

SpiderBat: Augmenting Wireless Sensor Networks with Distance and Angle Information

Georg Oberholzer, **Philipp Sommer**, Roger Wattenhofer

Location in Wireless Sensor Networks

Context of sensor readings <location, time, value>

Leverage location information

Network layer: geographic routing

Physical layer: transmission power control

Learn about the current node position
 Nodes might be attached to moving objects

Learning the Position of Sensor Nodes

Global Positioning System (GPS)

Not for indoor applications

Special hardware required

High power consumption

Radio-based (connectivity/signal strength)
 High node density required
 Limited accuracy (multipath effects)

Positioning with Ultrasound

Inspired by nature ...

■ Human hearing range: 20 – 20,000 Hz

Ultrasound meets Sensor Networks

High accuracy

Speed of sound c = 343 m/s

	TelosB/Tmote Sky	MicaZ/IRIS
Clock speed	32 kHz	1 MHz
Resolution	1.04 cm	0.343 mm

Low complexity

Simple analog circuits for signal processing and peak detection

Energy efficiency

Short pulses (e.g. 250 microseconds)

Duty-cycling ultrasound transmitter/receivers

Related Work

[Priyantha et al., 2000]

Medusa

[Savvides et al., 2001]

Calamari

[Whitehouse et al., 2004]

Ultrasound Ranging

- Time difference of arrival (TDoA) between radio and ultrasound:
 - 1. Radio packet wakes up ultrasound receivers
 - 2. Ultrasound pulse is sent after a constant delay

$$c_{
m radio}pprox 2.99\cdot 10^8 \ rac{
m m}{
m s}$$
 $c_{
m sound}pprox 343.2 \ rac{
m m}{
m s}$ Sender Radio W $\Delta t_{
m timeOfFlight}$

 $d = c_{sound} \cdot \Delta t_{\text{timeOfFlight}}$

Distance based Positioning in Sensor Networks

 Determine position based on distances to anchor nodes (trilateration)

3 anchor nodes

Positioning in Sparse Networks

How does angle information help to position nodes?

The SpiderBat Ultrasound Platform

System Architecture

SpiderBat is an extension board for wireless sensor nodes

Ultrasound Receiver Circuits

- Three amplification stages with a total gain of 58-75 dB
- Each receiver provides two output signals:
 - Digital comparator output generates an interrupt signal (RX_INT)
 - 2. Analog signal output (RX_ADC)

Experimental Evaluation

Prototype Hardware

SpiderBat extension board

Atmel ZigBit900 (Atmega1281 MCU + RF212 radio)

Software

Ultrasound ranging application implemented in TinyOS 2.1

Distance/angle/compass information forwarded to a base station

Accuracy of Distance Measurements

Measurement errors are in the order of a few millimeters
 Std. dev of error is 5.39 mm (0.21 inch) at 14 m (45.9 feet)

Angle-of-Arrival Measurements with SpiderBat

Angle-of-Arrival Estimation

We can calculate the angle based on the TDoA at the receivers

Accuracy of Angle Measurements

Estimation of the angle-of-arrival within a few degrees
 Error is less than 5° for short distances between sender and receiver

Indoor Experiments

- 4 nodes placed in a gym hall, single anchor node (Node 1)
- 200 measurements for each node

Step 1: Distance + angle to nearest neighbor

Std. dev. < 15.5 cm (6.1 inch)

Step 2: Minimize distance errors (method of least squares)

Std. dev. < **5.7 cm (2.2 inch)**

Non Line-of-Sight Propagation

What if the direct path between two nodes is obstructed?

Two nodes are in line-of-sight if:

$$\alpha_{\text{Node1}} = \alpha_{\text{Node2}} - \pi \pm \epsilon$$

Non Line-of-Sight Propagation

We use the digital compass to get the node orientation

We can use the digital compass to identify non-line of sight paths

Outlook: Learning about the Proximity of Nodes

Sampling the received ultrasound signal
 Idea: Identify reflection at nearby obstacles

Conclusions

SpiderBat platform

Ultrasound extension board for sensor nodes

Distance and **angle** measurements

Digital compass

Experiments

Std. dev. of localization error below 5.7 cm (indoor setup)

Non-line of sight propagation

Detect obstacles between nodes

