standard geometry argument.
Assume for contradiction that there are 13 disks Di that
fulfil both properties stated in the lemma and consider the
corresponding centers ci. There must be a cone of angle π

3
centered at rc that contains at least 3 such centers c1, c2, c3.
Consider the two senders that are closest to cr, say c1 and c2.
Because the cone’s angle is π

3 and ri ≥ rc for every disk, c3

must be closer to either c1 or c2 than to any point in C. Hence,
D3 either violates the lemma’s first or second property.

Using Lemma 4.7, we can derive the following key lemma
that establishes the bound on the algorithm’s progress.

Lemma 4.8: Consider an arbitrary time-slot t during the
execution of Algorithm 1 and let F be the set of links that
remain to be scheduled at the beginning of time-slot t. Let the
constant κ be as defined in Lemma 4.7. It holds that for some
constant χ > 0,

|Et| ≥ |F|
(logαn + 2)κ + 4(μ + 4)2

≥ χ
|F|

logαn
.

Proof: The proof is based on a geometric argument. We
show that for every link selected in steps 7-9 of the scheduling
subroutine, there can be at most a logarithmic number of
longer communication links that are deleted from Ft, i.e., not
scheduled in time-slot t. On the other hand, when choosing
a link, the algorithm removes no previously selected shorter
links from Ft. From this observation, the lemma then follows.

Consider an arbitrary iteration of the inner-most while loop
in which the link f∗ is selected for transmission in time-slot
t, i.e., Et = Et ∪ {f∗}. Assume that xs is the transmitting
node of f∗. Because the algorithm considers the links in Ft

in increasing order, only links that are longer than f∗ can
be dropped from Ft in steps 12-15 of the same while-loop
iteration. When bounding the number of longer links that can
be dropped due to the scheduling of f∗, we distinguish two
cases. First, we bound P 0(f∗) which denotes the number of
dropped links that are in the same length class as f∗ (Line
13). Secondly, we consider P+(f∗), i.e., the number of links
in higher length classes erased from Ft in the same iteration
of the while-loop (Line 15).

We start with P 0(f∗). For each dropped link fuv with
τ(f∗) = τ(fuv), it holds that 2�(f∗) ≥ �(fuv) ≥ �(f∗).
Consider for every fuv a disk Du of radius 1

2�(fuv) around its
transmitter xu. Because Ft ⊆ Fp and because Fp is a nearest
neighbor forest, disks Du do not overlap. Furthermore, the
area of each such disk is

A(Du) =
1
4
�(fuv)2π ≥ 1

4
�(f∗)2π.



By the condition given in step 12 of the scheduling subroutine,
a link fuv with τ(f∗) = τ(fuv) is dropped only if xv ∈
B(xs, μ�(f∗)). Hence, the transmitting node xu must be
located within distance μ�(f∗) + �(fuv) ≤ (μ + 2)�(f∗) of
xs. That is, all disks Du corresponding to removed links are
entirely contained in a disk D∗ centered at xs with radius
(μ + 4)�(f∗). Thus, the number of dropped links in P 0(f∗)
is bounded by

P 0(f∗) ≤ (μ + 4)2�(f∗)2π
1
4�(f∗)2π

= 4(μ + 4)2.

We now turn our attention to the more complicated case
P+(f∗). Recall that the sending node of f∗ is xs and denote
by f1, . . . , fk all links that are dropped from Ft in Lines 14
and 15 of the schedule subroutine for which τ(f∗) > τ(fi),
i.e., δsi > 0. For each such link fi, si and ri denote its
intended sender and receiver, respectively. The links fi are
ordered according to the distance d(xs, ri), where f1 is the
link whose r1 is the closest intended receiver from xs.

