
Destroying networks for fun (and profit)

Nick Shelly∗§, Brendan Tschaen†, Klaus-Tycho Förster∗, Michael Chang‡,
Theophilus Benson†, Laurent Vanbever∗

∗ETH Zürich, ‡Princeton University, †Duke University, §Forward Networks

ABSTRACT
Network failures are inevitable. Interfaces go down, de-
vices crash and resources become exhausted. It is the
responsibility of the control software to provide reliable
services on top of unreliable components and through-
out unpredictable events. Guaranteeing the correctness
of the controller under all types of failures is therefore
essential for network operations. Yet, this is also an al-
most impossible task due to the complexity of the con-
trol software, the underlying network, and the lack of
precision in simulation tools.

Instead, we argue that testing network control soft-
ware should follow in the footsteps of large scale dis-
tributed systems, such as those of Netflix or Google,
which deliberately induce live failures in their produc-
tion environments during working hours, and analyze
how their control software reacts.

In this paper, we describe Armageddon, a framework
for introducing sustainable and systematic chaos in net-
works. When we cause failures, we do so without vio-
lating some operator-specified network invariants (e.g.,
end-to-end connectivity). The injected failures also guar-
antee some notion of coverage. If the controller can
sustain all of the failures, then it can be considered re-
silient with a high degree of confidence. We describe
efficient algorithms to compute failure scenarios and im-
plemented them in a prototype. Applied to real-world
networks, our algorithms a coverage of 80% of the links
within only three iterations of failures.

1. INTRODUCTION

“The best way to avoid failure is to fail constantly”

—John Ciancutti, Netflix
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Upon migrating their platform to the cloud in late
2010, Netflix caused a sensation by announcing that
their initial suite of systems included a daemon whose
sole purpose was to randomly kill instances and services
within their production environment [4]. The daemon is
known internally as the “Chaos Monkey” (CM), a refer-
ence to the act of unleashing a wild, weaponized animal
in their Data Centers (DC). Over the years, Netflix am-
plified the amount of “chaos” they introduced in their
infrastructure, e.g. by killing entire availability zone
(Chaos Gorilla) [7]. In 2012 alone, Netflix CM killed
over 65,000 software instances. While most failures go
unnoticed, introducing chaos helped Netflix engineers
to uncover numerous bugs, as well as isolate and fix
them [6, 5]. Other cloud providers reported running a
CM of their own. Google has DiRT (Disaster Recov-
ery Testing) [15], Amazon has GameDay [37], and Mi-
crosoft Azure has a “Search Chaos Monkey” [2]. Ironi-
cally, Amazon EC2 even recommends its customers to
run a CM internally to shield themselves from cloud
failures [1].

Similarly to cloud platforms, failures are guaranteed
to appear in Software-Defined Networks (SDNs) such
as those underlaying a DC or a Wide-Area Network
(WAN) [17, 34, 19]. For example, large DCs can see
up to 5 devices and up to 40 links failures per-day, on
average [17]. Actually, we even expect this number to
keep growing as more and more networks starts to rely
on low-cost, commodity equipments.

In such unreliable environments, relying on correct,
fault-tolerant control software is a must. Unfortunately,
guaranteeing their correctness under any possible failure
is almost impossible (§2). Many common “white-box”
approaches to detecting and eliminating bugs, such as
model checking, symbolic execution or unit testing, have
proven difficult on large scale systems, including those
involving SDN controllers. As an illustration, two pop-
ular SDN controllers, OpenDayLight [9] and ONOS [8],
account for more than 220,000 lines of code (and grow-
ing!) scattered in more than 2000 files. Bugs are bound
to exist in software engineering projects of such mag-
nitude. While helpful, running the control software in
virtual environments such as Mininet [27] only detects
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a subset of the possible errors as the behavior of real
devices often differs substantially from idealized virtual
ones. Many bugs (e.g., race conditions) only manifest
once deployed in production settings, i.e., when running
on real hardware [25, 24].

