
The Arvy Distributed Directory Protocol
Pankaj Khanchandani

ETH Zurich

Zurich, Switzerland

kpankaj@ethz.ch

Roger Wattenhofer

ETH Zurich

Zurich, Switzerland

wattenhofer@ethz.ch

ABSTRACT
In this paper we consider the problem of designing a distributed

directory service. The two classic directory service protocols are

Arrow [5] and Ivy [11]. Arrow performs well if the network is a tree,

while Ivy performs well on complete graphs. However, there are

graphs for which both Arrow and Ivy yield poor performance. In

this paper, we propose a new distributed directory protocol, Arvy.

Arvy is a natural extension of both Arrow and Ivy, generalizing

both, while keeping their simplicity and strengths. Our main con-

tribution is to prove Arvy’s correctness, in asynchronous networks

with concurrent requests, for arbitrary topologies. Regarding per-

formance, we show that Arvy achieves constant competitive ratio

on rings using constant space per node.

CCS CONCEPTS
• Theory of computation → Online algorithms; Graph al-
gorithms analysis;Distributed algorithms; Concurrent algo-
rithms; • Networks→ Token ring networks.

KEYWORDS
Arrow, Ivy, distributed directory, shared object

ACM Reference Format:
Pankaj Khanchandani and Roger Wattenhofer. 2019. The Arvy Distributed

Directory Protocol. In 31st ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA ’19), June 22–24, 2019, Phoenix, AZ, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3323165.3323181

1 INTRODUCTION
The Arrow [5] and Ivy [11] protocols were originally designed to

solve the cache-coherence problem in a multiprocessor system. In

such a system, several processes may want to modify a memory

location or a shared data item. To avoid having multiple and in-

coherent copies of the data item, the access to modify the data is

granted sequentially to the requesting processes so that only one of

them can modify the data at a time. Formulating in abstract terms,

the core problem is how to coordinate access to a shared resource

or a token. The challenge is that a node requesting the resource

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6184-2/19/06. . . $15.00

https://doi.org/10.1145/3323165.3323181

has to find its location using a distributed directory protocol. Multi-

ple independent instances of the distributed directory protocol in

parallel can be used to coordinate access to multiple data items.

Due to the abstract nature of the problem, it can be applied in

various settings. For example, it can be used to coordinate access

to a mobile server or a set of servers. Another example is a service

that globally orders transactions that are concurrently issued by

arbitrary nodes. Such a transaction ordering service is nowadays

known as a “blockchain”. While the focus of blockchain research is

on fault-tolerance, the focus of distributed directory research is on

efficiency, which in turn heavily depends on the network topology.

Eventually, the two areas may merge.

In an asynchronous and reliable network, where themessages are

eventually delivered and not lost, both the Arrow and Ivy protocols

ensure that every request to the shared resource or the token is

eventually satisfied. We briefly describe the operation of these

protocols when the requests to the token are sequential, i.e., there

is at most one outstanding request in the network at any time. In

such a scenario, Arrow and Ivy both maintain a rooted directed

tree. The root of the tree stores the token, and the edges of the tree

are directed towards the root. When a node requests the token, the

tree is re-rooted to the requesting node as it is the new bearer of

the token.

Both Arrow and Ivy follow different rules to re-root the tree. Let

r be the current root of the tree and r ′ be the node that issued the

new request. The Arrow protocol re-roots the tree by reversing

all directed edges (i.e., “arrows”) on the path from r ′ to r . The
Ivy protocol re-roots the tree by making r ′ the parent of every
node on the path from r ′ to r . In other words, Arrow only changes

the direction of the edges but not the edges themselves, which

makes the Arrow protocol perfectly suited for tree topologies. Ivy

on the other hand constantly changes the topology, short-cutting

whenever possible, which makes the Ivy protocol more suitable for

general graphs. If we have concurrent requests, understanding both

protocols becomes more involved, and in particular Ivy becomes

nontrivial.

In this paper, we introduce theArvy protocol, which is a natural

generalization of the Arrow and Ivy protocols. The tree modifica-

tion rule used by Arrow or Ivy are specific instances of the rule

used by the Arvy protocol. For example, if r ′, . . . ,v,w, . . . , r is the
path from r ′ to r in the sequential case, then in order to re-root the

tree to r ′, Arvy may change the parent ofw to v as in Arrow, or to

r ′ as in Ivy, or to any other node between r ′ and v . This flexibility
makes Arvy really a family of protocols, where Arrow and Ivy are

just special cases.

As our main contribution, we show that Arvy is correct. Con-

cretely, Arvy eventually satisfies every request to the shared re-

source in an asynchronous network. While Arvy’s correctness is

natural if the requests are issued sequentially, it is exciting that Arvy

https://doi.org/10.1145/3323165.3323181
https://doi.org/10.1145/3323165.3323181

continues to be correct when the requests are issued concurrently

in an asynchronous network.

We can measure the performance of a distributed directory pro-

tocol using the competitive ratio. The idea is to compare the cost

of the given protocol, which does not know the location of future

requests, to the cost of the best protocol that already knows the

future requests at initialization. Concretely, the cost of the protocol
for a given sequence of requests is the total distance traversed by

the messages to satisfy all the requests. The optimal cost for a given
sequence of requests is the minimum cost incurred by any protocol

that knows that sequence of requests already. The competitive ratio
is an upper bound on the ratio of the cost of the protocol and the

optimal cost for every sequence of requests.

As a second contribution, we illustrate the benefits of Arvy

by analyzing its competitive ratio on rings. We show that Arvy

achieves a constant competitive ratio on a ring of n nodes using

constant space per node, where, interestingly, both Arrow and Ivy

have an Ω(n) competitive ratio. More complex distributed directory

protocols exist, e.g. [14], but they do not yield a constant competitive

ratio on rings using constant space per node.

2 RELATEDWORK
Raymond’s tree based mutual exclusion algorithm [13] predates

the similar Arrow protocol by Demmer and Herlihy [5]. The Arrow

protocol has inspired lots of research, since it is not only practical

but also theoretically interesting. Kuhn et al. [10] show that the

competitive ratio of Arrow is O(logD), where D is the diameter of

the spanning tree used by Arrow. In their work, the cost used in

the competitive ratio also takes into account the arrival and wait-

ing time of the requests. Ghodselahi et al. [7] show that running

Arrow on a probabilistic distribution over the right family of trees,

as obtained from an FRT embedding [6], yields an expected com-

petitive ratio of O(logn) on a general graph of n nodes. As these

results show, the performance of the Arrow protocol is limited by

the quality of the tree or the distribution of trees [7] chosen initially.

However, the network topology may be such that no single tree is

good for every pair of points (as in a ring for example). The Arvy

protocol, on the other hand, offers flexibility by allowing to change

the tree during the operation of the protocol.

Li and Hudak’s Ivy protocol [11] was discovered before the

Arrow protocol. While the original work on Arrow already included

a correctness proof, Ivy’s correctness for concurrent requests is

more involved and is treated by Bouabdallah et al. [3] in a separate

work. However, the invariant proof about messages in transit and

parent pointers misses some cases. As Ivy is a special case of Arvy,

and we show that Arvy is correct in all cases, the correctness of

Ivy is directly implied. Ginat et al. [8] show that Ivy has O(logn)
amortized cost per request on a complete graph of n nodes with

unit weight edges.

A separate line of research for solving the distributed directory

problem is based on sparse covers [1] or similar structures. A sparse

cover of a graph is a collection of connected components of the

graph such that every node is in some component. The radius of the
sparse cover is the maximum radius of a connected component in

the collection. The degree of the sparse cover is the maximum num-

ber of connected components in which any given vertex appears.

The protocols based on sparse covers typically work by building

a hierarchy of sparse covers of increasing radii but low degree. A

request to a shared resource is then satisfied by keeping the inter-

action between the nodes up to the level in the hierarchy, whose

radius is just large enough. Examples of such solutions are [2, 4, 9]

and [14]. These solutions are usually quite involved as each node

has to simultaneously operate at O(logn) levels in the hierarchy,

where n is the number of nodes in the network. For example, when

these solutions are used on a ring of n nodes, then they additionally

needO(logn) space per node and only achieveO(logn) competitive

ratio. However, Arvy can achieve constant competitive ratio on

rings by only using constant space per node and is much simpler.

3 MODEL
We consider a connected network G = (V ,E) where V is the set of

nodes in the network and E is the set of edges connecting them.