By the definition of the algorithm, a link fi is dropped if and
only if ri ∈ B(xs, (4βn)

δsi+1
α �(f∗)). Turning this argument

around, we observe that a link fi whose receiver ri is at
distance more than (4βn)

ϕ
α �(f∗)) from xs, is only dropped if

δsi + 1 > ϕ and consequently, δsi ≥ ϕ. In combination with
Lemma 4.2, this yields the fact that for a dropped link fi with

d(xs, ri) > (4βn)
ϕ
α �(f∗), (3)

the length �(fi) of the link must be at least

�(fi) ≥ 1
2
(4βn)ϕ�(f∗). (4)

In the following, consider an exponentially growing series
of disks Cj , j = 1, 2, . . . of radius rj = (4βn)

j
α �(f∗) centered

at xs. Furthermore, define a ring Rj as the area Cj+1 \ Cj ,
i.e., it holds for every node xi ∈ Rj that

(4βn)
j
α �(f∗) < d(xs, xi) ≤ (4βn)

j+1
α �(f∗).

A key observation for the proof is that there cannot be many
links dropped from rings which are close to one another. This
intuition is formalized using two helper lemmas. Lemma 4.9
shows that there can only be a constant number of receivers
in the first three rings. In Lemma 4.10 we then prove that if
for an arbitrary i, the receiver ri is located in Rk, k ≥ 3, there
cannot be more than κ other intended receivers from dropped
links in the subsequent α(k − 1) − 1 rings.

Lemma 4.9: It holds that r2κ+1 is located outside of C3,
i.e., at most 2κ links with receiver in C3 are dropped from
Ft.

Proof: First, consider all links fi for which δsi = 1.
Each such link has length at least �(fi) ≥ 1

2 (4βn)�(f∗). Since
fi was dropped, its receiver must be located within distance
(4βn)1/α�(f∗) of xs. For β ≥ 1 and α > 2, it holds that
(4βn)1/α ≤ 1

2 (4βn). Now, assume for contradiction that κ+1
or more links fi with δsi = 1 exist. Also, draw a disk C of
radius (4βn)1/α�(f∗) around xs, and disks Di of radius �(fi)

around each corresponding sender si. Notice that there are at
least κ+1 disks Di each of which overlaps with disk C in at
least one point (where ri is located) and no disk Di contains
the center of another disk Dj , because the links fi form a
nearest neighbor forest. However, the possibility of packing
κ + 1 disks Di in such a way contradicts Lemma 4.7 and
hence, it follows that there can be at most κ links fi with
δsi = 1.

Next, we bound the remaining number of dropped links
fi whose receivers ri are situated in C3. Each of these
remaining links has length at least 1

2 (4βn)2�(f∗) because
δis ≥ 2. Moreover, all receivers are located in C3, that is,
d(xs, ri) ≤ (4βn)

3
α �(f∗) < 1

2 (4βn)2�(f∗). Again, it follows
by Lemma 4.7 that the number of dropped links with δsi ≥ 2
in C3 is upper-bounded by κ.

Lemma 4.10: It holds for all i that if ri ∈ Rk, k ≥ 3, then
ri+κ ∈ Rh for h > α(k − 1). That is, for any k ≥ 3, there
can be at most κ dropped receivers in rings Rk, . . . , Rα(k−1).

Proof: It follows from equations (3), (4), and the defini-
tion of a ring, that every dropped link with receiver in rings
Rk, . . . , Rα(k−1) must be of length at least 1

2 (4βn)k�(f∗)
(otherwise, it would not be dropped). On the other hand, the
distance between a receiver in these rings and xs is at most

d(xs, ri) ≤ (4βn)
α(k−1)+1

α �(f∗) = (4βn)k−1+ 1
α �(f∗)

<
1
2
(4βn)k�(f∗) ≤ �(fi),

where the second to last inequality holds for β ≥ 1, α >
2, and k ≥ 3. It follows that like in the proof of Lemma
4.9, we can draw a disk Di with radius �(fi) around each
sender si having its receiver ri in rings Rk, . . . , Rα(k−1). Each
of these disks must overlap with the disk centered at xs of
radius (4βn)k−1+ 1

α �(f∗) and no disk Di contains the center
of another disk. Hence, as illustrated in Figure IV, it follows
by Lemma 4.7 that there can be at most κ dropped links with
receiver in rings Rk, . . . , Rα(k−1).