In this paper, we argue network operators should in-
clude“black box”testing by systematically inducing fail-
ures into the production environment to uncover bugs.
Intuitively, purposely inducing failures in production
may appear counter-productive and even prevent net-
works from meeting Service Level Agreements (SLA).
However, failing network components does not neces-
sarily mean creating disruptions. Networks are (usu-
ally) composed of highly redundant physical and soft-
ware components. In theory, one should be able to fail
redundant parts of the networks with little to no observ-
able effects. In practice, if failing redundant resources
does create disruption, operators and developers must
be informed so that immediate remedial actions can be
taken. Indeed, it is better to deal with disruptions dur-
ing normal working hours, when engineers are available
to correct the issues, rather than to allow the issue to
manifest (inevitably) at unpredictable hours.

Randomly killing network resources is trivial, but in-
troducing useful and systematic chaos is challenging.
First, the induced failures must be realistic, meaning
that the probability of them happening should be above
a given threshold. At the same time, the induced fail-
ures should enable the system to recover, i.e. they
should be reasonable. For instance, the combined failure
of all links of a network, although theoretically possible,
is: i) too unlikely; and ii) useless to test as the network
ceases to exist. Likewise, failing all redundant resources,
while preserving connectivity, could cause unacceptable
congestion. In short, operational requirements, like up-
time and security or the fact that sensitive components
must remain isolated, must be taken into account when
computing failures. Second, the induced failures should
be such that they guarantee some notion of coverage,
for instance, by exercising all failure combinations or
by failing each resource at least once. Third, inducing
failures should be performed quickly to minimize insta-
bilities: less failures is better. To do so, we aim at mini-
mizing the number of failures rounds or“iterations”. For
instance, we minimize the number of iterations required
to fail every link at least once.

We take the first step toward inducing systematic
chaos in networks and introduce Armageddon, a Chaos
Monkey for SDNs1. Armageddon automatically com-
putes failure scenarios that preserve specified network-
wide invariants (e.g., end-to-end connectivity) and guar-
antees some notion of coverage. Failure scenarios can
target both the control- and the data-plane. Once com-

1While we focus on SDN, Armageddon principles can be
applied to any kind of network.

puted, Armageddon induces the failures in the network
while monitoring it. If a problem is discovered (e.g., loss
of reachability while the graph is still connected), Ar-
mageddon immediately brings back the failed resources
and reports the precise failure scenario to the opera-
tor/developer. In a sense, Armageddon automatically
learns unit tests.

In summary, we make the following contributions:

Armageddon framework. We describe the design as
well as a prototype implementation of Armageddon: a
controller-agnostic Chaos Monkey for SDNs. Armaged-
don efficiently computes reasonable failure scenarios and
induces them in production while monitoring correct-
ness. Upon detecting violations, Armageddon automat-
ically generates detailed reports (§3).

Algorithms. Computing what to fail and when to fail
turned out to be a challenging algorithmic problem. We
describe and prove efficient algorithms to compute fail-
ure scenarios while guaranteeing any-to-any connectiv-
ity and complete coverage (§4).

Evaluation. Using representative network topologies,
we show that Armageddon achieves maximum failure
coverage in few iterations (§5).

We start by describing the shortcomings of current
verification techniques. We then present Armageddon
and how we can incorporate it into production networks.
In this paper, we focus on preserving reachability upon
failures. Exploring other types of failures (e.g., intro-
ducing delays, losses, software failures) and invariants
(e.g., preserving capacity or waypoint services) is part
of our ongoing work.

2. MOTIVATION & BACKGROUND
SDN control planes are complex beasts with intricate

functionalities to handle a spectrum of dynamic network
events; e.g. link failures, software failures, or changes
in network policies. In few years, many techniques have
been designed to detect and diagnose SDN control plane
bugs. However, these techniques are often limited in the
extent to which they can exercise code paths represen-
tative of large scale productions networks. Next, we
examine these techniques and discuss their limitations.

Modeling and simulating networks. Many bugs
have been discovered in modern SDN control planes
using a combination of model checking [14], symbolic
execution [14], and fuzz testing [32]. Unfortunately,
these techniques are limited to the properties that can
be safely modeled, simulated, or emulated within their
frameworks. For example, NICE [14] does not model the
complex switch behaviors that can lead to concurrency
bugs [28, 29] or that violate the OpenFlow [26] spec-
ification, significantly limiting the set of control plane
bugs that can be explored. Similarly, STS [32] does not



model interactions with realistic traffic matrices and is
thus unable to quantify performance related bugs.

