
DISS. ETH NO. 16213

The Price of Locality:

Exploring the Complexity of
Distributed Coordination Primitives

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Sciences

presented by

FABIAN KUHN

Dipl. Inf.-Ing., ETH Zürich

born 30.07.1976

citizen of

Waltenschwil AG

accepted on the recommendation of

Prof. Dr. Roger Wattenhofer, examiner

Prof. Dr. Nathan Linial, co-examiner

Prof. Dr. Friedhelm Meyer auf der Heide, co-examiner

2005

Abstract

In a distributed computation, many autonomous processors intend to jointly
come up with a solution for a given problem. It is usually assumed that the
processors are located at different sites and are connected to each other by a
network. Coordination between different processors (also called network nodes)
is done by exchanging messages. If the input for a given problem is distributed
among the nodes of the network, nodes need to communicate in order to learn
about each other’s input.

In k units of time, it is only possible to send information to nodes at distance
at most k in the network. If the diameter of a given network is large, no node
can learn about the whole network. In a few time units, a node can only gather
data from nearby nodes. Thus, all nodes have to base their computations on
partial information. Nevertheless, all network nodes together have to reach a
common solution for the problem at hand. Achieving a global goal based on
local information is therefore one of the most fundamental problems in the area
of distributed computing.

This thesis considers the complexity of different important distributed co-
ordination tasks. In particular, three major problems are discussed. First, we
establish nearly tight upper and lower bounds on the possible trade-offs between
running time and quality of the solution for a class of problems called covering
and packing problems. Prominent network-related members of this problem
class are for example minimum dominating set and maximum matching. Sec-
ond, we consider protocols for coloring the nodes of the network. We analyze
the potential of the simplest coloring algorithms where each node decides on
a color based on the colors or identifiers of its direct neighbors only. Third,
we study the distributed complexity of problems on a special kind of network
topologies occurring in the context of wireless networks such as ad hoc or sensor
networks.

Zusammenfassung

Bei einer verteilten Berechnung beabsichtigen mehrere autonome Prozessoren,
gemeinsam ein Problem zu lösen. Normalerweise wird angenommen, dass sich
die Prozessoren an verschiedenen Orten befinden und untereinander durch ein
Netzwerk verbunden sind. Die Koordination zwischen verschiedenen Prozesso-
ren, in diesem Fall auch Netzwerkknoten genannt, geschieht durch das Aus-
tauschen von Nachrichten. Falls die Eingabe fuer ein gegebenes Problem auf
verschiedene Knoten verteilt ist, müssen die Knoten miteinander kommunizie-
ren, um andere Teile der Eingabe zu erfahren.

In k Zeiteinheiten können Informationen nur zu Knoten gesendet werden,
welche über höchstens k − 1 zusätzliche Knoten erreicht werden können. Falls
der Durchmesser eines Netzwerks gross ist, kann kein Knoten das ganze Netz-
werk kennenlernen. In ein paar Zeiteinheiten kann ein Knoten nur Daten von
naheliegenden Knoten einsammeln. Trotzdem müssen alle Knoten zusammen
eine gemeinsame Lösung für das gegebene Problem finden. Basierend auf loka-
ler Information ein gemeinsames, globales Ziel zu erreichen ist deshalb eines der
wichtigsten Probleme im Bereich der verteilten Algorithmen.

Diese Dissertation analysiert die Komplexität von verschiedenen wichtigen,
verteilten Koordinationsaufgaben. Es werden drei grosse Probleme diskutiert.
Als erstes betrachten wir sogenannte “Covering”- und “Packing”-Probleme.
Wichtige Netzwerk-relevante Probleme dieser Klasse sind zum Beispiel “Mini-
mum Dominating Set” und “Maximum Matching”. Es werden fast übereinstim-
mende untere und obere Schranken für die Beziehung zwischen Laufzeit und
Qualität der Lösung hergeleitet. Als zweites betrachten wir Protokolle, um die
Knoten des Netzwerks zu färben. Wir analysieren einfachstmögliche Färbungs-
algorithmen, bei denen jeder Knoten seine Farbe nur aufgrund der Farben oder
Bezeichner (Namen) seiner direkten Nachbarn wählt. Als drittes studieren wir
die verteilte Komplexität von Problemen auf speziellen Netzwerktopologien,
welche im Zusammenhang mit drahtlosen Netzwerken wie Ad Hoc- oder Sen-
sornetzwerken vorkommen.

Acknowledgements

This thesis would not have been possible without the help and support of
many people to whom I would like to express my gratitude. First of all, I would
like to thank my advisor Roger Wattenhofer for the enourmous effort he put
into me, allowing me to be his second Ph.D. student. We had many inspiring
research discussions resulting in a great number of ideas which form the basis
of this thesis. I count myself extremely lucky that we met in the cafeteria on
that Wednesday noon in fall 2001.

I would also like to acknowledge the work of my co-examiners Nati Linial
and Friedhelm Meyer auf der Heide. It was a great honor that you agreed to
join my thesis committee and I certainly enjoyed your very positive comments.

I am grateful to all professional collegues who enriched my life during the
last three and a half years. Particular thanks of course go to the members of the
Distributed Computing Group. I would like to thank Aaron for being an excep-
tionally pleasant and patient office mate during the whole time, for successfully
working together on a number of different topics, and for always offering his
time to proofread most of my English texts—including this thesis—; Keno for
being a good companion during many night shifts and for being a great sour-
ce for all the software I needed; Regina for sharing the interest in any kind of
abstract mathematical theory, for her great sarcastic kind of humor, and al-
so for proofreading many of my English manuscripts—including this thesis as
well—; Thomas for being a partner for extremely productive scientific work and
especially for significantly contributing to and co-authoring many of my most
important publications; Pascal for his good sense of humor and for letting me
co-author the MMSC paper—I think I made a real contribution to that paper
in the meanwhile—; Nicolas for strengthening the Basle fraction of our group,
for bringing along “Ueli” beer several times—don’t leave Basle without having
tried it—, and for being a great company on many train trips between Basle
and Zurich; Stefan for agreeing to look at the dynamic peer-to-peer problem, I
wanted to study almost from the beginning of my thesis and for bringing a lot
of real power into our tablesoccer game; Andi for helping with many hardware
and software problems—especially if I did not read all the TIK emails carefully
enough—; the new group members Roland, my brother Michael, and Yves. A
special thank goes to Tim Nieberg for the extremely interesting and productive
scientific work during his two visits. Of course, I am also grateful to all the
students I had the pleasure to advise in their theses. I would like to thank my
Master and Diploma students Philipp Boksberger, Thomas Moscibroda, Tho-
mas Rusterholz, Stefan Schmid, and Joest Smit and my “semester students”
Andreas Westhoff, Yan Zhang, Thomas Rusterholz, Raphael Boog, and Josi-
as Thoeny. It is fantastic that two of them—Thomas Moscibroda and Stefan
Schmid—joined the Distributed Computing Group as Ph.D. students after their
theses.

Last but definitely not least, I would like to express my greatest gratitude
to my family. This work would not have been possible without my parents
Anne-Marie and Herbert. During all the years, you always stood behind me and
supported me wherever possible. I am also deeply indebted to my wife Fränzi for
her love and encouragement. In busy times—during a Ph.D. thesis, this is almost
always the case—, you were an enormous help by taking over many everyday
duties. You also know how to put me under pressure when necessary. Without
you, this thesis might not be completed by now. Finally, I am grateful to my
brother Michael who keeps our family in the Distributed Computing Group
and to Fränzi’s sons Luc—our system administrator at home—and David who
always supported me and who tolerated the sometimes peculiar working hours
of a Ph.D. student.

Contents

1 Locality in Distributed Computations 11
1.1 Achieving a Global Goal Based on Local Information 11

1.1.1 Clustering in Ad Hoc and Sensor Networks 13
1.1.2 More Distributed Optimization Problems 13
1.1.3 Network Labelings . 14

1.2 Computational Model . 15
1.3 The LOCAL Model . 17

1.3.1 Maximal Independent Sets and Colorings 18
1.3.2 Network Decomposition 19
1.3.3 Problem-Specific Distributed Algorithms 21

1.4 The CONGEST Model . 22
1.5 Definitions and Preliminaries . 23

2 Covering and Packing Problems 27
2.1 Distributed Covering and Packing Problems 28

2.1.1 The Minimum Dominating Set Problem 28
2.1.2 Breaking Symmetries by LP Relaxation 28
2.1.3 Problem Definition . 30
2.1.4 Related Work . 32

2.2 Distributed Greedy Dominating Set Algorithm 33
2.2.1 The Greedy Algorithm . 33
2.2.2 Basic Algorithm: Nodes Know Maximum Degree 34
2.2.3 Improved Algorithm: No Global Knowledge 39

2.3 Approximating Fractional Covering and Packing 43
2.3.1 Greedy Fractional Dominating Set Algorithm 43
2.3.2 The Distributed Algorithm 45
2.3.3 Analysis . 50

2.4 Fast Algorithm Based on Network Decomposition 59
2.5 Randomized Rounding . 62
2.6 Connected Dominating Sets . 64

2.6.1 Upper Bound . 65
2.6.2 Lower Bound . 67

2.7 Randomization . 69
2.7.1 Distributed ‘Derandomization’ 69
2.7.2 Deterministic Symmetry Breaking 70

3 Lower Bounds for Distributed Problems 73
3.1 Two-Round Dominating Set Lower Bound 74
3.2 Lower Bound for Minimum Vertex Cover 76

3.2.1 The Cluster Tree . 77
3.2.2 The Lower Bound Graph 78
3.2.3 Equality of Views . 81
3.2.4 Analysis . 88

3.3 Extending the Lower Bound to Other Problems 92
3.3.1 Minimum Dominating Set 92
3.3.2 Maximum Matching . 93
3.3.3 Maximal Independent Sets and Matchings 96

4 Distributed Graph Coloring 99
4.1 The Minimum Graph Coloring Problem 99
4.2 The Distributed Graph Coloring Problem 100
4.3 The Neighborhood Graph . 101

4.3.1 Properties of the Neighborhood Graph 103
4.4 Deterministic One-Round Algorithms 103

4.4.1 Independent Sets of the Neighborhood Graph 104
4.4.2 Lower Bound for One-Round Algorithms 108
4.4.3 Lower Bound for Iterative One-Round Color Reduction . 113

4.5 Randomized Distributed Coloring 114
4.6 Time Division Multiple Access in Two Rounds 116

5 On The Locality of Bounded Growth 119
5.1 Introduction . 119

5.1.1 Unit Disk Graphs . 119
5.2 Growth-Bounded Graphs . 120

5.2.1 Graph Classes Having Bounded Growth 121
5.2.2 Properties of Growth-Bounded Graphs 123

5.3 Fast Deterministic MIS Construction 125
5.3.1 Constructing a Sparse Independent Set 125
5.3.2 Making the Independent Set Dense 130
5.3.3 Computing the MIS . 132

5.4 Algorithms Based on Coordinates or Distances 133
5.4.1 Global Coordinates . 134
5.4.2 Fractional Covering and Packing Problems 135
5.4.3 Network Decomposition 140

5.5 Local Approximation Schemes . 145
5.5.1 A PTAS for Polynomially Growth-Bounded Graphs . . . 146
5.5.2 Distributed Approximation Schemes 148

6 Conclusions and Outlook 151

Chapter 1

Locality in Distributed
Computations

1.1 Achieving a Global Goal Based on
Local Information

Many of the most fascinating and fundamental systems in the world are large
and complex networks, such as the human society, the Internet, or the brain.
Such systems have in common that their entirety is composed of a multiplicity
of individual entities : human beings in society, hosts in the Internet, or neurons
in the brain. As diverse as these systems may be, they share the key charac-
teristic that the capability of direct communication of each individual entity is
restricted to a small subset of neighboring entities. Most human communica-
tion, for instance, is between acquaintances or within the family, and neurons
are directly linked with only a relatively small number of other neurons for
neuro-transmission. On the other hand, in spite of each node being restricted
to local communication, the entirety of the system is supposed to come up with
some kind of global solution, or achieve a global equilibrium.

Achieving a global goal based on local information is challenging. Many of
the systems which are the focus of computer science fall exactly into the above
mentioned category of networks. In the Internet, large-scale peer-to-peer sys-
tems, or mobile ad hoc and sensor networks, no node in the network is capable
of keeping global information on the network. Instead, these nodes have to
perform their intended (global) task based on local information only. In other
words, all computation in these systems is local computation! It therefore seems
natural to systematically study the possibilities and limitations of local compu-
tations. What kind of global tasks can be performed by individual entities that
have to base their decisions on local information, or how much local information
is required in order to come up with a globally optimal solution? Clearly, there
are problems—such as computing a spanning tree of a network—which cannot

11

12 CHAPTER 1. LOCALITY IN DISTRIBUTED COMPUTATIONS

Figure 1.1: Using a dominating set to construct a routing backbone for a given
graph G: The black nodes form a dominating set of G (dashed circles illustrate
possible assignments of nodes to dominators). The nodes of the dominating set
are extended to a connected sub-graph of G using the gray bridge nodes. Black
and gray nodes together form a connected dominating set which can be used as
routing backbone on G.

be computed locally. It is not even possible to find out locally whether a given
set of edges forms a spanning tree of the network graph. However, for many
tasks—such as coloring a graph with a given number of colors t—, it is at least
possible to check feasibility by only looking at neighboring nodes. Does local
information also suffice to assign colors to nodes such that a proper t-coloring
of the network graph is obtained? For a given problem, we need to be able to
locally check the quality or feasibility of a solution in order to locally compute
such a solution. We will see that there is a plethora of important problems
which have such a locality condition. Finding out whether it is possible to lo-
cally solve a given locally checkable network problem is the main objective of
this work. To get some intuition of the nature of the problems considered in this
thesis, we look at a few examples arising in the context of large and complex
computer networks in the following.

1.1. ACHIEVING A GLOBAL GOAL BASED ON LOCAL INFORMATION13

1.1.1 Clustering in Ad Hoc and Sensor Networks

The first example is the problem of clustering a wireless ad hoc or sensor net-
work. Ad hoc and sensor networks consist of wireless devices which commu-
nicate via radio without stationary server infrastructure. In sensor networks,
small sensor nodes are deployed in some geographic area to measure and collect
information of some kind about the respective area. When sending a mes-
sage from one ad hoc or sensor node to another, intermediate nodes have to
serve as routers. Due to the scarcity of energy and the mobility of nodes in
ad hoc networks, traditional routing protocols as applied in wired networks
fail. In fact, although a number of interesting suggestions have been made
(e.g. [23, 70, 84, 114, 120]), finding efficient algorithms for the routing process
remains the most urgent problem in the area of ad hoc and sensor networks.

Grouping nodes into clusters [15, 19, 27, 54, 90] is one effective way to save
energy [63] and to improve the performance of routing algorithms in general
and of the flooding phase comprised by most protocols in particular [29, 77, 82,
122, 125]. The routing is then done between clusters. Clusters typically consist
of a cluster-head and a number of adjacent nodes. Naturally, we would like
to minimize the number of clusters under the condition that every node of the
network belongs to a cluster. Thus, we want to find a smallest possible set of
cluster-heads such that every non-cluster-head has a cluster-head in its neigh-
borhood, a problem formally known as the minimum dominating set problem
[3, 26, 51, 78, 79, 128, 133]. To enable routing between clusters, cluster-heads
usually connect to each other by selecting additional bridge nodes (see Figure
1.1). Alternatively, we can choose cluster-heads such that the topology induced
by them is connected. The routing backbone which is obtained in both cases is
a structure which is formally known as a connected dominating set. How close
can we get to an optimal clustering if nodes are only allowed to communicate
(directly or indirectly) with nodes up to distance k? Or, what we will see to
be equivalent: what is the optimal trade-off between the quality of the solution
and the running time of an algorithm?

1.1.2 More Distributed Optimization Problems

The second closely related example originates from the area of wireless sensor
networks. Each node of such a network has a particular region which it can sense
for the desired information. Usually, those sensing regions overlap, prolonging
the lifetime and improving the reliability of the network. However, we can only
get the network to live longer if redundant nodes can be turned off most of
the time. It is therefore desirable to find a small subset of all sensors which
cover the whole area [48] or, even better, to find subsets of sensors such that
the lifetime of the network is maximized [103].

More generally, we could think of the following abstract scenario. Assume
that in a large network such as the Internet or a wireless network we have a set
S of nodes which are able to provide a particular service to the network. Each

14 CHAPTER 1. LOCALITY IN DISTRIBUTED COMPUTATIONS

node of S might be able to provide the given service to at most γ nodes in the
network which are at distance at most r. We have to choose a subset S′ of S
and an assignment of nodes from S′ to network nodes such that all nodes of the
network are served by at least t nodes. Thereby, the goal is to minimize the size
of S′, the maximum number of nodes of S′ in the r-neighborhood of a network
node, or to optimize any other reasonable quality measure. Given such a global
optimization problem with local feasibility conditions, how good can a solution
be which is obtained by a local, distributed algorithm?

1.1.3 Network Labelings

The last examples consider a different type of problem. For all the problems
described so far, finding a feasible solution is easy but it is challenging to lo-
cally find a solution which is a good approximation of an optimal solution. For
many important problems, it is already hard to obtain feasible solutions. In a
class of problems which we call labeling problems, we want to label nodes with
a given number of labels such that a set of local constraints is satisfied [105].
Computing a maximal independent set (MIS), that is, finding a dominating set
of non-adjacent nodes of the network is the most prominent example of this
kind. While sequentially, an MIS can be found by a simple greedy algorithm
(add independent nodes as long as possible), efficiently constructing an MIS by
a distributed algorithm turns out to be a non-trivial task. In fact, distributed
MIS computation can be seen as a Drosophila of distributed computing as it
prototypically models symmetry breaking [72], the problem of assigning differ-
ent roles to nodes which have symmetrical views of the network [9, 33, 91, 96].
Besides being theoretically interesting, due to the special topologies of ad hoc
and sensor networks, maximal independent sets are good clusterings of such
networks [3, 26, 98, 128]. Especially if the clustering is used as a basis for
a TDMA or FDMA scheme1, it is beneficial if cluster-heads are non-adjacent
[18, 19, 99, 102]. When constructing a TDMA or FDMA scheme, the ultimate
goal is to find a coloring of the network. Similar to the MIS problem, graph
coloring has been used as a prototypical model for symmetry breaking. The
distributed complexity of graph coloring is therefore also considered fundamen-
tal for the general understanding of distributed systems, a fact which resulted
in a multiplicity of papers considering coloring in different distributed models
[9, 33, 55, 91, 100].

1TDMA stands for time division multiple access whereas FDMA stands for frequency di-
vision multiple access. They both are means to share a common communication medium
between different network devices. In an FDMA scheme, every network node gets assigned
a frequency such that nodes which interfere when sending simultaneously have different fre-
quencies. In a TDMA scheme, time is divided into slots such that possibly interfering nodes
use different time slots.

1.2. COMPUTATIONAL MODEL 15

1.2 Computational Model

Throughout this thesis, we use the standard message passing model. The
network is modeled as an undirected and in most cases unweighted graph
G = (V, E). Two nodes u, v ∈ V of the network are connected by an edge
(u, v) ∈ E whenever there is a direct bidirectional communication channel con-
necting u and v. We usually assume that each node u has a unique identifier
ID(u) of size O(log n) where n := |V | is the number of nodes of G.

For simplicity, we assume communication to be synchronous throughout the
thesis. Typically, in synchronous systems all nodes wake up (or start an algo-
rithm) simultaneously. Time is divided into rounds. In each round, every node
can send a message to each of its neighbors and perform some local computa-
tion based on the information contained in the messages of the previous rounds.
The time complexity of a synchronous distributed algorithm is the number of
rounds until all nodes terminate. The message complexity of a distributed algo-
rithm is defined as the total number of messages sent by the algorithm. Since in
distributed systems the running time of an algorithm is mainly determined by
the time needed for the communication, we make no restrictions on local com-
putations. In principle, in each round our model allows each node to compute
an arbitrary (computable) function. However in all proposed algorithms, unless
explicitly stated, all local computations are reasonably small. Note that the
synchronous wake-up condition is merely a simplification and does not restrict
the computational power of the model. If we drop this condition but assume
that receiving a message wakes up a node, we obtain a model which is equivalent
up to constant factors. In this case, time complexity must be defined as the
maximal time from a node’s wake-up until its termination. Further, instead of
dividing time into rounds, it is equivalent to assume that the time for sending
a message over an edge of G is bounded by some globally known constant T .
After waiting long enough (T), a node u can be sure that all messages of the
current round are received, that is, u can proceed to the next round.

Working with the above described synchronous communication model, two
fundamental obstacles arise in the design of distributed algorithms, namely, lo-
cality and congestion. Similar to [112], we distinguish two prototypical models,
LOCAL and CONGEST , depending on how much information can be sent in
each message. The two models allow us to understand the adverse effects of
locality and congestion on time and message complexities of distributed algo-
rithms.

The LOCAL model provides a tool to analyze the effects of locality on
distributed computations. It abstracts away all other restricting factors. In
particular, congestion has no influence on time or message complexity. In the
LOCAL model (e.g. [91, 105, 112]), knowing one’s k-neighborhood and per-
forming k communication rounds are equivalent. It is assumed that in every
communication round each node in the network can send an arbitrarily long
message to each of its neighbors. Because messages are unbounded, in k com-
munication rounds a node v may collect the IDs and interconnections of all

16 CHAPTER 1. LOCALITY IN DISTRIBUTED COMPUTATIONS

nodes up to distance k from v. Hence, each node has a partial (local) view of
the graph; it knows its entire vicinity up to distance k. Let Tv,k be the topology
seen by v after k rounds. Tv,k is the graph induced by the k-neighborhood of
v without all edges between nodes at distance exactly k. The labeling (i.e.,
the assignment of IDs) of Tv,k is denoted by L(Tv,k). The view of a node v is
the pair, Vv,k := (Tv,k,L(Tv,k)). The best a local algorithm can do in time
k is to have every node v collect its k-neighborhood and base its decision on
Vv,k. Since the LOCAL model focuses entirely on the localized aspects of dis-
tributed computations and abstracts away all other aspects arising in the design
of distributed algorithms, it is the most fundamental model when studying the
phenomenon of locality, particularly for lower bounds.

The goal of the CONGEST model is to understand the limiting effect of
the amount of necessary communication on the time and message complexities
of distributed algorithms. In practice, the amount of information exchanged
between two neighbors in one communication step is limited. The CONGEST
model [50, 112] takes into account the volume of communication. This model
limits the information that can be sent in one message to O(log n) bits. Apart
from constraining the maximal message size, the CONGEST model is equal
to the LOCAL model. Given this additional restriction, even problems on the
complete network graph, which could be solved optimally in a single communi-
cation round in the LOCAL model, become nontrivial [95].

In the described LOCAL and CONGEST models, we assume that in each
round every node can send a distinct message to each of its neighbors. In
practice, this is not always realistic. Particularly in wireless networks, a com-
mon model assumes that nodes sending a message actually broadcast the mes-
sage to all immediate neighbors. We therefore define models LOCALBC and
CONGEST BC which differ from the LOCAL and CONGEST models only in
the way that in each round every node has to send the same message to all its
neighbors. It is not hard to see that only allowing to locally broadcast a message
is no restriction in the case of the LOCAL model, that is, the computational
powers of LOCAL and LOCALBC are the same. In fact, instead of sending
distinct messages to all its neighbors, a node can pack all the messages into
one large message which is then broadcasted to the neighbors. It would even
be conceivable to further restrict the communication in each round for example
by only allowing each node to send a message to exactly one of its neighbors.
However, in the context of this thesis we stick to the described models.

To end this section, we would like to shortly discuss two other fundamen-
tal issues which are not part of the described models, namely asynchrony and
randomization. We have deliberately abstracted away all problems arising in
asynchronous systems in our communication models. Besides simplicity the
major reason is that we mainly focus on time complexity rather than message
complexity throughout the thesis. The common definition of asynchronous com-
munication assumes that each sent message arrives after a finite but completely
unpredictable time. The time complexity of an algorithm is the time of a worst-
case execution where for the analysis a maximum message delay of 1 time unit

1.3. THE LOCAL MODEL 17

is assumed. If the number of sent messages is no issue, there is a simple method
to locally synchronize an asynchronous system. In every ‘round’, every node
sends a message to all its neighbors, no matter whether all those messages are
needed in the synchronous protocol. As soon as a node u has received the
messages of a given round from all of its neighbors, u can proceed to the next
round. In Awerbuch’s seminal work on network synchronization [5], the de-
scribed method is called an α-synchronizer. In [5, 10], it is described how, at
the cost of a poly-logarithmic factor in time complexity, also the message cost
of network synchronization can be kept within a poly-logarithmic factor of the
message complexity of the synchronous algorithm.

Understanding the role of randomization in distributed message passing sys-
tems is extremely fundamental. The most important usage of randomization
in distributed algorithms arises in the context of symmetry breaking. On the
one hand, breaking symmetries using randomized solutions is often possible
with small overhead [2, 68, 93, 96]. On the other hand, deterministic symme-
try breaking is notoriously hard and the obtained solutions are far less efficient
and considerably more complicated [9, 60, 61, 108]. Even though we have not
specified the allowed amount of randomization in our models, randomization is
an important issue of this work. Throughout the thesis, we explicitly quantify
and analyze the effects of randomization in many interesting cases.

In the following two sections, we summarize fundamental work for the de-
scribed communication models. Therein we will have a closer look at the main
difficulties arising in the design of distributed algorithms in the LOCAL and
CONGEST models, respectively.

1.3 The LOCAL Model:
The Power of Knowing the k-Neighborhood

The LOCAL model in the given form (synchronous model with unbounded
messages and local computations) has been introduced by Linial in the first
paper which is devoted to the fundamentals of local computations [91]. In 2005,
many of the results of [91] are still state-of-the-art almost twenty years after their
first publication in 1987. The essential question concerning the LOCAL model
has been raised by Naor and Stockmeyer in the title of their paper ‘What Can
Be Computed Locally?’ [105]. In [105], it is shown that for certain graphs, there
are locally checkable labelings which can be computed in a constant number of
rounds. When developing algorithms for the LOCAL model, we face two main
problems.

1. Locality of the distributed problem: How good can a global solution be
which is composed of optimal local solutions?

2. Symmetry breaking: How can all nodes decide on a common decomposition
into local problems such that different local solutions do not interfere?