Having proven Lemmas 4.9 and 4.10, we can now bound the
total number of dropped links and thus conclude the proof of
Lemma 4.8. By Lemma 4.9, we know that at most the first 2κ
receivers r1, . . . , r2κ can be located in C3. All other receivers
must be located in a ring Rk for k ≥ 3. By applying Lemma
4.10, it follows that the receiver r3κ+1 cannot be closer to xs

than in ring Rα(k−1) = R2α, receiver r4κ+1 cannot be closer
than in ring R2α2−α, and so forth. By thus recursively applying
Lemma 4.10, it follows that receiver r(j+2)κ+1 cannot be
closer than in ring Rλj

, where λj is

λj = 2αj −
j−1∑
h=1

αh > αj .

Because there are at most n different length classes, the last
ring from which a receiver (and its link) can be dropped is Rn.
Consequently, the total number of links that can be dropped
when selecting link f∗ is at most (jm + 2)κ, where

αjm ≤ n ⇒ jm ≤ logαn,
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Fig. 3. Illustration of the proof of Lemma 4.10. Because the length of links
fa, fb, and fc is larger than the radius of the disk in which all receivers
must be located, at most κ such links can exist. In the example, the closest
neighbor of sc is sa and not rc, which yields the contradiction.

which implies P+(f∗) ≤ (logαn + 2)κ.
In summary, for every link that is selected in the inner-

most while-loop of the schedule subroutine for scheduling in
a time-slot t, at most

P 0(f∗) + P+(f∗) ≤ 4(μ + 4)2 + (logαn + 2)κ

communication links are dropped from Ft. Therefore, the
number of communication links |Et| that are scheduled in
time-slot t is at least

|Et| ≥ |F|
4(μ + 4)2 + (logαn + 2)κ + 1

,

from which Lemma 4.8 follows.
Lemma 4.8 provides us with a lower bound on the amount

of progress achieved by the algorithm when scheduling the
links selected in one phase. In particular, it allows us to
derive a bound on the time required to schedule the nearest
neighbor forest in this phase. However, we also need to
bound the number of phases that the algorithm executes before
termination. This is done in the following lemma.

Lemma 4.11: Let Ap denote the set of active nodes at the
beginning of phase p during the execution of Algorithm 1. For
each p, it holds that |Ap+1| ≤ |Ap|/2.

Proof: In line 11 of Algorithm 1 all nodes that have an
outgoing link (i.e., that transmit during this phase) are removed
from A. Consider the connected components of forest Fp.
In each such connected component, there is at most 1 node
that has no outgoing link, because each connected component
forms a directed tree with a unique sink. The claim follows
because each connected component consists of at least two
nodes.

Finally, we are ready to prove the main theorem of this sec-
tion containing the claimed correctness and efficiency results
of Algorithm 1.

Theorem 4.12: For every network, Algorithm 1 produces a
correct schedule S that induces a strongly connected subgraph.
Furthermore, the length of the schedule is T (S) ∈ O(log4n).

Proof: As for the scheduling complexity, we start by
showing that every subroutine call requires at most O(log2n)
time-slots. Let m denote the total number of links that are
to be scheduled during a subroutine call, i.e., initially |F| =
m ≤ n. By Lemma 4.8, at least a Ω( 1

log n ) fraction of the
links in F that remain to be scheduled are scheduled in each
time-slot in the subroutine. After the first time-slot, at least
χ m

logαn nodes have been scheduled. Generally, by repeatedly
applying Lemma 4.8, it follows that after the kth time-slot,
for k = lnm · logαn, the number of links that have not yet
been scheduled is at most

m ·
(

1 − χ

logαn

)k

≤ m · e−χ ln m < 1.

That is, each invocation of the schedule() subroutine requires
at most O(log2n) time-slots. The number of subroutine calls in
each phase of the algorithm (lines 12-14) is clearly log(4βn).