A node in the network can send a message to a neighboring node,

receive a message from a neighboring node, do some computation,

and store some data. Routing is considered to be solved using stan-

dard methods, i.e., a message sent from a source to a destination

will find the destination on the shortest path. The messages can

be delayed arbitrarily but they are never lost, i.e., every message is

eventually delivered.

The nodes in the network share a single token. Each node can

request the token at any time. A request is identified by the pair

(v, t), where a node v ∈ V requests the token at a time t . A request

(v, t) is considered satisfied as soon as v receives the token at a

time t ′ ≥ t . We assume that a node does not issue another request

before the last request is satisfied. The task is to design an algorithm

for every node so that every token request is satisfied. The nodes

cannot make any assumption about future requests except that a

node has at most one outstanding request as mentioned before.

The assumption regarding at most one outstanding request per

node is only needed for simplicity. It can be taken care of by letting

the further requests wait until the token arrives, at which point the

all outstanding requests can be satisfied in one fell swoop. Note

that there is no bound on message delays, and that the nodes can

only assume that a message sent will eventually be delivered. The

following section describes the Arvy protocol, which solves this

problem.

4 THE ARVY PROTOCOL
Algorithm 1 gives the pseudocode of the Arvy protocol. The idea

is that each node v keeps a pointer to a parent node p(v), which
points in the direction of the token Additionally, each node v may

also have a next pointer n(v) to a next node that is waiting for the

token.

Initially, the parent pointers form a rooted tree so that the point-

ers are directed towards the root and the root points to itself. The

token is situated at the root and the next pointers are empty when

the algorithm starts. If a node v wants the the token, it sends a

“find byv" message to its parent and also changes its parent pointer

p(v) to v , since v expects to receive the token soon (Lines 2 and 3).

If a node w receives a “find by v" message from a node u, it first
changes its parent pointer p(w) to either the source of the message

v or any other node that had received and forwarded the “find byv"

Algorithm 1 The Arvy Protocol: The parent pointer p(v) of each
nodev is initialized so that they form a rooted tree pointing towards

a root r and p(r) = r . The next pointer n(v) = ⊥ for every node v
initially. The initial location of the token is at the root. Node v does

not issue a duplicate request if it has one outstanding.

1: procedure ReqestToken(v) ▷ v requests the token

2: Send message “find by v" to p(v)
3: p(v) ← v
4: end procedure

5: procedure ReceiveMessage(w , v , u)
▷ w receives a message “find by v" from u

6: f ← p(w)
7: p(w) ← NewParent(v)
8: if f , w then
9: Send (forward) “find by v" message to f
10: else
11: n(w) = v
12: if w has the token then
13: SendToken(w)

14: end if
15: end if
16: end procedure

17: procedure NewParent(v)
18: Return v OR any node that had received and forwarded v’s

current “find by v" message

19: end procedure

20: procedure ReceiveToken(v) ▷ v receives the “token"

21: Use token to satisfy outstanding request

22: SendToken(v)
23: end procedure

24: procedure SendToken(w) ▷ w sends the “token"

25: if n(w) , ⊥ then
26: Send “token" to n(w)
27: n(w) = ⊥
28: end if
29: end procedure

message (Line 7). We do not make any assumption on the decision

procedure of the new parent except that it will return some node

that was visited by the “find by v" message. Depending on the spe-

cific implementation, additional parameters may be required. Our

pseudocode omits these details for simplicity. Whether the “find

by v" message is forwarded or not depends on the value of p(w)
or f when the message is received (Line 6). If f , w , then w just

forwards the “find by v" message to f assuming that f is the way

to the token (Line 9). If f = w , then we are hoping that w either

has the token or will have the token soon. Ifw has the token, then

it simply sends the token to v (Line 13). Otherwise, it sets its next

pointer n(w) to v so that it can forward the token to v once it is

received (Line 11).

The token handling itself is easy. If a node v receives the token

(Line 20), then it first uses it (Line 21), sends it to the next node

n(v) if one exists (Line 26) and then clears n(v) (Line 27).
We show a sample execution in Figure 1 for five nodes. Initially,

the token is at node a (Figure 1a). Then, a request to the token

by node d is forwarded by c (Figures 1b and 1c). However, node e
requests the token before “find byd" message reaches its destination

(Figure 1d). The request by e passes through c and ends up as the

next pointer of d (Figures 1e and 1f). Note that the new parent

pointer of node d is e and the structure has changed. The “find by

d" message is still stuck on way to a from c . Meanwhile, node b
requests the token and is received by a, which sets its next pointer

to b (Figures 1g and 1h). The “find by d" is finally received by a but

now it is forwarded again and ends at b (Figure 1i and Figure 1j).

The structure has changed again as the new parent of node a is

d . The token is then sent around according to the next pointers,

i.e., node a passes it to b, node b to d and node d to e (Figures 1k
and 1l). The token could have been sent around earlier. Also, many

other structures are possible depending on which node is chosen

as a parent when a message is received.

One can see from the example that the structure is highly dy-

namic. It is not obvious if a request message always finds the des-

tination and is not forwarded forever. It is also not obvious if the

token is passed around to every requesting node and does not miss

a request or repeat one. In the following section, we prove that such

situations do not occur.

5 CORRECTNESS ANALYSIS
To analyze the algorithm, we first define the state of the system.

The configuration of the system is the state of each node, the find

messages in transit and the location of the token. The state of a

node v is the value of the variables n(v) and p(v). A find message

in transit is a find message that was sent from a node u to a node

v and is not yet received and processed by v . The location of the

token is either a node u or the pair (u,v) when the token was sent

by a nodeu to a nodev but not yet received byv . The configuration
changes when events occur. An event occurs when a node requests

the token, receives a message, sends the token or receives the token.

A separate event for sending a message is not required as that

occurs only as a consequence of requesting the token or receiving

a message. It is possible that two (or more) events occur at two

(or more) different nodes concurrently. In such a case, we give

the following lemma to show that the final configuration does not

depend on the order of application of these events.

Lemma 1. Let E be a set of concurrent events on a configuration C .
Let π1 and π2 be two different permutations of E. Then, the configu-
ration C1 obtained after applying the events in the order π1 is same
as the configuration C2 obtained after applying them in the order π2.

Proof. As the events are concurrent, there is at most one event

in E per node. Let ev ∈ E be an event at a node v and eu ∈ E be

an event at another node u , v . Say that ev is a send or receive

token event. Then, the event eu must be a request token or receive

message event as eu occurs concurrently to ev and there is only

one token in the network. The change in the state caused by ev
depends on n(v) or the location (w,v) of the token. Neither of these

a

b c

d e

(a) Initial state

a

b c

d e

d

(b) d requests the token

a

b c

d e

d, c

(c) c receives “find by d"

a

b c

d e

d, c

e

(d) e requests the token

a

b c

d e

d, c

e,
c

(e) c receives “find by e"

a

b c

de e

d, c

(f) d receives “find by e"

a

b c

de e

b
d, c

(g) b requests the token

a b

b c

de e

d, c

(h) a receives “find by b"

a b

b c

de e

d,
c,
a

(i) a receives “find by d"

a b

bd c

de e

(j) b receives “find by d"

a

bd c

de e

(k) b receives the token

a

b c

d e

(l) d and e receive the token

Figure 1: An example sequence of events on a graph of five nodes. The caption mentions the event and the figure shows the
effect of the event. The outgoing black arrow from a node is its parent pointer. If the next pointer of a node is not empty, then
its value is shown in green besides the node. The black box represents the token. A red arrow is a message in transit from the
tail to the head of the arrow. The values above the red edge are the possible values of the new parent when the corresponding
message is received. The network edges used for routing are not shown.

can be modified by the send or receive message event eu . Thus, the change caused by a send or receive token event ev is same whether

a concurrent event eu is applied before or after ev .

Now, consider that ev is a request token or a receive message

event. Then, the change in the state caused by ev only depends on

p(v) or both p(v) and the messagem received byv . Neither of these
can be affected if eu is a send token event or a receive token event

or a request token event or a receive message event at another node.

Thus, the change caused by a request token or a receive message

event ev is same whether a concurrent event eu is applied before

or after ev .
Therefore, we can choose a fixed permutation π of events in

E and the effect of applying the events according to the order π1
or π2 is same as if the events were applied in the order π . So, the
configuration C1 = C2. □

To show the correctness, we need to show that every token

request is satisfied eventually. Basically, we need to show that a

find request is eventually received by a nodev with p(v) = v so that

the request is not forwarded again, and that once the find request

from a node stops being forwarded, the node eventually receives

the token. We start by establishing some essential invariants about

the configuration. We need to precisely define some terms to state

those invariants.

