
Tight Bounds for
Distributed Selection

Fabian Kuhn, ETH Zurich
Thomas Locher, ETH Zurich

Roger Wattenhofer, ETH Zurich

19th ACM Symp. on Parallelism in Algorithms and Architectures
San Diego, CA, USA, June 2007

Distributed
Computing

Group Thomas Locher, ETH Zurich @ SPAA 2007 2

Motivation: Distributed Aggregation

Growing interest in distributed
aggregation!

Sensor networks, distributed
databases...

Aggregation functions?
Distributive (max, min, sum, count)
Algebraic (plus, minus, average)
Holistic (median, kth smallest/largest value)

Combinations of these functions enable complex queries!
„What is the average of the 10% largest values?“

What cannot be
computed using
these functions?

Distributed selection

Thomas Locher, ETH Zurich @ SPAA 2007 3

Motivation: Model

How difficult is it to compute these aggregation primitives?

Model:
Connected graph G = (V,E) of diameter DG, |V| = n.
Nodes vi and vj can communicate directly if (vi,vj) ∈ E.
A spanning tree is available (diameter D ≤ 2·DG)
Asynchronous model of communication.
All nodes hold a single element.
Messages can contain only a constant number of elements.

Can easily be
generalized to an
arbitrary number

of elements!

Simple
breadth-first
construction!

19

8

9

20

365

4968128
101

1980

28 12345

31415

2718

3

Thomas Locher, ETH Zurich @ SPAA 2007 4

Motivation: Distributive & Algebraic Functions

How difficult is it to compute these aggregation primitives?

We are interested in the time complexity! Worst-case for every
legal input and every
execution scenario!

Slowest message
arrives after 1 time unit!

Distributive (sum, count...) and
algebraic (plus, minus...) functions
are easy to compute:

Time complexity: Θ(D)

Use a simple flooding-echo procedure convergecast!

What about holistic functions (such as k-selection)???
Is it (really) harder...?
Impossible to perform in-network aggregation?

Thomas Locher, ETH Zurich @ SPAA 2007 5

Motivation: Holistic Functions

Total Bytes Xmitted vs. Aggregation Function

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

EXTERNAL MAX AVERAGE COUNT MEDIAN
Aggregation Function

To
ta

l B
yt

es
 X

m
itt

ed

„Thus, we have shown that
(...) in network aggregation
can reduce communication
costs by an order of
magnitude over centralized
approaches, and that, even
in the worst case (such as
with MEDIAN), it provides
performance equal to the
centralized approach.“

2500 nodes in a 50x50 grid!

It is widely believed that holistic functions are hard to compute using
in-network aggregation.
Example: TAG is an aggregation service for ad-hoc sensor networks

It is fast for other aggregates, but not for the MEDIAN aggregate:

Taken from keynote by M. J.
Franklin at PODC‘03

Thomas Locher, ETH Zurich @ SPAA 2007 6

Motivation: Really so Difficult?

However, there is quite a lot of literature on distributed k-selection:

A straightforward idea: Use the sequential algorithm by Blum et al. also
in a distributed setting Time Complexity: O(D·n0.9114). Not so

great...

A simple idea: Use binary search to find the kth smallest value Time
Complexity: O(D·log xmax), where xmax is the maximum value.

Assuming that xmax ∈ O(nO(1)), we get O(D·log n)...

A better idea: Select values randomly, check how many values are
smaller and repeat these two steps!

Time Complexity: O(D·log n) in expectation! Nice! Can we
do better?

We do not want
the complexity
to depend on
the values!

Thomas Locher, ETH Zurich @ SPAA 2007 7

Outline

I. Motivation/Model

II. Algorithms

III. Lower Bound

IV. Conclusion

Thomas Locher, ETH Zurich @ SPAA 2007 8

Algorithms: Randomized Algorithm

Choosing elements uniformly at random is a
good idea...

How is this done?

Assuming that all nodes know the sizes
n1,...,nt

of the subtrees rooted at their children
v1,...,vt, the request is forwarded to node vi
with probability:

pi := ni / (1+ Σk nk).
With probability 1 / (1+ Σk nk) node v chooses itself.

...n1 n2 nt

p1 p2

pt

v

request

Key observation: Choosing an element randomly requires
O(D) time!
Use pipe-lining to select several random elements!

D elements in O(D) time!

Thomas Locher, ETH Zurich @ SPAA 2007 9

Algorithms: Randomized Algorithm

Our algorithm also operates in phases The set of candidates
decreases in each phase!

A candidate is a node whose element is possibly the solution.

A phase of the randomized algorithm:

1. Count the number of candidates in all subtrees

2. Pick O(D) elements x1,...,xd uniformly at random

3. For all those elements, count the number of
smaller elements!

Each step can
be performed
in O(D) time!

-∞ ∞x1 x2 xdn1 elem. n2 elem. nd+1 elem.

a1a2 an-1an……
…

Thomas Locher, ETH Zurich @ SPAA 2007 10

Algorithms: Randomized Algorithm

Using these counts, the number of candidates can
be reduced by a factor of D in a constant number of
phases with high probability.

We get the following result:

With probability
at least 1-1/nc for
a constant c≥1.

Theorem: The time complexity of the
randomized algorithm is O(D·logD n) w.h.p.

We further proved a time lower bound of Ω(D·logD n).
This simple randomized algorithm is asymptotically optimal!

The only remaining question: What can we do deterministically???

More on
that later...

Thomas Locher, ETH Zurich @ SPAA 2007 11

Algorithms: Deterministic Algorithm

Why is it difficult to find a good deterministic algorithm???
Hard to find a good selection of elements that provably

reduces the set of candidates!