All that remains to be done to derive the algorithm’s
scheduling complexity is to bound the number of phases.
By Lemma 4.11, the number of active nodes is at least
halved in every phase. Therefore, at most log n phases are
required until there remains only a single active node upon
which the algorithm terminates. Putting everything together,
the algorithm’s scheduling complexity is

T (S) ≤ ln m · logαn · log(4βn) · log n ∈ O(log4n).

By Theorem 4.6, every transmitted message is successfully
received. Furthermore, observe that the union of all scheduled
links Fp forms a directed tree towards a single node (the
one node that remains active at the end) in the network. This
node can then connect the network with a single transmission.
Hence, the union of all scheduled links is strongly connected,
i.e., there exists a path between all pairs of nodes.

V. LINEAR POWER ASSIGNMENT ALGORITHM

Clearly, MAC layer protocols based on uniform or linear
power assignment strategies have the practical advantage that
their implementation is particularly simple. The lower bound
of Section III for uniform or linear power assignment protocols
is based on a network in which some communication links
are exponentially longer than others. This raises the question
whether the performance of uniform or linear power assign-
ment approaches may also deteriorate as badly in case the
length of the communication link is less varied. If, for instance,
linear power assignment strategies perform well in randomly
deployed average-case networks, heuristic protocols featuring
simple linear power assignments may be employed in non-
critical networks in spite of their bad worst-case scheduling
complexity.

In this section, we propose and analyze an algorithm that
adopts a linear power assignment. Specifically, we show that
this algorithm performs poorly only in scenarios in which there



Algorithm 2 Linear Power Assignment Algorithm
Input: An arbitrarily located set of nodes X
Output: A schedule S in which every node x ∈ X

can send successfully to its closest neighbor.
1: For each xi ∈ X , let fi be the link to its closest neighbor;
2: Let L = L0, . . . , LΔ−1, such that Lk is the set

of links of length 2k ≤ �(fi) < 2k+1;

3: μ = 6 α

√
2β(α−1)

α−2 ; ρ > 4N ; t = 1;
4: for each Li 
= ∅ do
5: Partition the plane in squares of width μ · 2k;
6: for j = 1 to 4 do
7: Select a maximal independent set of squares j

(cf. Figure 4);
8: repeat
9: For each selected square R, pick one link

fi ∈ Lk whose intended sender xr is in R;
10: φt(xi) := ρ · �(fi)α;
11: Do not consider link fi in future iterations;
12: t = t + 1;
13: until all links in active squares have been picked;
14: end for
15: end for
16: S := {φ1, . . . , φt−1};

are links belonging to many different orders of magnitude.
For simplicity of presentation, we again consider the simple
network property Ψmin, i.e., we want that every node can
transmit successfully at least once. By applying a technique
similar to the one in Section IV, strong connectivity can be
achieved at the cost of an additional O(log n) factor in the
scheduling complexity.

The diversity g(V ) of a set of nodes is the number of
magnitudes of distances [19]. Formally, g(V ) is defined as

g(V ) := |{m | ∃xi, xj ∈ X : �log(d(xi, xj))� = m}|.

In our case, g(V ) denotes the number of non-empty length
classes of the nearest neighbor forest links. In the example
shown in Figure 1, for instance, the diversity is g(V ) =
log (2n) = n. In the sequel, we show that Algorithm 2
achieves a scheduling complexity of T (S) ∈ O(g(V )).

The idea of Algorithm 2 is simple: simultaneously schedule
links of similar length, while guaranteeing a large enough
buffer distance between each pair of transmitting nodes. In
each phase of the algorithm, only links belonging to the same
length class are scheduled. In order to schedule one such phase
for links of length 2k ≤ �(fi) < 2k+1, the algorithm partitions
the plane into grid-cells of width μ · 2k. In each time-slot, it
chooses a maximal independent set of cells and selects one
link in each such cell for scheduling.

In the following, we again establish the claimed correctness
and scheduling complexity results.

Lemma 5.1: Every node can send successfully in the unique
time-slot t in which φt(xi) > 0.