18 CHAPTER 1. LOCALITY IN DISTRIBUTED COMPUTATIONS

Most of the problems which were introduced in Section 1.1 can be decomposed
into local problems such that the combined global solution is reasonably close
to an optimal solution. Two exemplary problems which cannot be solved locally
are the minimum spanning tree (MST) problem and the minimum capacitated
vertex cover problem [57, 112]. In a capacitated vertex cover, each edge is
assigned to one of its two nodes such that no node gets assigned more edges
than a given value called the node’s capacity. For both problems, the ring
network is a bad example. An MST of a ring consists of all edges of the ring
but the largest one. If we want to compute a capacitated vertex cover with
all node capacities set to 1, all nodes of a ring have to decide on a common
direction in order to be able to cover all edges. However, finding the largest
edge of a ring or finding a common direction is not possible without seeing the
whole ring. Similarly, one can also show that a ring with an even number of
nodes cannot be 2-colored without seeing the whole ring [91].

1.3.1 Maximal Independent Sets and Colorings:
Modeling Symmetry Breaking in Distributed Systems

While decomposability into local problems is rather problem-specific, symme-
try breaking can to some extent be considered independently of a particular
problem. Two problems which have a special role in the context of symme-
try breaking are the construction of a maximal independent set (MIS) and the
computation of a (∆ + 1)-coloring. An independent set is a set of pairwise
non-adjacent nodes of a graph. An MIS is an independent set S such that
for every node u which is not in the MIS, there is an adjacent node v ∈ S.
A (∆ + 1)-coloring is an assignment of colors 1, . . . , ∆ + 1 to the nodes of a
graph such that no two neighbors have the same color. Both structures can
be computed by simple sequential algorithms. In the distributed setting, both
problems prototypically model the main difficulties arising when symmetries
have to be broken. We therefore start our discussion of previous work in the
LOCAL model with these two problems.

The best distributed MIS algorithm is a simple randomized algorithm with
expected time complexity O(log n) [2, 96]. In [2, 96], the algorithm has been
described for the PRAM model and not for the distributed computing model
described in Section 1.2. Although on a PRAM, there are no locality issues, the
algorithm can directly be adapted to the LOCAL and even to the CONGEST
and CONGEST BC models. In [91], a nice reduction from (∆ + 1)-coloring to
the MIS problem is described. For a given graph G which we want to color
with ∆ + 1 colors, a graph G′ is constructed as follows. We make ∆ + 1 copies
v0, . . . , v∆ for every node v of G. All ∆ + 1 copies are connected to form a
clique. Two nodes ui and vj of G′ are connected if (u, v) ∈ E(G) and if i = j.
Then an MIS on G′ is computed by a given distributed algorithm. For every
node v of G, exactly one of the ∆ + 1 copies v0, . . . , v∆ is in an MIS of G′. If it
is vi, we assign color i to node v. Because (u, v) ∈ E(G) implies that ui and vi

cannot both be in the MIS, this gives a (∆ + 1)-coloring of the original graph.

1.3. THE LOCAL MODEL 19

Applying this reduction with the algorithm of [2, 96] results in a randomized
(∆ + 1)-coloring algorithm with expected time complexity O(log n).

In the previous section, we have pointed out that randomization plays a
fundamental role in symmetry breaking. It is therefore no surprise that finding
an MIS or a (∆ + 1)-coloring with a deterministic algorithm turns out to be a
lot harder. There are special graphs for which extremely efficient deterministic
algorithms exist. On a ring or on a rooted tree, it is possible to compute an MIS
or a 3-coloring in time O(log∗ n) [33, 55]. Using the algorithm of [33, 55], it is also
possible to (∆+1)-color a constant-degree graph in time O(log∗ n). Those upper
bounds are matched by a lower bound in [91], stating that Ω(log∗ n) rounds are
needed to compute an MIS or a coloring with a constant number of colors for
the ring. Note that the lower bound also holds for randomized algorithms. For
general graphs, the best deterministic MIS and (∆ + 1)-coloring algorithms are
based on a structure called network decomposition. Network decompositions
can be used as a general tool for breaking symmetries for a great number of
different local problems which go beyond MIS and coloring. We will describe
this approach in the following section.

1.3.2 Network Decomposition:
A General Tool for Distributed Algorithms

We have introduced symmetry breaking as the problem of choosing a common
decomposition of a global problem into local problems such that we can compute
a global solution by combining optimal solutions of all local problems. Network
decompositions provide a problem-independent method for decomposing a dis-
tributed problem. The idea is to decompose the network graph into clusters of
small diameter. These clusters then define the local problems which have to be
solved.

Let G = (V, E) be the network graph. A cluster C ⊆ V is a subset of the
nodes of G such that the sub-graph induced by the nodes in C is a connected
component of G. The strong diameter of a cluster C is defined as the diameter
of the sub-graph of G induced by the nodes in C. Let dG(u, v) be the length of
a shortest path connecting u and v on G. The weak diameter of a cluster C is
the maximum distance dG(u, v) in the original graph G for any two u, v ∈ C.
Note that the weak diameter of a cluster C is upper-bounded by the strong
diameter of C. A network decomposition of G is now defined as follows.

Definition 1.1. (Network Decomposition) A (χ, d)-decomposition of a graph
G is a partition of G into disjoint clusters and a χ-coloring of the clusters such
that

1. The strong diameter of each cluster is at most d.

2. Two clusters C1 and C2 have different colors if they are connected by an
edge (v1, v2) ∈ E where v1 ∈ C1 and v2 ∈ C2.

20 CHAPTER 1. LOCALITY IN DISTRIBUTED COMPUTATIONS

A weak network decomposition is defined analogously with the only difference
that only the weak diameter of each cluster has to be bounded by d. Given a
(χ, d)-decomposition, an MIS or (∆ + 1)-coloring can be computed as follows.
The protocol works in χ phases. In phase i, all clusters of color i compute their
part of the global solution. In the case of the MIS, a cluster adds as many of its
nodes as possible to the global MIS. In the case of (∆ + 1)-coloring, a cluster
assigns one of the ∆+1 colors to each of its nodes such that there is no conflict
with colors assigned by other clusters. Because each cluster has diameter at
most d and because clusters of the same color do not interfere, each phase
can be computed in O(d) time. Each cluster can for example select a leader
which collects all the data of the nodes of the cluster and of adjacent nodes
of neighboring clusters. The leader can then locally (without communication)
compute a solution of its cluster and afterwards broadcast this solution to all
nodes of the cluster. Given a (χ, d)-decomposition, it is therefore possible to
compute an MIS or a (∆+1)-coloring in time O(χ ·d). In a similar way, network
decompositions can be used to solve a large number of different distributed
problems. In O(d) time, one can for instance compute χ-approximations for
minimum graph coloring or minimum dominating set. In this case, each cluster
computes an optimal local coloring or dominating set in O(d) time. Note that
we explicitly allowed exponential local computations when defining the LOCAL
model. The combination of the local solutions of all clusters of the same color
are at least as good as a global optimal solution because those clusters do not
interfere. Because there are only χ colors, combining the local solutions of all
clusters results in a χ-approximation.

The given notion of a network decomposition was first introduced in [9] where
it is shown that for α ∈ O(

√
log log n/ logn) it is possible to deterministically

compute an (nα, nα)-decomposition in time nα. This result has been improved
in [108] where a deterministic algorithm to compute a (nO(β), nβ)-decomposition
in time nO(β) for β =

√
1/ logn is described. Using the decomposition algo-

rithm of [108], we obtain the fastest known deterministic algorithms for MIS

construction and (∆ + 1)-coloring. Note that the time complexity nO(
√

1/ log n)

is much faster than linear but still far away from the O(logn)-time complexity
of the randomized algorithm of [2, 96]. Whether there is a distributed determin-
istic MIS algorithm with poly-logarithmic running time remains an important
and demanding open problem [92].

In [93], it is proven that for p ∈ (0, 1) and for χ = log n/ log(1/(1 − p)),
there is a (χ, d)-decomposition with d ≤ 2 log n/ log(1/p) for every graph G.
This implies that for d ∈ O(log n), there is a (χ, d)-decomposition with χ ≤
n1/d log n/2 and that for χ ∈ O(log n), there is a (χ, d)-decomposition with
d ≤ 2n1/χ log n. In particular for every graph G, there is a (log n, 2 logn)-
decomposition. It is also shown in [93] that there are graphs for which the
above results are essentially tight.

In addition to the above existence results, [93] also contains a randomized
distributed algorithm which computes a weak network decomposition that es-

1.3. THE LOCAL MODEL 21

sentially matches the given bounds. The algorithm consists of χ phases which
each need O(d) rounds. In phase i, the clusters of color i are constructed. The
time complexity of the distributed weak decomposition algorithm therefore is
O(χ · d). In the LOCAL model, this time complexity can be reduced to O(d)
because in principle all colors can be computed simultaneously.

We have introduced network decompositions as a tool to build distributed
algorithms. In [8], network decompositions have been used to obtain better
network decompositions. It is shown how a weak-diameter decomposition can be
turned into a strong-diameter decomposition and how to compute (kn1/k, 2k)-
decompositions using the techniques of [9, 108]. In particular, by combining
[8] and [93], an (O(log n), O(log n))-decomposition can be computed in poly-
logarithmic time by a randomized algorithm. Combining [8] and [108] yields an

O(nO(
√

1/ log n))-time deterministic algorithm for the same result.
Network decompositions have also been considered in other parallel com-

puting models. On a PRAM, a (log2 n, log n)-decomposition can be computed
in poly-logarithmic time [7]. Furthermore, in the literature on distributed com-
puting different decompositions of graphs into regions of small diameter have
been used in various problems such as network synchronization [5, 10], routing
[11, 12], spanner constructions [112], or tracking of mobile users [11, 13].

1.3.3 Problem-Specific Distributed Algorithms

Apart from the work about network decompositions which systematically ana-
lyzes the properties of the LOCAL model, a variety of distributed algorithms
for different specific problems have been published as well. In the following, we
summarize the most important of those results.

Closely related to the MIS problem is the problem of constructing a maximal
matching (MM), which is a maximal set of pairwise non-adjacent edges. Anal-
ogously to the MIS case, an MM can be computed by a randomized algorithm
in time O(log n) [2, 68, 96]. Surprisingly, it is also possible to deterministi-
cally compute an MM in poly-logarithmic time [60, 61]. All MM algorithms
are 2-approximations for the maximum matching problem. A randomized algo-
rithm which 5-approximates the weighted maximum matching problem in time
O(log2 n) has been presented in [130].

We have discussed distributed algorithms to compute (∆ + 1)-colorings of
the network graph in Sections 1.3.1 and 1.3.2. Let us now look at more general
graph coloring problems. In [91], a deterministic algorithm which colors any
graph with O(∆2) colors in O(log∗ n) rounds is presented. Because any t-
coloring can be turned into a t′ coloring in t−t′ rounds, the algorithm implies an
O(∆2 + log∗ n)-time algorithm for computing a (∆+1)-coloring, a result which
has also been presented in [55]. Also interesting for graphs with moderate
degrees is an algorithm which finds a (∆ + 1)-coloring of an arbitrary graph
in time O(∆ log n) [9, 55, 112]. The techniques which are applied to achieve
this can even be generalized to transform any given t-coloring into a (∆ + 1)-
coloring in time O(∆ log t). Combined with the O(∆2)-coloring algorithm of

22 CHAPTER 1. LOCALITY IN DISTRIBUTED COMPUTATIONS

[91], this gives an O(∆ log ∆+log∗ n)-time (∆+1)-coloring algorithm for general
graphs. In fact, the same method can also be applied to construct an MIS in
time O(∆ log ∆ + log∗ n). New interesting ideas for the problem of coloring a
graph by a local algorithm have been presented in [35]. In [35], it is claimed
that the presented algorithm colors any graph with O(∆) colors in O(log∗ n)
rounds. Unfortunately, there is an error in the analysis of [111]. With a correct
analysis, we can only show that the given algorithm achieves an O(∆2)-coloring
in O(log∗ n) time, that is, asymptotically, the algorithm is not better than the
one of [91].

Similarly to the MIS versus MM case, there are stronger results for edge
colorings than for the more general vertex colorings. Because an edge coloring
of a graph G corresponds to a vertex coloring on the so-called line graph of
G, all vertex coloring algorithm can also be applied for to color edges. The
maximum degree of the line graph can be as much as 2∆ − 2. Applying the
randomized O(log n)-time algorithm for (∆ + 1)-colorings to the edge coloring
problem, we therefore obtain an O(log n) time algorithm which colors the edges
of a given graph with 2∆ − 1 colors. In [109], a randomized algorithm which
colors the edges of a graph with 1.6∆+O(n1+ε) colors in poly-logarithmic time
has been presented. A further improvement has been given in [56]. For any
constant ε > 0, a (1 + ε)∆-edge coloring of a graph G can be computed by a
randomized algorithm in time O((1 + 1/c) log log n) if the minimum degree of
G is Ω(nc/ log log n). There is also a deterministic edge-coloring algorithm which
colors the edges of a graph with O(∆ log n) colors in poly-logarithmic time [34].

The first important ‘local’ problem described in Section 1.1 is clustering
of ad hoc and sensor networks. We have seen that computing a clustering
essentially boils down to finding a small (connected) dominating set. The best
distributed algorithms for the minimum dominating set problem are described
in [69] and [118]. The algorithm of [118] has been formulated for the PRAM
model. It is, however, possible to use the same techniques in a distributed model.
In [69], a randomized algorithm which in expectation computes an O(log ∆)-
approximation in time O(log ∆ log n) with high probability is presented . Similar
results are achieved for the connected dominating set problem in [36]. For a
more detailed discussion of distributed algorithms related to dominating sets,
we refer to Chapters 2 and 3.

1.4 The CONGEST Model:
The Role of Bandwidth Restrictions

In order to analyze the restrictions incurred by the bounded message size in
the CONGEST model, we would like to have a problem, analogous to MIS
and coloring for symmetry breaking, which prototypically models congestion
problems. We therefore need a problem for which locality is not the restrict-
ing factor. It turns out that the MST problem is well-suited for this purpose
although we have seen that computing an MST is inherently not local. In the

1.5. DEFINITIONS AND PRELIMINARIES 23

LOCAL model, computing an MST needs time Θ(D) where D is the diameter
of the network graph. The first distributed MST algorithm for the CONGEST
model is by Gallager, Humblet, and Spira [50]. The time complexity of the al-
gorithm of [50] is O(n logn). This time complexity has gradually been reduced
to O(n log∗ n) [30, 49] and O(n) [6] in the following. The first sub-linear time al-
gorithm has been presented in [52]. It has time complexity O(D+n0.613 log∗ n).
This has later been improved to O(D +

√
n log∗ n) in [86]. The last algorithm

has been proven to be almost optimal by Peleg and Rubinovich who showed
that for D ∈ Ω(log n), every distributed MST algorithm has time complexity
at least Ω(D +

√
n/ log2 n) in the CONGEST model. This lower bound has

been generalized and improved in [39] where it is shown that computing an
α-approximation for the MST needs time at least Ω(D +

√
n/(α log n)). For

graphs of constant diameter, the MST problem is studied in [94] and [95]. On
the one hand, it is shown in [94] that the time required to compute an MST
for graphs of diameter 4 and 3 is Ω(3

√
n/ log n) and Ω(4

√
n/

√
log n), respectively.

On the other hand, [94] gives an O(log n) time algorithm for diameter 2 graphs.
For diameter 1 graphs, that is, for the weighted complete graph, there is an
algorithm with time complexity O(log log n) [95]. Note that if the diameter is
constant, an MST can be computed in time O(1) in the LOCAL model.

Apart from the MST problem, there is not a lot of systematic work about
the fundamental limitations of the CONGEST model. However, many of the
distributed algorithm for the problems discussed in Section 1.3 can actually be
applied in the CONGEST or even in the CONGEST BC model. Examples are
the randomized algorithms for independent sets and matchings [2, 68, 96, 130],
the coloring algorithm of [33, 55, 91], or the minimum dominating set algorithm
of [69]. In contrast to the LOCAL model, all these algorithms remain the
best known algorithms even if the diameter of the network graph is constant.
Analyzing the complexity of these problems for small-diameter graphs in the
CONGEST model is an interesting open problem.

1.5 Definitions and Preliminaries

As described in Section 1.2, we model networks by undirected graphs. As far
as possible, we try to use consistent notations for describing graphs and their
properties throughout the thesis. Unless explicitly stated, the network graph
is called G and its node and edge sets are called V (G) = G and E(G) = E,
respectively. Further, n denotes the number of nodes, ∆ the maximum degree,
and D the diameter of G, respectively. The distance measured in hops between
two nodes u and v is denoted by dG(u, v). As we deal with local algorithms,
we will often use neighborhoods of a particular depth. We use the following
definitions:

Γr(v) :=
{
u ∈ V

∣∣ dG(u, v) = r
}

and Γ+
r (v) :=

r⋃

i=0

Γi(v).

24 CHAPTER 1. LOCALITY IN DISTRIBUTED COMPUTATIONS

Therefore, Γr(v) is the set of nodes at distance exactly r from v and Γ+
r (v) is

the set of nodes at distance at most r from v. For convenience, we also define

Γ(v) := Γ1(v) and Γ+(v) := Γ+
1 (v) = {v} ∪ Γ(v).

The degree of a node v is denoted by δ(v) := |Γ(v)|. Arguing about local
algorithms is considerably simplified if the local views have a structure which
is not arbitrarily complex. Especially in the context of lower bounds, graphs
which locally look like trees will prove extremely useful. In order to have trees
in each k-neighborhood of a graph G, G must not have cycles of length at most
2k. The shortest cycle of a graph G is called the girth g(G) of G. The following
well-known theorem shows an important relation between the number of edges
|E| and the girth g(G) of a graph G = (V, E) (see e.g. [22]).

Theorem 1.1. Let G = (V, E) be a graph with girth g(G) ≥ k. There is a
constant c such that he number of edges of G is at most |E| ≤ n1+c/k. Further,
there are n-node graphs with more than n1+d/k edges and girth at least k for
some constant d > 0.

For convenience, we define the set of all integers between 1 and k as

[k] := {1, . . . , k} :=
{
i ∈ Z|1 ≤ i ≤ k

}
.

Depending on the context, we will use the notations [k] and {1, . . . , k} inter-
changeably to denote the given set.

When discussing MIS and coloring algorithms in Section 1.3, we have already
used the so-called log-star function log∗ n. Let log(i) n be the value which results
after applying the logarithm i times to n. The function function log∗ n is defined
as

log∗ n := min
i

(
log(i) ≤ 1

)
.

If not explicitly specified, we always consider logarithms to base 2. The natural
logarithm of a number x is denoted by lnx.

Throughout the thesis, we will consider distributed optimization problems
and algorithms which compute solutions to those problems. To measure the
quality of an achieved solution, it is compared to an optimal solution. Assume
that we have an algorithm solving some given minimization problem. Let ALGI
be the value of the solution produced by the given algorithm for input I. The
value of an optimal solution for input I is denoted by OPTI . The approximation
ratio ρ of the given algorithm is defined as

ρ := max
I

ALGI
OPTI

.

Because we want ρ ≥ 1, for maximization problems, the approximation ratio
is defined as ρ := maxI OPTI/ALGI . If adapting constants in the algorithm
allows to achieve an approximation ratio of 1 + ε for every constant ε > 0, the
algorithm is called an approximation scheme.

1.5. DEFINITIONS AND PRELIMINARIES 25

When arguing about randomized algorithms, we will often state that some-
thing holds with high probability. In the context of a network graph with n
nodes, this means that the probability is at least 1 − 1/n. Whenever we use
the term ‘with high probability’, it is even possible to reduce the failure proba-
bility from 1/n to 1/nc for any constant c by adjusting other constants in the
algorithm or in the analysis. To bound probabilities, we will frequently use
Chernoff bounds. They describe the tail behavior of the distribution of the sum
of independent Bernoulli experiments.

Theorem 1.2. (Lower Tail) Let X1, X2, . . . , XN be independent Bernoulli
variables with Pr[Xi = 1] = pi. Let X :=

∑
i Xi denote the sum of the Xi and

let µ := E[X] :=
∑

i pi be the expected value for X. For δ ∈ (0, 1],

Pr[X < (1 − δ)µ] <

(
e−δ

(1 − δ)(1−δ)

)µ

< e−µδ2/2.

Theorem 1.3. (Upper Tail) Let X1, X2, . . . , XN be independent Bernoulli
variables with Pr[Xi = 1] = pi. Let X :=

∑
i Xi denote the sum of the Xi and

let µ := E[X] :=
∑

i pi be the expected value for X. For δ > 0,

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ

.

Finally, Facts 1.4–1.6 state three important inequalities which we will need
at various places.

Fact 1.4. (Means Inequality) Let A ⊂ R
+ be a set of positive real numbers.

The product of the values in A can be upper bounded by replacing each factor
with the arithmetic mean of the elements of A:

∏

x∈A
x ≤

(∑
x∈A x

|A|

)|A|
.

Fact 1.5. For all n, t, such that n ≥ 1 and |t| ≤ n,

et

(
1 − t2

n

)
≤
(

1 +
t

n

)n

≤ et.

Fact 1.6. For integers n ≥ k ≥ 1, we have

(n

k

)k

≤
(

n

k

)
≤
(en

k

)k

.

26 CHAPTER 1. LOCALITY IN DISTRIBUTED COMPUTATIONS

Chapter 2

Distributed Approximation of
Covering and Packing
Problems

Many of the introductory example problems of Section 1.1 are classic covering
problems or closely related to covering and the dual packing problems. In
this and the next chapter, we will study the distributed complexity of covering
and packing problems in the communication models described in Section 1.2.
Our main objective is a thorough characterization of the possible trade-offs
between time complexity (locality) k and the achievable quality of the solution
(approximation ratio). We will derive upper bounds (Chapter 2) and lower
bounds (Chapter 3) on this trade-off.

Chapter 2 is structured as follows. In Section 2.1, we introduce our notion
of distributed covering and packing problems. In particular, we motivate the
use of linear programming (LP) relaxation in the context of distributed approx-
imation algorithms. When considering computer networks, the most important
covering problem is the minimum dominating set (MDS) problem. Section 2.2
shows how the greedy algorithm for the MDS problem can be turned into a dis-
tributed approximation algorithm for the fractional variant of the MDS problem
(LP relaxation). The algorithm of Section 2.2 is improved and generalized in
Section 2.3 to obtain the main result of this chapter. We present a distributed
approximation scheme for all covering and packing LPs for the CONGEST BC

model.

We have seen that in the LOCAL model, network decompositions can be
applied to obtain fast algorithms for a large class of problems. Based on the
randomized weak-diameter network decomposition algorithm of Linial and Saks
[93], we show how to compute constant approximations for covering and packing
LPs in Section 2.4.

27

28 CHAPTER 2. COVERING AND PACKING PROBLEMS

When solving an LP instead of the original combinatorial problem, there
needs to be some way to transform a fractional solution into an integer one. For
distributed covering and packing problems, this can be achieved by randomized
rounding as described in Section 2.5. Finally, in Sections 2.6 and 2.7, we look at
the construction of connected dominating sets and discuss randomization issues
in the context of distributed covering and packing problems.

2.1 Distributed Covering and Packing Problems

2.1.1 The Minimum Dominating Set Problem

A dominating set of a graph G = (V, E) is a subset S ⊆ V of the nodes of
G such that for every node u ∈ V which is not in S, there is an adjacent
node v ∈ S. In Section 1.1, we have seen that dominating sets and the like
are important structures which naturally occur in many real-world networking
problems. Usually, we aim at having a dominating set which is as small as
possible, resulting in the well-known minimum dominating set problem. As we
have seen, solving MDS for large-scale networks calls for fast and hence local,
distributed algorithms for the problem. In this chapter, we present distributed
algorithms which can be applied to many common variants of MDS, the more
general covering problems, as well as the closely related packing problems. The
main principles behind all described algorithms for general covering and packing
problems can be understood by looking only at the MDS problem as a special
case. While developing our algorithms, we therefore always first look at the
intuitive MDS case before generalizing an idea.

2.1.2 Breaking Symmetries by LP Relaxation

We have argued in the introduction that one of the main challenges arising
in the design of distributed algorithms is breaking symmetries. In the case of
the MDS problem, on the one hand, we need to guarantee that every node is
covered by a node of the dominating set S. On the other hand, in the case of
a highly symmetric graph, only some nodes of a set of equally qualified nodes
can join the dominating set. Otherwise it is not possible to achieve a good
approximation ratio.

The symmetry breaking problem seems to be most involved if all nodes have
the same view or similar views. Therefore, the class of regular graphs appears to
contain graphs where breaking symmetries is most difficult. However, for regular
graphs, there is the following simple distributed MDS algorithm. Assume that
the network graph G is δ-regular, that is, all nodes of G have degree δ.

1. Initially, the dominating set S is empty.

2. Each node joins S independently with probability ln(δ + 1)/(δ + 1).

3. If a node u is not covered, it joins S.

2.1. DISTRIBUTED COVERING AND PACKING PROBLEMS 29

If OPT denotes the size of an optimal dominating set, the described algorithm
computes a dominating set S of expected size, that is,

E [|S|] ≤ (ln(δ + 1) + 1)OPT . (2.1)

To show Inequality (2.1), we need the following key observation. Because each
node of a dominating set can cover at most δ + 1 nodes, we have OPT ≥
|V |/(δ + 1). Hence, the expected number of nodes joining S in step 2 of the
above algorithm is at most ln(δ + 1)OPT . For each node u, the probability of
not being covered after step 2 can be bounded by

Pr[u uncovered] =

(
1 − ln(δ + 1)

δ + 1

)δ+1

≤
Fact 1.5

(
1

e

)ln(δ+1)

=
1

δ + 1
.

Thus, the expected number of nodes joining in Step 3 is at most OPT , and
Inequality (2.1) follows.

In the given algorithm, symmetries are broken by choosing the set S at
random. In the case of regular graphs, each node can join S with the same
probability. If the random decisions are done independently, we can expect to
obtain a reasonably good dominating set. If we want to extend the described
method to general graphs, we might come up with the following algorithm.