Simple idea: Always propagate the median of all received values!

Problem: In one phase, only the hth

smallest element is found if h is the
height of the tree...

Time complexity: O(n / h)

We can do a lot better!!!

3

2 101

3

2

1 100 99 102

101

1 100 99 102

Thomas Locher, ETH Zurich @ SPAA 2007 12

Algorithms: Deterministic Algorithm

Idea: Split the graph into at most 2√D groups, each
containing at most dn / √De candidates. Do this recursively!

Each group has a leader „Virtual tree“ consisting of leaders!

Simple bottom-
up construction!

group 1

group 2 group 2√D...
group 1

group 2 group 2√D...

leader

leader leader

leader

leader

...

...
... Height:

O(logD n)

Thomas Locher, ETH Zurich @ SPAA 2007 13

Algorithms: Deterministic Algorithm

A phase of the algorithm (at leader λ):

1. Receive ≤ 2√D elements from each of ≤ 2√D leader children.
2. Count the number of smaller elements for all ≤ 4·D received

elements (in all subtrees).
3. Use those counts to find ≤ 2√D elements (locally) that partition

all elements into sets of size at most dn / √De and report those
elements to the next higher leader.

leader

leader leader
...

1. λ leader

...

λ2. leader

leader

...

λ3.

All steps require
O(D) time!

Thomas Locher, ETH Zurich @ SPAA 2007 14

Algorithms: Deterministic Algorithm

The number of candidates reduces by a factor of O(√D) in each
phase, thus O(logD n) phases are required.

Each phase costs O(D·logD n) time.

We get the following result:

Theorem: The time complexity of the
deterministic algorithm is O(D·logD

2 n).

Only a factor O(logD n) worse than the randomized algorithm!
In a grid network (D = √n), the time complexity is Θ(D),
asymptotically the same complexity as when computing
„easy“ aggregates!!

Thomas Locher, ETH Zurich @ SPAA 2007 15

Outline

I. Motivation

II. Algorithms

III. Lower Bound

IV. Conclusion

Thomas Locher, ETH Zurich @ SPAA 2007 16

Lower Bound

The proof of the lower bound of Ω(D·logD n) consists of two parts:

Part I. Find a lower bound for the case of two nodes u and v
with N elements each.

Let u0 < u1 < ... < uN-1 and v0 < v1 < ... < vN-1.

u0

u1

uN-1

...

v0
v1

vN-1

...

u v

How are the 2N elements distributed on u and v?
What is the

order between
all ui and vj?

Thomas Locher, ETH Zurich @ SPAA 2007 17

Lower Bound

Assume N = 2b. We use b independent Bernoulli variables
X0,...,Xb-1 to distribute the elements!
If Xb-1 = 0 N/2 smallest elements go to u and the N/2
largest elements go to v.
If Xb-1 = 1 it is the other way round.

Ordered list of
all 2N elements!

The remaining N elements are recursively distributed using
the other variables X0,...,Xb-2!

u v

a1a2 ... a2N-1a2N...

Thomas Locher, ETH Zurich @ SPAA 2007 18

Lower Bound

Crucial observation: For all 2b possibilities
for X0,...,Xb-1, the median is a different
element.

Determining all Xi is equivalent to finding
the median!

We showed that at least Ω(log2B n) rounds are required if B elements
can be sent in a single round in this model!

Part II. Find a lower bound for the original model.

u0

u1

uN-1

v0

v1

vN-1

D-2 dummy nodesLook at the following
graph G of diameter D:

Xb-1

Xb-2

Thomas Locher, ETH Zurich @ SPAA 2007 19

Lower Bound

We showed that a time lower bound for the alternative model implies
a time lower bound for the original model!

u0

u1

uN-1

v0
v1

vN-1

D-2 dummy nodes

u v

alternative model original model

Theorem: Ω(D·logD min{k,n-k}) rounds are
needed to find the kth smallest element.

Ω(D·logD n) lower bound
to find the median!

Thomas Locher, ETH Zurich @ SPAA 2007 20

Outline

I. Motivation/Model

II. Algorithms

III. Lower Bound

IV. Conclusion

Thomas Locher, ETH Zurich @ SPAA 2007 21

Conclusion

Simple randomized algorithm with time complexity
O(D·logD n) w.h.p.

Easy to understand, easy to implement...

Even asymptotically optimal! Our lower bound
shows that no algorithm can be significantly
faster!

Deterministic algorithm with time complexity
O(D·logD

2 n).

If ∃c ≤ 1: D = nc k-selection can be solved
efficiently in Θ(D) time even deterministically!

Recall the
50x50 grid used
to test out TAG!

Thomas Locher
Distributed Computing Group
ETH Zurich, Switzerland
lochert@tik.ee.ethz.ch

http://dcg.ethz.ch/members/thomasl.html

Thank you for your attention!

Questions and Comments?

Thomas Locher, ETH Zurich @ SPAA 2007 23

Additional Slide: Deterministic Algorithm

A phase of the deterministic algorithm „step by step“:

1.a Count the number of candidates in all
subtrees starting at the leaves.

1.b Build groups at the same time Link children
together as long as each group contains at
most d n / √D e candidates. One node in each
group becomes its leader.

2. The leaders split their group recursively into
at most t ≤ 2√D groups.

3. Groups of size at most 2√D report all values
Si immediately.

4. Once all ≈ 2√D * 2 √D = 4D values from all
groups have arrived, count the elements in
each interval and send a selection S of at
most ≈ 2√D values to the next higher leader.

Each final interval
contains at most

n / √D values!

All in O(D) time!

...n1 n2 nt

v
S1 St

w

leader leader

S

leader

leader