We order the events into a total order as per their time of occur-

rence and breaking ties by node identifiers. Using Lemma 1, final

configuration is not affected. We define an execution as an alter-

nating sequence of events and configurations C0, e1,C1, e2,C2, . . .,

where C0 is the initial configuration and Ci is the configuration

after the ith event ei has occurred. A black edge is a directed edge

(v,p(v)) corresponding to a parent pointer of a node v . A red edge
is a directed edge (v,w) corresponding to a “find by u" message in

transit from node v tow . Thus, there is one-to-one correspondence

between black edges and parent pointers, and between red edges

and find messages.

Given a red edge r = (v,w), we define head(r) = w and tail(r) =
v . A nodev has a self-loop if its black edge points to itself orp(v) = v .
We assume that a node does not request the token again if the node

already requested the token and did not receive it yet. Note that a

new “find byu" message is produced only when the nodeu requests

the token. The find message is only forwarded by the other nodes

until it is received by a node w with p(w) = w , which is the only

way by which u receives the token. Thus, there is at most one “find

by u" message for a given node u in any configuration. So, given a

red edge r corresponding to a “find by u" message, we can define

the producer of r , prod(r), as the node u.
Let Ci be the configuration after the first i ≥ 0 events of an

execution σ have occurred. Given a red edge r in the configuration

Ci , we define visitedi (r) as the set of nodes including prod(r) and
the nodes that already received the find message corresponding

to r during the first i events of σ . We say that a nodew is waiting
for a node u if n(u) = w or if n(v) = w and v is waiting for u. We

define waitingi (u) as the set of nodes that are waiting for u in the

configurationCi . As the producer of a red edge r is unique, we also
use waitingi (r) as the set of nodes that are waiting for prod(r). A
directed graph is a directionless tree if the graph is a tree when the

directed edges are replaced by undirected edges. A directionless

tree separates into two parts when a directed edge r from v tow is

deleted. The part including v is called the source component of r or

src(r) and the part includingw is called the destination component
of r or dst(r).

We show the following three properties for every reachable

configuration. First, the black edges and the red edges form a di-

rectionless tree. Second, if we replace each red edge r by a green
edge (head(r),u), where u is a node visited by r or a node waiting
for prod(r), then the resulting graph is also a directionless tree.

Third, the source component of each red edge r contains the nodes
visited by r and the nodes waiting for prod(r). Let Bi be the set

of all the black edges except the self-loops and Ri be the set of

red edges in Ci . Let BRi be the graph of all the nodes V and the

edges Bi ∪ Ri . Given a red edge r ∈ Ri , the set of green edgesGi (r)
corresponding to the red edge r are the green edges (head(r),u),
where u ∈ visitedi (r) ∪ waitingi (r). Let Gi be a set of green edges

that are obtained by replacing each red edge r ∈ Ri by a single

green edge дr ∈ Gi (r). Let G̃i be the set of all possible values ofGi .

Let B̃Gi be the graphs BGi (V ,BiUGi) for all Gi ∈ G̃i . See Figure 2

for an example. Note that all these terms are defined with respect

to a configuration reached in a specific execution σ . However, we
omit σ from the notation to avoid clutter and because the execution

being referred to will always be clear from the context.

Lemma 2. The following statements are true for any execution σ of
Algorithm 1 on a set V of nodes.

(1) The graph BRi is a directionless tree.
(2) Each graph BGi ∈ B̃Gi is a directionless tree.
(3) For each red edge r , we have visitedi (r)∪waitingi (r) ⊆ srci (r).

Proof. We prove the claim by induction on the events. Initially,

we only have black edges in the configuration C0, that form a

directed tree. There are no red edges in the initial configuration so

Part 1, Part 2 and Part 3 of the claim are true for C0. Suppose the

claim is true for Ci for i ≥ 0. We check if the claim remains true

for Ci+1 after the event ei+1 occurs.
Send or receive token: If the event ei+1 is a send token or receive

token, then the claim remains true as the black and red edges remain

unchanged.

Request token: Consider that ei+1 is a request token event by a

node v for which p(v) = w . Then, the node v sends find message to

w and sets p(v) = v . As a result, the graph BRi+1 is obtained from

BRi by changing the color of the black edge (v,w) to red. As BRi is
a directionless tree by induction hypothesis, so is BRi+1 and Part 1

remains true. Note that for a red edge r ∈ Ri , we have visitedi (r) =
visitedi+1(r) and waitingi (r) = waitingi+1(r). Thus, the set G̃i is

the set of all possible ways to replace all the red edges in BRi+1,
except the red edge (v,w), by green edges. Also, the red edge (v,w)
can only be replaced by the green edge (w,v) as the node v just re-

quested the token and visitedi+1((v,w))∪waitingi+1((v,w)) = {v}.
So, the graphs B̃Gi+1 can be generated by enumerating through

all BGi ∈ B̃Gi and replacing the black edge (v,w) by the green

edge (w,v). As the graphs B̃Gi are directionless trees by induction

hypothesis, the graphs B̃Gi+1 are also directionless trees and Part 2

remains true. For Part 3, we note that BRi+1 is obtained from BRi
by changing the color of the single edge (v,w) to red. Thus, for

every red edge r ∈ Ri , we have srci (r) = srci+1(r). Moreover, we

have visitedi (r) = visitedi+1(r) and waitingi (r) = waitingi+1(r) for

a

b c

d e

(a) (b, a) → (a, b), (c, a) → (a, c)

a

b c

d e

(b) (b, a) → (a, b), (c, a) → (a, d)

a

b c

d e

(c) (b, a) → (a, b), (c, a) → (a, e)

Figure 2: The graphs B̃G6 obtained from Figure 1g by replacing the red edges r1 = (b,a) and r2 = (c,a) with the green edges in
G6(r1) and G6(r2) respectively.

all r ∈ Ri . Thus, for all r ∈ Ri+1\{(v,w)}, Part 3 holds by induc-

tion hypothesis. For (v,w) ∈ Ri+1, we have visitedi+1((v,w)) ∪
waitingi+1((v,w)) = {v} ⊆ srci+1((v,w)) and Part 3 is true for all

r ∈ Ri+1.
Receive message by a node with a self-loop: Consider that ei+1

is a find message received by a nodew with a self-loop and a node

v sent that find message. Let r be the red edge (v,w) in Ci .
For Part 1, we first note that parent p(w) is updated to a node

u ∈ visitedi (r). So, deleting the red edge r from BRi and adding

the edge (w,u) yields the graph BRi+1. By Part 1 of the induction

hypothesis, the graph BRi is a directionless tree and therefore,

removing the red edge r from BRi breaks it into two parts, say A
and B. Using Part 3 of the induction hypothesis, visitedi (r) ⊆ srci (r)
and so u ∈ srci (r). Thus, adding the edge (w,u) after removing the

red edge r from BRi connects the partsA and B again. So, the graph

BRi+1 is a directionless tree and Part 1 remains true.

For Part 2, we consider two cases. In the first case, suppose that

there is no red edge r ′ such that w ∈ waitingi (r
′). So, we have

visitedi (r ′′) = visitedi+1(r ′′) and waitingi (r
′′) = waitingi+1(r

′′)

for each red edge r ′′ ∈ Ri\{r }. Consider the set of graphs BG′i ⊆
B̃Gi for which the red edge r was replaced by the green edge (w,u).

Therefore, the set of graphs B̃Gi+1 can be obtained from BG′i ⊆
B̃Gi by taking the ones with the green edge (w,u) and changing

its color to black. As the graphs B̃Gi are directionless trees by

induction hypothesis, the graphs B̃Gi+1 are directionless trees as

well and Part 2 remains true when there is no red edge r ′ so that
w ∈ waitingi (r

′).