Checking invariants. Reactive approaches [20, 22, 35,
10] aim at detecting bugs in real time by examining the
control plane output or by exercising the data plane.
While these techniques can detect realistic bugs, they
detect them when they have already occurred. Instead
of waiting for bugs to eventually happen, Armaged-
don actively uncovers them when network operators are
available to debug and resolve the issues.

Detecting and recovering from failures. To com-
bat network failures and disasters, techniques have been
developed ranging from proactively testing virtual sub-
strates of the production network [13] to developing ef-
ficient recovery techniques for general router bugs [21]
and specific network failures e.g. device/link failures [38,
30]. Armageddon also tests production networks but
utilizes the whole network and includes algorithms to
ensure that failures have a minimal impact on produc-
tion traffic. This eliminates the need for virtualization
and simplifies the data plane. Automated failure recov-
ery techniques remain useful and crucial, but Armaged-
don ensures that failures, or rather disasters, occur when
operators are available, thus allowing them to monitor
the process of these failure detection tools.

Destroying SDNs in the industry. BigSwitch, one
of the main players in the SDN industry, recently an-
nounced a “Chaos Monkey Style” stress testing prod-
uct [3]. While BigSwitch’s CM randomly fails resources,
it does not aim to guarantee coverage or even preserve
connectivity. This product, however, does confirm the
industrial interest for a system like Armageddon.

3. ARCHITECTURE
Armageddon introduces failures in networks in three

consecutive stages (Fig. 1) and using two inputs: an up-
dated view of the network topology and a set of network-
wide invariants to be maintained. The former is col-
lected automatically from the network messages. The
latter is given by the network operator according to
the policies implemented by the controller. Examples of
invariants include: preserving end-to-end connectivity,
maintaining at least x% of the capacity, or preventing
congestion from appearing.

Using the topology and the invariants, Armageddon
computes a set of failure scenarios. Each failure sce-
nario represents a set of network resources (e.g., links)
to fail simultaneously while preserving the invariants
and maximizing coverage. Armageddon then schedules
the failures for execution while monitoring the network.
Whenever a violation of a network-wide invariant is dis-
covered, Armageddon reports it back to the developer
along with the precise failure scenarios.
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Figure 1: Armageddon workflow

Armageddon can introduce both control- and data-
plane failures. At the data-plane level, possible fail-
ure scenarios include: failing forwarding resources (e.g.,
ports, devices), increasing link delays and losses or pre-
tending resource exhaustion. At the control-plane level,
failure scenarios include: failing controller replicas, or
sending random drop or erroneous commands.

We now describe how Armageddon executes and mon-
itors the network. Then in §4, we describe how Ar-
mageddon computes failures, maintaining invariants and
maximizing coverage.

Inducing failures. Armageddon must be able to in-
duce diverse classes of active (injection) and passive
(withholding messages) failures anywhere in the net-
work as well as precisely tracking the network state. To
do so, Armageddon interposes itself between the SDN
controller and the physical network as a hypervisor. As
such, the hypervisor can intercept all the messages (typ-
ically OpenFlow messages) exchanged between the con-
troller and the switches as well as spawn new ones.

Using a hypervisor-based approach provides Armaged-
don two distinct advantages. First, it enables Armaged-
don to be controller-agnostic. Second, it gives the con-
troller the “illusion” of failure without actually failing
anything in the physical network. For example, the hy-
pervisor can take a switch’s port down and spawn an
OFPT PORT DOWN message for the controller. At this
point, the controller operates as if the port has gone
down, and the hypervisor drops any messages to/from
this port on the switch. Moreover, the hypervisor en-
sures that this port is not used by modifying FLOOD or
BROADCAST actions to skip these downed ports.

We have implemented a working prototype of the hy-
pervisor on top of OpenVirteX [12]. Our prototype
tracks the network state, schedules network failures and
monitors the network for actual network failures. It also
provides an interface to the network administrator that
serves two primary functions. Firstly, the administrator
can specify extra failures scenarios and schedule param-
eters. Secondly, after the failure has been injected, the
interface is used to convey information from the Invari-
ant Checker (see below), informing the administrator of
any undesirable changes in the network state.



Monitoring for correctness. Once the faults have
been injected into the network, Armageddon needs to
verify that the network behaves properly. To do so, Ar-
mageddon introduces an Invariant Checker that commu-
nicates with the hypervisor module. Whenever a change
in the network state is detected, the Invariant Checker
verifies that all network invariants hold. We have imple-
mented the Invariant Checker using NetPlumber [20].

