Tight Bounds for Distributed Selection

Fabian Kuhn, ETH Zurich Thomas Locher, ETH Zurich Roger Wattenhofer, ETH Zurich

19th ACM Symp. on Parallelism in Algorithms and Architectures San Diego, CA, USA, June 2007

Growing interest in distributed aggregation!
\rightarrow Sensor networks, distributed databases...

Aggregation functions?

\rightarrow Distributive (max, min, sum, count)

\rightarrow Algebraic (plus, minus, average)
\rightarrow Holistic (median, $\mathrm{k}^{\text {th }}$ smallest/largest value) \Longleftarrow Distributed selection
Combinations of these functions enable complex queries!
\rightarrow „What is the average of the 10% largest values?"

What cannot be computed using computed using

Thomas Locher, ETH Zurich @ SPAA 2007

Motivation: Distributive \& Algebraic Functions

How difficult is it to compute these aggregation primitives?
\rightarrow We are interested in the time complexity!
Worst-case for every legal input and every execution scenariol
\rightarrow Distributive (sum, count...) and algebraic (plus, minus...) functions are easy to compute:

Slowest message arrives after 1 time unit!

Use a simple flooding-echo procedure \rightarrow convergecast!

Time complexity: $\Theta(D)$

What about holistic functions (such as k-selection)??? Is it (really) harder...?
Impossible to perform in-network aggregation?

Thomas Locher, ETH Zurich @ SPAA 2007

Motivation: Holistic Functions

It is widely believed that holistic functions are hard to compute using in-network aggregation.
Example: TAG is an aggregation service for ad-hoc sensor networks \rightarrow It is fast for other aggregates, but not for the MEDIAN aggregate:

„Thus, we have shown that (...) in network aggregation can reduce communication costs by an order of magnitude over centralized approaches, and that, even in the worst case (such as with MEDIAN), it provides performance equal to the centralized approach."

Motivation: Really so Difficult?

However, there is quite a lot of literature on distributed k-selection:
A straightforward idea: Use the sequential algorithm by Blum et al. also in a distributed setting \rightarrow Time Complexity: $O\left(D \cdot n^{0.9114}\right) \cdot{ }^{\circ} \bigcirc_{\text {Not so }}$ great.
A simple idea: Use binary search to find the $\mathrm{k}^{\text {th }}$ smallest value \rightarrow Time Complexity: $\mathrm{O}\left(\mathrm{D} \cdot \log \mathrm{x}_{\max }\right)$, where $\mathrm{x}_{\max }$ is the maximum value.
\rightarrow Assuming that $x_{\max } \in O\left(n^{\circ(1)}\right)$, we get $O(D \cdot \log n) \ldots$ we do not want

A better idea: Select values randomly, check how many values are smaller and repeat these two steps!
\rightarrow Time Complexity: $O(D \cdot \log n$) in expectation! Nice! Can we do better? $\xrightarrow{ }$

Algorithms: Randomized Algorithm

Choosing elements uniformly at random is a good idea...

How is this done?
\rightarrow Assuming that all nodes know the sizes $\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{t}}$ of the subtrees rooted at their children $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{t}}^{\mathrm{t}}$, the request is forwarded to node v_{i} with probability:

$$
\mathrm{p}_{\mathrm{i}}:=\mathrm{n}_{\mathrm{i}} /\left(1+\Sigma_{\mathrm{k}} \mathrm{n}_{\mathrm{k}}\right) .
$$

With probability $1 /\left(1+\Sigma_{k} n_{k}\right)$ node v chooses itself.
Key observation: Choosing an element randomly requires
O(D) time!
Use pipe-lining to select several random elements!

Algorithms: Randomized Algorithm

Our algorithm also operates in phases \rightarrow The set of candidates decreases in each phase!

A candidate is a node whose element is possibly the solution.
A phase of the randomized algorithm:

1. Count the number of candidates in all subtrees
2. Pick $O(D)$ elements x_{1}, \ldots, x_{d} uniformly at random
3. For all those elements, count the number of smaller elements!

Each step can be performed 0. in O(D) time!

Algorithms: Randomized Algorithm

Using these counts, the number of candidates can be reduced by a factor of D in a constant number of with probability phases with high probability. $\circ \circlearrowleft$ at least $1-1 / n^{c}$ for We get the following result: a constant $\mathrm{c} \geq 1$.

> Theorem: The time complexity of the randomized algorithm is $O\left(D \cdot \log _{D} n\right)$ w.h.p.

We further proved a time lower bound of $\Omega\left(\mathrm{D} \cdot \log _{\mathrm{D}} \mathrm{n}\right)$.

\rightarrow This simple randomized algorithm is asymptotically optimal!

The only remaining question: What can we do deterministically???

Thomas Locher, ETH Zurich @ SPAA 2007

Algorithms: Deterministic Algorithm

Why is it difficult to find a good deterministic algorithm???
\rightarrow Hard to find a good selection of elements that provably reduces the set of candidates!

Simple idea: Always propagate the median of all received values!
Problem: In one phase, only the $h^{\text {th }}$ smallest element is found if h is the height of the tree...
\rightarrow Time complexity: O(n/h)

We can do a lot better!!!