Next, consider the second case when there is a red edge r ′ so that
w ∈ waitingi (r

′). Observe that such an edge r ′ is unique. Indeed,
if there are red edges r ′

1
and r ′

2
, r ′

1
so that w ∈ waitingi (r

′
1
)

and w ∈ waitingi (r
′
2
), then there are nodes w1 and w2 for whom

n(w1) = n(w2) := q, but the node q does not issue another find

request until the previous one is satisfied, so either n(w1) or n(w2)

is ⊥, a contradiction. Consider the graph G̃ ⊆ B̃Gi so that the red

edge r was replaced with the green edge (w,u) and the red edge r ′

was reversed into a green edge, i.e.,

G̃ = {BG | BG ∈ B̃Gi , (w,u) ∈ E(BG), g ∈ E(BG)} ,

where E(X) denotes the set of edges of a graph X and д′ is the
green edge (head(r ′), tail(r ′)). Let H̃ be the graphs obtained from

G̃ by changing the color of the green edge (w,u) to black. Note that

visitedi (r ′′) = visitedi+1(r ′′) and waitingi (r
′′) = waitingi+1(r

′′)

for each r ′′ ∈ Ri\{r , r
′}. Therefore, we have

B̃Gi+1 = {H
′ |V (H ′) = V ,E(H ′) = E(H)\{g′} ∪ {дr ′},

дr ′ ∈ Gi+1(r
′),H ∈ H̃ } .

The graphs H̃ are directionless trees as they differ from the graphs

G̃ ⊆ B̃Gi in the color of a single edge and the graphs B̃Gi are direc-

tionless trees by the induction hypothesis. Thus, we only need to

show that replacing the edge д′ in each graph H̃ with any green

edgeдr ′ ∈ Gi+1(r
′) yields a directionless tree. Assume for contradic-

tion that there exists H ∈ H̃ so that replacing д′ with a green edge

from Gi+1(r
′) does not yield a directionless tree. The graphs H̃ are

directionless trees as they are obtained from the graphs G̃ ⊆ B̃Gi
by only changing the color of an edge and B̃Gi are directionless

trees by induction hypothesis. So, there is a graph H ∈ H̃ that has

a node q ∈ srcH (д′) such that q ∈ visitedi+1(r ′) ∪ waitingi+1(r
′)

because replacing д′ with a green edge fromGi+1(r
′) does not yield

a directionless tree. Therefore, there is also a graph G ∈ G̃ that has

a node q ∈ srcG (д′) such that q ∈ visitedi+1(r ′) ∪waitingi+1(r
′) as

H and G only differ in the color of a single edge. Consider such a

graph G with the smallest number of changed red edges, where a

red edge r ′′ ∈ BRi is considered unchanged if it is replaced with

the reversed green edge (head(r ′′), tail(r ′′)). Let R′ ⊆ Ri be the

set of red edges that were changed in BRi to obtain the graph G,
i.e., not counting a red edge if it was reversed into a green edge.

Let GR′ be the set of green edges that replaced the edges R′ and
G ′ be the graph obtained from BRi by replacing the red edges R′

with the green edges GR′. Pick some r ′′ ∈ R′ and let gr ′′ be the
corresponding replacement green edge in GR′. LetG ′′ be the graph
obtained by replacing the red edges in R′\{r ′′}.

Note that r ′ < R′ as the green edge д′ in G is just the re-

versed red edge r ′ and this does not count as a changed edge.

So, the red edge r ′ is contained in both G ′ and G ′′. Also, both
G ′ and G ′′ are directionless trees as they are obtained by replac-

ing a subset of red edges Ri with the green edges, and revers-

ing the remaining red edges into green edges yields a member of

B̃Gi , which are directionless trees by induction hypothesis. Let

q ∈ srcG (д′) be a node such that q ∈ visitedi+1(r ′) ∪waitingi+1(r
′).

As G and G ′ are the same trees if we ignore the direction and

color of the edges and r ′ is the reversed edge д′, we also have

q ∈ dstG′(r ′). So, we have q ∈ srcG′′(r ′), otherwise, we can re-

move r ′′ from R′, contradicting its minimal size. As per our as-

sumption, we have q ∈ visitedi+1(r ′) ∪ waitingi+1(r
′). We have

visitedi+1(r ′) = visitedi (r ′) as the event ei+1 does not involve r ′

andwaitingi+1(r
′) = waitingi (r

′)∪waitingi (r) asw ∈ waitingi (r
′)

by assumption. If the node q ∈ visitedi (r ′) ∪ waitingi (r
′), then re-

placing д′ in the graph G with a green edge from Gi+1(r
′) yields a

member of B̃Gi , which are directionless trees. So, it must be that

q ∈ waitingi (r) ⊆ srci (r) using Part 3 of the induction hypothesis.

Now, we consider different configurations of G ′′ depending on the

location of q and r ′ relative to r ′′.
First, suppose that {q, r ′} ⊆ srcG′′(r ′′), i.e., both q and r ′ lie in

the source component of r ′′ in G ′′. Then, replacing r ′′ by a green

edge cannot make q ∈ dstG′(r ′). Indeed, if we replace r ′′ in G ′′

with a green edge, we get G ′, which is a directionless tree. So, the

replaced green edge is (head(r ′′),u ′′) for some u ′′ ∈ srcG′′(r ′′). As
q ∈ srcG′′(r ′′) by assumption, the location of q with respect to r ′

does not change, i.e., we have q ∈ srcG′(r ′) because q ∈ srcG′′(r ′).
Thus, it is not possible that {q, r ′} ⊆ srcG′′(r ′′). Second, we also
cannot have {q, r ′} ⊆ dstG′′(r ′′) due to the same argument as

in the previous case. Third, suppose that q ∈ srcG′′(r ′′) and r ′ ∈
dstG′′(r ′′). Asq ∈ srcG′′(r ′), we have head(r ′′) ∈ srcG′′(r ′). So, after
replacing the red edge r ′′ with green edge (head(r ′′),u ′′) for some

u ′′ ∈ srcG′′(r ′′), we get the directionless tree G ′ and q ∈ srcG′(r ′),
a contradiction.

Fourth, suppose that q ∈ dstG′′(r ′′) and r ′ ∈ srcG′′(r ′′). Say
that r ′′ was replaced with a green edge (head(r ′′),u ′′) to yield

G ′, where q ∈ dstG′(r ′). Then, the node u ′′ ∈ dstG′′(r ′). Also, the
nodew = head(r) ∈ dstG′′(r ′′), otherwise, we havew ∈ srcG′′(r ′′)
and we can replace the black edge (w,u) in G ′′ with the green

edge (w,q) to obtain a graph T , where q ∈ waitingi (r). The graph
T is not a directionless tree as there is an edge (w,q) is between
(srcT (r ′′), dstT (r ′′)) apart from the edge r ′′ itself. However, the
graph T must be a direction tree as each of the remaining red edge

inT can be replaced with a reversed green edge to yield a member of

B̃Gi , which are directionless trees. So, it must be thatw ∈ dstG′′(r ′′).
However, if w ∈ dstG′′(r ′′), then the edges r ′ and r ′′ in G ′′ can
be respectively replaced with the green edges (head(r ′),w) and
(head(r ′′),u ′′) to yield a graph T , which is not a directionless tree

as there are two paths, namely (head(r ′),w) and (head(r ′′),u ′′),
between dstT (r ′′) and dstT (r ′). Recall that w ∈ waitingi (r) by
assumption. So, the graphT must be a directionless tree as replacing

each of the remaining red edges in T with a reversed green edge

yields a graph in B̃Gi , which are directionless trees by induction

hypothesis. So, it is also not possible that q ∈ dstG′′(r ′′) and r ′ ∈
srcG′′(r ′′) and Part 2 of the claim remains true.

For Part 3, we check if the claim remains true for each red edge

r ′ ∈ Ri\{r } as the red edge r is replaced with a black edge in

BRi+1. As the event ei+1 involves r , r ′, we have visitedi+1(r ′) =
visitedi (r ′) for r ′ ∈ Ri\{r }. We have two cases depending on

whether r ′ ∈ dsti (r) or r ′ ∈ srci (r). First, suppose that r ′ ∈ dsti (r).
Then, we have srci+1(r ′) = srci (r ′) whether w ∈ srci (r ′) or w <
srci (r ′). Ifw < srci (r ′), thenw < waitingi (r

′) by Part 3 of the induc-

tion hypothesis and waitingi (r
′) = waitingi+1(r

′). As each term

in Part 3 of the claim remains unchanged, it remains true. If w ∈
srci (r ′), then we have srci+1(r ′) = srci (r ′) ⊇ srci (r). So, we have

srci+1(r ′) = srci (r ′) ∪ srci (r) ⊇ waitingi (r
′) ∪waitingi (r) using in-

duction hypothesis. We also have waitingi+1(r
′) ⊆ waitingi (r

′) ∪

waitingi (r) as it is possible that w ∈ waitingi (r
′). Thus, we get

waitingi+1(r
′) ⊆ srci+1(r ′). Moreover, we already have srci+1(r ′) =

srci (r ′) and visitedi+1(r ′) = visitedi (r ′). So, we have visitedi+1(r ′) ⊆
srci+1(r ′) using induction hypothesis and Part 3 remains true when

r ′ ∈ dsti (r).
Second, suppose that r ′ ∈ srci (r). Then, we have four possibili-

ties depending on the location of the nodes v and u with respect to

r ′.