Proof: The proof follows exactly along the lines of the
proof of Theorem 4.4 (only using different constants) and is
therefore omitted from this paper.
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Fig. 4. In line 7 of Algorithm 2, the algorithm picks all squares numbered
by j. The example shows an inner-loop iteration for length-class Lk and
j = 3. The algorithm schedules one unscheduled communication link from
each selected square (if there exists one).

Theorem 5.2: The schedule S obtained by Algorithm 2 has
length at most T (S) ∈ O(g(V )) and fulfills property Ψmin,
i.e., each node can send successfully at least once.

Proof: Correctness follows directly from Lemma 5.1 and
from the observation that for every sender xi, there is a time-
slot t for which φt(xi) > 0. As for the length of the schedule,
we first observe that there are at most O(g(V )) non-empty
length classes, i.e., iterations of the outermost loop. Hence,
it only remains to prove that a single phase requires only a
constant number of time-slots.

Consider the phase in which length-class Lk is scheduled.
We first show that the number of potential transmitters in a
cell can be at most a constant. Because every transmitting
node has a link to its closest neighbor, the disks Di of radius
1
2�(fi) ≥ 2k−1 around each transmitter xi do not overlap.
Consider all nodes located in a cell C. The disks Di belonging
to these nodes are completely contained in a square of side-
length (μ + 1) · 2k. Hence, it follows from the standard area
packing argument that the number of links in C is at most
4(μ + 1)2 ∈ O(1) in each cell. The proof is now concluded
by observing that in a grid, always one fourth of the cells can
be scheduled independently as shown in Figure 4.

In combination with the “growing component” technique
used in Section IV, the following theorem can be derived.

Theorem 5.3: Algorithm 2 can be adapted to obtain a
scheduling algorithm for the strong-connectivity property with
scheduling complexity O(min(n, g(V ) · log n)).

Proof: If g(V )·log n < n, we combine Algorithm 2 with
the technique of merging clusters iteratively in each phase,
as done in Algorithm 1. Using Lemma 4.11, it requires at
most O(log n) phases (each taking time O(g(V ))) until the
scheduled links form a directed tree towards a single node.
If g(V ) · log n ≥ n, the algorithm can simply schedule each
node individually.



It is interesting to compare the result of Algorithm 2 with
the solution given in Section IV. Since the diversity g(V )
can be as large as n, the O(log4n) schedule by Algorithm 1
improves the scheduling complexity by an exponential factor.

VI. RELATED WORK

Our work has connections to several different areas that have
been the focus of attention in the networking community. In
this section, we want to highlight some of these connections.

It is clear that our work has ties to coloring problems and
more specifically, MAC layer protocols. The scheduling com-
plexity of a wireless network expresses the number of time-
slots that are required until a certain set of communication
requests can be satisfied. A multiplicity of MAC layers have
been proposed for wireless multi-hop networks [5], [26], [20],
[22], [14], some of them particularly designed for energy-
constrained networks such as sensor networks [30], [32], [23].
The results obtained in Sections III of our paper place strong
lower bounds on the amount of time required by most of these
MAC protocols in order to schedule a set of requests in the
physical model. On the other hand, the algorithm in Section IV
theoretically constitutes a close to optimal way of scheduling
requests, even when these requests are constrained to satisfy
the connectivity property.

The traditional graph-theoretic way of studying scheduling
problems results in coloring problems. When modeling the
network as a graph G = (V,E), the design of a collision-
free MAC layer boils down to obtaining a 2-hop coloring of
the nodes in the interference graph [25]. The efficiency of
such a MAC layer protocol then depends on the number of
colors used in the process. Scheduling and coloring problems
of this kind have been studied in a variety of papers, e.g., [19],
[21], [25], [15]. Algorithmic aspects of capacity in wireless
networks have also been studied in various graph models, e.g.
[16].