Algorithms: Deterministic Algorithm

Idea: Split the graph into at most $2 \sqrt{D}$ groups, each containing at most $\lceil\mathrm{n} / \sqrt{\mathrm{D}}\rceil$ candidates. Do this recursively!

Thomas Locher, ETH Zurich @ SPAA 2007

Algorithms: Deterministic Algorithm

A phase of the algorithm (at leader λ): O(D) time!

1. Receive $\leq 2 \sqrt{D}$ elements from each of $\leq 2 \sqrt{D}$ leader children.
2. Count the number of smaller elements for all $\leq 4 \cdot D$ received elements (in all subtrees).
3. Use those counts to find $\leq 2 \sqrt{D}$ elements (locally) that partition all elements into sets of size at most $\lceil n / \sqrt{ } \mathrm{D}]$ and report those elements to the next higher leader.

Algorithms: Deterministic Algorithm

The number of candidates reduces by a factor of $O(\sqrt{D})$ in each phase, thus $O\left(\log _{D} n\right)$ phases are required.

Each phase costs $O\left(D \cdot \log _{D} n\right)$ time.
We get the following result:

```
Theorem: The time complexity of the
deterministic algorithm is O(D\cdot\mp@subsup{\operatorname{log}}{D}{2}n).
```

Only a factor $O\left(\log _{D} n\right)$ worse than the randomized algorithm! In a grid network ($D=\sqrt{n}$), the time complexity is $\Theta(D)$, asymptotically the same complexity as when computing „easy" aggregates!!

Thomas Locher, ETH Zurich @ SPAA 2007

Outline

Lower Bound

The proof of the lower bound of $\Omega\left(D \cdot \log _{D} n\right)$ consists of two parts:
Part I. Find a lower bound for the case of two nodes u and v with N elements each.

Let $u_{0}<u_{1}<\ldots<u_{\mathrm{N}-1}$ and $v_{0}<v_{1}<\ldots<v_{\mathrm{N}-1}$.
How are the 2 N elements distributed on u and v ?

Lower Bound

Assume $\mathrm{N}=2^{\text {b }}$. We use b independent Bernoulli variables $\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{b}-1}$ to distribute the elements!
If $X_{b-1}=0 \rightarrow \mathrm{~N} / 2$ smallest elements go to u and the N/2 largest elements go to v.
If $X_{b-1}=1$ it is the other way round.
The remaining N elements are recursively distributed using the other variables X_{0}, \ldots, X_{b-2} !

Lower Bound

Crucial observation: For all $2^{\text {b }}$ possibilities for X_{0}, \ldots, X_{b-1}, the median is a different element.
\rightarrow Determining all X_{i} is equivalent to finding the median!

We showed that at least $\Omega\left(\log _{2 B} n\right)$ rounds are required if B elements can be sent in a single round in this model!

Part II. Find a lower bound for the original model.
Look at the following graph G of diameter D:

Thomas Locher, ETH Zurich @ SPAA 2007

Lower Bound

Outline

We showed that a time lower bound for the alternative model implies a time lower bound for the original model!

Theorem: $\Omega\left(D \cdot \log _{D} \min \{k, n-k\}\right)$ rounds are needed to find the $k^{\text {th }}$ smallest element.

I. Motivation/Model
II. Algorithms
III. Lower Bound
IV. Conclusion

Conclusion

> Simple randomized algorithm with time complexity $O\left(D \cdot \log _{D} n\right)$ w.h.p.

* Easy to understand, easy to implement...
* Even asymptotically optimal! Our lower bound shows that no algorithm can be significantly faster!
> Deterministic algorithm with time complexity
 Recall the 50×50 grid used $O\left(D \cdot \log _{D}{ }^{2} n\right)$.
${ }_{0}$ to test out TAG
> If $\exists \mathrm{c} \leq 1: \mathrm{D}=\mathrm{n}^{\mathrm{c}} \rightarrow \mathrm{k}$-selection can be solved efficiently in $\Theta(D)$ time even deterministically!

Thomas Locher, ETH Zurich @ SPAA 2007

Additional Slide: Deterministic Algorithm

A phase of the deterministic algorithm „step by step":
1.a Count the number of candidates in all subtrees starting at the leaves.
1.b Build groups at the same time \rightarrow Link children together as long as each group contains at most $[\mathrm{n} / \sqrt{\mathrm{D}}\rceil$ candidates. One node in each group becomes its leader.
2. The leaders split their group recursively into at most $\mathrm{t} \leq 2 \sqrt{\mathrm{D}}$ groups.
3. Groups of size at most $2 \sqrt{D}$ report all values Simmediately.
4. Once all $\approx 2 \sqrt{D} * 2 \sqrt{D}=4 D$ values from all groups have arrived, count the elements in each interval and send a selection S of at most $\approx 2 \sqrt{ }$ D values to the next higher leader.

Thank you for your attention!

Thomas Locher
Distributed Computing Group
ETH Zurich, Switzerland lochert@tik.ee.ethz.ch
http://dcg.ethz.ch/members/thomasl.html