(1) Suppose that {v,u} ⊆ dsti (r ′). Then, we have srci+1(r ′) =
srci (r ′) as the red edge (v,w) in BRi is replacedwith the black
edge (w,u) and neitherv ∈ srci (r ′) noru ∈ srci (r ′). Also, we
have waitingi+1(r

′) = waitingi (r
′) as {v,w} ⊆ dsti (r ′) and

thus, w < srci (r ′) ⊇ waitingi (r
′) by induction hypothesis.

Moreover, we already have visitedi+1(r ′) = visitedi (r ′). As
all the terms involved in Part 3 remain unchanged, it remains

true.

(2) Suppose that {v,u} ⊆ srci (r ′). Then, srci+1(r ′) = srci (r ′) as
(v,w) is replaced with (w,u) to obtain BRi+1 and {v,u} ⊆
srci (r ′). If w < waitingi (r

′), then we have waitingi+1(r
′) =

waitingi (r
′). Moreover, we already have visitedi+1(r ′) =

visitedi (r ′) and thus, Part 3 remains true as all the three terms

remain unchanged. Ifw ∈ waitingi (r
′), thenwaitingi+1(r

′) =

waitingi (r
′) ∪ waitingi (r). If waitingi (r) ⊆ srci (r ′), then

waitingi+1(r
′) ⊆ srci (r ′) = srci+1(r ′) using induction hy-

pothesis. Moreover, we have visitedi+1(r ′) = visitedi (r ′) ⊆
srci (r ′) = srci+1(r ′) already and thus, Part 3 remains true. If

waitingi (r) ⊈ srci (r ′), then there is a node q ∈ dsti (r ′) so
that q ∈ waitingi (r). But, then we can replace the edges r
and r ′ in BRi with the green edges (w,q) and (head(r ′),w)
respectively to get a graph T , which is not a directionless

tree as there are two paths, namely (w,q) and (head(r ′),w),
between dsti (r ′) and dsti (r), a contradiction to Part 2 of the

claim for i + 1. Thus, Part 3 remains true in this case.

(3) Suppose that v ∈ dsti (r ′) and u ∈ srci (r ′). Then, we have
have srci (r ′) ⊆ srci+1(r ′) as the red edge (v,w) is replaced
with the black edge (w,u) to obtainBRi+1. Sincew < srci (r ′) ⊇
waitingi (r

′), we havewaitingi+1(r
′) = waitingi (r

′) ⊆ srci (r ′)
and srci (r ′) ⊆ srci+1(r ′). Also, we know that visitedi+1(r ′) =
visitedi (r ′) ⊆ srci (r ′). So, we have visitedi+1(r ′) ⊆ srci+1(r ′)
as well.

(4) Suppose that v ∈ srci (r ′) and u ∈ dsti (r ′). If dsti (r) ∩
(visitedi+1(r ′) ∪ waitingi+1(r

′)) = ϕ, then visitedi+1(r ′) ∪
waitingi+1(r

′) ⊆ srci+1(r ′) again as the edge (v,w) is re-
placed with black edge (w,u) to obtain BRi+1. Suppose there
is a q ∈ dsti (r) ∩ (visitedi+1(r ′) ∪waitingi+1(r

′)) , ϕ. Then,
we can replace the red edges r and r ′ with the green edges

(w,u) and (head(r ′),q) respectively to yield a graphT , which
is not a directionless tree as there are two paths, namely

(w,u) and (head(r ′),q), between dsti (r) and dsti (r ′), contra-
dicting Part 2 for i + 1. Therefore, we have visitedi+1(r ′) ∪
waitingi+1(r

′) ⊆ srci+1(r ′) when r ′ ∈ srci (r) as well and
Part 3 of the claim is true for i + 1.

Receive message by a node without a self-loop: Lastly, consider

that the event ei+1 is a receive message event by a node w from

a node v , where p(w) = p. Let r be the red edge (v,w) in BRi and
s be the edge (w,p). Using Part 3 of the induction hypothesis, we

have u ∈ visitedi (r) ⊆ srci (r). The graph BRi+1 is obtained from

BRi by replacing the red edge (v,w) with the black edge (w,u)
and changing the color of the black edge (w,p) to red. As BRi is a
directionless tree by Part 1 of the induction hypothesis, so is BRi+1.

For Part 2, consider the graphs G̃ ⊆ B̃Gi in which r was replaced
with the edge (w,u), i.e.,

G̃ = {BG | BG ∈ B̃Gi , (w,u) ∈ E(BG)} .

Let H̃ be the graphs obtained from G̃ by changing the color of

the green edge (w,u) to black. As visitedi (r ′) ∪ waitingi (r
′) =

visitedi+1(r ′) ∪ waitingi+1(r
′) for each r ′ ∈ Ri\{r }, we have

B̃Gi+1 = {H
′ |V (H ′) = V ,

E(H ′) = E(H)\{(w,p)} ∪ {(p,q)},

(p,q) ∈ Gi+1(r), H ∈ H̃ } .

Assume for contradiction that there is a graph BG ∈ B̃Gi+1 that

is not a directionless tree. The graphs H̃ are directionless trees as

they differ from G̃ ⊆ B̃Gi in only the color a single edge (w,u)

and B̃Gi are directionless trees by induction hypothesis. So, there

is a graph H ∈ H̃ in which there is a node q ∈ dstH (s) such that

q ∈ visitedi+1(r) ∪ waitingi+1(r) = visitedi (r) ∪ waitingi (r) ∪ {w}
because replacing (w,p) with (p,q) ∈ Gi+1r does not yield a direc-

tionless tree as per the assumption for contradiction. Then, there is

also a graph G ∈ G̃ having a node q with the same property. Con-

sider such a graphG that can be obtained from BRi by changing the
smallest number of red edges into green edges, where a red edge

is considered to be changed if the replaced green edge is not the

reversed one. Let R′ ⊆ Ri be the set of red edges that were changed
to get G from BRi and let GR′ be the green edges that replaced R′.
LetG ′ be the graph obtained from BRi by replacing the red edges in
R′ with the green edges GR′ and keeping the remaining red edges

Ri\R
′
unchanged, i.e., the graph G ′ is same as G except that the

edges Ri\R
′
have different color and opposite direction. Fix a red

edge r ′ ∈ R′ and let gr ′ ∈ GR′ be the corresponding replacement

green edge. LetG ′′ be the graph obtained by replacing the red edges
R′\r ′ by the corresponding green edges in GR′\gr ′.

Note that both G ′ and G ′′ are directionless trees as they are

obtained by replacing a subset of the edges Ri , and the each of the

remaining red edges can be reversed into a green edge to yield

a member of B̃Gi , which are directionless trees by induction hy-

pothesis. Let q be the node with the property that q ∈ dstG (s) and
q ∈ visitedi (r) ∪ waitingi (r) ∪ {w}. Using the definitions of G and

G ′, they are the same trees ignoring the directions and colors of

the edges. So, the node q ∈ visitedi (r) ∪ waitingi (r) ∪ {w} also
satisfies q ∈ dstG′(s). As R′ is the smallest number of red edges

that must be changed in BRi to get the graph G that has a node

q ∈ dstG (s) such that q ∈ visitedi (r) ∪ waitingi (r) ∪ {w}, it cannot
be that q ∈ dstG′′(s), otherwise, the edge r ′ can be removed from

R′, contradicting its minimum size. So, we have q ∈ srcG′′(s) and
we look for the location of r ′ in G ′′ that can make q ∈ dstG′(s)
after r ′ is replaced with a green edge дr ′ ∈ Gi (r

′), i.e., an edge

(head(r ′),p′) for some p′ ∈ visitedi (r ′) ∪ waitingi (r
′) ⊆ srci (r ′).