1. For each node vi, compute a probability pi.

2. Node vi joins S with probability pi.

3. If a node is not covered, it joins S.

This brings up a new problem. How can we determine the probabilities in
step 1 such that steps 2 and 3 have the same effect as in regular graphs? It
turns out that we have to solve step 1 such that the probabilities of a node
u and its neighbors Γ(u) sum up to at least ln ∆ and such that the sum over
all probabilities is minimized (∆ is the maximum degree of G). The problem
of finding such an optimal probability assignment is known as the minimum
fractional dominating set (MFDS) problem. To understand the relation between
MDS and MFDS we look at a common formulation of MDS as an integer linear
program. Assume that the nodes of G are named v1, . . . , vn. We assign an
indicator variable xi ∈ {0, 1} to each node vi, such that xi = 1 ⇔ vi ∈ S. For S
to be a dominating set, we have to demand that for each node vi ∈ V at least
one of the nodes in Γ+(v) is in S. Therefore, S is a dominating set of G if and
only if ∀i ∈ [1, n] :

∑
j∈Γ+(v)xj ≥ 1. The MDS problem can then be formulated

as follows:

min

n∑

i=1

xi

subject to N · x ≥ 1

xi ∈ {0, 1}.

(IPDS)

30 CHAPTER 2. COVERING AND PACKING PROBLEMS

Here, the neighborhood matrix N is the adjacency matrix of G with ones in
the main diagonal. That is, for each matrix element nij we have nij = 1 if
(vi, vj) ∈ E ∨ i = j and nij = 0 otherwise. From (IPDS), we obtain the MFDS
problem by allowing the x-variables to take on arbitrary values between 0 and
1, that is, MFDS is the natural LP relaxation of MDS:

min

n∑

i=1

xi

subject to N · x ≥ 1

xi ≥ 0.

(LPDS)

We have therefore reduced the problem of finding a distributed algorithm for
MDS to finding a distributed solution for MFDS. A dominating set can then
be computed using a simple randomized rounding scheme. The advantage of
this approach is that breaking symmetries can be avoided up to the last step.
Based on a solution of the linear program, symmetry breaking becomes a lot
simpler. In a certain sense, distributed LP relaxation allows for the separation
of the two given tasks, namely solving the dominating set problem and breaking
symmetries.

2.1.3 Problem Definition

If we generalize the MDS problem given by (IPDS), we obtain the following
integer program:

min cTx

subject to A · x ≥ b

xi ∈ N0.

(IP)

We assume that all entries aij of A are non-negative and that all entries bi of
b, and ci of c are positive. Under these assumptions, (IP) is called a covering
problem. Many important problems such as (weighted) minimum set cover
(MSC), (weighted) minimum dominating set, or (weighted) minimum vertex
cover (MVC) fall into this category. A vertex cover is a subset of the nodes
which covers all edges. As argued in Section 2.1.2, for a distributed algorithm,
it is reasonable to first solve an LP relaxation of (IP) instead of directly solving
(IP). In the case of (IP), we obtain a linear program (PP) describing fractional
covering problems:

min cTx

subject to A · x ≥ b

xi ≥ 0.

(PP)

2.1. DISTRIBUTED COVERING AND PACKING PROBLEMS 31

The dual linear program (DP) is called a fractional packing problem:

max bTy

subject to AT · y ≤ c

yi ≥ 0.

(DP)

Throughout the thesis, (PP) is called the primal LP and (DP) is called the dual
LP. Packing problems occur in a broad range of resource allocation problems.
As an example, in [17] and [110], the problem of assigning flows to a given
fixed set of paths is described. In general, optimal assignments of complex
combinations of resources such as bandwidth on given paths, computing cycles
on some machines, storage, etc. can be modeled by packing linear programs
[110]. Another common packing problem is (weighted) maximum matching,
the problem of finding a largest possible set of pairwise non-adjacent edges.
Note that maximum matching is a combinatorial problem which requires an
integer solution. Analogously to covering problems, integer packing problems
are obtained by replacing yi ≥ 0 with yi ∈ N0 in (DP). The fractional version of
maximum matching is the dual of the fractional minimum vertex cover problem.

While computing a dominating set of the network graph is an inherently dis-
tributed task, the problems described by the (integer) linear programs (IP),(PP),
and (DP) have no immediate distributed meaning. We therefore need to define
a distributed version of these problems, that is, we need a network graph on
which we can solve the described linear programs. We use a natural definition
which was introduced in [110] and also applied in [17]. For each primal variable
xi and for each dual variable yj, there are nodes vp

i and vd
j , respectively. We

denote the set of primal variables by Vp and the set of dual variables by Vd.
The network graph G = (Vp ∪ Vd, E) is a bipartite graph with the edge set

E :=
{
(vp

i , vd
j) ∈ Vp × Vd

∣∣ aji 6= 0
}

,

where aji is the entry of row j and column i of A. We define m := |Vp| and
n := |Vd|, that is, A is a (n × m)-matrix. Further, the maximum primal and
dual degrees are denoted by ∆p and ∆d, respectively.

In most real-world examples of distributed covering and packing problems,
the network graph is of course not equal to the described bipartite graph. How-
ever, it is usually straightforward to simulate an algorithm which is designed
for G as above on the actual network graph G′. We briefly describe MDS, MVC
and MM as examples. In MDS, A is essentially the adjacency matrix of the
network graph G′. Therefore, there is a primal variable xi and a dual vari-
able yi for each node vi ∈ V (G′). The matrix entry aji is not 0 if and only if
i = j or if vi and vj are adjacent. Thus, node vi can simulate vp

i and vd
i ; all

edges of G are then also edges in G′. In MVC and in MM, each primal variable
corresponds to a node of G′ and each dual variable corresponds to an edge of G′.

32 CHAPTER 2. COVERING AND PACKING PROBLEMS

The matrix element aji is non-zero if and only if node vi is adjacent to edge ej .
Hence, if each dual node vd

j (edge ej) is simulated by an adjacent node in G′,
nodes simulating adjacent nodes in G are also adjacent in G′.

2.1.4 Related Work

Linear programming in general and the use of linear programming techniques
in approximation algorithms for combinatorial problems has a long and fruitful
tradition in the standard non-distributed setting. For an introduction, we refer
to standard text books such as [32] (linear programming) or [65, 127] (approx-
imation algorithms). We have seen that covering and packing problems occur
in a variety of applications. It is therefore no surprise that there has been a
considerable effort to find specific algorithms for this class of LPs [37, 46, 116]
as well as for more general mixed packing and covering LPs [47, 75, 135]. In the
context of integer covering and packing problems, the technique of randomized
rounding has been introduced to convert fractional solutions into integer ones
[104, 117, 124].

The first algorithm which solves covering and packing LPs in a parallel
model has been given by Luby and Nisan in [97]. A parallel algorithm for
mixed packing and covering problems has been given in [135]. In both algo-
rithms, processors need information about the global state of the system. The
problem of approximating positive LPs using only local information has been
introduced in [110]. The first algorithm achieving a constant approximation in
poly-logarithmic time is described in [17]. We compare our algorithm to the
algorithm of [17] at the end of Section 3.2.4.

There is a lot of work on solving specific combinatorial covering and packing
problems in a distributed model. This is especially true for the minimum dom-
inating set problem. In a standard non-distributed setting, the complexity of
MDS is essentially known. MDS is one of the first problems which was shown to
be NP-hard [53, 73]. Using a simple greedy algorithm, it can be approximated
by a factor of ln ∆ [31, 71, 123]. Unless NP ⊆ DTIME(nO(log log n)), this was
shown to be optimal [42]. In [86], a distributed algorithm which computes a
dominating set of size at most n/2 in O(log∗ n) rounds has been presented. The
given algorithm is extremely fast, the approximation ratio can however be as
bad as Θ(∆). The paper [133] provides a constant-time connected dominating
set algorithm without any guarantees at all. The first algorithms to achieve
a non-trivial approximation ratio are given in [69, 118]. They both achieve an
O(log ∆)-approximation in poly-logarithmic time. Note that only the algorithm
of [69] is explicitly formulated for a distributed communication model. Up to
constant factors, they achieve the same approximation ratio as the greedy al-
gorithm. If all local computations are polynomial, we therefore cannot hope to
obtain significantly better approximation ratios.

A combinatorial packing problem for which distributed approximation al-
gorithms have been presented is maximum matching. In O(log n) time, the
maximal matching algorithms of [2, 68, 96] provide 2-approximations for the

2.2. DISTRIBUTED GREEDY DOMINATING SET ALGORITHM 33

maximum matching problem. In [130], a distributed algorithm which com-
putes a constant approximation for the weighted maximum matching problem
in O(log2 n) rounds is presented.

2.2 Distributed Greedy Dominating Set Algorithm

In this section, we develop an algorithm for the MDS linear program (LPDS) as a
first step towards our CONGEST BC algorithm for general covering and packing
linear programs. The achieved time-approximation trade-off of the algorithm
of this section is substantially worse than the trade-off of the algorithm which
we present in the next section. However, the algorithm of this section is a lot
simpler and easier to understand than the improved general algorithm of Section
2.3. Nevertheless, the main ideas underlying both algorithms are the same, that
is, Section 2.2 serves as an introduction and should give intuition for Section
2.3.

2.2.1 The Greedy Algorithm

The design and analysis of our distributed covering and packing algorithms are
closely related to the greedy dominating set algorithm. We therefore quickly
review the greedy algorithm for MDS before describing the distributed algo-
rithms. The greedy MDS algorithm starts with an empty set S. It adds nodes
to S as long as S is not a dominating set of the given graph G. In accordance
with other dominating set papers (e.g. [58, 69]), we call uncovered nodes white
and covered nodes gray, that is, a node v is gray as soon as v or a neighbor of
v is in S. In each step, the greedy algorithm picks the node u with the maxi-
mum number of white nodes in its closed neighborhood Γ+(u) and adds u to S.
The following Theorem 2.1 is well-known [31, 71, 123]; we give a proof in order
to show the main technique (dual fitting) for the analysis of our distributed
algorithms.

The method of dual fitting can be described as follows. While computing
a primal solution (in our case a dominating set), we also construct a solution
to the dual LP. The dual solution is constructed such that the primal solution
is fully paid for by the dual solution, that is, assuming the primal problem to
be a minimization problem, the value of the dual objective function is always
at least the value of the primal objective function. If the computed solution is
not optimal, the dual solution is infeasible. However, if each inequality of the
dual LP is satisfied up to a factor of α, dividing all dual variables by α makes
the dual solution feasible. By LP duality, the obtained primal solution is then
greater than an optimal solution by a factor of at least α, that is, the computed
solution is an α-approximation.

Theorem 2.1. The greedy MDS algorithm computes a dominating set S which
is greater than an optimal dominating set at most by a factor of H(∆ + 1) <
ln(∆ + 1) + 1, where H(q) denotes the qth harmonic number.

34 CHAPTER 2. COVERING AND PACKING PROBLEMS

Proof. At the beginning, S = ∅ and hence also ∀i : xi = yi = 0. Every time
we add a node u to S, the objective function of (LPDS) is incremented by
1. Following the described approach, we also have to increase the objective
function of (DPDS) by 1. We do this by equally charging all nodes v which
have become gray when we added u to S. Hence, if there are m white nodes in
Γ+(u), the dual variable of each of those nodes is increased by 1/m. Note that
only dual variables of white nodes becoming gray are increased. Thus, every
dual variable is increased exactly once.

Let us now consider an inequality of the dual LP (DPDS). The sum of all
y-values in the closed neighborhood Γ+(u) of a node u has to be at most 1. How
large can the sum of y-values in Γ+(u) become? At the beginning, all neighbors
of u are white. Assume that the nodes of Γ+(u) become gray in t steps such
that in step i, ai nodes of Γ+(u) become gray. We have

∑t
i=1 ai = δ, where

δ := |Γ+(u)|. Let δi := δ−∑i−1
i=1 ai be the number of white nodes before the ith

step. By adding u to S after step i − 1, it would be possible to color δi nodes
gray. Hence, the greedy algorithm selects a node which covers at least δi nodes
and thus the y-values of step i can be at most 1/δi. We now get

∑

vi∈Γ+(u)

yi ≤
t∑

i=1

ai

δi
=

t∑

i=1

ai∑

j=1

1

δi
≤

δ−1∑

i=0

1

δ − i
= H(δ) ≤ H(∆ + 1),

which completes the proof.

2.2.2 Basic Algorithm: Nodes Know Maximum Degree

We now show how to turn the described greedy MDS algorithm into a dis-
tributed algorithm for (LPDS), the LP relaxation of MDS. This way, we achieve
an O(k∆O(1)/k)-approximation of (LPDS) in O(k2) rounds. For the sake of sim-
plicity and clarity, we first present an algorithm which assumes that all nodes
know the largest degree ∆ of the network (Section 2.2.2). In a second step
(Section 2.2.3), we describe how ∆ can be approximated locally such that the
global knowledge of ∆ is not necessary any more.

The main problem of applying the greedy algorithm in a distributed environ-
ment is the synchronization of different nodes capable of joining the dominating
set. Thus, we have to solve a classical symmetry breaking problem. In Section
2.1.2, we have argued that a simple way to avoid symmetry breaking is to solve
(LPDS) instead of (IPDS). Intuitively, this means that whenever there are q
neighbors of a node u which could all join the dominating set according to the
greedy condition, instead of selecting one of the q nodes, each of them increases
its x-value by 1/q.

During the algorithm’s execution, all nodes vi start with xi = 0 and increase
their x-values over time. Analogously to Section 2.2.1, we say that a node vi

is colored gray as soon as the sum of the weights xj for vj ∈ Γ+(vi) exceeds 1,
that is, as soon as the node is completely covered. Initially all nodes are colored
white. The number of white nodes vj ∈ Γ+(vi) at a given time is called the

2.2. DISTRIBUTED GREEDY DOMINATING SET ALGORITHM 35

Algorithm 1 LPDS approximation (∆ known)

1: xi := 0; δ̃(vi) := δ(vi) + 1; colori := ‘white’;
2: for ℓ := k − 1 to 0 by −1 do
3: (∗ δ̃(vi) ≤ (∆ + 1)(ℓ+1)/k, yi := 0 ∗)
4: for m := k − 1 to 0 by −1 do
5: (∗ a(vi) ≤ (∆ + 1)(m+1)/k ∗)
6: if δ̃(vi) ≥ (∆ + 1)ℓ/k then

7: xi := max
{
xi,

1
(∆+1)m/k

}

8: fi;
9: send xi to all neighbors;

10: if
∑

j∈Γ+(vi)
xj ≥ 1 then colori := ‘gray’ fi;

11: send colori to all neighbors;
12: δ̃(vi) :=

∣∣{j ∈ Γ+(vi) | colorj = ‘white’}
∣∣

13: od
14: (∗ yi ≤ 1/(∆ + 1)(ℓ−1)/k ∗)
15: od

dynamic degree of vi and denoted by δ̃(vi). When starting the algorithm, all
nodes are white and thus δ̃(vi) = δ(vi) + 1.

Assume now that all nodes know ∆, the maximum degree of the network.
Algorithm 1 is synchronously executed by all nodes. Before coming to a detailed
analysis of Algorithm 1, we give a general overview. Each node vi calculates
the corresponding component xi of the solution for LPDS. Compared to the
sequential greedy algorithm where in each step exactly one node increases its
x-value from 0 to 1, Algorithm 1 raises the x-values of many nodes simulta-
neously. In order to avoid the problem of overloading a node which has many
neighbors increasing their xi, we only increase the x-values by small amounts
each time. Initially all xi are set to 0; they are gradually increased as the al-
gorithm progresses. The algorithm consists of two nested loops. The purpose
of the outer loop is to reduce the highest dynamic degree in the network. As
indicated by the invariant in Line 3, δ̃(vi) is reduced by a factor of (∆ + 1)1/k

in every iteration of the outer loop. Each iteration of the outer loop yields an
infeasible primal solution. By rearranging the weights in a similar way as in
the original greedy set cover proof, this primal solution can be converted into
a dual solution y = (y1, . . . , yn) which is feasible up to a factor of (∆ + 1)2/k.
The combined primal solutions of all outer loop iterations give a primal feasible
k(∆ + 1)2/k-approximation.

As in the sequential greedy algorithm, only the nodes of large degree increase
their x-values (Line 7). In the inner loop, the x-values are increased stepwise.
We call the high-degree nodes which increase their x-values in Line 7 active
nodes. Let a(vj) be the number of active neighbors of vj . The increase of
variable xi of a node vi is at most indirectly proportional to the maximum
a(vj) among all white neighbors vj of vi. By this, the maximum number of

36 CHAPTER 2. COVERING AND PACKING PROBLEMS

active neighbors a(v) among all nodes v is reduced in every iteration of the
inner loop (invariant in Line 5) and we can guarantee that the total x-increase
is not too high. That is, no node is overloaded because of too many neighbors
increasing their xi by too much. Lemma 2.2 explains the invariant of Line 3.

Lemma 2.2. At the beginning of each iteration ℓ of the outer loop of Algorithm
1, that is, at Line 3, the dynamic degree δ̃(vi) of each node vi is

δ̃(vi) ≤ (∆ + 1)(ℓ+1)/k.

Proof. For ℓ = k − 1 the condition reduces to δ̃(vi) ≤ ∆ + 1 and therefore
follows from the definition of ∆. For all other iterations the lemma is true
because in the very last step of the preceding iteration (ℓ + 1), all nodes with
δ̃(vi) ≥ (∆ + 1)(ℓ+1)/k set xi := 1 in Line 7. By this all nodes in Γ+(vi) turn
gray and therefore δ̃(vi) becomes 0. Thus all nodes for which the condition of
the lemma does not hold set xi := 1 and therefore δ̃(vi) is set to 0.

In a single iteration of the outer loop, only active nodes, that is, nodes with
δ̃(vi) ≥ (∆ + 1)ℓ/k increase their x-value (Lines 6-8). The number of active
nodes in the closed neighborhood Γ+(vi) of a white node vi at the beginning of
an inner-loop iteration (Line 5) is called a(vi). We define a(vi) to be 0 if vi is
gray. The purpose of the inner loop is to gradually reduce the maximum a(v)
in the graph (invariant in Line 5).

Lemma 2.3. At the beginning of each iteration of the inner loop of Algorithm
1, that is at Line 5,

a(vi) ≤ (∆ + 1)(m+1)/k

for all nodes vi ∈ V .

Proof. For m = k−1 we have a(vi) ≤ ∆+1 which is always true. For m < k−1,
we prove that all nodes vi with more than (∆ + 1)(m+1)/k active neighbors are
gray and therefore a(vi) = 0. It is sufficient to show that all nodes vi for
which a(vi) > (∆ + 1)m/k in Line 5 are colored gray at the end of the inner-
loop iteration (i.e., after Line 14). All active nodes vj increase xj such that
xj ≥ 1/(∆ + 1)m/k (Lines 6-8 of Algorithm 1). If a(vi) > (∆ + 1)m/k, there
are more than (∆ + 1)m/k active nodes in Γ+(vi). Therefore the sum of the
x-values in Γ+(vi) is at least 1 after Line 10. Figure 2.1 serves as an illustration
for Lemma 2.3.

In order to bound the weights assigned during the iterations of the inner
loop, we assign a dual variable yi to each node vi. In Line 3 all yi are set to 0.
Whenever a node vi increases xi, the additional weight is equally distributed
among the yj of all the nodes vj in Γ+(vi) which were white before the increase
of xi as in the analysis of the greedy algorithm (Theorem 2.1). Hence the sum
of the y-values is always equal to the sum of the x-increases during the current
iteration of the outer loop. In Lemma 2.4, we show that at the end of every
iteration of the outer loop, that is at Line 14, all yi are bounded by roughly the

2.2. DISTRIBUTED GREEDY DOMINATING SET ALGORITHM 37

a(v) ≥ (∆ + 1)3/4

a(v) ≥ (∆ + 1)2/4
a(v) ≥ (∆ + 1)1/4

a(v) ≥ 1

Figure 2.1: Example with k = 4: First, the nodes which have a(v) ≥ (∆+1)3/4

active neighbors are covered when the x-values are set to 1/(∆ + 1)3/4, then
the nodes which have a(v) ≥ (∆ + 1)2/4 active neighbors are covered when the
x-values are set to 1/(∆ + 1)2/4, and so on. By this, it is guaranteed that the
dual weights do not become too large.

reciprocal of the dynamic degree of active nodes. Together with the invariant
in Line 3 (Lemma 2.2), this enables us to prove a bound on the total weight of
the additional x-values in each iteration of the outer loop.

Lemma 2.4. At the end of an iteration of the outer loop of Algorithm 1, that
is at Line 14,

yi ≤
1

(∆ + 1)
ℓ−1

k

for all nodes vi ∈ V .

Proof. Because yi is set to 0 in Line 3, we only have to consider a single iteration
of the outer loop (ℓ-loop), that is a period in which ℓ remains constant. The
value of yi can only be increased as long as vi is a white node. The increments
all happen in Line 7 because the x-values are increased only there. For each
white node vi, we divide the iteration of the outer loop into two phases. The
first phase consists of all inner-loop iterations where vi remains white. The
second phase consist of the remaining inner-loop iterations where vi becomes
or is gray. Assume first that vi remains white after the first iteration of the
inner-loop, that is, the first phase exists. During the whole first phase, we have∑

j∈Γ+(vi)
xj < 1. Because all increases of x-values are distributed among at

38 CHAPTER 2. COVERING AND PACKING PROBLEMS

least (∆ + 1)ℓ/k y-values, we therefore get

yi ≤
∑

j∈Γ+(vi)
xj

(∆ + 1)
ℓ
k

<
1

(∆ + 1)
ℓ
k

(2.2)

for phase 1. In Line 7 of the first inner-loop iteration of the second phase, yi

gets its final value because only y-values of white nodes are increased. All active
nodes have already been active in the preceding inner-loop iteration because
δ̃(vj) can only become smaller over time. Thus from the preceding iteration,
all a(vi) active nodes vj ∈ Γ+(vi) have xj ≥ 1/(∆ + 1)(m+1)/k. In Line 7, the
x-values of these nodes are now increased to 1/(∆ + 1)m/k. The difference of
this value is distributed among at least (∆ + 1)ℓ/k y-values and so the increase
of yi is at most

1

(∆+1)
m
k

− 1

(∆+1)
m+1

k

(∆ + 1)
ℓ
k

a(vi). (2.3)

To obtain a bound on yi, we have to add its value before the increase, which is
given by Inequality (2.2). From Lemma 2.3 we know that a(vi) ≤ (∆+1)(m+1)/k.
Plugging this into the sum of Inequalities (2.2) and (2.3), we obtain

yi ≤
(∆ + 1)

1
k − 1

(∆ + 1)
ℓ
k

+
1

(∆ + 1)
ℓ
k

=
1

(∆ + 1)
ℓ−1

k

.

If vi becomes gray in the first inner-loop iteration, we have

yi ≤ δ(vi) + 1

(∆ + 1)(k−1)/k(∆ + 1)ℓ/k
≤ ∆ + 1

(∆ + 1)(k+ℓ−1)/k
=

(∆ + 1)1/k

(∆ + 1)ℓ/k
.

Based on the given lemmas, we can now look at the overall approximation
ratio of Algorithm 1.

Theorem 2.5. For all network graphs G, Algorithm 1 computes a feasible solu-
tion x for the linear program LPDS such that x is a k(∆ + 1)2/k-approximation
of LPDS. Further, Algorithm 1 terminates after 2k2 rounds.

Proof. For the number of rounds, observe that each iteration of the inner loop
involves the sending of two messages and therefore takes two rounds. The
number of such iterations is k2.

Further, the calculated x-values form a feasible solution of LPDS because
in the very last iteration of the inner loop (ℓ = 0, m = 0) all nodes vi with
δ̃(vi) ≥ 1 set xi := 1. This includes all remaining white nodes. We prove
the approximation ratio of k(∆ + 1)2/k by showing that the additional weight
(i.e., sum of x-values) is upper-bounded by (∆ + 1)2/k in each iteration of the
outer loop. From Lemma 2.2, we know that at Line 3, that is, when the iteration
starts, the dynamic degree δ̃(vi) of each node vi is δ̃(vi) ≤ (∆+1)(ℓ+1)/k. Hence

2.2. DISTRIBUTED GREEDY DOMINATING SET ALGORITHM 39

there are at most (∆ + 1)(ℓ+1)/k non-zero y-values in the closed neighborhood
of every node vi at the end of an outer-loop iteration at Line 14. Furthermore,
Lemma 2.4 implies that all y-values are at most (∆+1)−(ℓ−1)/k at Line 14. The
sum of the y-values in the neighborhood of a node vi during each iteration of
the outer loop is therefore upper-bounded by

∑

j∈Γ+(vi)

yj ≤ (∆ + 1)
ℓ+1

k

(∆ + 1)
ℓ−1

k

= (∆ + 1)
2
k .

If we divide each y-value by (∆ + 1)2/k (y′
i := yi/(∆ + 1)2/k), the new y-values

form a feasible solution for the dual LP (DPDS) because ∀i :
∑

j∈Γ+(vi)
y′

j ≤ 1.
Hence the sum of all new y-values is a lower bound on the size of an optimal
dominating set OPT ; therefore

n∑

i=1

yi ≤ (∆ + 1)2/k|OPT |

for every iteration of the outer loop. Because y is defined such that the sum over
all y-values is equal to the sum over all increases of the x-values, and because
there are k iterations of the outer loop, we have

n∑

i=1

xi ≤ k(∆ + 1)2/k|OPT |

at the end of Algorithm 1.

2.2.3 Improved Algorithm: No Global Knowledge

The only thing which cannot be calculated locally in Algorithm 1 is the maxi-
mum degree ∆. In this section, we show how each node v can locally compute
an estimate ∆̂(v) for ∆ such that v can replace each occurrence of ∆ by ∆̂(v)

in Algorithm 1. A straightforward way to estimate ∆ would be to let ∆̂(v) be

the degree δ(v) of v. More generally, for a fixed t ∆̂(v) could be defined as the
largest degree at distance at most t from v. Those simple estimates have one
major problem. The gap between estimates ∆̂(u) and ∆̂(v) for adjacent nodes
u and v can be arbitrarily large. However, the analysis of Algorithm 1 relies on
the fact that neighboring nodes have at least a similar notion of ∆.

Nevertheless, it can be shown that it is possible to estimate ∆ by essentially
taking the maximum degree in distance at most 2. In [81], we estimate the
maximum dynamic degree in this way. However, the nodes have to compute a
new estimate in every iteration of the outer for-loop. Here, we present a more
general approach. At the beginning, each node vi computes an estimate ∆̂(vi).

Apart from substituting ∆̂(vi) for ∆, we do not need to change anything in
Algorithm 1.