One shortcoming of these and related graph-theoretical
models is that they ignore the accumulated interference of
a large number of distant nodes. Even more severely, these
models imply that simultaneous transmissions on proximate
links necessarily interfere with each other, which is not true
in a SINR environment. Specifically, a node xr may receive
a message from xs in spite of being in the transmission-
range of other simultaneous transmissions, if the transmission
powers of the different senders are properly adjusted. As
shown in this paper, such highly non-linear power assignments
are in fact indispensable ingredients of any fast scheduling
algorithm. Studying scheduling in graph-theoretical models
simply abstracts away this crucial aspect.

Integrated scheduling-power control problems in the SINR
model have been studied in various papers, e.g., [7], [9], [4],
[3]. In [4], [3], the impact of power assignments to nodes on
the achievable throughput capacity is studied, whereas [7], [9]
study the problem of finding a schedule and power control
policy that minimizes the total average transmission power
in the wireless multi-hop network. None of the above papers
provides a bound on the scheduling complexity in wireless

networks. Moreover, the proposed algorithms do either not
yield provable worst-case guarantees or are based on solutions
to complex optimization problems that can only be solved
in exponential time in the number of links or nodes in the
network.

Not surprisingly, the study of connectivity in networks has
always been of great interest to the networking community.
Using results from percolation theory, [11] investigates the
critical power level that is necessary for a randomly deployed
wireless network to become connected under the assumption
that all nodes transmit at the same power level. Ever since,
much research effort has been directed towards studying
asymptotic connectivity requirements in randomly distributed
wireless networks, e.g. [31], [8]. What these papers do not
consider, however, is the complexity of actually scheduling
the communication links that form the connected network.

While the above papers study connectivity in random net-
works, the study of topology control has typically focused on
arbitrary, possibly worst-case networks. In topology control,
the idea is that instead of each node transmitting at a maximum
power level, the nodes collaborate to determine a transmission
power that results in a network topology which exhibits
favorable properties. Not surprisingly, the first topology con-
trol protocols focused on guaranteeing the most basic of all
network properties [24], i.e., connectivity. Subsequently, a lot
of effort has been made in developing more subtle network
structures that combine desirable properties such as low energy
paths, low node degrees, planarity, or sparseness, e.g., [28],
[27], [18] or to study heterogenous networks [17].

The problem of topology control is that it assumes a
static network model, i.e. without considering the fact that
the selected communication links may not be scheduled in a
reasonable amount of time. In this regard, topology control
is a theoretic notion that abstracts away physical restrictions
caused by interference. A recent step in the evolution of
topology control has been to explicitly take into consideration
the issue of interference. Although again based on a static
graph-theoretical communication model, [6] proves that all
classic topology control algorithms fail to actually reduce
interference in wireless networks.

VII. CONCLUSIONS

Clearly, our results in this paper are not directly comparable
to results on the capacity of wireless networks. Nonetheless,
it is intriguing to discuss the connections between these two
complementing approaches. The results on the capacity [12]
of wireless networks essentially give a negative answer to the
possibilities of wireless networks by limiting the throughput
that can be achieved per node as the number of nodes in the
network grows. In contrast, our result is of a more positive
nature. Specifically, our result shows that when using proper
MAC layer protocols and power assignment schemes, complex
communication requests can theoretically be scheduled effi-
ciently even in large-scale worst-case networks. This implies
that unlike for the capacity, there exists only little theoret-
ical limitation to scaling as far as the actual scheduling of



transmissions in wireless networks is concerned. Interestingly,
however, such a fast solution cannot be achieved using the
intuitive uniform or linear power assignment schemes that have
been widely adopted by standard MAC layer and scheduling
solutions. Instead, we have shown that a more subtle, non-
linear handling of the transmission powers at nodes is required
in order to achieve efficient and scalable solutions.

Our work opens a wide range of directions for future
research. Most obviously, it would be interesting to investigate
the scheduling complexity of other network properties. More-
over, it would be intriguing to gain a deeper understanding of
the connections between the notion of capacity, interference,
and the scheduling complexity of wireless networks. We are
convinced that a thorough understanding of these notions could
help in designing better network protocols.
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