We define the set of nodes A′′ = dstG′′((w,u)), C ′′ = dstG′′((w,p))

and B′′ = srcG′′((w,u)) ∩ srcG′′((w,p)). So, we have q ∈ A′′ or
q ∈ B′′. We consider three cases depending on the location of r ′.

First, consider that r ′ ∈ C ′′. Then, either p ∈ dstG′′(r ′) or p ∈
srcG′′(r ′). In either case, replacing r ′ with a green edge дr ′ ∈ Gi (r

′)

does not change the position of q ∈ A′′ ∪ B′′ with respect to the

edge s or (w,p), i.e., q ∈ srcG′(s). As q ∈ dstG′(s), it cannot be that
r ′ ∈ C ′′.

Second, consider that r ′ ∈ B′′. Then, either w ∈ dstG′′(r ′) or
w ∈ srcG′′(r ′). If w ∈ dstG′′(r ′), then either q ∈ dstG′′(r ′) or q ∈
srcG′′(r ′). In either case, the positions of q with respect to the edge s
remains unchanged after replacing r ′ with a green edge д′r ∈ Gi (r

′),

i.e., q ∈ srcG′(s), contradicting the assumption that q ∈ dstG′(s). So,
it is not possible that r ′ ∈ B′′ andw ∈ dstG′′(r ′). Next, suppose that
w ∈ srcG′′(r ′) and r ′ ∈ B′′ as before. Again, either q ∈ srcG′′(r ′) or
q ∈ dstG′′(r ′). If q ∈ srcG′′(r ′), then replacing r ′ with a green edge

дr ′ ∈ Gi (r
′) implies q ∈ srcG′(s), a contradiction. If q ∈ dstG′′(r ′),

then we replace the green edge (w,u) with (w,q) and reverse the

remaining red edges in G ′′ into green edges to obtain a graph

T . Note that T ∈ B̃Gi , as q ∈ visitedi (r) ∪ waitingi (r) ∪ {w} by
definition of q, and q , w since q ∈ dstG′′(r ′) and w ∈ srcG′′(r ′)
by assumption, implying that q ∈ visitedi (r) ∪ waitingi (r) and
(w,q) ∈ Gir . But, the graph T is not a direction tree as there is

an edge (w,q) between srcG′′(r ′) ∩ B′′ and dstG′′(r ′) apart from
the reversed edge r ′, a contradiction since T ∈ B̃Gi , which are

directionless trees by induction hypothesis.

Third, consider that r ′ ∈ A′′. We have two cases, either u ∈
dstG′′(r ′) or u ∈ srcG′′(r ′). If u ∈ dstG′′(r ′), then irrespective

of q ∈ dstG′′(r ′) or q ∈ srcG′′(r ′), after replacing r ′ we have

q ∈ srcG′(s), a contradiction. If u ∈ srcG′′(r ′) and q ∈ srcG′′(r ′),
then after replacing r ′ with a green edge fromGi (r

′), we again have

q ∈ srcG′(s), a contradiction. If u ∈ srcG′′(r ′) and q ∈ dstG′′(r ′),
then replacing r ′ by the edge (head(r ′),q′) ∈ Gi (r

′) can make

q ∈ dstG′(s) if q′ ∈ dstG′′(s). However, in that case we can replace

the edges (w,u) and r ′ by the edges (w,q) and (head(r ′),q′) respec-
tively, and reverse the remaining red edges into green edges, to get

a graphT ∈ B̃Gi , which are directionless trees. However, the graph

T is not a direction tree as there are two paths, namely (q,w,p) and
(head(r ′),q′), between dstG′′(r ′) and C ′′, a contradiction. There-

fore, there is no G ∈ G̃ in which there is a q ∈ dstG (s) such that

q ∈ visitedi (r)∪waitingi (r)∪{w} and B̃Gi+1 are directionless trees,

establishing Part 2 of the claim for i + 1.
We check Part 3 of the claim for the red edges r and r ′ , r

depending on whether r ′ ∈ A, r ′ ∈ B or r ′ ∈ C , where A =
srci (r), B = dsti (r) ∩ srci (s) and C = dsti (s). As the event ei+1 is
a message receive event by a node without a self-loop, we have

waitingi+1(r
′′) = waitingi (r

′′) for all r ′′ ∈ Ri . Also, the event ei+1
involves r so visitedi+1(r ′) = visitedi (r ′) for r ′ , r . First, we check
the claim for r . We have visitedi+1(r) = visitedi (r)∪ {w} ⊆ A∪B =
srci+1(r) using visitedi (r) ⊆ srci (r) from the induction hypothesis.

Also, we have waitingi+1(r) = waitingi (r) ⊆ A ⊆ srci+1(r) using
waitingi (r) ⊆ srci (r) = A from Part 3 of the induction hypothesis.

So, Part 3 remains true for r . Second, consider r ′ ∈ C . It could be

that p ∈ srci (r ′) or p ∈ dsti (r ′). In either case, we have srci+1(r ′) =
srci (r ′). Moreover, we already have visitedi+1(r ′) = visitedi (r ′) and
waitingi+1(r

′) = waitingi (r
′). Therefore, Part 3 remains true as all

three terms in claim remain remain unchanged. Third, consider

r ′ ∈ B. Irrespective of whetherw ∈ srci (r ′) orw ∈ dsti (r ′), we have
srci+1(r ′) = srci (r ′) and the claim remains true as in the previous

case.

Fourth, consider r ′ ∈ A. Suppose that {u,v} ⊆ dsti (r ′) or
{u,v} ⊆ srci (r ′). Then, we have srci+1(r ′) = srci (r ′) and the

claim remains true as in the previous case. Next, suppose that

u ∈ srci (r ′) and v ∈ dsti (r ′). As the edge (v,w) was replaced with

(w,u) to obtain BRi+1, we have srci+1(r ′) = srci (r ′) ∪ B ∪ C or

srci (r ′) ⊆ srci+1(r ′). Moreover, we already have visitedi+1(r ′) ∪
waitingi+1(r

′) = visitedi (r ′) ∪ waitingi (r
′) and so, the claim re-

mains true using induction hypothesis. Lastly, suppose that u ∈
dsti (r ′) and v ∈ srci (r ′). We have the following three cases.

(1) Consider that (visitedi (r ′)∪waitingi (r
′))∩(B∪C) = ϕ. Then,

we have visitedi (r ′) ∪ waitingi (r
′) ⊆ (A ∩ srci (r ′)) using

induction hypothesis. As we already have visitedi+1(r ′) ∪
waitingi+1(r

′) = visitedi (r ′)∪waitingi (r
′), the claim remain

true.

(2) Consider a node q ∈ ((visitedi (r ′) ∪ waitingi (r
′)) ∩ B) , ϕ.

Then, we can replace r and r ′ by the green edges (w,u)
and (head(r ′),q) respectively, and reverse the remaining red

edges into green edges, to yield a graph T ∈ B̃Gi , which are

directionless trees. However, the graph T is not a direction

tree as there are two paths, namely (w,u) and (head(r ′),q),
between A and B, a contradiction.

(3) Consider a node q ∈ ((visitedi (r ′) ∪ waitingi (r
′)) ∩C) , ϕ.

Then, we can replace r and r ′ by the green edges (w,u)
and (head(r ′),q) respectively, and reverse the remaining red

edges into green edges, to yield a graph T ∈ B̃Gi , which are

directionless trees. However, the graph T is not a direction

tree as there are two paths, namely (u,w,p) and (head(r ′),q),
between A and C , a contradiction.

Therefore, Part 3 remains true for each r ′′ ∈ Ri when ei+1 is receive
message event by a node without a self-loop and the claim remains

true for any event ei+1. □

Using the properties of the configuration established above, we

can now show that a find request is always satisfied with the token.

Given a configurationCi for i ≥ 0, we define previousi (w) of a node
w as a node u such that n(u) = w if such a u exists. Otherwise, we

define previousi (w) = ⊥. Observe that previousi (w) is unique for
i ≥ 0. Indeed, a node w does not issue another find request until

the current one is satisfied with the token, which is sent by another

node, sayw ′. Whenw ′ sends the token, then n(w ′) is set to ⊥. So,
there is at most a single nodeu such thatn(u) = w . Letp0,p1, . . . ,pk
be a sequence of nodes such thatp0 = v andpj = previousi (j−1) for
1 ≤ j ≤ k . Observe that the values pj for 0 ≤ j ≤ k are all distinct.