40 CHAPTER 2. COVERING AND PACKING PROBLEMS

Algorithm 2 Computing local estimates of a global maximum

1: Q̂(vi) := qi; si := q
(k−1)/k
i ;

2: for ℓ := k − 2 to 1 by −1 do
3: send si to all neighbors Γ(vi);
4: ti := maxvj∈Γ(vi) sj ;

5: if ti > Q̂(vi) then Q̂(vi) := ti fi;

6: si := t
ℓ/(ℓ+1)
i

7: od

To estimate ∆, we look at the following problem. Assume that we are given
a network graph G = (V, E). Each node vi ∈ V of G has some local value
qi ≥ 1. Let Q := maxi qi be the largest qi in the graph. Using a distributed
algorithm, every node vi wants to compute an estimate Q̂(vi) of Q such that

qi ≤ Q̂(vi) ≤ Q and such that for adjacent nodes vi and vj , the estimates differ
by a factor of at most Q1/k for an arbitrary integer k ≥ 1, that is,

(vi, vj) ∈ E =⇒ 1

Q1/k
≤ Q̂(vi)

Q̂(vj)
≤ Q1/k. (2.4)

Algorithm 2 shows how to compute estimates Q̂(vi) satisfying these conditions.
Let dG(u, v) be the distance between nodes u and v on G. The algorithm
computes

Q̂(vi) := max
j

(
q

k−dG(vi,vj)

k

j

)
(2.5)

in k − 1 rounds. The following theorem proves this and shows that these esti-
mates in fact fulfill the given conditions.

Theorem 2.6. Algorithm 2 computes estimates Q̂(vi) for Q as given by Equa-

tion (2.5). The estimates satisfy qi ≤ Q̂(vi) ≤ Q as well as Inequality (2.4).
Algorithm 2 terminates after k − 1 rounds.

Proof. In each iteration of the for-loop, one message is sent by every node.
Because there are k−1 iterations, the time complexity of the algorithm is k−1.
It remains to show qi ≤ Q̂(vi) ≤ Q. At the beginning Q̂(vi) = qi. If Q̂(vi) is

set to ti in Line 5, it is because ti > Q̂(vi) and hence Q̂(vi) ≥ qi. Since each si

and hence also each ti is smaller than qj for some j, we also have Q̂(vi) ≤ Q.
It remains to prove that the computed estimates satisfy Equation (2.5) and
therefore Inequality (2.4).

We first prove that Algorithm 2 really computes estimates as given by Equa-
tion (2.5) and then show that this implies Inequality (2.4). Let us call the for-
loop iteration for which ℓ = k − 1 − r the rth iteration. Let ti(r) be the value
ti computed in the rth iteration. We claim that

ti(r) = max
vj∈Γr(vi)

(
q

k−r
r

j

)
, (2.6)

2.2. DISTRIBUTED GREEDY DOMINATING SET ALGORITHM 41

where Γr(vi) is the set of all nodes vj with dG(vi, vj) ≤ r. From this, Equation

(2.5) follows. Note that if dG(vi, vj) ≥ k, q
(k−r)/k
j ≤ 1 ≤ qi ≤ Q̂(vi). Equation

(2.6) can be shown by induction on r. For r = 1, Equation (2.6) is clearly true.
For r > 1, we have

ti(r) = max
vj∈Γ(vi)

(
tj(r − 1)

ℓ+1
ℓ+2

)
= max

vj∈Γ(vi)

(
tj(r − 1)

k−r
k−r+1

)

= max
vj∈Γvi

(
max

vh∈Γr−1(vj)

(
q

k−r+1
k

h

) k−r
k−r+1

)
= max

vj∈Γr(vi)

(
q

k−r
r

j

)
.

It remains to be proved that Inequality (2.4) follows from Equation (2.5). For
the sake of contradiction, assume that there are adjacent nodes vi and vj for

which Q̂(vi)/Q̂(vj) > Q1/k. By Equation (2.5), there is some h for which

Q̂(vi) = q
(k−dG(vi,vh))/k
h . However, this means that Q̂(vj) ≥ q

(k−dG(vi,vh)−1)/k
h =

Q̂(vi)/q
1/k
h . This is a contradiction because qh ≤ Q.

We now assume that all nodes first apply Algorithm 2 and afterwards Algo-
rithm 1 to compute a solution for (LPDS). In Algorithm 1, every time ∆ occurs,

it is substituted by Q̂(vi). Both algorithms have a parameter k which can be
chosen arbitrarily. From here on, we denote them by k∆ for Algorithm 2 and by
k for Algorithm 1. For simplicity, we introduce α∆ := ∆1/k∆ for the maximal
ratio between the ∆-estimates of adjacent nodes. Lemma 2.7 is analogous to
Lemma 2.2.

Lemma 2.7. At the beginning of each iteration ℓ of the outer loop of Algorithm
1, that is at Line 3, the dynamic degree δ̃(vi) of each node vi is

δ̃(vi) ≤ (∆̂(vi) + 1)(ℓ+1)/k.

Proof. Same proof as for Lemma 2.2.

The following lemma corresponds to a combination of Lemmas 2.3 and 2.4.

Lemma 2.8. At the end of an iteration of the outer loop of Algorithm 1, that
is at Line 14,

yi ≤
α∆(∆ + 1)1/k

(∆̂(vi) + 1)ℓ/k

for all nodes vi ∈ V .

Proof. We again look at a single iteration of the outer loop and look at the same
two phases as in the proof of Lemma 2.4 (inner-loop iterations where vi remains
white and inner-loop iterations where vi becomes or is gray). If vi becomes gray
in the first inner-loop iteration, we have

yi ≤
∑

vj∈Γ+(vi)

1

(∆̂(vj) + 1)(k+ℓ−1)/k
≤

(
δ(vi) + 1

)
α∆

(∆̂(vi) + 1)(k+ℓ−1)/k
≤ α∆

(∆̂(vi) + 1)(ℓ−1)/k

42 CHAPTER 2. COVERING AND PACKING PROBLEMS

in analogy to Lemma 2.4. Now assume that vi does not become gray in the first
inner-loop iteration. Then, the y-values from phase 1 can be bounded as:

yi ≤
∑

vj∈Γ+(vi)

xj

(∆̂(vj) + 1)ℓ/k
≤ α∆

(∆̂(vi) + 1)ℓ/k
. (2.7)

Let us now look at the inner-loop iteration where vi becomes gray. Let Ai

denote the set of active nodes in Γ+(vi) during this m-loop iteration. At the
beginning of this inner-loop iteration, we have

∀vj ∈ Ai : xj ≥ 1

(∆̂(vj) + 1)(m+1)/k
and

∑

vj∈Ai

xj < 1. (2.8)

The value of yi is increased by y+
i as follows:

y+
i ≤

∑

j∈Ai

1

(b∆(vj)+1)m/k
− 1

(b∆(vj)+1)(m+1)/k

(∆̂(vj) + 1)ℓ/k

=
∑

j∈Ai

(
∆̂(vj) + 1

)1/k − 1

(∆̂(vj) + 1)(m+ℓ+1)/k
≤

∑

j∈Ai

(∆ + 1)1/k − 1

(∆̂(vj) + 1)(ℓ+m+1)/k

=
∑

j∈Ai

(∆+1)1/k−1

(b∆(vj)+1)ℓ/k

(∆̂(vj) + 1)(m+1)/k
<

(∆ + 1)1/k − 1

(∆̂(vj) + 1)ℓ/k
≤ α∆((∆ + 1)1/k − 1)

(∆̂(vi) + 1)ℓ/k
.

The second-to-last inequality follows from Inequality (2.8). Together with In-
equality (2.7), this proves the lemma.

For Algorithm 1 with locally estimated maximum degree, we then obtain
the following result.

Theorem 2.9. If vi uses ∆̂(vi) as computed by Algorithm 2 with parameter k∆

as an estimate for ∆, for all network graphs G Algorithm 1 computes a feasible
solution x for (LPDS) with approximation ratio

k(∆ + 1)2/k∆(∆ + 1)2/k.

The time complexity is k∆ + 2k2.

Proof. By Lemmas 2.7 and 2.8, the sum of the y-values in Γ(vi) of a single
iteration of the outer loop is

∑

vj∈Γ(vi)

yj ≤ (∆̂(vi) + 1)(ℓ+1)/kα∆(∆ + 1)1/k

(∆̂(vj) + 1)ℓ/k
≤ α2

∆(∆ + 1)2/k

= (∆ + 1)2/k∆(∆ + 1)1/k.

The rest of the proof is analogous to the proof of Theorem 2.5.

2.3. APPROXIMATING FRACTIONAL COVERING AND PACKING 43

2.3 Approximating General Fractional Covering and

Packing Problems

After describing a distributed algorithm for the MDS linear program (LPDS) in
Section 2.2, the goal of this section is to generalize the ideas of Algorithms 1
and 2 to get a distributed approximation scheme for (PP) and (DP). Similar to
Algorithm 1, which is based on the greedy dominating set algorithm (Section
2.2.1), the algorithm of this section is based on an extension of the greedy
algorithm which is described in the following.

2.3.1 Greedy Fractional Dominating Set Algorithm

The variant of the greedy algorithm discussed in this section has been presented
in [37, 134]. Instead of solving the MDS problem, the goal is to solve the cor-
responding LP (LPDS). We have seen that this is the only way to break the
Ω(log ∆) barrier for MDS unless NP ⊆ DTIME(nO(log log n)) [42]. How can we
modify the greedy algorithm to achieve a constant approximation or to even ob-
tain an approximation scheme for (LPDS)? The main idea is to cover each node
multiple times such that in the end each node is covered logarithmically often
and such that the dual LP (DPDS) is still satisfied up to a logarithmic factor.
Dividing all variables by the appropriate values then gives feasible solutions for
(LPDS) and (DPDS) with objective values differing by a constant factor only.

Each node vi is assigned a requirement ri which is initially set to 1. In each
step of the algorithm, the x-value of a node vi with maximum

ϕi :=
∑

vj∈Γ+(vi)

rj

is incremented by 1. The requirements of all nodes vj ∈ Γ+(vi) are then divided
by some given factor α > 1. If we have rj = α−f , we set rj := 0. There, f is a
positive integer which we will determine later. Hence, rj is 0 as soon as node vj

is covered f ≥ 1 times. The optimal values of α and f will be determined later.
As in the case of the greedy MDS algorithm, we construct a dual solution with
the same objective value along with the primal solution. If xi is incremented
by 1, for each neighbor vj ∈ Γ+(vi), the dual value yj is increased by rj/ϕi. By
the definition of ϕi, the sum of the dual increments is 1. Thus the objective
values of the primal and dual LPs remain the same in each step. The following
lemma gives an upper bound on the sum of the y-values in each neighborhood
Γ+(vi).

Lemma 2.10. At the end of the greedy fractional dominating set algorithm,
that is, when all rj = 0, we have

∀vi ∈ V :
∑

vj∈Γ+(vi)

yj ≤ α

α − 1
(ln ∆ + f lnα) .

44 CHAPTER 2. COVERING AND PACKING PROBLEMS

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

ϕ−
i

α−f ∆ ϕi

α
α−1 · 1

ϕi

Figure 2.2: Illustration of the increase Y +
i of Yi in a single step of the greedy

(PP)-algorithm. If ϕi is reduced by ϕ−
i , Yi is increased by Y +

i ≤ α
α−1

ϕ−
i

ϕi
. The

area of the dashed rectangle is equal this bound on Y +
i .

Proof. Let Yi :=
∑

vj∈Γ+(vi)
yj . We prove the lemma by analyzing the increase

of Yi as ϕi decreases. We therefore look at a single step in the algorithm where
some primal variable xℓ of vℓ is incremented by 1. Assume that there is a node
vj ∈ Γ+(vi)∩Γ+(vℓ) which is not yet covered f times. When xℓ is increased, the
requirement rj is divided by α or set to 0 and yj is increased by y+

j := rj/ϕℓ.

Let r−j be the decrease of rj , that is, r−j ≥ (1−1/α)rj. Because ϕℓ ≥ ϕi (greedy
condition), we have

y+
j =

rj

ϕℓ
≤ rj

ϕi
≤ α

α − 1
·
r−j
ϕi

.

By the definitions of Yi and ϕi, we therefore have

Y +
i ≤ α

α − 1
· 1

ϕi
· ϕ−

i (2.9)

where Y +
i and ϕ−

i are the increase and decrease of Yi and ϕi, respectively.
To understand Inequality (2.9), consider Figure 2.2 where the function α/(α −
1) · 1/ϕi is plotted against ϕi. If ϕi is decreased by ϕ−

i , the area of the dashed
rectangle in Figure 2.2 equals the upper bound on Y +

i given by Inequality (2.9).
As ϕi decreases, the increases Y +

i can be visualized as a series of rectangles
which all are below the α/(α − 1) · 1/ϕi curve. The sum of all Y +

i is therefore
upper-bounded by the area below this curve. As long as ϕi > 0, it cannot
get smaller than α−f because at least one requirement rj has to be non-zero.

2.3. APPROXIMATING FRACTIONAL COVERING AND PACKING 45

The final value of Yi is therefore upper bounded by

Yi ≤ α

α − 1

∫ δi

α−f

1

ϕi
dϕi ≤ α

α − 1

∫ ∆

α−f

1

ϕi
dϕi =

α

α − 1
(ln ∆ + f lnα) .

At the end of the algorithm, we divide all primal variables by the largest
possible factor keeping the primal solution feasible. All dual variables are di-
vided by the smallest value which makes the dual solution feasible. Because of
Lemma 2.10, dividing each dual variable by the given upper bound on Yi yields
a feasible dual solution. Further, the greedy (LPDS)-algorithm is designed such
that in the end each node is covered f times. We can therefore divide each
primal variable by f and still have a primal feasible solution. Combining both
observations, we can bound the ratio ρ between primal and dual objective values
and thus the achieved approximation ratio as follows:

ρ ≤ α(ln ∆ + f lnα)

(α − 1)f
≤ α +

α ln ∆

(α − 1)f
. (2.10)

The second inequality follows from lnα ≤ α − 1. For an arbitrary ε > 0, let
α = 1 + ε/2 and f = 4 ln∆/ε2. Plugging those values into Inequality (2.10)
gives ρ < 1 + ε. We therefore obtain the following theorem.

Theorem 2.11. Using appropriate values for α and f , for all ε > 0 the de-
scribed greedy fractional dominating set algorithm computes (1+ε)-approximate
solutions for (LPDS) and (DPDS). For constant ε, α ∈ O(1) and f ∈ O(log ∆).

2.3.2 The Distributed Algorithm

In analogy to turning the greedy dominating set algorithm into a distributed
algorithm in Section 2.2, the goal of this section is to transform the greedy
(LPDS)-algorithm of Section 2.3.1 into a distributed algorithm for general cov-
ering and packing LPs. For our algorithm, we need the LPs (PP) and (DP) to
be of the following special form:

∀i, j : bi = 1, ci ≥ 1, aij = 0 or aij ≥ 1. (2.11)

The transformation to Condition (2.11) is done in two steps. First, every aij

is replaced by âij := aij/bi and bi is replaced by 1. In the second step, the ci

and âij are divided by λi := minj{âji, ci} \ {0}. The optimal objective values
of the transformed LPs are the same. A feasible solution for the transformed
LP satisfying Condition (2.11) can be converted to a feasible solution of the
original LP by dividing all x-values by the corresponding λi and by dividing
the y-values by the corresponding bi. This conserves the values of the objective
functions. Note that the described transformation can be computed locally in
a constant number of rounds. For the rest of this section, we assume that the
coefficients of the LP are given according to Condition (2.11).

4
6

C
H

A
P

T
E

R
2
.

C
O

V
E

R
IN

G
A

N
D

P
A

C
K

IN
G

P
R

O
B

L
E

M
S

LP Approximation LP Approximation
Algorithm for Primal Node vp

i : Algorithm for Dual Node vd
i :

1: xi := 0; 1: yi := y+
i := wi := fi := 0; ri := 1;

2: for ep := kp − 2 to −f̂(vp
i) − 1 by −1 do 2: for ep := kp − 2 to −f̂(vd

i) − 1 by −1 do

3: for 1 to ĥ(vp
i) do 3: for 1 to ĥ(vd

i) do

4: (∗ ϕi :=
bC(vp

i
)

ci

∑
j ajirj ∗) 4: r̃i := ri;

5: for ed := kd − 1 to 0 by −1 do 5: for ed := kd − 1 to 0 by −1 do

6: ϕ̃i :=
bC(vp

i)

ci

∑
j ajir̃j ; 6:

7: if ϕ̃i ≥ Φ̂p(v
p
i)ep/kp then 7:

8: x+
i := 1/Φ̂d(v

p
i)ed/kd ; xi := xi + x+

i ; 8:

9: fi; 9:

10: send x+
i , ϕ̃i to dual neighbors; 10: receive x+

j , ϕ̃j from primal neighbors;

11: 11: y+
i := y+

i + r̃i

∑
j aijx

+
j /ϕ̃j;

12: 12: w+
i :=

∑
j aijx

+
j ;

13: 13: wi := wi + w+
i ; fi := fi + w+

i ;
14: 14: if wi ≥ 1 then r̃i := 0 fi;
15: receive r̃j from dual neighbors 15: send r̃i to primal neighbors
16: od; 16: od;
17: 17: increase duals();
18: receive rj from dual neighbors 18: send ri to primal neighbors
19: od 19: od
20: od; 20: od;
21: xi := xi/ minj∈Np

i

∑
ℓ ajℓxℓ 21: yi := yi/ maxj∈Nd

i

1
cj

∑
ℓ aℓjyℓ

Algorithm 3: Distributed LP Approximation Algorithm

2.3. APPROXIMATING FRACTIONAL COVERING AND PACKING 47

procedure increase duals():

1: if wi ≥ 1 then
2: if fi ≥ f̂(vd

i) then
3: yi := yi + y+

i ; y+
i := 0;

4: ri := 0; wi := 0
5: else if wi ≥ 2 then
6: yi := yi + y+

i ; y+
i := 0;

7: ri := ri/Φ̂p(v
d
i)⌊wi⌋/kp

8: else
9: λ := max{Φ̂d(v

d
i)1/kd , Φ̂p(v

d
i)1/kp};

10: yi := yi + min{y+
i , riλ/Φ̂p(v

d
i)ep/kp};

11: y+
i := y+

i − min{y+
i , riλ/Φ̂p(v

d
i)ep/kp};

12: ri := ri/Φ̂p(v
d
i)1/kp

13: fi;
14: wi := wi − ⌊wi⌋
15: fi

Before describing the distributed algorithm for (PP) and (DP), we take
another look at Algorithm 1 of Section 2.2.2. Algorithm 1 consists of two
nested loops. In a single iteration ℓ of the outer loop, only nodes with degree
at least (∆ + 1)ℓ/k increase their x-value. Further, the total increase of each
y-value obtained by dual fitting in a single iteration of the outer loop is at most
1/(∆+1)(ℓ−1)/k. Up to a factor of (∆+1)1/k, this is the y-value a node obtains
if a single neighbor of degree (∆ + 1)ℓ/k sets its x-value to 1 in the sequential
greedy MDS algorithm. Hence, from the dual point of view, one iteration of
the outer loop behaves like a single step of the greedy algorithm. Additionally,
in each outer loop iteration of Algorithm 1, the maximum degree decreases by
a factor of (∆ + 1)1/k (Lemma 2.2).

Algorithm 3 describes the distributed algorithm for (PP) and (DP). The
structure of the innermost loop (ed-loop) is similar to the structure of the in-
ner loop of Algorithm 1. We will see that analogous to the above discussion,
from a dual point of view, lines 4–18 of Algorithm 3 behave like a single step
of the greedy (LPDS)-algorithm described in the previous section. The code for
increasing the dual values in line 17 of Algorithm 3 is given by the procedure
increase duals(). Because in the greedy (PP)-algorithm of Section 2.3.1, in-
crementing an x-value by 1 only reduces the requirements of the neighboring
nodes by some factor, a single execution of lines 4–18 does not suffice to decrease
the highest ‘degree’ ϕi by a large enough factor. We therefore execute lines 4–18
several times (second loop of the three nested loops) before decreasing ep. Note
that similar to ℓ in Algorithm 1, ep characterizes the minimum ϕi a node must
have to be active (cf. line 7).

48 CHAPTER 2. COVERING AND PACKING PROBLEMS

value primal node vp
i dual node vd

i

Φp max
{
ρk/5, Φ̂p(v

p
i) by Algorithm 2

}
Φ̂p(v

d
i) = maxvp

j ∈Γ(vd
i) Φ̂p(v

p
j)

Φd Φ̂d(v
p
i) = maxvd

j ∈Γ(vp
i) Φ̂d(v

d
j) Φ̂d(v

d
i) by Algorithm 2

f f̂(vp
i) = maxvd

j ∈Γvp
i
f̂(vd

j)
⌈

kp+1

max{bΦp(vd
i)1/kp}−1

⌉

h ĥ(vp
i) :=

⌈
1 +

kp

bΦp(vp
i)1/kp ln(bΦp(vp

i))

⌉
ĥ(vd

i) = maxvp
j ∈Γ(vd

i) ĥ(vp
j)

C Ĉ(vp
i) by Algorithm 2 —

Table 2.1: Local estimates needed for Algorithm 3

Let us now take a closer look at the various variables occurring in Algo-
rithm 3. Clearly, each primal node vp

i needs a primal variable xi. Each dual
node vd

i stores its dual variable yi as well as the requirement ri. Additionally,
there are variables y+

i , fi, wi, and r̃i. The variable y+
i keeps track of all dual

increases which have not yet been added to yi. Note that yi is only updated
in increase duals(). During all kd iterations of the innermost loop, only y+

i

is increased. The variable fi records the number of times the dual node vd
i is

covered, that is, fi denotes the sum in the ith inequality of the primal LP. The
variable wi represents the part of fi for which the dual variable yi has not yet
been updated. In addition to ri, the dual node vd

i has a second requirement r̃i.
In line 4, r̃i is set to ri. As soon as the the lefthand side of the ith inequality of
the primal LP is increased by at least 1, r̃i is set to 0. As in the greedy fractional
dominating set algorithm, ϕi denotes the sum of the requirements rj of all dual
neighbors vd

j of a primal node vp
i . Because we consider arbitrary covering and

packing LPs, this sum is weighted by the coefficients aji of the linear program.
The variable ϕ̃i denotes the corresponding weighted sum for the requirements
r̃j .

In addition to the mentioned variables, there are global quantities Φp, Φd,

f , h, and C for which each node v stores estimates Φ̂p(v), Φ̂d(v), f̂(v), ĥ(v),

and Ĉ(v), respectively. The values C, Φp, and Φd are defined as follows:

C := max
i

ci, Φp := max
i

C

ci
·

n∑

j=1

aji, and Φd := max
i

m∑

j=1

aij .

Thus C denotes the maximal weight of the primal objective function, The val-
ues of Φp and Φd correspond to the largest degree ∆ in the dominating set
case. Because we consider arbitrary covering and packing LPs, Φp and Φd are
weighted sums of the coefficients of the LPs, that is, they are weighted versions
of the maximum primal and dual degrees ∆p and ∆d of the network graph.

2.3. APPROXIMATING FRACTIONAL COVERING AND PACKING 49

The values of f and h are defined as follows:

f :=

⌈
kp + 1

Φ
1/kp
p − 1

⌉
and h :=

⌈
1 +

kp

Φ
1/kp
p ln Φp

⌉
.

As in the fractional dominating set algorithm, f denotes the number of times
each primal inequality has to be fulfilled (number of times each dual node has
to be covered). The value h is the number of executions of lines 4–18 needed to

decrease the maximal ϕi by a factor of Φ
1/kp
p (see Lemma 2.13). The estimates

for Φp, Φd, f , h, and C are computed as given by Table 2.1. Note that for

the estimate Φ̂p(v
p
i) we have introduced a new parameter ρ > 1. For those

estimates which are computed by Algorithm 2, the nodes start the algorithm
with the following initial estimates:

Ĉ(vp
i) = ci, Φ̂p(v

p
i) =

Ĉ(vp
i)

ci

∑

j

aji, Φ̂d(v
d
i) =

∑

j

aij .

Note that the estimates for C have to be computed before estimating Φp. In
the following, we assume that when computing the estimates for Φp, Φd, and C,
the values for the parameter k in Algorithm 2 are kp, kd, and kc, respectively.
We denote the maximum ratio between the estimates of two primal or dual
nodes at distance 2 by αp, αd, and αc, respectively. By Theorem 2.6 and by the

definition of the estimates in Table 2.1, we have αp ≤ Φ
2/kp
p , αd ≤ Φ

2/kd

d , and
αc ≤ C2/kc . Let us now look at the new parameter ρ. Because the outer two
loops of Algorithm 3 are executed kp + f̂(v) and ĥ(v) times, the time complexity
of the algorithm depends linearly on the largest estimates fmax and hmax for f
and h, respectively. Without using ρ, for every k and Φp, fmax and hmax can
become arbitrarily large because the ratio between the smallest estimate for Φp

and Φp can get arbitrarily small in that case. For hmax, note that for small ε
ln(1 + ε) ≈ ε. The parameter ρ gives an upper bound on the maximal possible
estimates for f and h. We will see that the approximation ratio depends linearly
on ρ, that is, besides bounding the time complexity from above, ρ also bounds
the achievable approximation ratio from below. The maximal ratio between the
estimates for f of adjacent nodes is given by the following lemma.

Lemma 2.12. Let αf be the maximal ratio between the estimates for f of two
primal or dual nodes at distance 2. We have

αf ≤ Φ
2/k2

p
p +

Φ
1/kp
p − 1

kp + 1
+

Φ
2/k2

p
p − 1

ρ1/5 − 1
.

Proof. It suffices to look at two dual nodes vd
i and vd

j at distance 2. Let Ai :=

max{Φ̂p(v
d
i)1/kp} and Aj := max{Φ̂p(v

d
j)1/kp}. W.l.o.g., assume that Ai ≥ Aj .

We have
Ai

Aj
≤ Φ̂p(v

d
i)1/kp

Φ̂p(vd
j)1/kp

≤ α1/kp
p ≤ Φ

2/k2
p

p .

50 CHAPTER 2. COVERING AND PACKING PROBLEMS

The ratio between f̂(vd
j) and f̂(vd

i) now becomes

f̂(vd
j)

f̂(vd
i)

=

⌈
kp+1
Aj−1

⌉

⌈
kp+1
Ai−1

⌉ ≤
1 +

kp+1
Aj−1

kp+1
Ai−1

≤ Ai − 1

kp + 1
+

Φ
1/k2

p
p Aj − 1

Aj − 1

=
Ai − 1

kp + 1
+ Φ

2/k2
p

p +
Φ

2/k2
p

p − 1

Aj − 1
≤ Φ

1/kp
p − 1

kp + 1
+ Φ

2/k2
p

p +
Φ

2/k2
p

p − 1

ρ1/5 − 1
.