Generating reports and restoring correctness. As
soon as a network-wide invariant is violated, Armaged-
don reports back: i) the exact failure scenario that cre-
ated the issue; ii) a concise description of the issue (e.g.,
forwarding loop for port 80 between s1 and s2) as well
as; iii) the complete trace of network events. This in-
formation enables the network operators and/or appli-
cation developers to go back through the failure sce-
nario and determine what was the cause of the issue
and, hopefully, fix the problem. Internally, Armaged-
don automatically accumulates the failed scenarios as
unit tests to be checked again later on. Doing so, Ar-
mageddon automatically “learns” effective unit tests.

After generating the report, Armageddon brings backs
the failed resources in an attempt to restore violated in-
variants. However, it might be that, even after having
brought back the network resources, the invariant is still
violated. This is the case if the controller crashed for
instance. While being obviously bad for the network in
the short-term, we think that Armageddon crashing the
system is actually a desirable feature in the long run.
Indeed, the exact same failure could have just well hap-
pened outside of office hours when few (or no) engineers
are around to deal with the problem.

Dealing with concurrent physical failures. Ar-
mageddon immediately brings back all failed resources
whenever an actual network outage is detected. Indeed,
as Armageddon reduces the amount of redundancy, ac-
tual failures can lead to large disruptions. Similarly,
Armageddon never induces failures if some physical re-
sources have failed. Armageddon simply remains pas-
sive in order to not stress an already weakened network.

4. COMPUTING SMART FAILURES
In this section, we look at how Armageddon computes

failure scenarios that maintain network-wide invariants.
Such invariants can be any property that the control-
plane ought to maintain upon failures, e.g., congestion
freedom. In this short paper, we focus on end-to-end
reachability. Reachability is indeed the most fundamen-
tal property that any control software must maintain.
If a link fails, the control software should restore reach-
ability provided the physical graph is still connected.
Armageddon computes failure scenarios that optimize
two other objectives besides reachability: coverage and

speed. In short, it aims at failing each link at least once,
in as few iterations as possible.

Coverage. While distributed protocols are guaranteed
to maintain reachability as long as the network is con-
nected, SDN controllers do not. As such, we want to
check if the controller can handle the failure of every
single link.

A näıve algorithm would be to perform the following
test for every link e. First, check if the network N is
still connected without e. Second, if yes, fail the physical
link e and see if routing is still possible between all nodes
in the SDN; if not, inform the network operator that a
single link of failure is in the network.

Coverage + Speed. While the runtime of this näıve
algorithm is polynomial, its number of iterations is not
acceptable in practice with large networks containing
thousands of edges. In the best case, even huge networks
should only need a small amount of iterations in average
for all testable edges.

As such, Armageddon aims at solving the Connec-
tivity Testing problem:

Problem 1 (Connectivity Testing). Find the
minimum number of iterations k, where each ki is a set
of failed edges, that are needed to fail every edge at least
once while still maintaining network connectivity?

Finding a solution for k = |E| is easy (cf. the näıve
algorithm), but minimizing k turns out to be an algo-
rithmically challenging problem. Theorem 1 proves that
optimally solving Connectivity Testing requires at
least 2 iterations, in the best case; and as many itera-
tions as nodes in the network, in the worst-case.

Theorem 1. Let N = (V,E) be a connected network
where at least one edge can be failed while maintaining
connectivity. Connectivity Testing needs at least 2
and at most |V | = n iterations. These bounds are sharp.

Proof. We start with the lower bound: If e = (u, v)
can be removed, then e is part of at least one 2-connected
component in N . Then, N ′ = (V,E \ E′) is still con-
nected, i.e., there is a path P from v to u in N ′ that
joined with e yields a cycle, i.e., one iteration never suf-
fices. For networks where 2 iterations suffice, consider
a clique with at least 4 nodes: First, remove a spanning
tree T , and second, remove all edges except for T .

We now prove the upper bound. Connectivity Test-
ing for a ring of n nodes needs exactly n iterations. To
show that no graph needs more than n iterations, ob-
serve that after failing a spanning tree, at most n − 1
edges can be left to fail. As any of these n − 1 edges
will be part of a cycle (else they could not be failed), at
least one edge can be failed per iteration, resulting in a
sharp upper bound.