Indeed, if they are not, then we have a smallest sequence of distinct

nodes q0,q1, . . . ,qk ′ such that qj = previousi (q(j−1) mod k ′) for 0 ≤

j ≤ k ′. Let eh , h ≥ 1 be the latest event prior to ei that resulted in

such a configuration of the nodes qj , 0 ≤ j ≤ k ′. Then, the event eh
was a findmessage received by a nodeqb and produced byqa , where
b = (a − 1) mod k and 0 ≤ a ≤ k ′. Also, the previous configuration
Ch−1 is such that qj = previoush−1(q(j−1) mod k ′) for 0 ≤ j ≤ k ′,
j , a. Using definition of waitingh−1(qa) and Lemma 2, we have

qb ∈ waitingh−1(qa) ⊆ srch−1(r), where r is the red edge (qa ,qb).
However, we have qb ∈ dsth−1(r) by definition of r , a contradiction.
So, for every node v and i ≥ 0, we can consider the sequence

v = p0,p1, . . . ,pk , where pj+1 = previousi (pj), previousi (pk) = ⊥
and define topi (v) = pk . The following lemma is an important

consequence of the definition.

Lemma 3. Let w be a node with a self-loop and w ′ = topi (w) for
i ≥ 0. Then, eitherw ′ has the token, or the token was already sent to
w ′, or there is a red edge r ∈ Ri such that prod(r) = w ′.

Proof. We describe the state S(v) of a node v as a subset of

{L,T ,N }, where L means that v has a self-loop,T means that v has

the token, and N means that n(v) , ⊥. Initially, the state of every
node is either {L,T } or {}. Each state can undergo four possible

transitions, which are send token, receive token, request token and

receive message, with the restriction that a node does not request

the token if it already has the token or an outstanding token request.

Thus, one can conclude from the transition diagram that there are

only five possible reachable states, which are {L,T }, {}, {T ,N },
{L} and {N }. Also, if S(v) = {L} or S(v) = {N }, then the node v
requested the token but has not received it yet.

First, suppose that w ′ = w . By assumption, node w has a self-

loop. So, we have S(w) = {L,T } or S(w) = {L} asw has a self-loop.

If S(w) = {L,T }, then w has the token and the claim is true. If

S(w) = {L}, then node w requested the token. Thus, node w sent

a find message. If the message was not received by a node u with

a self-loop, then we have a r ∈ Ri such that prod(r) = w and the

claim holds. If the message was received by a node u, then n(u) was
set to w . Since w = topi (w

′), we have previousi (w) = ⊥. So n(u)
was reset to ⊥ after it was set to w and the token was sent to w ,

establishing the claim.

Second, suppose that w ′ , w . Using definition of topi (w), we
have n(w ′) , ⊥. Thus, out of the five reachable states, either

S(w ′) = {N ,T } or S(w ′) = {N }. If S(w ′) = {N ,T }, then w ′ has
the token. If S(w ′) = {N }, then we already have thatw ′ requested
the token. As in the previous case, we have that either there is an

edge r ∈ Ri such that prod(r) = w ′ or the token was already sent

tow ′. □

Theorem 4. Every find request is received by a node with a self-loop.

Proof. Using Lemma 2, a find message corresponding to a red

edge r is received by a given nodev at most once as afterv receives

the message, say event ek , we have v ∈ visitedi (r) ⊆ srci (r) for all
Ci , i ≥ k . As the number of nodes is limited by n, the find message

is eventually received by a node v that does not forward it. So, the

node v must have a self-loop. □

Theorem 5. Every token request is satisfied.

Proof. Suppose that node v requests the token. Then, node

v sends a find message, which is received by a node w with a

self-loop, say event ei , by Theorem 4. If w ′ := topi (w) has the to-
ken or the token was sent to it, then v receives the token once

the nodes w = q0,q1, . . . ,qk = w ′ have used it, where qj =
previousi (qj−1) for 1 ≤ j ≤ k . Otherwise, we conclude using

Lemma 3 that w ′ has a find message in the network. Using The-

orem 4, the find message is received by a node w ′′ with a self-

loop, say event ej , and |waitingj (topj (v))| > |waitingi (topi (v))|.
So, whenever topi (v) does not have the token, an event ej oc-
curs later, and |waitingj (topj (v))| > |waitingi (topi (v))|. As soon

as |waitingj (topj (v))| = n, the token is at topj (v). Otherwise, there
is a red edge r ∈ Rj such that prod(r) = topj (v) by Lemma 3.

As |waitingj (topj (v))| = n, every node and specifically head(r) ∈
waitingj (r). This is a contradiction because head(r) ∈ dst j (r) and
waitingj (r) ⊆ srcj (r) by Lemma 2. Thus, node topj′(v) must have

received the token for j ′ < j and consequently, node v receives the

token as well. □

6 NEWPARENT FOR RINGS
In this section, we apply Algorithm 1 to ring networks by designing

an appropriate NewParent function. For simplicity, we consider a

ring withn nodes and unit weight edges, wheren is even. The idea is
that we split the ring into two semi-circular parts and connect them

via a “bridge”. The semi-circular parts consist of parent pointers

that coincide with the ring edges where as the bridge is a parent

pointer into the other semi-circular part and may not necessarily

coincide with a ring edge. If the find message does not cross the

bridge, then the new parent is just the node that forwarded or sent

the find message. If it does, then the new parent is the producer of

the find message. So, the new bridge now connects the node that

received the find message and the producer of that find message. A

nodev needs to maintain whether the edge (v,p(v)) is a bridge and
include this information when it sends a find message. We omit

this from the pseudocode for simplicity.

Algorithm 2 NewParent function for rings with even number of

nodes n and edges of unit weight. Let the nodes be v1,v2, . . .vn
starting from a node v1 in clockwise direction. Initially, we have

p(vi) = vi+1 for 1 ≤ i < n
2
, p(vi) = vi−1 for

n
2
< i ≤ n and

p(vn/2) = vn/2. We initialize n(vi) = ⊥ for 1 ≤ i ≤ n. Initially, the
“bridge" is the edge (vn/2+1,vn/2).

1: procedure NewParent(v , u)
▷ Called whenw receives “find by v" message from u

2: if (u,w) is the “bridge" then
3: new “bridge" is (w,v).
4: return v
5: else
6: return u
7: end if
8: end procedure

We analyze the algorithm on a sequence of nodes σ that request

the token, by comparing against an optimal algorithm that can

freely access an oracle to ask the current position of the token. Thus,

the cost OPT (σ) of the optimal algorithm is at least the sum of the

shortest paths between the consecutive requests. If ARVY (σ) is the
cost of the Arvy protocol with theNewParent function above, then

we define competitive ratio r such that ARVY (σ) ≤ rOPT (σ)+ c for
every request sequence σ and a constant c . Obviously, lower com-

petitive ratio implies the performance is close to the optimal case

when each request takes the shortest path to the current location

of the object. Observe that on a sequence of requests, Algorithm 2

ensures that there is a black edge between every pair (vi ,vi+1) of
nodes for i , n/2. The bridge, which is the black edge between a

node inA = {vi | 1 ≤ i ≤ n
2
} and a node in B = {vj |

n
2
+1 ≤ j ≤ n},

changes whenever a find request crosses the bridge. However, out

of the two ends of the bridge, one end is always in set A and the

other is always in set B. If the set A contains the token, then we

often refer to A as the side of the token and B as the other side of the
token. Similarly, we define these terms when B contains the token,

and A does not. We use uv or vu to denote the shortest distance

between the nodes u and v . The length of the bridge between the

nodes u and v is uv .

Theorem 6. The Arvy protocol along with the bridge heuristic has
a competitive ratio of 5 on rings of unit weight edges.

Proof. We prove the claim by managing coins. We assume that

each request gives us 5t coins, where t is the optimal cost of the

request, and use these coins to pay the cost of the Arvy protocol.

Initially, the bridge vn/2+1vn/2 has length 1, the token is at vn/2
and we keep 2 coins on the bridge. After every request, we maintain

the following coin invariant: the bridge has 2l coins if its length is

l , and each (unit) edge on the path from the token position to the

end of the bridge on the token side has 4 coins. Let r be the current
position of the token. Let f be the end of the bridge on the token

side.

First, consider that the next request is at a node r ′ on the token

side. So, the cost of Arvy is rr ′, which is also the optimal cost. Thus,

we get 5 · rr ′ coins, out of which we use rr ′ to pay for Arvy and put
4 · rr ′ coins on the path from r to r ′, 4 coins on each edge. As we

had 4 coins on each edge from f to r from the invariant, we have 4

coins on each edge from f to r ′, which is the new token position.