Before starting with the analysis of Algorithm 3, we need to make a remark
concerning the implementation of the algorithm. The algorithm is written in a
way which optimizes its readability. This causes imprecision in some formula-
tions. In particular, the number of iterations of the outer two for-loops depends
on the estimates of f and h, respectively. Hence, the number of iterations varies
for different nodes. However, we want neighboring nodes to simultaneously go
to the next outer loop iteration, that is, neighboring nodes should decrement
kp at the same time. We therefore have to locally synchronize the iterations
of different nodes. A node can start a new iteration of a for loop as soon as
all neighbors have finished their current iteration. To enhance readability, the
necessary control messages are left out in the formulation of Algorithm 3.

2.3.3 Analysis

After giving an overview, we now come to the analysis of Algorithm 3. In
the following, we prove a series of lemmas which finally lead to the desired
results about the approximation ratio and the time complexity of Algorithm
3. Analogously to Lemma 2.2 in Section 2.2.2, the first lemma gives an upper
bound on the ‘degree’ ϕi of a primal node vp

i .

Lemma 2.13. For each primal node vp
i , at all times during Algorithm 3,

ϕi ≤ Φ̂p(v
p
i)(ep+2)/kp .

Proof. We prove the lemma by induction over the iterations of the outermost
loop (ep-loop). For ep = kp − 2, the lemma follows from the definitions of ϕi,

Φ̂p(v
p
i), and rj .

To see how fast ϕi decreases, we have to look at the behavior of the inner-
most loop (ed-loop). The value of ϕi is Ĉ(vp

i)/ci times the weighted sum ajirj of
the requirements of all dual neighbors vd

j of vp
i . The variable ϕ̃i is the same sum

but only for the dual neighbors for which the corresponding primal inequality
has not been fulfilled since the last time increase duals() was called (wi < 1
and r̃i > 0). When increase duals() is called (i.e., after the last iteration of

the ed-loop), it holds that ϕ̃i < Φ̂p(v
p
i)ep/kp . If not, x+

i would have been set to 1
in the last ed-loop iteration (ed = 0). Because all aij ≥ 1 and all bj = 1, all dual

2.3. APPROXIMATING FRACTIONAL COVERING AND PACKING 51

neighbors vd
j of vp

i would then have wj ≥ 1 and therefore r̃j = 0 after the last

ed-loop iteration. Thus, if ϕ̃i ≥ Φ̂p(v
p
i)ep/kp before the last ed-loop iteration,

then ϕ̃i = 0 when increase duals() is called.

All dual nodes vd
j which set r̃j := 0 divide rj by at least Φ̂p(v

d
j)1/kp ≥

Φ̂p(v
p
i)1/kp while executing increase duals(). Therefore, after the call to in-

crease duals(), we have

ϕ′
i ≤ ϕ̃i +

ϕi − ϕ̃i

Φ̂p(v
p
i)1/kp

≤ Φ̂p(v
p
i)ep/kp +

ϕi − Φ̂p(v
p
i)ep/kp

Φ̂p(v
p
i)1/kp

,

where ϕi and ϕ′
i denote the values before and after executing increase duals(),

respectively. Before going to the next ep-loop iteration, the lines 4–18 are

executed ĥ(vp
i) times. By the induction hypothesis, ϕi ≤ Φ̂p(v

p
i)(ep+2)/kp before

the ĥ(vp
i) iterations of the inner part and therefore, after the ĥ(vp

i) iterations,
we have

ϕi ≤ Φ̂p(v
p
i)ep/kp +

Φ̂p(v
p
i)(ep+2)/kp − Φ̂p(v

p
i)ep/kp

Φ̂p(v
p
i)

bh(vp
i)/kp

. (2.12)

To prove the lemma, we have to show that the right-hand side of Inequality
(2.12) is at most Φ̂p(v

p
i)(ep+1)/kp . Dividing the right-hand side of Inequality

(2.12) and Φ̂p(v
p
i)(ep+1)/kp by Φ̂p(v

p
i)ep/kp , this results in

(
Φ̂p(v

p
i)1/kp − 1

)
·
(
Φ̂p(v

p
i)1/kp + 1

)
≤
(
Φ̂p(v

p
i)1/kp − 1

)
· Φ̂p(v

p
i)

bh(vp
i)/kp

which is true for

ĥ(vp
i) ≥

ln
(
Φ̂p(v

p
i)1/kp + 1

)

ln
(
Φ̂p(v

p
i)1/kp

) .

Because the logarithm is a concave function, we have ln(x + 1) ≤ ln(x) + 1/x
and therefore

ln
(
Φ̂p(v

p
i)1/kp + 1

)

ln
(
Φ̂p(v

p
i)1/kp

) ≤ 1 +
1

Φ̂p(v
p
i)1/kp ln

(
Φ̂p(v

p
i)1/kp

)

= 1 +
kp

Φ̂p(v
p
i)1/kp ln

(
Φ̂p(v

p
i)
) ≤ ĥ(vp

i)

by the definition of ĥ(vp
i).

Lemma 2.14. After line 12 of Algorithm 3, for each dual node vd
i , r̃i = 0 or

w+
i :=

∑

j

aijx
+
j ≤ αdΦ̂d(v

d
i)1/kd .

52 CHAPTER 2. COVERING AND PACKING PROBLEMS

Proof. For the sake of contradiction, assume that r̃i > 0 and w+
i > αdΦ̂d(v

d
i)1/kd .

Let w′+
i be the sum of the aijx

+
j of the preceding iteration of the ed-loop. All

primal variables which are increased in line 8 have also been increased in the
preceding iteration because the ϕ̃j of the primal neighbors of vd

i can only have
decreased. Therefore

w′+
i ≥

∑

j

aij

Φ̂d(v
p
j)1/kd

≥ w+
i

αdΦ̂d(vd
i)1/kd

> 1

which is a contradiction to r̃i > 0 because w′+
i > 1 implies that r̃i has been

set to 0 in the preceding iteration of the ed-loop. For the first iteration of the
ed-loop (ed = kd − 1), we have

w+
i =

∑

j

aijx
+
j =

∑

j

aij

Φ̂d(v
p
j)(kd−1)/kd

≤
∑

j aij

Φ̂d(vd
i)(kd−1)/kd

≤ Φ̂d(v
d
i)

Φ̂d(vd
i)(kd−1)/kd

,

which completes the proof. Note that by definition (Table 2.1), Φ̂d(v
p
j) ≥ Φ̂d(v

d
i)

if aij 6= 0.

Lemma 2.15. Each time a dual vd
i node enters procedure increase duals(),

the value y+
i can be bounded as follows:

y+
i ≤ αpri ·

wi

Φ̂p(vd
i)ep/kp

and y+
i ≤ αpri ·

αdΦ̂d(v
d
i)1/kd + 1

Φ̂p(vd
i)ep/kp

. (2.13)

Proof. We start by showing the left inequality. First, we prove that the condi-
tion can only be violated inside increase duals(). Outside, ri is not changed.
Further y+

i and wi are always increased simultaneously in lines 11 and 13. Be-

cause r̃i ≤ ri and ϕ̃j ≥ (αpΦ̂p(v
d
i))ep/kp , these increases do not violate Condition

(2.13). Decreasing ep only increases the right-hand side of the inequality and
therefore Condition (2.13) is not invalidated by this either.

Inside increase duals(), we consider the 3 cases wi < 1, 1 ≤ wi < 2, and
wi ≥ 2. If wi < 1, nothing happens and we are done. If wi ≥ 2 or fi ≥ f , y+

i

is set to 0 and hence Condition (2.13) trivially holds. The interesting case is
when 1 ≤ wi < 2.

We assume that Condition (2.13) holds before entering increase duals().
We define w′

i := wi −1 to be the fractional part of wi. Inside increase duals()

riλ/Φ̂p(v
d
i)ep/kp is subtracted from y+

i and ri is divided by Φ̂p(v
d
i)1/kp . Condi-

tion (2.13) is true after increase duals() if the following inequality holds (ri

before the division):

y+
i − riλ

Φ̂p(vd
i)ep/kp

≤ αpri
1 + w′

i − λ

Φ̂p(vd
i)ep/kp

≤ αpri

Φ̂p(vd
i)1/kp

w′
i

Φ̂p(vd
i)ep/kp

.

2.3. APPROXIMATING FRACTIONAL COVERING AND PACKING 53

This gives

λΦ̂p(v
d
i)1/kp − Φ̂p(v

d
i)1/kp − w′

iΦ̂p(v
d
i)1/kp + w′

i ≥
Φ̂p(v

d
i)2/kp − Φ̂p(v

d
i)1/kp − w′

iΦ̂p(v
d
i)1/kp + w′

i =
(
Φ̂p(v

d
i)1/kp − 1

)
·
(
Φ̂p(v

d
i)1/kp − w′

i

)
≥ 0,

which is true because λ ≥ Φ̂p(v
d
i)1/kp ≥ 1 and w′

i < 1.

To prove the right inequality of Condition (2.13), note that y+
i is only in-

creased in the ed-loop as long as wi < 1 before entering the loop. Otherwise, r̃i

would have been set to zero. The second inequality of the lemma now follows
from the first inequality and from Lemma 2.14.

Lemma 2.16. Let vp
i be a primal node and let Yi :=

∑
j ajiyj be the weighted

sum of the y-values of its dual neighbors. Further, let Y +
i be the increase of Yi

and ϕ−
i be the decrease of ϕi during an execution of increase duals(). We

have

Y +
i ≤ αpΦ̂p(v

p
i)3/kp · max{Φ̂p(v

p
i)1/kp , Φ̂d(v

p
i)1/kd}

ϕi(Φ̂p(v
p
i)1/kp − 1)

· ci

Ĉ(vp
i)

· ϕ−
i .

Proof. We prove the lemma by showing that the inequality holds for every dual
neighbor vd

j of vp
i . Let βj be the increase of yj and let r−j be the decrease of rj .

We show that

βj ≤ αpΦ̂p(v
d
i)1/kp · max{Φ̂p(v

p
i)1/kp , Φ̂d(v

p
i)1/kd}

Φ̂p(v
p
i)ep/kp(Φ̂p(v

p
i)1/kp − 1)

· r−j . (2.14)

The lemma then follows because ϕi ≤ Φ̂p(v
p
i)(ep+2)/kp (Lemma 2.13) and be-

cause

Y +
i =

∑

j

ajiβj and ϕ−
i =

Ĉ(vp
i)

ci

∑

j

ajir
−
j .

To prove Inequality (2.14), we again consider the cases where wj ≥ 2 and
where 1 ≤ wj < 2. If wj ≥ 2, by Lemma 2.15, βj = y+

j ≤ αprj(1 +

αdΦ̂d(v
p
i)1/kd)/Φ̂p(v

p
i)ep/kp . The requirement rj is divided by at least Φ̂p(v

p
i)2/kp

and therefore r−j ≥ rj(Φ̂p(v
p
i)2/kp − 1)/Φ̂p(v

p
i)2/kp . Together, we get

βj ≤ αpαd · 1 + Φ̂d(v
p
i)1/kd

Φ̂p(v
p
i)ep/kp

· Φ̂p(v
p
i)2/kp

Φ̂p(v
p
i)2/kp − 1

· r−j

≤
αpαd

(
1 + Φ̂p(v

p
i)1/kp

)
Φ̂p(v

p
i)1/kp max{Φ̂p(v

p
i)1/kp , Φ̂d(v

p
i)1/kd}

Φ̂p(v
p
i)ep/kp

(
Φ̂p(v

p
i)1/kp + 1

)(
Φ̂p(v

p
i)1/kp − 1

) r−j .

54 CHAPTER 2. COVERING AND PACKING PROBLEMS

Note that for all A, B ≥ 0, (1 + A)B ≤ (1 + B)max{A, B}. For 1 ≤ wj < 2,
the proof is along the same lines. Here,

βj ≤ αpαdrj max{Φ̂p(v
p
i)1/kp , Φ̂d(v

p
i)1/kd}/Φ̂p(v

p
i)ep/kp

and r−j = rj(Φ̂p(v
p
i)1/kp − 1)/Φ̂p(v

p
i)1/kp . Again, we obtain Inequality (2.14):

βj ≤ αpαd
max{Φ̂p(v

p
i)1/kp , Φ̂d(v

p
i)1/kd}

Φ̂p(v
p
i)ep/kp

· Φ̂p(v
p
i)1/kp

Φ̂p(v
p
i)1/kp − 1

· r−j .

We do not have to consider the case fj ≥ f̂(vd
j) explicitly because the same

analysis as for wj ≥ 2 applies in this case.

Lemma 2.17. Let vp
i be a primal node and let Yi =

∑
j ajiyj be the weighted

sum of the y-values of the dual neighbors of vp
i . After the main part of the

algorithm (i.e., after the loops at line 20),

Yi ≤ αpαd
ci

Ĉ(vp
i)

(kp + f̂(vp
i) + 1)Φ̂p(v

p
i)3/kp max

{
Φ̂p(v

p
i)1/kp , Φ̂d(v

p
i)1/kd

}
.

Proof. For simplicity, we define

Q :=
αpαd

Ĉ(vp
i)

Φ̂p(v
p
i)3/kp max{Φ̂p(v

p
i)1/kp , Φ̂d(v

p
i)1/kd}.

Before ϕi is decreased for the last time, we have ϕi ≥ 1/Φ̂p(v
p
i)(

bf(vp
i)−1)/kp

because at least one rj in the dual neighborhood of vp
i has to be greater than

0. If we assume that the last time ϕi is decreased, it is only reduced to ϕi =

1/Φ̂p(v
p
i)(

bf(vp
i)+1)/kp , Lemma 2.16 still holds. The analysis is exactly the same

as for the case wj ≥ 2 in Lemma 2.16. Using the same technique as for bounding
Yi in the analysis of the sequential greedy fractional dominating set algorithm
of Section 2.3.1, we can also bound Yi here. By Lemma 2.16, decreasing ϕi

by ϕ−
i enlarges Yi by Y +

i ≤ ciQ/(Φ̂p(v
p
i)1/kp − 1) · ϕ−

i /ϕi. The given upper
bound on Y +

i can be represented by the area of a rectangle as in Figure 2.2.
Analogously to the analysis of the sequential algorithm, we can upper-bound Yi

by the following integral.

Yi ≤ ciQ

Φ̂p(v
p
i)1/kp − 1

·
∫ bΦp(vp

i)

1

bΦp(v
p
i
)
(bf(v

p
i
)+1)/kp

1

x
dx

=
ciQ ln

(
Φ̂p(v

p
i)(kp+ bf(vp

i)+1)/kp

)

Φ̂p(v
p
i)1/kp − 1

=
ci(kp + f̂(vp

i) + 1)Q ln
(
Φ̂p(v

p
i)1/kp

)

Φ̂p(v
p
i)1/kp − 1

≤ ci(kp + f̂(vp
i) + 1)Q.

The last inequality follows from ln(1 + t) ≤ t.

2.3. APPROXIMATING FRACTIONAL COVERING AND PACKING 55

Lemma 2.18. At the end of Algorithm 3, we have for each dual node vd
i

ri = 0 and fi ≥ f̂(vd
i).

Proof. When entering the ep-loop for the last time, by Lemma 2.13,

Φ̂p(v
p
j)(−

bf(vp
j)+1)/kp ≥ ϕj ≥

∑

i

aijri ≥
∑

i∈Np
j

ri

for every primal node vp
j . The value of ϕj can only be greater than 0 if there

is exactly one ri in the dual neighborhood of vp
j which is greater than zero. If

ri is still greater than 0 when ed = 0, xj will be increased by 1, which makes
wj ≥ 1 and therefore ri = 0 after the next call to increase duals().

fi counts the number of times the ith constraint of (PP) is satisfied. It is
increased together with wi in line 13 of Algorithm 3. Every time the integer
part of wi is increased, ri is divided by Φ̂p(v

d
i)⌊wi⌋/kp and wi is set to wi −⌊wi⌋.

Therefore, ri = 0 implies fi ≥ f̂(vd
i).

To compare the objective functions of (PP) and (DP), we define y
(i)
j to be

the part of yj which is contributed by xi where vd
j and vp

i are neighbors in G.

Hence, each time xi is increased by x+
i , y

(j)
j is increased by ajir̃jx

+
i /ϕ̃i.

Lemma 2.19. After the main part of Algorithm 3 (i.e., after the loops at line
20), we have ∑

i|aji 6=0

y
(i)
j = yj and cixi = Ĉ(vp

i)
∑

j|aji 6=0

y
(i)
j .

Proof. We first prove the left equation. By Lemma 2.18, all y+
j are 0 in the end

and thus yj is equal to the sum of all increases of y+
j . It therefore suffices to

show that each time y+
j is increased in line 11,

∑
i y

(i)
j is increased by the same

amount. However, it follows from the above definition of y
(i)
j and by line 11 of

Algorithm 3 that yj and
∑

i y
(i)
j are both increased by r̃j

∑
i ajixi/ϕ̃i.

For the right equation, let vp
i be a primal node which increases xi by x+

i (line

8). All dual neighbors vd
j of vp

i increase y
(i)
j by y

(i)+
j := ajir̃jx

+
i /ϕ̃i. Hence,

∑

j|aji 6=0

y
(i)+
j =

x+
i

ϕ̃i

∑

j

ajir̃j = x+
i

∑
j ajir̃j

bC(vp
i)

ci

∑
j ajir̃j

=
ci

Ĉ(vp
i)

x+
i .

The lemma follows by summing over all increases x+
i of xi.

Lemma 2.20. Algorithm 3 approximates (PP) and (DP) by a factor of

αpαdαcα
2
fρΦ4/kp

p max
{
Φ1/kp

p , Φ
1/kd

d

}

56 CHAPTER 2. COVERING AND PACKING PROBLEMS

Proof. In line 21 of Algorithm 3, each primal node vp
i divides xi by the largest

possible number such that (PP) remains feasible and each dual node vd
j divides

yj by the smallest necessary number such that (DP) becomes feasible. Hence,
the solutions computed by Algorithm 3 are feasible. To obtain the approxima-
tion ratio of Algorithm 3, we have a closer look at the number by which the
x-values and the y-values are divided in line 21.

Let x′
i and y′

j be the values of xi and yj after line 21, respectively. The
corresponding values before line 21 are denoted by xi and yj , respectively. By
Lemma 2.17

yj

y′
j

≤ αpαd max
i|aji 6=0

(kp + f̂(vp
i) + 1)Φ̂p(v

p
i)3/kp max

{
Φ̂p(v

p
i)1/kp , Φ̂d(v

p
i)1/kd

}

Ĉ(vp
i)

≤ αpρ
3/5Φ3/kp

p max
{

ρ1/5Φ1/kp
p , Φ

1/kd

d

}
· max

i|aji 6=0

(
kp + f̂(vp

i) + 1

Ĉ(vp
i)

)
.

For simplicity, we define

γ := αpαdρ
3/5Φ3/kp

p max{ρ1/5Φ1/kp
p , Φ

1/kd

d }.

Each time an inequality of (PP) is satisfied during the execution of Algorithm
3, the value fj of the corresponding dual node vd

j is incremented by 1. In the

end, fj ≥ f̂(vd
j), that is, the jth inequality of (PP) is satisfied at least f̂(vd

j)
times. Hence, we have

xi

x′
i

≥ min
j|aji 6=0

f̂(vd
j) ≥ f̂(vp

i)

αf
.

Applying Lemma 2.19 and the obtained bounds on the ratios yj/y′
j and xi/x′

i,
we thus obtain

m∑

i=1

cix
′
i ≤ αf

m∑

i=1

cixi

f̂(vp
i)

= αf

m∑

i=1

Ĉ(vp
i)

f̂(vp
i)

∑

j|aji 6=0

y
(i)
j

≤ αfγ

m∑

i=1

Ĉ(vp
i)

f̂(vp
i)

∑

j|aji 6=0

max
i|aji 6=0

(
kp + f̂(vp

i) + 1

Ĉ(vp
i)

)
y
′(i)
j

≤ α2
fαcγ

m∑

i=1

kp + f̂(vp
i) + 1

f̂(vp
i)

∑

j|aji 6=0

y
′(i)
j

≤ α2
fαcγ

m∑

i=1

kp +
kp+1

bΦp(vp
i)1/kp−1

+ 1

kp+1
bΦp(vp

i)1/kp−1

∑

j|aji 6=0

y
′(i)
j

= α2
fαcγ

m∑

i=1

Φ̂p(v
p
i)1/kp

∑

j|aji 6=0

y
′(i)
j ≤ α2

fαcγρ1/5Φ1/kp
p

n∑

j=1

y′
j .

2.3. APPROXIMATING FRACTIONAL COVERING AND PACKING 57

Thereby, y
′(i)
j is defined as the contribution of x′

i to y′
i, that is, y

′(i)
j = y

(i)
j ·y′

j/yj.
Plugging in the definition of γ, we get

m∑

i=1

cix
′
i ≤ αpαdαcα

2
fρ4/5Φ4/kp

p max
{
ρ1/5Φ1/kp

p , Φ
1/kd

d

} n∑

j=1

y′
j ,

which concludes the proof.

Theorem 2.21. For arbitrary kp, kd, kc ≥ 1 and ρ > 1, Algorithm 3 approxi-
mates (PP) and (DP) by a factor of

ρ · C1/kc · Φ
O(1)
kp

p · Φ
1

kd

d ·

1 +

Φ
1/k2

p
p − 1

ρ1/5 − 1

 .

The time complexity of Algorithm 3 is

O

(
kc + kpkd

(
1 +

1

ρ1/5 − 1

)(
1 +

1

ρ1/5 log ρ

))
.

For constant ρ, this simplifies to O(kc + kpkd).

Proof. To obtain the time complexity of Algorithm 3, note that the number
of rounds is proportional to the number of iterations of the innermost loop
(ed-loop). Each iteration of the innermost loop takes two rounds. Hence, the
algorithm has time complexity O(kd(kp + fmax)hmax), where fmax and hmax

denote the largest estimates for f and h, respectively. By the definition of the
estimates for Φp, f , and h, we have

fmax ≤
⌈

kp + 1

ρ1/5 − 1

⌉
and hmax ≤

⌈
1 +

kp

ρ1/5 ln
(
ρkp/5

)
⌉

.

The approximation ratio directly follows from Lemmas 2.12 and 2.20.

Corollary 2.22. For sufficiently small ε (ε at most constant), Algorithm 3 com-
putes a (1+ε)-approximation for (PP) and (DP) in O(log C/ε+logΦp log Φd/ε4)
rounds. In particular, a constant factor approximation can be achieved in time
O(log C + log Φp log Φd).

Proof. We choose kc, kp, kd, and ρ such that C1/kc = Φ
1/kp
p = Φ

1/kd

d = ρ =
1 + ε′. By this, we get

kc =
log C

log(1 + ε′)
, kp =

log Φp

log(1 + ε′)
, and kd =

log Φd

log(1 + ε′)
.

For constant ε′, we then have kc = O(log C), kp = O(logΦp), and kd =
O(log Φd). For ε′ at most constant, first order Taylor approximation gives
ln(1 + ε′) ∈ Θ(ε′). We can therefore bound the expressions for kc, kp, and kd

58 CHAPTER 2. COVERING AND PACKING PROBLEMS

by kc ∈ O(log C/ε′), kp ∈ O(log Φp/ε′), and kd ∈ O log Φd/ε′). Let us now de-
termine the approximation ratio achieved by this choice of the parameters. We

first look at the term Φ
1/k2

p
p , which occurs in the last factor of the approximation

ratio of Theorem 2.21. There is a constant c such that

Φ
1/k2

p
p ≤ Φ

cε′2

ln2(Φp)

p = e
cε′2

ln Φp ≤ ecε′2 ∈ 1 + O(ε′2).

The approximation ratio therefore is

ρ · C1/kc · Φ
O(1)
kp

p · Φ
1

kd

d ·

1 +
Φ

1/k2
p

p − 1

ρ1/5 − 1

 ∈ 1 + O(ε′).

We can therefore choose ε ∈ O(ε′). The given time complexity is obtained
because

1

ρ1/5 − 1
∈ O

(
1

ε′

)
and

1

ρ1/5 ln ρ
∈ O

(
1

ε′

)
.

This concludes the proof.

Message Size: Algorithm 3 can be implemented such that all messages are of
size O(kc+kp+kd+logm+log n+log γ). Thus, as long as γ is at most polynomial
in m and n, messages are of size O(log n + 1/ε). If the algorithm is slightly
adapted, it is even possible to bound all messages by O(log n), independently
of γ and ε. Further, note that no node ever has to send two different messages
at the same time. In each round, all nodes can send the same message to all
neighbors. Therefore, Algorithm 3 really works in the CONGEST BC model as
claimed at the beginning of Chapter 2.

Dependence on Coefficients: Let amax := maxi,j{aij , bi, ci} be the largest
coefficient of (PP) and (DP). Analogously, amin := mini,j({aij , bi, ci} \ {0}) is
the smallest non-zero coefficient of (PP) and (DP). For γ := amax/amin, we have
C ≤ γ, Φp ≤ γ∆p, and Φd ≤ γ∆d. The time complexity of the above corollary
can hence be bounded by O((log γ + log ∆p log ∆d)/ε4). Consequently, running
time and approximation ratio are dependent on the values of the coefficients. It
is possible to get rid of this dependence by using methods which are described
in [17, 97].

Comparison to the Algorithm of [17]: Similarly to Algorithm 3, in [17] a lo-
cal approximation scheme for covering and packing LPs for the CONGEST BC

model has been presented. Besides using different techniques, Algorithm 3 dif-
fers from the algorithm of [17] in the following points. The algorithm of [17]
computes a (1 + ε)-approximation in time O(log2(γm) log(γmn/ε)/ε3), where
γ is defined as above. Hence, for constant ε our algorithm is faster by a factor

2.4. FAST ALGORITHM BASED ON NETWORK DECOMPOSITION 59

of Θ(log m). Further, Algorithm 3 allows to establish a trade-off between time
complexity T and approximation quality for all T , whereas the algorithm of [17]
has time complexity Ω(log2(γm)) independent of the achieved approximation
ratio.