1: compute link failures scenarios(N = (V,E))
2: if N has spanning trees T1 = (V,E1), T2 = (V,E2), E1∩E2 =

∅ then
3: fail E \ E1 and fail E \ E2

4: else
5: ∀e ∈ E set link weights of c(e) = 1
6: repeat
7: compute minimum weight spanning tree (MST) T =

(V,E′)
8: fail all links E′′ = E \ E′ not in the MST T
9: set sum of new edge failures λ =

∑
∀e∈E′′ c(e)

10: ∀e ∈ E′′ set c(e) = 0
11: until λ = 0 or ∀e ∈ E : c(e) = 0
12: end if

Algorithm 1: Greedy Killer algorithm. It fails all
edges in 2 iterations if N contains at least 2 disjoint
spanning trees. Else, at most |V | iterations are needed.

Algorithms. Observe that networks for which all edges
can be failed in 2 iterations are characterized by every
iteration containing a spanning tree. With this in mind,
we propose an algorithm, Greedy Killer (see Algo-
rithm 1), for solving Connectivity Testing which
first checks for two edge-disjoint spanning trees and, in
the negative case, proceeds to fail all edges that can be
failed in multiple iterations.

Lemma 1. Greedy Killer will fail all edges that
can be failed and mark all the others with weight 1.

Proof. Greedy Killer will never fail an edge that
cannot be failed, as it always leaves a spanning tree.

Assume that there is an edge e = (u, v) that can
be failed (and thus part of a cycle C), but Greedy
Killer will not fail e. Now, consider the network N
after Greedy Killer has finished. If there are edges
(e.g., e) in C with weight 1, then there is a spanning
tree with weight W that will fail at least one of these
edges e′ that includes all edges from C except e′. Any
spanning tree with weight W or less will fail at least one
edge, as the weight W is less than the sum of all edge
weights in the network. Thus, Greedy Killer would
not have been finished, leading to a contradiction.

Identifying all bridges (i.e., edges whose removal dis-
connect the network) can also be performed by other
algorithms, e.g., [36], but Greedy Killer will mark
them as well, allowing us to inform the network opera-
tor about all single points of failure in the topology.

Lemma 2. In each iteration, Greedy Killer fails
the maximum amount of edges that have not failed yet.

Proof. Consider any fixed iteration. Let E′ be the
set of edges e′ which either cannot be failed or have
been failed in a previous iteration. Let N ′ = (V,E′)
and let C1, . . . , Ck be the connected components of N ′

that are maximal. Any spanning tree (which maintains

connectivity) for N will thus need to contain k−1 edges
from of individual weight 1 to connect C1, . . . , Ck (which
are individually connected by edges in E′), i.e., no MST
can have a weight of less than k − 1. As the weight of
any MST will be exactly k − 1, Lemma 2 holds.

We can now prove that Greedy Killer performs
according to specification:

Theorem 2. Greedy Killer is correct.

Proof. Combining the observation on edge-disjoint
spanning trees and Lemma 1 leaves only one open ques-
tion: if Greedy Killer always finishes after at most
n iterations. Note that after one iteration, there are at
most (n− 1) edges still left to fail, as the first iteration
failed all edges not contained in a spanning tree. As
the algorithm will fail all failable edges eventually (cf.
Lemma 1), it cannot take more than n iterations: Then,
there would be an iteration where no edge is failed,
yielding a contradiction to Lemma 2.

Running time. Checking if a network has two edge-
disjunct spanning trees can be done in O(n2) time [31].
Kruskal’s MST algorithm takes O(m log n) time [16]. As
such, Greedy Killer runtime is O (nm log n).

5. PRELIMINARY EVALUATION
In this section, we evaluate the efficiency of our algo-

rithm in minimizing the number of iterations required
to completely test a network and how much it differs
from the optimal solution.

Datasets. We evaluate Greedy Killer using 261
topologies extracted from the Internet Topology Zoo [23]
and 7 RocketFuel topologies [33]. Topologies range from
large ISP networks to medium enterprise campuses.