Also, neither the bridge, nor the coins on it changed. So, the coin
invariant holds.

Second, consider that the next request is at a node r ′ on the

other side of the token. Let f ′ be the end of the bridge on the other

side of the token. Thus, the bridge f ′ f is replaced by r ′ f as the

request originated at r ′. The Arvy cost is r ′ f ′ + f ′ f + f r as the
current token position is r and the bridge of length f ′ f has to be

crossed. Additionally, we need 2 · r ′ f coins to keep on the new

bridge. The optimal cost is rr ′ and thus, we get 5 · rr ′ coins. Using
the invariant, we have 4 · r f coins on the path from r to f and

2 · f ′ f coins on the bridge, making a total of 5 · rr ′ + 4 · r f + 2 · f ′ f
available coins. As rr ′ + r f ≥ r ′ f using triangle inequality, we

have 5 ·rr ′+4 ·r f ≥ 3 · (rr ′+r f)+r f ≥ 3 ·r ′ f +r f . Therefore, we
have 3 · r ′ f + r f + 2 · f ′ f available coins. Then, we use 2 · r ′ f coins

to keep on the new bridge. As r ′ is also the end of the new bridge

on the token side, the coin invariant holds. To pay for the Arvy

cost, which is r ′ f ′ + f ′ f + f r , we have r ′ f + r f + 2 · f ′ f coins left.

We use r f + f ′ f coins to pay for that part of the Arvy cost. Now,

we only need to pay r ′ f ′ towards the Arvy cost using r ′ f + f ′ f
coins. Using triangle inequality, we have r ′ f + f ′ f ≥ r ′ f ′ and we

can also pay r ′ f ′ towards the Arvy cost. □

The above result can be easily extended to weighted rings. We

initialize the parent pointers as follows. We start with a set of n − 1
edges of the ring. These edges form a tree. We choose a tree edge

as the bridge so that the total weight of the tree edges on either

side of the bridge is less thanW /2, whereW is the total weight of

all the edges that form the ring. The proof of the previous theorem

still holds if the number of coins used on an edge are increased

proportionally to its weight. So, we can also state the following

result.

Theorem 7. The Arvy protocol along with the bridge heuristic has
a competitive ratio of 5 on rings.

But, what about the competitive ratio of Arrow or Ivy on rings?

In the framework of Algorithm 1, the Arvy protocol reduces to the

Arrow protocol if the new parent returned in Line 7 is always u and

to Ivy if the new parent returned is always v . It is not hard to see

that Arrow’s competitive ratio is Ω(n) on rings. It is known that

any spanning tree on a ring has a pair of points with stretch Ω(n)
[12], where stretch is the ratio of the distance between the points

on the spanning tree and the shortest distance between the points

on the ring. A request sequence that alternates across such a pair

of points results in a competitive ratio of Ω(n), since the spanning
tree remains fixed during the operation of Arrow protocol.

We can also show an Ω(n) lower bound for Ivy on rings. Consider
that the ring contains unit weight edges and n nodes v1,v2, . . . ,vn .
The initial spanning tree consists of the directed edges vi → vi+1
for 1 ≤ i ≤ n − 1 and a self-loop at vn , which is the root and holds

the token. Consider the sequence σ of requestsv1,v2,v3, . . . ,vn . A
request vi moves the token to vi so every request in the sequence

takes unit cost optimally. Thus, the optimal cost OPT (σ) = n. For
ivy, the tree is a star rooted atv1 after the requestv1. Every request
after v2 kills a spoke of the star and the tree returns to the initial

tree at the end of the sequence. The first request by v1 traverses
round the ring from the node vn and incurs a cost of n. Afterwards,
every edge (v1,vi) for 2 ≤ i < n is traversed twice and the edge

(v1,vn) is traversed once. Thus, Ivy’s cost

IVY (σ) = n + 2 · Σn−1i=2 d(v1vi) − 1

= Θ(n2).

As OPT (σ) = n, the competitive ratio of Ivy on rings is Ω(n) and
we can state the following result.

Lemma 8. The competitive ratio of the Arrow or Ivy protocol is Ω(n)
on rings of size n.

7 DISCUSSION
In this paper, we propose the Arvy distributed directory protocol,

which is a generalization of both classic directory protocols: Arrow

and Ivy. We show that Arvy is correct, i.e., each request finds the

shared token in an asynchronous and reliable network where the

requests to the token can be issued concurrently. We remark that

in the original Arrow or Ivy protocols, the parent pointers except

the self-loops, must coincide with an edge of the original network.

The Arvy generalization gets rid of this assumption, which implies,

for instance, that Ivy would also work correctly on networks that

are not complete.

We show that Arvy has a constant competitive ratio on a ring of

n nodes, where Arrow or Ivy have Ω(n) competitive ratio. Thus, the

protocol not only preserves the simplicity of Arrow or Ivy protocols

but is also more efficient. Arvy also has low space overhead per

node, an uncommon feature of state of the art protocols. It would

be interesting to analyze the competitive ratio of the protocol for

other networks. In general, we think that the protocol is not only

practical but also opens up very interesting theoretical questions

for future research.

ACKNOWLEDGMENTS
We would like to thank Sebastian Brandt, Klaus-Tycho Foerster,

Darya Melnyk, Thatchaphol Saranurak and Yuyi Wang for the

discussions about this problem.

REFERENCES
[1] Baruch Awerbuch and David Peleg. 1990. Sparse Partitions. In 31st Annual

Symposium on Foundations of Computer Science (FOCS), St. Louis, MO, USA .

[2] Baruch Awerbuch and David Peleg. 1995. Online tracking of mobile users. Journal
of the ACM (JACM) (1995).

[3] A. Bouabdallah and M. Trehel. 1988. A Characterization of the Dynamical

Ascending Routing. InWorkshop on the Future Trends of Distributed Computing
Systems in the 1990s, Hong Kong.

[4] Costas Busch, Ryan LaFortune, and Srikanta Tirthapura. 2007. Improved Sparse

Covers for Graphs Excluding a Fixed Minor. In 26th Annual ACM Symposium on
Principles of Distributed Computing (PODC), Portland, Oregon, USA.

[5] Michael J. Demmer and Maurice Herlihy. 1998. The Arrow Distributed Direc-

tory Protocol. In 12th International Symposium on Distributed Computing (DISC),
Andros, Greece.

[6] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. 2003. A Tight Bound on Ap-

proximating Arbitrary Metrics by Tree Metrics. In 35th Annual ACM Symposium
on Theory of Computing (STOC), San Diego, CA, USA.

[7] Abdolhamid Ghodselahi and Fabian Kuhn. 2017. Dynamic Analysis of the Ar-

row Distributed Directory Protocol in General Networks. In 31st International
Symposium on Distributed Computing (DISC), Vienna, Austria.

[8] David Ginat, Daniel D. Sleator, and Robert E. Tarjan. 1989. A Tight Amortized

Bound for Path Reversal. Information Processing Letters (1989).
[9] Maurice Herlihy and Ye Sun. 2005. Distributed Transactional Memory for Metric-

Space Networks. In 19th International Conference on Distributed Computing (DISC),
Cracow, Poland.

[10] Fabian Kuhn and Roger Wattenhofer. 2004. Dynamic Analysis of the Arrow

Distributed Protocol. In 16th Annual ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Barcelona, Spain.

[11] Kai Li and Paul Hudak. 1986. Memory Coherence in Shared Virtual Memory

Systems. In 5th Annual ACM Symposium on Principles of Distributed Computing
(PODC), Calgary, Alberta, Canada.

[12] Y. Rabinovich and R. Raz. 1998. Lower Bounds on the Distortion of Embedding

Finite Metric Spaces in Graphs. Discrete and Computational Geometry (1998).

[13] Kerry Raymond. 1989. A Tree-Based Algorithm for Distributed Mutual Exclusion.

ACM Transactions on Computer Systems (TOCS) (1989).
[14] Gokarna Sharma, Costas Busch, and Srivathsan Srinivasagopalan. 2012. Dis-

tributed Transactional Memory for General Networks. In 26th International Par-
allel and Distributed Processing Symposium (IPDPS), Shanghai, China.

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 The Arvy Protocol
	5 Correctness Analysis
	6 NewParent for Rings
	7 Discussion
	Acknowledgments
	References