2.4 A Fast Algorithm Based on

Network Decomposition

In [93], Linial and Saks presented a randomized distributed algorithm for a
weak-diameter network decomposition. We use their algorithm to decompose
the linear program into sub-programs which can be solved locally in the LOCAL
model. For a general graph G = (V , E) with n nodes and for each color of the
decomposition, the algorithm of [93] yields a subset S ⊆ V of V such that each
node u ∈ S has a leader ℓ(u) ∈ V and the following properties hold.1

1. ∀u ∈ S : d(u, ℓ(u)) < k

2. ∀u, v ∈ S : ℓ(u) 6= ℓ(v) =⇒ (u, v) 6∈ E .

3. S can be computed in k rounds.

4. ∀u ∈ V : Pr[u ∈ S] ≥ 1
en1/k .

Thereby, d(u, v) denotes the distance between two nodes u and v of G. We apply
the algorithm of [93] to obtain connected components of G with the following
properties.

(I) The components have small diameter.

(II) Different components are far enough from each other such that we can
define a local linear program for each component in such a way that the
LPs of any two components do not interfere.

(III) Each node belongs to one of the components with probability at least p,
where p depends on the diameter we allow the components to have.

Because of the limited diameter, the LPs of each component can then be com-
puted locally. We apply the decomposition process in parallel often enough such
that with high probability each node is selected a logarithmic number of times.
For the decomposition of (PP) and (DP), we define linear programs (PP′) and
(DP′) as follows. Let {y′

1, . . . , y
′
m′} be a subset of the dual variables of (DP) and

let x′
1, . . . , x

′
n′ be the primal variables which are adjacent to the given subset

of the dual variables. Further let (PP′) and (DP′) be LPs where the matrix A′

consists only of the columns and rows corresponding to the variables in x′ and
y′. The relation between the original LPs (PP) and (DP) and the LPs (PP′)

and (DP′) are given by the following lemma.

1We use p = 1/n1/k in the algorithm of Section 4 of [93]; the properties then directly
follow from Lemma 4.1 of [93].

60 CHAPTER 2. COVERING AND PACKING PROBLEMS

Algorithm 4 Covering/packing approximation in the LOCAL model

1: Run graph decomposition of [93] on G;
2: if v ∈ S then
3: send IDs of primal neighbors to ℓ(v).
4: fi;
5: if v = ℓ(u) for some u ∈ S then
6: compute local PLP/DLP (cf. Lemma 2.23)

of variables of u ∈ S for which v = ℓ(u).
7: send resulting values to nodes holding the

respective variables.
8: fi

Lemma 2.23. Every feasible solution for (PP′) makes the corresponding primal
inequalities in (PP) feasible and every feasible solution for (DP′) is feasible for
(DP) (variables not occurring in (PP′) and (DP′) are set to 0). Further, the
values of the objective functions for the optimal solutions of (PP′) and (DP′)
are smaller than or equal to the optimal values for (PP) and (DP).

Proof. The feasibilities directly follow from the definition of (PP′) and (DP′).
The optimal values for the objective functions of (PP′) and (DP′) are smaller
than the optimal values for (PP) and (DP) because of the (DP)-feasibility of a
dual feasible solution for (DP′).

We call (PP′) and (DP′) the sub-LPs induced by the subset {y′
1, . . . , y

′
m′} of

dual variables. We apply the graph decomposition algorithm of [93] to obtain
(PP′) and (DP′) (as in Lemma 2.23) which can be solved locally.

For the decomposition of the linear program, we define G such that the node
set V is the set of dual nodes of the graph G and the edge set E is

E :=
{
(u, v)

∣∣u, v ∈ V ∧ dG(u, v) ≤ 4
}

.

By this, we can guarantee that non-adjacent nodes in G do not have neighboring
primal nodes in G whose variables occur in the same constraint of (PP). Further,
a message over an edge of G can be sent in 4 rounds on the network graph G.
The basic algorithm for a dual node v to approximate (PP) and (DP) is then
given by Algorithm 4.

The primal nodes only forward messages in Steps 1, 3, and 7 and receive
the values for their variables in Step 7. We now take a closer look at the lo-
cally computed LPs in Line 6. By Property (II) of the graph decomposition
algorithm, dual variables belonging to different local LPs cannot occur in the
same dual constraint (otherwise, the according dual nodes would have to be
neighbors in G). The analogous fact holds for primal variables since dual nodes
belonging to different local LPs have distance at least 6 on G and thus primal

2.4. FAST ALGORITHM BASED ON NETWORK DECOMPOSITION 61

nodes belonging to different local LPs have distance at least 4 on G. Therefore,
the local LPs do not interfere and together they form the sub-LPs induced by
S (cf. Lemma 2.23).

The complete LP approximation algorithm now consists of N independent
parallel executions of the described basic algorithm. The variables of the N
sub-LPs are added up and in the end, primal/dual nodes divide their variables
by the maximum/minimum possible value to keep/make all constraints they
occur in feasible. Therefore, the primal and dual variables xi and yj are divided
by minj∈Ni

1
bj

∑
ℓ ajℓxℓ and maxi∈Nj

1
ci

∑
ℓ aℓiyℓ, respectively. The following

theorem states how N must be chosen such that the obtained approximation
ratio is optimized.

Theorem 2.24. Let N = αen1/k lnn for α ≈ 4.51. Executing the basic algo-
rithm N times, summing up the variables of the N executions and dividing these
sums as described, yields an αen1/k approximation of (PP) and (DP) with high
probability. The algorithm needs O(k) rounds to complete.

Proof. We begin the proof with the running time. The N executions can be
performed completely in parallel and we therefore focus on one instance of the
basic algorithm. By Property (I), the topology collecting and variable distribu-
tion in Lines 3 and 7 can be performed in O(k) time. The same holds for the
graph decomposition in Line 1 by Property (III).

For the approximation ratio, we have to bound the ratio of the factors by
which the primal and the dual variables are divided in the end. By Lemma
2.23, the dual variables of each of the N sub-LPs constitute a feasible solution
for (DP). Therefore, the sums of the dual variables of the sub-LPs have to be
divided by at most N to obtain a feasible solution for (DP). For the primal
variables, we have to count the number of occurrences in sub-LPs for each primal
constraint. This is lower-bounded by the number of times each primal node has
been chosen to be in S. By Property (IV), for each primal node the probability
in each of the N executions is at least 1/(en1/k). We use Chernoff bounds to
obtain an upper bound on the probability that the primal node v occurs in less
than lnn sub-LPs. Let X denote the number of times v is chosen by the graph
decomposition algorithm:

Pr[X < lnn] <

(
α1/α

e1−1/α

)α ln n

=
elnα lnn

e(α−1) ln n

=
1

nα−1−lnα
<

1

n2

for α > 4.51. Thus, with probability at least 1 − 1/n all primal variables can
be divided by lnn.

Corollary 2.25. Using the network decomposition algorithm of [93], in O(k)
rounds, (PP) and (DP) can be approximated by a factor of O(n1/k) with high
probability in the LOCAL model. For k ∈ Θ(log n), this gives a constant factor
approximation in O(log n) rounds.

62 CHAPTER 2. COVERING AND PACKING PROBLEMS

Algorithm 5 Distributed Randomized Rounding: Covering Problems

1: if xi ≥ 1/(λ ln∆p) then
2: x′

i := ⌈xi⌉;
3: else
4: pi := xi · λ ln ∆p;
5: x′

i := 1 with prob. pi and 0 otherwise;
6: fi;

2.5 Randomized Rounding:
Turning a Fractional into an Integer Solution

In this section, we show how to use the algorithms of Sections 2.2, 2.3, and 2.4 to
solve the MDS problem or another combinatorial covering or packing problem.
Hence, we show how to turn a fractional covering or packing solution into an
integer one by a distributed rounding algorithm. In particular, we give an
algorithm for integer covering and packing problems with matrix elements aij ∈
{0, 1} and where the components of the solution vectors are restricted to integers
(i.e., x′ ∈ N

m and y′ ∈ N
n). The solution vectors for the integer program are

denoted by x′ and y′ whereas the solution vectors for the corresponding LPs
are called x and y.

We start with covering problems (problems of the form of (PP)). Because
the aij and the xi are restricted to integer values, w.l.o.g. we can round up all
bj to the next integer value. After solving/approximating the LP, each primal
node vp

i executes Algorithm 5. The value of the parameter λ will be determined
later.

The expected value of the objective function is E[cTx′] ≤ λ ln ∆p · cTx. Yet
regardless of how we choose λ, there remains a non-zero probability that the
obtained integer solution is not feasible. To overcome this, we have to increase
some of the x′

i. Assume that the jth constraint is not satisfied. Let aj be the

row vector representing the jth row of the matrix A and let b′j := bj − aix
′ be

the missing weight to make the jth row feasible. Further, let ijmin be the index
of the minimum ci for which aji = 1. We set x′

ijmin
:= x′

ijmin
+b′j. Applied to all

non-satisfied primal constraints, this gives a feasible solution for the considered
integer covering problem.

Theorem 2.26. Let (IP) be an integer covering problem with aij = {0, 1},
bj ∈ N, and x′

i ∈ N. Furthermore, let x be an α-approximate solution for the
LP relaxation (PP) of (IP). The described algorithm computes an O(α log ∆p)-
approximation x′ for (IP) in a constant number of rounds.

Proof. As stated above, the expected approximation ratio of the first part of the
algorithm is λ ln ∆p. In order to bound the additional weight of the second part,
where x′

ijmin
is increased by b′j , we define dual variables ỹj := b′jcijmin

/bj . For

each unsatisfied primal constraint, the increase cijmin
b′j of the primal objective

2.5. RANDOMIZED ROUNDING 63

Algorithm 6 Distributed Randomized Rounding: Packing Problems

1: if yi ≥ 1 then
2: y′

i := ⌊yi⌋;
3: else
4: pi := 1/(2e∆d);
5: y′

i := 1 with probability pi and 0 otherwise;
6: fi;
7: if y′

i ∈ ‘non-satisfied constraint’ then
8: y′

i := ⌊yi⌋;
9: fi

function is equal to the increase bj ỹj of the dual objective function. If the jth

constraint is not satisfied, we have b′j ≥ 1. Therefore, E[ỹj] ≤ qjcijmin
, where qj

is the probability that the jth primal inequality is not fulfilled.
In order to get an upper bound on the probability qj , we have to look at the

sum of the x′
i before the randomized rounding step in Line 5 of the algorithm.

Let βj := bi − aix
′ be the missing weight in row j before Line 5. Because

the x-values correspond to a feasible solution for the LP, the sum of the pi

involved in row j is at least βjλ ln ∆p. For the following analysis, we assume
that ln ∆p ≥ 1. If ln ∆p < 1, applying only the last step of the described
algorithm gives a simple distributed 2-approximation for the considered integer
program. Using the Chernoff bound of Theorem 1.2, we can bound qj :

qj < e
− 1

2βjλ ln∆p(1− 1
λ ln ∆p

)2 ≤
(

1

∆p

) 1
2λ(1− 1

λ)2

≤ 1

∆p
.

In the second inequality, we use that βj ≥ 1. For the last inequality, we have
to choose λ such that λ(1− 1/λ)2/2 ≥ 1 (i.e., λ ≥ 2 +

√
3). Thus, the expected

value of ỹj is E[ỹj] ≤ cijmin
/∆p. Hence, by definition of cijmin

, in expectation
the ỹ-values form a feasible solution for (DP). Therefore, the expected increase
of the objective function cTx′ in the last step after the randomized rounding is
upper-bounded by the objective function of an optimal solution for (PP).

Combining Algorithms 3 and 5, we obtain an O(log2 ∆)-approximation for
MDS in the CONGEST BC model. By applying Algorithm 4 for solving the
linear program (LPDS), the same result is achieved in O(log n) rounds in the
LOCAL model.

We now turn our attention to integer packing problems. We have an integer
program of the form of (DP) where all aij ∈ {0, 1} and where y′ ∈ N

n. We
can w.l.o.g. assume that the cj are integers because rounding down each cj to
the next integer has no influence on the feasible region. Each dual node vd

i

applies Algorithm 6. Clearly, this yields a feasible solution for the problem.
The approximation ratio of the algorithm is given by the next theorem.

64 CHAPTER 2. COVERING AND PACKING PROBLEMS

Theorem 2.27. Let (PIP) be an integer covering problem with aij = {0, 1},
cj ∈ N, and y′

i ∈ N. Furthermore, let y be an α-approximate solution for the LP
relaxation of (PIP). The given algorithm computes an O(α∆d)-approximation
y′ for (PIP) in a constant number of rounds.

Proof. After Line 6, the expected value of the objective function is bTy′ ≥
bTy/(2e∆d). We will now show that a non-zero y′

i stays non-zero with constant

probability in Line 8. Let qj be the probability that the jth constraint of the
integer program is not satisfied given that y′

i has been set to 1 in Line 5. For
convenience, we define Y ′

j :=
∑

i aijy
′
i. If cj ≥ 2, we apply the Chernoff bound

of Theorem 1.3:

qj = Pr
[
Y ′

j > cj

∣∣ y′
i = 1

]
≤ Pr

[
Y ′

j > cj − 1
]

<

(
ee∆d−1

(e∆c)e∆d

)cj/(2e∆d)

<
1

∆d
.

If cj = 1, we get

qj ≤ 1 − Pr
[
Y ′

j = 0
]

= 1 −
∏

vd
i ∈Γ(vp

j)

(1 − pi)

≤ 1 −
(

1 − 1

2e∆d

)
=

1

2e∆d
.

The probability that all dual constraints containing y′
i are satisfied is lower-

bounded by the product of the probabilities for each constraint [124]. Therefore,
under the natural assumption that ∆d ≥ 2:

Pr[y′
i = 1 after Line 8] ≥

(
1 − 1

∆d

)∆d

≥ 1

4
.

Thus the expected value of the objective function of the integer program (PIP)
is

E[bTy′] ≥ 8e∆d · bTy.

2.6 Connected Dominating Sets

One of the applications of the MDS problem which we discussed in Section
1.1.1 is clustering in ad hoc or sensor networks. In particular, we have seen
that clustering helps to improve routing algorithms in such networks. However
to apply clustering for routing, we usually need clusters to be connected. The
resulting routing backbone then is a connected dominating set. Formally, a
connected dominating set is a subset S ⊆ V of the nodes of a graph G = (V, E)
such that S is a dominating set and such that the subgraph of G induced by

2.6. CONNECTED DOMINATING SETS 65

S is connected. The goal of the minimum connected dominating set (MCDS)
problem is to find a connected dominating set of minimal size. In this section,
we study the distributed complexity of the MCDS problem. For the LOCAL
model, we show almost matching upper and lower bounds.

2.6.1 Upper Bound

Our distributed MCDS approximation algorithm consists of two phases. First,
we compute a normal dominating set using an arbitrary distributed MDS al-
gorithm. In the second phase, we turn the dominating set D obtained in the
first phase into a connected dominating set D′ by adding additional nodes to
D. The following lemma shows how successful such an approach can be.

Lemma 2.28. Let G = (V, E) be a connected graph and let DSOPT and CDSOPT

be the sizes of optimal dominating and connected dominating sets of G. We have

CDSOPT < 3 · DSOPT.

Moreover, every dominating set D of G can be turned into a connected domi-
nating set D′ ⊇ D of size |D′| < 3|D|.

Proof. Given G and D, we define a graph GD = (VD, ED) as follows. The nodes
of GD are the nodes of the dominating set, that is, VD = D. There is an edge
(u, v) ∈ ED between u, v ∈ D if and only if dG(u, v) ≤ 3. We first show that GD

is connected. For the sake of contradiction assume that GD is not connected.
Then there is a cut (S, T) with S ⊆ D, T = D \ S, and S, T 6= ∅ such that

∀u ∈ S, ∀v ∈ T : dG(u, v) ≥ 4. (2.15)

Let u ∈ S and v ∈ T be such that

dG(u, v) = min
u∈S,v∈T

(dG(u, v)). (2.16)

By Inequality (2.15), there is a node w ∈ V with dG(u, w) ≥ 2 and dG(v, w) ≥ 2
on each shortest path connecting u and v. Because of Equation (2.16), we have
that

∀u ∈ S, ∀v ∈ T : dG(u, w) ≥ 2 ∧ dG(v, w) ≥ 2.

However this is a contradiction to the assumption that D = S∪T is a dominating
set of G.

We can now construct a connected dominating set D′ as follows. We first
compute a spanning tree of GD. For each edge (u, v) of the spanning tree,
we add at most two nodes such that u and v become connected. Because the
number of edges of the spanning tree is |D| − 1, this results in a connected
dominating set of size at most 3|D| − 2.

66 CHAPTER 2. COVERING AND PACKING PROBLEMS

Algorithm 7 Computing a sparse connected subgraph

1: G′ := G;
2: collect complete k-neighborhood;
3: for all adjacent edges e do
4: if weight we of e is largest in any cycle of length ≤ 2k then
5: remove e from G′

6: fi
7: od

For the sequential case, the proof of Lemma 2.28 describes a simple algorithm
to obtain a connected dominating set of size less than 3|D|. Unfortunately, for
a local, distributed algorithm, it is not possible to compute a spanning tree
of GD. Nevertheless, a similar approach also works for distributed algorithms.
Instead of computing a spanning tree of GD, it is sufficient to compute any
sparse spanning subgraph of GD. If the number of edges of the subgraph of GD

is linear in the number of nodes |D| of GD, we obtain a connected dominating
set S′ which is only by a constant factor larger than D.

We therefore look at the following problem. Given a graph G = (V, E) with
|V | = n, we want to compute a spanning subgraph G′ of G with a minimal
number of edges. For an arbitrary k ≥ 1, Algorithm 7 shows how to compute
such a spanning subgraph in k rounds in the LOCAL model. For the algorithm,
we assume that all edges e = (u, v) of G have a unique weight we and that there
is a total order on all edge weights. If there is no natural edge weight, such a
weight can for example be constructed by taking the ordered pair of the IDs
of the nodes u and v. Two weights can be compared using the lexicographic
order. The following lemma shows that Algorithm 7 indeed computes a sparse
connected subgraph G′ of G.

Lemma 2.29. For every n-node connected graph G = (V, E) and every k,
Algorithm 7 computes a spanning subgraph G′ = (V, E′) of G for which the
number of edges is bounded by |E′| ≤ n1+O(1/k).

Proof. We first prove that the produced G′ is connected. For the sake of con-
tradiction, assume that G′ is not connected. Then, there must be a cut (S, T)
with S ⊆ V , T = V \ S, and S, T 6= ∅ such that S × T ∩ E′ = ∅. However,
since G is connected, there must be an edge e ∈ S × T ∩ E crossing the given
cut. Let e be the edge with minimal weight among all edges crossing the cut.
Edge e can only be removed by Algorithm 7 if it has the largest weight of all
edges in some cycle. However, all cycles containing e also contain another edge
e′ crossing the (S, T)-cut. By definition of e, we′ > we and therefore, e is not
deleted by the algorithm.

Let us now look at the number of edges of G′. Because in every cycle of
length at most 2k at least one edge is removed by Algorithm 7, G′ has girth
g(G′) ≥ 2k + 1. The lemma therefore follows by Theorem 1.1.

2.6. CONNECTED DOMINATING SETS 67

We can therefore formulate a k-round MCDS algorithm for the LOCAL
model consisting of the following three phases. First, a fractional dominating
set is computed using Algorithm 4. Second, we use the randomized rounding
scheme given by Algorithm 5 to obtain a dominating set D. Finally, Algorithm
7 is applied to GD. For each edge (u, v) of the produced spanning subgraph of
GD, we add the nodes (at most 2) of a shortest path connecting u and v on
G to D. Note that a k-round algorithm on GD needs at most 3k rounds when
executed on G. The achieved approximation ratio is given by the following
theorem.

Theorem 2.30. In O(k) rounds, the above described MCDS algorithm com-
putes a connected dominating set of expected size

O
(
CDSOPT · nO(1/k) · log ∆

)
.

Proof. Given the dominating set D, the number of nodes of the connected
dominating set D′ can be bounded by

|D′| ≤ 3|D|1+O(1/k) ≤ 3|D|nO(1/k)

and therefore

E [|D′|] ≤ 3E [|D|] nO(1/k). (2.17)

Using Theorems 2.24 and 2.26, it follows that the expected size of the dominat-
ing set D is

E [|D|] ∈ O
(
DSOPTnO(1/k) log ∆

)
.

Plugging this into Inequality (2.17) completes the proof.

2.6.2 Lower Bound

After proving an upper bound on the time-approximation trade-off for the
MCDS problem in Theorem 2.30, we will now show how to bound this trade-off
from below. In particular, we will show that the described transformation of a
dominating set into a connected dominating set is asymptotically optimal and
that the upper bound of Theorem 2.30 is tight up to factors of O(log ∆) and
O(1) for the approximation ratio and the time complexity, respectively. The
formal statement is given by the following theorem.

Theorem 2.31. Consider a (possibly randomized) k-round algorithm for the
MCDS problem. There are graphs for which every such algorithm computes a
connected dominating set S of size at least

|S| ≥ nΩ(1/k) · CDSOPT,

where CDSOPT denotes the size of an optimal connected dominating set.

68 CHAPTER 2. COVERING AND PACKING PROBLEMS

u

v

e

u

v

v

ue

e

Figure 2.3: Graph transformation used for the distributed minimum connected
dominating set lower bound

Proof. By Theorem 1.1, there exists a graph G = (V, E) with girth g(G) ≥
(2k + 1)/3 and number of edges |E| = n1+Ω(1/k), where n = |V |. From G, we
construct a graph G′ as follows. For every edge e = (u, v) ∈ E, we generate
additional nodes ue and ve. In G′, there is an edge between u and ue, between
ue and ve, and between v and ve. Note that there is no edge between u and v
anymore. The described transformation is illustrated by Figure 2.3. We denote
the set of all new nodes by W and the number of nodes of G′ by N = |V ∪W |.

By the definition of G′, the nodes in V form a dominating set of G′. Hence,
an optimal connected dominating set on G′ has size less than 3|V | by Lemma
2.29. Note that the construction described in Lemma 2.29 actually computes a
spanning tree T on G and adds all nodes ue, ve ∈ W to the dominating set for
which (u, v) is an edge of T . To bound the number of nodes in the connected
dominating set of a distributed algorithm, we have a closer look at the locality
properties of G′. Because g(G) ≥ (2k + 1)/3, the girth of G′ is g(G′) ≥ 2k + 1.
This means that in k communication rounds it is not possible to detect a cycle
of G′. Hence, no node can locally distinguish G′ from a tree. However, since
on a tree all edges are needed to keep a connected graph, a k-round algorithm
removing an edge from G′ cannot guarantee that the resulting topology remains
connected. This means that the connected dominating set of every k-round
algorithm must contain all nodes V ∪ W of G′. The approximation ratio of
every distributed k-round MCDS algorithm on G′ is therefore bounded by

|V ∪ W |
3|V | =

nΩ(1/k)

3n
= nΩ(1/k) = N(1− 1

k+Ω(1))Ω(1/k) = NΩ(1/k).

2.7. RANDOMIZATION 69

2.7 Randomization

While discussing the LOCAL model in Section 1.3, we saw that randomization
plays a crucial role in distributed algorithms. For many problems such as com-
puting an MIS, there are simple and efficient randomized algorithms. For the
same problems, the best deterministic algorithms are much more complicated
and usually significantly slower. In this section, we discuss two randomization
issues arising in distributed covering, packing and similar problems.

2.7.1 Distributed ‘Derandomization’

The most important use of randomization in distributed algorithms is breaking
symmetries. In Section 2.1.2, we have described that LP relaxation can be used
to ‘avoid’ symmetry breaking. Can we also avoid randomness if we compute a
fractional instead of an integer solution? In the following, we show that this is
indeed the case even for general linear programs.

Assume that we are given a randomized distributed k-round algorithm A
which computes a solution for an arbitrary linear program P . We assume that
A explicitly solves P such that w.l.o.g. we can assume that each variable xi of P
is associated with a node v which computes xi. We also assume that A always
terminates with a feasible solution. The following theorem shows that A can
be derandomized.

Theorem 2.32. In the LOCAL model, algorithm A can be transformed into
a deterministic k-round algorithm A′ for solving P . The objective value of the
solution produced by A′ is equal to the expected objective value of the solution
computed by A.

Proof. We first show that in the LOCAL model, for the node computing the
value of variable xi, it is possible to deterministically compute the expected
value E [xi]. We have seen that in the LOCAL model every deterministic k-
round algorithm can be formulated as follows. First, every node collects all
information up to distance k. Then, each node computes its output based
on this information. The same technique can also be applied for randomized
algorithms. First, every node computes all its random bits. Collecting the
k-neighborhood then also includes collecting the random bits of all nodes in
the k-neighborhood. However, instead of computing xi as a function of the
collected information (including the random bits), we can also compute E [xi]
without even knowing the random bits.

In algorithm A′, the value of each variable is now set to the computed ex-
pected value. By linearity of expectation, the objective value of A′’s solution is
equal to the expected objective value of the solution of A. It remains to prove
that the computed solution is feasible. For the sake of contradiction, assume
that this is not the case. Then, there must be an inequality of P which is
not satisfied. By linearity of expectation, this implies that this inequality is not

70 CHAPTER 2. COVERING AND PACKING PROBLEMS

satisfied in expectation for the randomized algorithm A. Therefore, there is a
non-zero probability that A does not fulfill the given inequality, a contradiction
to the assumption that A always computes a feasible solution.

Theorem 2.32 implies that Algorithm 4 could be derandomized to determin-
istically compute an O(n1/k)-approximation for (PP) and (DP) in O(k) rounds.
It also means that in principle every distributed dominating set algorithm (e.g.
[69, 118] could be turned into a deterministic fractional dominating set algo-
rithm. Hence, when solving integer linear programs in the LOCAL model,
randomization is only needed to break symmetries. Note that this is really a
property of the LOCAL model and only true as long as there is no bound on
message sizes and local computations. Obviously, the technique described in
Theorem 2.32 can drastically increase message sizes and local computations of
a randomized distributed algorithm.

2.7.2 Deterministic Symmetry Breaking

In the last section, we have seen that no randomness is needed for solving a
linear program in the LOCAL model. However, if we need to solve an integer
LP, we still have to convert the fractional solution into an integer one. This
rounding is usually done by a randomized algorithm as described in Section
2.5 for covering and packing problems. Similar to the problems discussed in
Section 1.3, exploring the potential of deterministic rounding algorithms is a
fascinating open problem. In the non-distributed setting, randomized rounding
of covering and packing problems can be derandomized using the method of
conditional probabilities [104, 117, 124]. Given a (χ, d)-decomposition, these
techniques can in principle be applied in the distributed setting. In time O(χd),
it is possible to deterministically achieve results similar to the ones of Theorems
2.26 and 2.27.