Armageddon assumes that the network resources are
redundant. In most networks, this is a given. In some
though, single point of failures exist. We remove them
before applying Greedy Killer to ensure meaningful
results. We performed four pre-processing steps: i) we
converted the network graphs into undirected graphs;
ii) removed nodes from 244 networks with only one edge
and thus cannot be failed (median of 27% of nodes); iii)
discarded 14 networks with fewer than 3 edges, and fi-
nally iv) partitioned 135 of the graphs by removing the
edges whose disruption disconnected the graph (median
of 10% of edges) and, doing so, created 146 new topolo-
gies. After pre-processing, we ended up with 265 net-
works with a 25th-percentile, median and maximum size
of 23, 36 and 972.

Greedy Killer is efficient in practice. In most net-
works, Greedy Killer fails each link in 5 iterations or
less. 78% of the networks can be failed entirely in six
iterations, 91% in 8 iterations (see Figure 2). Networks
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Figure 2: In 60% of the networks, max. 5 iterations
are required to fail each edge at least once. Higher val-
ues indicate networks with less redundancy (e.g., ring-
shaped).
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Figure 3: In most networks, only 2 (resp. 3) iterations
are required to fail 60% (resp. 80%) of the edges.

that require over 5 iterations are less redundant. In-
deed, we observe that these network showed some kind
of ring shape, and thus few edges could be tested with
each iteration. As an illustration, VTL WaveNet 2008
network required 28 iterations as there were 88 nodes
and 92 edges. Thus, a minimum of 87 edges were re-
quired at all times to maintain connectivity.

Since most networks are highly redundant, only a few
iterations are required to test all links. In Figure 3, we
observe that for most networks, over 80% of the links
can be tested in 3 iterations. As described in Section 4,
maintaining connectivity is the most basic invariant that
must be satisfied. Other invariants will increase the
number of iterations required. A quantitative evalua-
tion of this increase is part of our ongoing work.

Greedy Killer is optimal most of the time. We
now compare the number of iterations computed by
Greedy Killer with the optimal solution, i.e. the
smallest number of iterations to fail all possible links. In
a network N ′ = (V ′, E′) with |V ′| = n′ and |E′| = m′,
at least n′− 1 edges always need to stay in N ′ to main-
tain reachability. Therefore, at most m′− (n′−1) edges
can be failed in each iteration, yielding a lower bound
of dm′/(m′ − n′ + 1)e iterations.

We find that Greedy Killer produces the optimal
number of iterations for at least 138 of the 265 networks

(52%). An open question we are working on is to find an
optimal algorithm to succeed in the minimum amount
of iterations possible.

6. DISCUSSIONS AND FUTURE WORK
Currently, Greedy Killer aims to fail as many re-

sources as possible while maintaining network connec-
tivity. This allows Armageddon to explore important
properties related to reachability. As part of ongoing
work, we plan to extend Greedy Killer to include
the following properties:

Stronger coverage properties. Focusing on connec-
tivity reduces our coverage as we might miss bugs, for
instance, the ones that appear upon a precise sequence
of failures. We plan to improve Armageddon’s coverage
in our ongoing work by applying stateless model check-
ing to introduce a more non-determinist order. More-
over, we also plan to leverage domain knowledge about
the network topology and current (or expected) traffic
patterns to reduce the number of failure scenarios ex-
plored to a small but representative number.

Preserving more advanced properties (e.g., net-
work capacity, congestion-freedom). Although con-
nectivity is preserved, the failures may not preserve more
advanced properties. For instance, failing entire span-
ning trees can decrease network capacity so much that
congestion starts to appear. Similarly, security policies
can also legitimately prevent reachability in connected
graph.

Fortunately, it is easy to combine Greedy Killer
with other network-wide invariants. For example, to
test the congestion-free properties of a SWAN-like SDN
controller [18], we can first monitor the current traffic to
estimate the demands. Then, using Multi-Commodity
Flow formulations [11], we can maximize the set of not
yet failed edges in each iteration while maintaining suf-
ficient network capacity.

7. CONCLUSIONS
Network failures should be embraced, not avoided. By

systematically destroying redundant parts of the net-
work while monitoring it, Armageddon makes sure that
the control software does its job correctly. At its core,
Armageddon is based on an efficient algorithm, Greedy
Killer, which quickly computes failure scenarios that
maintain connectivity. Our results on representative
topologies indicate that Armageddon is quickly able to
fail each link at least once. Overall, we expect our ap-
proach to foster a new breed of “destroying” tools for
networks.
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[26] M. Kuźniar, P. Pereš́ıni, M. Canini, D. Venzano, and
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