Taking a detailed look at deterministic symmetry breaking algorithms (e.g.
[9, 33, 55, 91, 108]), it turns out that all those algorithms make extensive usage of
the structure of the ID space. In fact, the number n occurring in the complexity
measures of those algorithms actually represents the size of the ID space and
not the number of nodes. The following observation shows that it is indeed
necessary to exploit some of the structure of the ID space. Assume that nodes
have unique IDs and that there is a global order on all IDs. We allow nodes
to compare two IDs with respect to this order, however, we assume that nodes
are not able to perform any other operation involving IDs. Given such a strong
model, it is not possible to deterministically break symmetries. As an example,
consider computing an MIS of a ring. Note that if IDs are numbers from 1
to N , we can deterministically compute such an MIS in time O(log∗ N) [33].
However, if we can only compare IDs, it is not possible to deterministically
compute an MIS on a ring in a small number of rounds. Assume that except for
the smallest ID which follows the largest one, the nodes of the ring are labeled in
increasing order. Each k-neighborhood which does not contain the largest and

2.7. RANDOMIZATION 71

the smallest ID consists of an increasing sequence of IDs. Therefore, for small
enough k, in a k-round algorithm, almost all nodes have the same local view.
In a deterministic algorithm, they all have to decide in the same way which is
not possible if they have to compute an MIS. A similar argument also works for
MDS approximation algorithms. Instead of a regular ring, we consider a ring
where every node is adjacent to the next δ nodes to the left and to the right.
Again, if IDs are assigned in increasing order, almost all nodes have the same
view resulting in a dominating set consisting of almost all nodes.

72 CHAPTER 2. COVERING AND PACKING PROBLEMS

Chapter 3

Lower Bounds for Distributed
Problems

After exploring upper bounds for covering and packing problems in Chapter 2,
the goal of this chapter is to find lower bounds on the possible time approx-
imation trade-offs for covering and packing problems. While there are many
algorithms providing upper bounds for a variety of distributed problems, al-
most nothing is known about lower bounds, especially for the LOCAL model.
In this chapter, we prove lower bounds for several traditional graph theory
problems.

A pioneering and seminal lower bound by Linial [91] shows that the non-
uniform O(log∗n) coloring algorithm by Cole and Vishkin [33] is asymptotically
optimal for the ring. For different models of distributed computation, there
is a number of other lower bounds [44, 85], most notably for the problem of
constructing a minimum spanning tree of the network graph [39, 38, 94, 113].
With the exception of [39], the MST lower bounds apply to the CONGEST
model. In [38], the lower bounds of [94, 113] are extended to approximation
algorithms. To the best of our knowledge, it is the only previous lower bound
on distributed hardness of approximation.

Chapter 3 is organized as follows. In Section 3.1, we prove a lower bound
for 2-round MDS algorithms to introduce the general idea behind all presented
lower bounds. In Section 3.2, the ideas of 3.1 are extended to an arbitrary num-
ber of rounds but for a simpler problem. For every k, we give a lower bound on
the possible approximation ratio of a k-round minimum vertex cover algorithm.
Finally, Section 3.3 shows that the obtained MVC lower bound can be extended
to a whole set of optimization problems including minimum dominating set and
maximum matching. Moreover, the lower bound of Section 3.2 even allows to
give new strong time lower bounds for the distributed construction of maximal
matchings and maximal independent sets. Thus, all presented lower bounds
hold for the LOCAL model. While for upper bounds, this is weakest possible

73

74 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

nodesm

nodesm

m2m2

m3

m −12

2m +m−1K

m
m

same view

G H

Figure 3.1: Lower bound graphs G and H for 2-round MDS algorithms. All
nodes on Layer II have the same 2-hop view. Optimal dominating sets are
marked by dashed lines.

model, for lower bound, the LOCAL model is the strongest possible model. All
lower bounds are a true consequence of locality limitations, and not merely a
side-effect of congestion, asynchrony, or limited message size.

3.1 Two-Round Dominating Set Lower Bound

The proofs of the 2-round MDS lower bound and of the MVC lower bound of the
next section are based on the timeless indistinguishability argument [45, 87]. In
k rounds of communication, a network node can only gather information about
nodes which are at most k hops away and hence, only this information can be
used to determine the computation’s outcome. In particular for the MDS lower
bound, we construct two graphs G and H such that after 2 communication
rounds, there is a set of nodes S of G and a node v of H which see exactly the
same graph topology. Informally speaking, all of them base their decision on
the same information and thus all have to make the same decision. Either all
those nodes join the dominating set or all of them decide not to join the dom-
inating set. However, both decisions are ruinous because G has a dominating
set which is much smaller than |S| and because H has no small dominating set
not containing v.

The graphs G and H are displayed in Figure 3.1. Both graphs depend on a
parameter m which can have any integer value greater than 1. Graph G consists
of 4 layers which we number from I to IV where Layer I is the bottom layer
in Figure 3.1. Layer I consists of m nodes. Each of them is connected to m2

distinct nodes on Layer II, that is, there are m3 nodes in Layer II. Similarly,
each of the m3 nodes in Layer II is connected to m distinct nodes in Layer III.
The number of nodes of G in Layer III is therefore m4. We denote the nodes in

3.1. TWO-ROUND DOMINATING SET LOWER BOUND 75

Layer II by v1, . . . , vm3 and the nodes on Layer III by vij where i = 1, . . . , m3

and j = 1, . . . , m. The neighbors of node vi on Layer II are called vi1, . . . , vim.
On the top Layer IV, there are m nodes u1, . . . , um. Node uj is connected to
the jth Layer III neighbor of every Layer II node, that is, node ui is adjacent
to vij for i = 1, . . . , m3. Let us now look at the view of Layer II nodes after
2 communication rounds. In Section 1.2, we defined the (unlabeled) view after
2 rounds of a node v as the graph induced by all nodes in Γ+

2 (v) except for
edges between nodes at distance exactly 2. In G, node vi from Layer II has m
neighbors vij on Layer III and one neighbor on Layer I. For each of the Layer
III neighbors, vi sees one Layer IV node at distance 2, whereas vi’s neighbor on
Layer I has m2−1 neighbors different from vi. Therefore, vi sees a tree of depth
2. The root vi has m+1 neighbors, one of them has m2−1 children, the others
have 1 child. For the second graph H , we start with the tree describing the view
of node vi. We place one node w in Layer II and m+1 adjacent nodes in Layer
III. One of the adjacent nodes has m2 − 1 neighbors in Layer IV, the other m
nodes have one neighbor in Layer IV. The Layer IV nodes are connected to a
clique of size m2 + m − 1. Note that because all the edges of the clique are
between nodes at distance exactly 2 from w, all nodes on Layer II see the same
topology. Based on this observation, we are able to prove the following theorem

Theorem 3.1. Let A be a 2-round distributed and possibly randomized MDS
algorithm. There is a constant c such that for every n ≥ c, there is a graph with
n nodes on which the approximation ratio of A is at least Ω(

√
n).

Proof. We have already shown that all Layer II nodes of G and H see the
same tree topology T . However, we have not yet considered the effects of node
identifiers and randomization. For each labeled instance L(T) of T , there is some
probability P (L(T)) that a node with 2-round view L(T) joins the dominating
set in algorithm A. Let L0(T) be the labeling which minimizes this probability
and let p := P (L0(T)).

We first look at the approximation ratio of A for graph H . An optimal
dominating set of H consists of the Layer II node w and a node from the clique
on Layer IV. Hence, a minimum dominating set of H has size 2. Assume that
w does decide not to join the dominating set. In this case, each of the m + 1
neighbors of w has to be covered by a different node. Therefore, the smallest
dominating set of H which does not contain w has size m+1. Assume now that
the view of Layer II node w is L0(T), that is, w joins the dominating set with
probability p. Let nH ∈ O(m2) be the number of nodes of H . The expected
size of the dominating set produced by A is therefore lower bounded by

E [DSA(H)] ≥ 2p + (1 − p)(m + 1) ∈ Ω
(
p + (1 − p)

√
nH

)
. (3.1)

Let us now look at the approximation ratio of A for G. An optimal dom-
inating set of G consists of the 2m nodes of Layers I and IV. Because p is the
minimum of the probabilities P (L(T)), each of the m3 nodes of Layer II joins

76 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

the dominating set with probability at least p in algorithm A. Analogously to
above, let nG ∈ O(m4) be the number of nodes of G. By linearity of expectation,
we have

E [DSA(G)] ≥ (1 − p)2m + pm3 ∈ Ω
(
(1 − p)n

1/4
G + pn

3/4
G

)
. (3.2)

No matter how we choose p ∈ [0, 1], the approximation ratio for either G
or H is bad. If p is bounded away from 0 by a constant, by Inequality (3.2),

the approximation ratio of A on G is at least Ω(m3/m) = Ω(n
3/4
G /n

1/4
G) =

Ω(
√

nG). If p is bounded away from 1 by a constant, by Inequality (3.1), the
approximation of A on H is at least Ω(m2/1) = Ω(

√
nH).

3.2 Lower Bound for Minimum Vertex Cover

Unfortunately, the MDS lower bound of the previous section cannot directly be
extended to more than 2 rounds. To find a similar lower bound for an arbitrary
number of rounds, we look at a simpler but related problem. A vertex cover
for a graph G = (V, E) is a subset of nodes V ′ ⊆ V such that for each edge
(u, v) ∈ E, at least one of the two incident nodes u, v belongs to V ′. Finding a
vertex cover with minimum cardinality is known as the MVC problem.

Intuitively MVC could be considered perfectly suited for a local algorithm: A
node should be able to decide whether to join the vertex cover by communicating
with its neighbors a few times. Very distant nodes seem to be superfluous for this
decision. Symmetry breaking as introduced in Chapters 1 and 2 is not necessary
for the MVC problem. A solution of the covering LP describing the fractional
variant of MVC can be turned into a vertex cover by rounding up all variables
whose value is at least 1/2. Therefore a fractional solution can be turned into
an integer one without communication. The size of the resulting vertex cover
is at most by a factor of 2 larger than the LP solution. For δ-regular graphs,
finding a constant approximation for MVC is particularly simple. Because every
node can cover at most δ edges, we need at least n/2 nodes to cover all nδ/2
edges. Taking all nodes therefore gives a 2-approximation. The fact that there
is a simple greedy algorithm which approximates MVC within a factor of 2 in
the global setting, additionally raises hope for an efficient local algorithm.

In the following, we show that nevertheless, MVC cannot be approximated
arbitrarily well by a local algorithm. Similar to the 2-round MDS lower bound,
we show that in a constant number of rounds, the approximation ratio cannot
be better than a constant root of n or ∆. The special properties of MVC even
imply that the obtained lower bounds are in fact hardness results for fractional
covering problems whereas a similar lower bound for MDS would only give a
bound for integer problems.

We first give an outline of the proof. The basic idea is to construct a graph
Gk = (V, E), for each positive integer k. We show that after k communication

3.2. LOWER BOUND FOR MINIMUM VERTEX COVER 77

rounds, two neighboring nodes see exactly the same graph topology; informally
speaking, both neighbors are equally qualified to join the vertex cover. However,
in our example graph Gk, choosing the wrong neighbor will be ruinous.

Graph Gk contains a bipartite subgraph S with node set C0 ∪C1 and edges
in C0×C1 as shown in Figure 3.2. Set C0 consists of n0 nodes each of which has
δ0 neighbors in C1. Each of the n0 · δ0

δ1
nodes in C1 has δ1, δ1 > δ0, neighbors

in C0. The goal is to construct Gk in such a way that all nodes v ∈ S see
the same topology Tv,k within distance k. In a globally optimal solution, all
edges of S may be covered by nodes in C1 and hence, no node in C0 needs to
join the vertex cover. In a local algorithm, however, the decision of whether or
not a node joins the vertex cover depends only on its local view, that is, the
pair (Tv,k,L(Tv,k)). We show that because adjacent nodes in S see the same
Tv,k, every algorithm adds a large portion of nodes in C0 to its vertex cover in
order to end up with a feasible solution. In other words, we construct a graph
in which the symmetry between two adjacent nodes cannot be broken within
k communication rounds. This yields suboptimal local decisions and hence, a
suboptimal approximation ratio. Throughout the proof, we will use C0 and C1

to denote the two sets of the bipartite subgraph S.
Our proof is organized as follows. The structure of Gk is defined in Subsec-

tion 3.2.1. In Subsection 3.2.2, we show how Gk can be constructed without
small cycles, ensuring that each node sees a tree within distance k. Subsection
3.2.3 proves that adjacent nodes in C0 and C1 have the same view Tv,k and
finally, Subsection 3.2.4 derives the lower bounds.

3.2.1 The Cluster Tree

The nodes of graph Gk = (V, E) can be grouped into disjoint sets which are
linked to each other as bipartite graphs. We call these disjoint sets of nodes
clusters.

We define the structure of Gk using a directed tree CTk = (C,A) with
doubly labeled arcs ℓ : A → N×N. We refer to CTk as the cluster tree, because
each vertex C ∈ C represents a cluster of nodes in Gk. The size of a cluster
|C| is the number of nodes the cluster contains. An arc a = (C, D) ∈ A with
ℓ(a) = (δC , δD) denotes that the clusters C and D are linked as a bipartite
graph, such that each node u ∈ C has δC neighbors in D and each node v ∈ D
has δD neighbors in C. It follows that |C| ·δC = |D| ·δD. We call a cluster a leaf-
cluster if it is adjacent to only one other cluster, and we call it an inner-cluster
otherwise.

Definition 3.1. The cluster tree CTk is recursively defined as follows:

CT1 := (C1,A1), C1 := {C0, C1, C2, C3}
A1 := {(C0, C1), (C0, C2), (C1, C3)}

ℓ(C0, C1) := (δ0, δ1), ℓ(C0, C2) := (δ1, δ2),

ℓ(C1, C3) := (δ0, δ1)

78 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

12δ δ3 δ2 δ0 δ1

δ0 δ1

δ3δ2 δ1δ0

δ3δ2δ2 δ1δ0δ1

δ

Level 0

Level 1

Level 2

Level 3

3

2C

0C
S

1

C

C

Figure 3.2: Cluster-Tree CT2.

Given CTk−1, we obtain CTk in two steps:

• For each inner-cluster Ci, add a new leaf-cluster C′
i with ℓ(Ci, C

′
i) :=

(δk, δk+1).

• For each leaf-cluster Ci of CTk−1 with (Ci′ , Ci) ∈ A and ℓ(Ci′ , Ci) =
(δp, δp+1), add k−1 new leaf-clusters C′

j with ℓ(Ci, C
′
j) := (δj , δj+1) for

j = 0 . . . k, j 6= p + 1.

Further, we define |C0| = n0 for all CTk.

Figure 3.2 shows CT2. The shaded subgraph corresponds to CT1. The
labels of each arc a ∈ A are of the form ℓ(a) = (δl, δl+1) for some l ∈ {0, . . . , k}.
Further, setting |C0| = n0 uniquely determines the size of all other clusters. In
order to simplify the upcoming study of the cluster tree, we need two additional
definitions. The level of a cluster is the distance to C0 in the cluster tree
(cf. Figure 3.2). The depth of a cluster C is its distance to the furthest leaf
in the subtree rooted at C. Hence, the depth of a cluster plus one equals the
height of the subtree corresponding to C. In the example of Figure 3.2, the
depths of C0, C1, C2, and C3 are 3, 2, 1, and 1, respectively.

Note that CTk describes the general structure of Gk, i.e. it defines for
each node the number of neighbors in each cluster. However, CTk does not
specify the actual adjacencies. In the next subsection, we show that Gk can be
constructed so that each node’s view is a tree.

3.2.2 The Lower Bound Graph

In Subsection 3.2.3, we will prove that the topologies seen by nodes in C0 and
C1 are identical. This task is greatly simplified if each node’s topology is a tree
(rather than a general graph) because we do not have to worry about cycles.
The girth of a graph G, denoted by g(G), is the length of the shortest cycle in G.

3.2. LOWER BOUND FOR MINIMUM VERTEX COVER 79

We want to construct Gk with girth at least 2k + 1 so that in k communication
rounds, all nodes see a tree. Given the structural complexity of Gk for large k,
constructing Gk with large girth is not a trivial task. The solution we present
is based on the construction of the graph family D(r, q) as proposed in [88].
For given r and q, D(r, q) defines a bipartite graph with 2qr nodes and girth
g(D(r, q)) ≥ r+5. In particular, we show that for appropriate r and q, we obtain
an instance of Gk by deleting some of the edges of D(r, q). In the following, we
introduce D(r, q) up to the level of detail which is necessary to understand our
results. For the interested reader, we refer to [88].

For an integer r ≥ 1 and a prime power q, D(r, q) defines a bipartite graph
with node set P ∪L and edges ED ⊂ P ×L. The nodes of P and L are labeled
by the r-vectors over the finite field Fq, i.e. P = L = F

r
q. In accordance with

[88], we denote a vector p ∈ P by (p) and a vector l ∈ L by [l]. The components
of (p) and [l] are written as follows (for D(r, q), the vectors are projected onto
the first r coordinates):

(p) = (p1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, p3,2, . . .

pi,i, p
′
i,i, pi,i+1, pi+1,i, . . .) (3.3)

[l] = [l1, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, l3,2, . . .

li,i, l
′
i,i, li,i+1, li+1,i, . . .]. (3.4)

Note that the somewhat confusing numbering of the components of (p) and [l]
is chosen in order to simplify the following system of equations. There is an
edge between two nodes (p) and [l] if and only if the first r − 1 of the following
conditions hold (for i = 2, 3, . . .).

l1,1 − p1,1 = l1p1

l1,2 − p1,2 = l1,1p1

l2,1 − p2,1 = l1p1,1

li,i − pi,i = l1pi−1,i (3.5)
l′i,i − p′i,i = li,i−1p1

li,i+1 − pi,i+1 = li,ip1

li+1,i − pi+1,i = l1p
′
i,i

In [88], it is shown that for odd r ≥ 3, D(r, q) has girth at least r + 5. Further,
if a node u and a coordinate of a neighbor v is fixed, the remaining coordinates
of v are uniquely determined. This is concretized in the next lemma.

Lemma 3.2. For all (p) ∈ P and l1 ∈ Fq, there is exactly one [l] ∈ L such that
l1 is the first coordinate of [l] and such that (p) and [l] are connected by an edge
in D(r, q). Analogously, if [l] ∈ L and p1 ∈ Fq are fixed, the neighbor (p) of [l]
is uniquely determined.

80 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

Proof. The first r− 1 equations of Equation (3.5) define a linear system for the
unknown coordinates of [l]. If the equations and variables are written in the
given order, the matrix corresponding to the resulting linear system of equations
is a lower triangular matrix with non-zero elements in the diagonal. Hence, the
matrix has full rank and by the basic laws of (finite) fields, the solution is unique.
Exactly the same argumentation holds for the second claim of the lemma.

We are now ready to construct Gk with large girth. We start with an
arbitrary instance G′

k of the cluster tree which may have the minimum possible
girth 4. An elaboration of the construction of G′

k is deferred to Subsection 3.2.4.
For now, we simply assume that G′

k exists. Both Gk and G′
k are bipartite graphs

with odd-level clusters in one set and even-level clusters in the other. Let m be
the number of nodes in the larger of the two partitions of G′

k. We choose q to be
the smallest prime power greater than or equal to m. In both partitions V1(G

′
k)

and V2(G
′
k) of G′

k, we uniquely label all nodes v with elements c(v) ∈ Fq.

As already mentioned, Gk is constructed as a subgraph of D(r, q) for ap-
propriate r and q. We choose q as described above and we set r = 2k − 4
such that g(D(r, q)) ≥ 2k + 1. Let (p) = (p1, . . .) and [l] = [l1, . . .] be two
nodes of D(r, q). (p) and [l] are connected by an edge in Gk if and only if they
are connected in D(r, q) and there is an edge between nodes u ∈ V1(G

′
k) and

v ∈ V2(G
′
k) for which c(u) = p1 and c(v) = l1. Finally, nodes without incident

edges are removed from Gk.

Lemma 3.3. The graph Gk constructed as described above is a cluster tree with
the same degrees δi as in G′

k. Gk has at most 2mq2k−5 nodes and girth at least
2k + 1.

Proof. The girth directly follows from the construction; removing edges cannot
create cycles.

For the degrees between clusters, consider two neighboring clusters C′
i ⊂

V1(G
′
k) and C′

j ⊂ V2(G
′
k) in G′

k. In Gk, each node is replaced by q2k−5 new
nodes. The clusters Ci and Cj consist of all nodes (p) and [l] which have their
first coordinates equal to the labels of the nodes in C′

i and C′
j , respectively.

Let each node in C′
i have δα neighbors in C′

j , and let each node in C′
j have δβ

neighbors in C′
i. By Lemma 3.2, nodes in Ci have δα neighbors in Cj and nodes

in Cj have δβ neighbors in Ci, too.

Remark: In [89], it has been shown that D(r, q) is disconnected and consists of

at least q⌊
r+2
4 ⌋ isomorphic components which the authors call CD(r, q). Clearly,

those components are valid cluster trees as well and we could use one of them for
the analysis. As our asymptotic results remain unaffected by this observation,
we continue to use Gk as constructed above.

3.2. LOWER BOUND FOR MINIMUM VERTEX COVER 81

3.2.3 Equality of Views

In this subsection, we prove that two adjacent nodes in clusters C0 and C1

have the same view, i.e. within distance k, they see exactly the same topology
Tv,k. Consider a node v ∈ Gk. Given that v’s view is a tree, we can derive its
view-tree by recursively following all neighbors of v. The proof is largely based
on the observation that corresponding subtrees occur in both node’s view-tree.

Let Ci and Cj be adjacent clusters in CTk connected by ℓ(Ci, Cj) = (δl, δl+1),
i.e. each node in Ci has δl neighbors in Cj , and each node in Cj has δl+1 neigh-
bors in Ci. When traversing a node’s view-tree, we say that we enter cluster Cj

(resp., Ci) over link δl (resp., δl+1) from cluster Ci (resp., Cj). Furthermore,
we make the following definitions:

Definition 3.2. The following nomenclature refers to subtrees in the view-tree
of a node in Gk.

• Mi is the subtree seen upon entering cluster C0 over a link δi.

• Bi,d,λ is a subtree seen upon entering a cluster C ∈ C \ {C0} over a link
δi, where C is on level λ and has depth d.

Definition 3.3. When entering subtree Bi,d,λ from a cluster on level λ − 1
(λ + 1), we write B↑

i,d,λ (B↓

i,d,λ). The predicate ¬ in B¬
i,d,λ denotes that instead

of δi, the label of the link into this subtree is δi − 1.

The predicate ¬ is necessary when, after entering Cj from Ci, we immedi-
ately return to Ci on link δi. In the view-tree, the edge used to enter Cj connects
the current subtree to its parent. Thus, this edge is not available anymore and
there are only δi − 1 edges remaining to return to Ci. The predicates ↑ and ↓
describe from which “direction” a cluster has been entered. As the view-trees
of nodes in C0 and C1 have to be absolutely identical for our proof to work, we
must not neglect these admittedly tiresome details.

The following example should clarify the various definitions. Additionally,
you may refer to the example of G3 in Figure 3.3.

Example 3.1. Consider G1. Let VC0 and VC1 denote the view-trees of nodes
in C0 and C1, respectively:

VC0 = B↑

0,1,1 ∪ B↑

1,0,1 VC1 = B↑

0,0,2 ∪ M1

B↑

0,1,1 = B↑

0,0,2 ∪ M¬
1 B↑

0,0,2 = B↓,¬

1,1,1

B↑

1,0,1 = M¬
2 M1 = B↑,¬

0,1,1 ∪ B↑

1,0,1

· · · · · ·

We start the proof by giving a set of rules which describe the subtrees seen
at a given point in the view-tree. We call these rules derivation rules because
they allow us to derive the view-tree of a node by mechanically applying the
matching rule for a given subtree.

82 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

δ2 δ1δ3 δ0

δ0δ2δ3δ3 δ1 δ0δ0δ1δ2

δ2 δ0δ3 δ1 δ0 δ3 δ0δ2δ3δ2 δ1 δ0

δ2 δ1 δ0 δ3 δ2 δ0

δ

δ −1δ2 0δ1δ

−1δ3 1δ 0δ

−1δ2 −1δ1

2δ

−1δ3

0δ

−1δ2 −1δ1

2δ

−1δ3 −1δ4

3δ

3δ 2δ 0δ−1δ1

1δ

3δ −1δ2 1δ 0δ 3δ 2δ 0δ−1δ1

0δ−1δ2

−1δ4

3δ

0δ 3δ 3δ 2δ 0δ−1δ1

0δ−1δ12δ

3δ 2δ
1δ 0δ

1δ2δ−1δ3 2δ 1δ −1δ0−1δ3 2δ 1δ 0δ

−1δ4

−1δ4

3δ

0δ

1δ

3δ −1δ2 1δ 0δ 3δ 2δ 0δ−1δ1

2δ −1δ0

1δ2δ−1δ3 −1δ4

3δ

0δ 3δ 3δ 2δ 0δ−1δ1

0δ−1δ12δ

3δ 2δ
1δ 0δ

1δ2δ−1δ3 2δ 1δ −1δ0−1δ3 2δ 1δ 0δ

−1δ4

3δ −1δ2 0δ1δ

−1

3

3 1δ

VC0

VC1

Figure 3.3: The Cluster Tree CT3 and the corresponding view-trees of nodes
in C0 and C1. The cluster trees CT1 and CT2 are shaded dark and light,
respectively. The labels of the arcs of the cluster tree represent the number
of neighbors of nodes of the lower-level cluster in the neighboring higher-level
cluster. The labels of the reverse links are omitted. In the view-trees, an arc
labeled with δi stands for δi edges, all connecting to identical subtrees.

3.2. LOWER BOUND FOR MINIMUM VERTEX COVER 83

Lemma 3.4. The following derivation rules hold in Gk:

Mi =
⋃

j=0...k
j 6=i−1

B↑

j,k−j,1 ∪ B↑,¬

i−1,k−i+1,1

B↑

i,d,1 = F{i+1} ∪ D{} ∪ M¬
i+1

B↓

i,d,1 = F{i−1,k−d+1} ∪ D{} ∪ Mk−d+1 ∪ B↑,¬

i−1,d−1,2

B↑

i,d,λ = F{i+1} ∪ D{i+1} ∪ B↓,¬

i+1,d+1,λ−1

where F and D are defined as

FW :=
⋃

j=0...k−d+1
j /∈W

B↑

j,d−1,λ+1

DW :=
⋃

j=k−d+2...k
j /∈W

B↑

j,k−j,λ+1.

Proof. We first show the derivation rule for Mi. It can be seen in Example 3.1
that the rule holds for k = 1. For the induction step, we build CTk+1 from CTk

as defined in Definition 3.1. M (k) is an inner cluster and therefore, one new
cluster Bk+1,0,1 is added. The depth of all other subtrees increases by 1 and
M (k+1) :=

⋃
j=0...k+1 B↑

j,k−j,1 follows. If we enter M (k+1) over link δi, there will
be only δi−1 − 1 edges left to return to the cluster from which we had entered
C0. Consequently, the link δi−1 features the ¬ predicate.

The remaining rules follow along the same lines. Let Ci be a cluster with
entry-link δi which was first created in CTr for r < k. Note that in CTk, r = k−d
holds because each subtree increases its depth by one in each “round.” Accord-
ing to the second building rule of Definition 3.1, r new neighboring clusters
(subtrees) are created in CTr+1. More precisely, a new cluster is created for all
entry-links δ0 . . . δr, except δi. We call these subtrees fixed-depth subtrees F .
If the subtree with root Ci has depth d in CTk, the fixed-depth subtrees have
depth d− 1. In each CTr′ , r′ ∈ {r + 2, . . . , k}, Ci is an inner-cluster and hence,
one new neighboring cluster with entry-link δr′ is created. We call these sub-
trees diminishing-depth subtrees D. In CTk, each of these subtrees has grown
to depth k − r′.

We now turn our attention to the differences between the three rules. They
stem from the exceptional treatment of level 1, as well as the predicates ↑ and
↓. In B↑

i,d,1, the link δi+1 returns to C0, but contains only δi+1 − 1 edges in

the view-tree. In B↓

i,d,1, we have to consider two special cases. The first one is
the link to C0. For a cluster on level 1 with entry-link (from C0) i, the equal-
ity k = d + i holds and therefore, the link to C0 is δk−d+1 and thus, Mk−d+1

follows. Secondly, we write B↑,¬

i−1,d−1,2, because there is one edge less leading
back to the cluster where we came from. (Note that since we entered the current

84 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

cluster from a higher level, the link leading back to where we came from is δi−1,
instead of δi+1). Finally in B↑

i,d,λ, we again have to treat the returning link δi+1

specially.

Note that the general derivation rule for B↓

i,d,λ is missing as we will not need
it for the proof.

Next, we define the notion of r-equality. Intuitively, if two view-trees are
r-equal, they have the same topology within distance r.

Definition 3.4. Let V1 =
⋃

i=0...k bi and V2 =
⋃

i=0...k b′i be view-trees; bi and b′i
are subtrees entered on link δi. Then, V1 and V2 are r-equal if all corresponding
subtrees are (r−1)-equal,

V1
r
= V2 ⇐= bi

r−1
= b′i , ∀i ∈ {0, . . . , k}.

Further, all subtrees are 0-equal: Bi,d,λ
0
= Bi′,d′,λ′ and

Bi,d,λ
0
= Mi′ for all i, i′, d, d′, λ, and λ′.

Using the notion of r-equality, it is now easy to define what we actually
have to prove. We will show that in Gk, VC0

k
= VC1 holds. This is equivalent to

showing that each node in C0 sees exactly the same topology within distance k
as its neighbor in C1. We will now establish several helper lemmas.

Lemma 3.5. Let β and β′ be sets of subtrees, and let Vv1 = B↑

i,d,x ∪ β and

Vv2 = B↑

i,d,y ∪ β′ be two view-trees. Then, for all x and y

Vv1

r
= Vv2 ⇐= β r−1

= β′.

Proof. Assume that the roots of the subtree of Vv1 and Vv2 are Ci and Cj . The
subtrees have equal depth and entry-link and they have thus grown identically.
Hence, all paths which do not return to clusters Ci and Cj must be identical.
Further, consider all paths which, after s hops, return to Ci and Cj over link
δi+1. After these s hops, they return to the original cluster and see views V ′

v1

and V ′
v2

, differing from Vv1 and Vv2 only in the placement of the ¬ predicate.
This does not affect β and β′ and therefore,

Vv1

r
= Vv2 ⇐= V ′

v1

r−s
= V ′

v2
∧ β r−1

= β′ , s > 1.

The same argument can be repeated until r− s = 0 and because V ′
v1

0
= V ′

v2
, the

lemma follows.

Lemma 3.6. Let β and β′ be sets of subtrees, and let Vv1 = B↑

i,d,x ∪ β and

Vv2 = B↑

i,d′,y ∪ β′ be two view-trees. Then, for all x and y, and for all r ≤
min (d, d′),

Vv1

r
= Vv2 ⇐= β r−1

= β′.

3.2. LOWER BOUND FOR MINIMUM VERTEX COVER 85

2 Τ2 Τ1 Τ0

δ4−1

δ1

δ1

VC1

δ4−1

δ1

Τ2

δ3 δ2+ +1 δ3 δ2+ +1

δ3 δ0−13

−1δ2 δ1

δ0

’ ’ ’

δ

VC

δ

0

2

Τ1 Τ0Τ

Figure 3.4: The view-trees VC0 and VC1 in G3 seen upon using link δ1.

Proof. W.l.o.g, we assume d′ ≤ d. In the construction process of Gk, the root
clusters of Vv1 and Vv2 have been created in steps k− d and k− d′, respectively.
By Definition 3.1, all subtrees with depth d∗ < d′ have grown identically in both
views. The remaining subtrees of Vv2 were all created in step k−d′+1 and have
depth d′ − 1. The corresponding subtrees in Vv1 have at least the same depth
and hence, each pair of corresponding subtrees are (d′−1)-equal. It follows that
for r ≤ min (d, d′), the subtrees B↑

i,d,x and B↑

i,d′,y are identical within distance
r. Using the same argument as in Lemma 3.5 concludes the proof.

Figure 3.4 shows a part of the view-trees of nodes in C0 and C1 in G3. The
figure shows that the subtrees with links δ0 and δ2 cannot be matched directly
to one another because of the different placement of the −1. It turns out that
this inherent difference appears in every step of our theorem. However, the
following lemma shows that the subtrees T0 and T2 (T ′

0 and T ′
2) are equal up to

the required distance and hence, nodes are unable to distinguish them. It is this
crucial property of our cluster tree, which allows us to “move” the ¬ predicate
between links δi and δi+2 and enables us to derive the main theorem.

Lemma 3.7. Let β and β′ be sets of subtrees and let Vv1 and Vv2 be defined as

Vv1 = M¬
i ∪ B↑

i−2,k−i,2 ∪ β

Vv2 = Mi ∪ B↑,¬

i−2,k−i,2 ∪ β′.

Then, for all i ∈ {2, . . . , k},

Vv1

k−i
= Vv2 ⇐= β k−i−1

= β′.

86 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

Proof. Again, we make use of Lemma 3.4 to show that Mi and B↑

i−2,k−i,2 are
(k−i−1)-equal. The claim then follows from the fact that the two subtrees are
not distinguishable and the placement of the ¬ predicate is irrelevant.

Mi =
⋃

j=0...k
j 6=i−1

B↑

j,k−j,1 ∪ B↑,¬

i−1,k−i+1,1

B↑

i−2,k−i,2 =
⋃

j=0...i+1
j 6=i−1

B↑

j,k−i−1,3 ∪
⋃

j=i+2...k

B↑

j,k−j,3

∪ B↓,¬

i−1,k−i+1,1

For j = {0, . . . , i − 2, i, . . . , k}, all subtrees are equal according to Lemmas 3.5
and 3.6. It remains to be shown that B↑

i−1,k−i+1,1
k−i−2

= B↓

i−1,k−i+1,1. For that

purpose, we plug B↑

i−1,k−i+1,1 and B↓

i−1,k−i+1,1 into Lemma 3.4 and show their
equality using the derivation rules. Let β be defined as β := F{i−2,i} ∪ D{}.

B↑

i−1,k−i+1,1 = F{i} ∪ D{} ∪ M¬
i

= B↑

i−2,k−i,2 ∪ M¬
i ∪ β

B↓

i−1,k−i+1,1 = F{i−2,i} ∪ D{} ∪ Mi ∪ B↑,¬

i−2,k−i,2

= B↑,¬

i−2,k−i,2 ∪ Mi ∪ β

Again, if Mi and B↑

i−2,k−i,2 are (k−i−3)-equal, we can move the ¬ predicate be-

cause the subtrees are indistinguishable. Hence, we have to show Mi
k−i−3

= B↑

i−2,k−i,2.

In the proof, we have reduced Vv1

k−i
= Vv2 stepwise to an expression of diminish-

ing equality conditions, i.e.

Vv1

k−i
= Vv2 ⇐= Mi

k−i−1
= B↑

i−2,k−i,2

⇐= B↑

i−1,k−i+1,1
k−i−2

= B↓

i−1,k−i+1,1

⇐= Mi
k−i−3

= B↑

i−2,k−i,2.

This process can be continued until either

B↑

i−1,k−i+1,1
0
= B↓

i−1,k−i+1,1 or Mi
0
= B↑

i−2,k−i,2

which is always true.

3.2. LOWER BOUND FOR MINIMUM VERTEX COVER 87

Finally, we are ready to prove the main theorem.

Theorem 3.8. Consider graph Gk. Let VC0 and VC1 be the view-trees of two
adjacent nodes in clusters C0 and C1, respectively. Then, VC0

k
= VC1 .

Proof. Initially, each node in C0 sees subtree M∗ and each node in C1 sees B∗,k,1

(∗ denotes that the subtree has not been entered on any link):

VC0 : M∗ =
⋃

j=0...k

B↑

j,k−j,1

VC1 : B∗,k,1 =
⋃

j=0...k
j 6=1

B↑

j,k−j,2 ∪ M1.

It follows that VC0

k
= VC1 ⇐= B↑

1,k−1,1
k−1
= M1 because all other subtrees are

(k − 1)-equal by Lemma 3.5. Having reduced VC0

k
= VC1 to B↑

1,k−1,1
k−1
= M1, we

can further reduce it to M2
k−2
= B↑

2,k−2,1:

M1 =
⋃

j=1...k

B↑

j,k−j,1 ∪ B↑,¬

0,k,1

B↑

1,k−1,1 = B↑

0,k−2,2 ∪ B↑

1,k−2,2 ∪ D{} ∪ M¬
2

k−2
=

Lem. 3.7
B↑,¬

0,k−2,2 ∪ B↑

1,k−2,2 ∪ D{} ∪ M2.

By Lemmas 3.5 and 3.6, all subtrees are (k− 2)-equal, except B↑

2,k−2,1 and M2.

It seems clear that we can continue to reduce VC0

k
= VC1 step by step in the

same fashion until we reach 0. For the induction step, we assume VC0

k
= VC1 ⇐=

B↑

r,k−r,1
k−r
= Mr for r < k and prove VC0

k
= VC1 ⇐= B↑

r+1,k−r−1,1
k−r−1

= Mr+1.

Mr =
⋃

j=0...k
j 6=r−1

B↑

j,k−j,1 ∪ B↑,¬

r−1,k−r+1,1

B↑

r,k−r,1 =
⋃

j=0...r

B↑

j,k−r−1,2 ∪ D{} ∪ M¬
r+1

k−r−1
=

Lem. 3.7

⋃

j=0...r
j 6=r−1

B↑

j,k−r−1,2 ∪ B↑,¬

r−1,k−r−1,2

∪
⋃

j=r+2...k

B↑

j,k−j,2 ∪ Mr+1.

Apart from Mr+1 (resp,. B↑

r+1,k−r−1,1), all subtrees are (k − r − 1)-equal by

Lemmas 3.5 and 3.6. Since Mr+1 and B↑

r+1,k−r−1,1 are the only subtrees not
being immediately matched, the induction step follows. For r = k − 1, we get
VC0

k
= VC1 ⇐= B↑

k,0,1
0
= Mk, which concludes the proof because B↑

k,0,1
0
= Mk is

true.

88 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

Remark: As a side-effect, the proof of Theorem 3.8 has highlighted the fun-
damental significance of the critical path P = (δ1, δ2, . . . , δk) in CTk. After
following path P , the view of a node v ∈ C0 ends up in the leaf-cluster neigh-
boring C0 and sees δi+1 neighbors. Following the same path, a node v′ ∈ C1

ends up in C0 and sees
∑i

j=0 δj − 1 neighbors. There is no way to match
these views. This inherent inequality is the underlying reason for the way Gk

is defined: It must be ensured that the critical path is at least k hops long.

3.2.4 Analysis

In this subsection, we derive the lower bounds on the approximation ratio of
k-local MVC algorithms. Let OPT be an optimal solution for MVC and let
ALG be the solution computed by any algorithm. The main observation is that
adjacent nodes in the clusters C0 and C1 have the same view and therefore, every
algorithm treats nodes in both of the two clusters the same way. Consequently,
ALG contains a significant portion of the nodes of C0, whereas the optimal
solution covers the edges between C0 and C1 entirely by nodes in C1.

Lemma 3.9. Let ALG be the solution of any distributed (randomized) vertex
cover algorithm which runs for at most k rounds. When applied to Gk as con-
structed in Subsection 3.2.2 in the worst case (in expectation), ALG contains
at least half of the nodes of C0.

Proof. Let v0 ∈ C0 and v1 ∈ C1 be two arbitrary, adjacent nodes from C0

and C1. We first prove the lemma for deterministic algorithms. The decision
whether a given node v enters the vertex cover depends solely on the topology
Tv,k and the labeling L(Tv,k). Assume that the labeling of the graph is chosen
uniformly at random. Further, let pA0 and pA1 denote the probabilities that v0

and v1, respectively, end up in the vertex cover when a deterministic algorithm
A operates on the randomly chosen labeling. By Theorem 3.8, v0 and v1 see
the same topologies, that is, Tv0,k = Tv1,k. With our choice of labels, v0 and v1

also see the same distribution on the labelings L(Tv0,k) and L(Tv1,k). Therefore
it follows that pA0 = pA1 .

We have chosen v0 and v1 such that they are neighbors in Gk. In order to
obtain a feasible vertex cover, at least one of the two nodes has to be in it. This
implies pA0 +pA1 ≥ 1 and therefore pA0 = pA1 ≥ 1/2. In other words, for all nodes
in C0, the probability to end up in the vertex cover is at least 1/2. Thus, by the
linearity of expectation, at least half of the nodes of C0 are chosen by algorithm
A. Therefore, for every deterministic algorithm A, there is at least one labeling
for which at least half of the nodes of C0 are in the vertex cover.1

The argument for randomized algorithms is now straightforward using Yao’s
minimax principle. The expected number of nodes chosen by a randomized al-
gorithm cannot be smaller than the expected number of nodes chosen by an

1In fact, since at most |C0| such nodes can be in the vertex cover, for at least 1/3 of the
labelings, the number exceeds |C0|/2.

3.2. LOWER BOUND FOR MINIMUM VERTEX COVER 89

optimal deterministic algorithm for an arbitrarily chosen distribution on the
labels. An alternative proof for randomized algorithm is by Theorem 2.32. Be-
cause for MVC, solving the linear program relaxation is up to a factor of 2
equivalent to solving MVC, every randomized MVC algorithm can be deran-
domized at the cost of at most a factor of 2.

Lemma 3.9 gives a lower bound on the number of nodes chosen by any k-local
MVC algorithm. In particular, we have that E [|ALG|] ≥ |C0|/2 = n0/2. We do
not know OPT , but since the nodes of cluster C0 are not necessary to obtain a
feasible vertex cover, the optimal solution is bounded by |OPT | ≤ n − n0. In
the following, we define

δi := δi , ∀i ∈ {0, . . . , k + 1} (3.6)

for some value δ.

Lemma 3.10. If k + 1 < δ, the number of nodes n of Gk is

n ≤ n0

(
1 +

k + 1

δ − (k + 1)

)
.

Proof. There are n0 nodes in C0. By Equation (3.6), the number of nodes per
cluster decreases for each additional level by a factor of δ. Hence, a cluster on
level l contains n0/δl nodes. By the definition of CTk, each cluster has at most
k + 1 neighboring clusters on a higher level. Thus, the number of nodes nl on
level l is upper bounded by

nl ≤ (k + 1)l · n0

δl
.

Summing up over all levels l and interpreting the sum as a geometric series, we
obtain

n ≤ n0 ·
k+1∑

l=0

(
k + 1

δ

)l

≤ n0 ·
∞∑

l=0

(
k + 1

δ

)l

= n0 + n0

(
k + 1

δ

)(
1

1 − k+1
δ

)

= n0

(
1 +

k + 1

δ − (k + 1)

)
.

It remains to determine the relationship between δ and n0 such that Gk can
be realized as described in Subsection 3.2.2. There, the construction of Gk with
large girth is based on a smaller instance G′

k where girth does not matter. Using
Equation (3.6) (i.e., δi := δi), we can now tie up this loose end and describe how
to obtain G′

k. The number of nodes per cluster decreases by a factor of δ on each

90 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

level of CTk. Including C0, CTk consists of k +2 levels. The maximum number
of neighbors inside a leaf-cluster is δk. Hence, we can set the sizes of the clusters
on the outermost level k + 1 to be δk. This implies that the size of a cluster
on level l is δ2k+1−l. Particularly, the size of C′

0 at level 0 in G′
k is n′

0 = δ2k+1.
Let Ci and Cj be two adjacent clusters with ℓ(Ci, Cj) = (δi, δi+1). Ci and
Cj can simply be connected by as many complete bipartite graphs Kδi,δi+1 as
necessary.

If we assume that k + 1 ≤ δ/2, we have n ≤ 2n0 by Lemma 3.10. Applying
the construction of Subsection 3.2.2, we get n0 ≤ n′

0 · 〈n′〉2k−5, where 〈n′〉
denotes the smallest prime power larger than or equal to n′, i.e. 〈n′〉 < 4n′

0.
Putting everything together, we get

n0 ≤ (4n′
0)

2k−4 ≤ 42k−4δ4k2

. (3.7)

Theorem 3.11. There are graphs G, such that in k communication rounds,
every distributed algorithm for the minimum vertex cover problem on G has
approximation ratios at least

Ω

(
nc/k2

k

)
and Ω

(
∆1/k

k

)

for some constant c ≥ 1/4, where n and ∆ denote the number of nodes and the
highest degree in G, respectively.

Proof. We can choose δ ≥ 4−1/(2k)n
1/(4k2)
0 due to Inequality (3.7). Finally,

using Lemmas 3.9 and 3.10, the approximation ratio α is at least

α ≥ n0/2

n − n0
≥ n0/2 · δ/2

n0 · (k + 1)
=

δ

4(k + 1)

≥ (n/2)1/(4k2)

41+1/(2k)(k + 1)
∈ Ω

(
n1/(4k2)

k

)
.

The second lower bound follows from ∆ = δk+1.

Theorem 3.12. In order to obtain a poly-logarithmic or even constant ap-
proximation ratio, every distributed algorithm for the MVC problem requires at
least

Ω

(√
log n

log log n

)
and Ω

(
log ∆

log log ∆

)

communication rounds.

Proof. We set k = β
√

log n/ log log n for an arbitrary constant β > 0. When
plugging this into the first lower bound of Theorem 3.11, we get the following
approximation ratio α:

α ≥ γn
c log log n

β2 log n · 1

β

√
log log n

log n

3.2. LOWER BOUND FOR MINIMUM VERTEX COVER 91

where γ is the hidden constant in the Ω-notation. For the logarithm of α, we
get

log α ≥ c log log n

β2 log n
· log n − 1

2
· log log n − log β

=

(
c

β2
− 1

2

)
· log log n − log β.

and therefore

α ∈ Ω

(
log(n)

“
c

β2 − 1
2

”)
.

By choosing an appropriate β, we can determine the exponent of the above
expression. For every poly-logarithmic term α(n), there is a constant β such
that the above expression is at least α(n) and hence, the first lower bound
of the theorem follows. The second lower bound follows from an analogous
computation by setting k = β log ∆/ log log ∆.

Having proven those distributed lower bounds for the MVC problem, it is
of course interesting to compare the obtained results with the best known dis-
tributed MVC algorithm. MVC is a classical covering problem and can therefore
be solved using Algorithm 3. Because each edge can only be covered by two
nodes, the degree of each dual node in the network graph for Algorithm 3 is
2. By Theorem 2.21, we can therefore compute a ∆O(1)/k-approximation in k
rounds using Algorithm 3. Note that all coefficients of the LP underlying MVC
are either 0 or 1. For k ∈ O(log ∆/ log log ∆), we have ∆1/k/k = ∆O(1)/k′

for
k′ ∈ Θ(k). Therefore, Theorem 3.11 is tight in this case. By Theorem 3.12, the
gap between lower and upper bound is O(log log ∆) for constant-factor approx-
imations. Note that the lower bound is given for the LOCAL model whereas
the upper bound works in the CONGEST BC model. As a consequence, we have
proven that up to the small gap between upper and lower bound, the complexity
of MVC is the same for the LOCAL and the CONGEST BC model.

For the MVC lower bound which is expressed as a function of the number
of nodes n, Theorem 3.11 is not nearly as tight. The approximation ratio of
Algorithm 3 can be ∆Θ(1)/k even if ∆ = Θ(n). The upper bound therefore
deviates from the lower bound by a factor of Θ(

√
log n log log n) for constant-

factor approximations. The reason for this larger gap is the large girth of
Gk. Intuitively, in order to be able to show a large MVC approximation lower
bound with the described technique, most of the nodes of a bad graph have to
be ‘bad’ nodes. However, if those bad nodes all have degree δ, the graph needs
to have at least nΩ(k) nodes in order to have girth Ω(k). However, by taking
all non-‘bad’ nodes and applying Algorithm 3 to the bad nodes, we obtain an
O(δO(1)/k)-approximation in k rounds. An Ω(nΩ(1)/k2

) lower bound is the best
we can hope for in this case. It therefore seems that we either need a different
technique or we need to be able to handle graphs with small girth in order to
significantly improve the Ω(nc/k2

/k)-lower bound.

92 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

3.3 Extending the Lower Bound to Other Problems

3.3.1 Minimum Dominating Set

In a non-distributed setting, minimum dominating set is equivalent to the gen-
eral minimum set cover problem2 whereas MVC is a special case of set cover
which can be approximated much better. It is therefore not surprising that
in a distributed environment, MDS is strictly harder than MVC, too. In the
following, we show that this intuitive fact can be formalized.

Theorem 3.13. There are graphs G, such that in k communication rounds,
every distributed algorithm for the minimum dominating set problem on G has
approximation ratios at least

Ω

(
nc/k2

k

)
and Ω

(
∆1/k

k

)

for some constant c, where n and ∆ denote the number of nodes and the highest
degree in G, respectively.

Proof. We show that every MVC instance can be seen as an MDS instance with
the same locality. Let G′ = (V ′, E′) be a graph for which we want to solve
MVC. We construct the corresponding dominating set graph G = (V, E) as
follows. For every node and for every edge in G′, there is a node in G. We
call nodes vn ∈ V corresponding to nodes v′ ∈ V ′ n-nodes, and nodes ve ∈ V
corresponding to edges e′ ∈ E′ e-nodes. Two n-nodes are connected by an edge
if and only if they are adjacent in G′. An n-node vn and an e-node ve are
connected exactly if the corresponding node and edge are incident in G′. There
are no edges between two e-nodes. Clearly, the localities of G′ and G are the
same, i.e. k communication rounds on one of the two graphs can be simulated by
k+O(1) rounds on the other graph. Let C be a feasible vertex cover for G′. We
claim that all nodes of G corresponding to nodes in C form a valid dominating
set on G. By definition, all e-nodes are covered. The remaining nodes of G are
covered because for a given graph, a valid vertex cover is a valid dominating
set as well. Therefore, the optimal dominating set on G is at most as big as
the optimal vertex cover on G′. There also exists a transformation in the other
direction. Let D be a valid dominating set on G. If D contains an e-node ve,
we can replace ve by one of its two neighbors. The size of D remains the same
and all three nodes covered (dominated) by ve are still covered. By this, we get
a dominating set D′ which has the same size as D and which consists only of
n-nodes. Because D′ dominates all e-nodes, the nodes of G′ corresponding to
D′ form a valid vertex cover. Thus, MDS on G is exactly as hard as MVC on
G′ and the theorem follows from Theorem 3.11.

2There exist approximation preserving reductions in both directions.

3.3. EXTENDING THE LOWER BOUND TO OTHER PROBLEMS 93

Corollary 3.14. To obtain a poly-logarithmic or constant approximation ra-
tio for minimum dominating set, there are graphs on which every distributed
algorithm needs time

Ω

(√
log n

log log n

)
and Ω

(
log ∆

log log ∆

)
.

Proof. The corollary is a direct consequence of Theorem 3.13 and the proof of
Theorem 3.12.

Remark: Using exactly the same reduction as for MDS, we can also show
that solving minimum fractional dominating set (LPDS) is as hard as solving
minimum fractional vertex cover. Therefore, Theorem 3.13 and Corollary 3.14
also hold for the fractional dominating set problem.

3.3.2 Maximum Matching

We will now show that the MVC lower bound can also be extended to packing
problems. In particular, we show that for maximum fractional matching—
and therefore also for maximum matching—, the same lower bounds hold. A
matching is a set M of edges such that no two edges in M are adjacent. The
fractional version is the natural LP relaxation as defined by the following linear
program.

max
n∑

ej∈E

yj

subject to
∑

vj∈E(v)

yj ≤ 1, ∀v ∈ V

yj ≥ 0.

(LPM)

Thereby, E(v) denotes the set of edges incident to node v. Note that (LPM)
is the LP dual of the fractional vertex cover problem. The approach to prove
a lower bound for (LPM) is similar to the approach for the MVC lower bound.
For every graph, we construct a graph Hk containing a large set S of edges
all having the same view up to distance k. The view of two edges (u, v) and
(u′, v′) is defined to be equal if Vu,k ∪ Vv,k = Vu′,k ∪ Vv′,k. The graph Hk is
constructed such that some of the edges in S need to have a large y-value to
achieve a good (LPM)-solution whereas other edges in S must not have a large
y-value to obtain a feasible (LPM)-solution.

The construction of Hk is based on the construction of the MVC lower
bound graph Gk as follows. Let Gk and G′

k be two identical copies of the
MVC lower bound graph and let ϕ : V (Gk) → V (G′

k) be a graph isomorphism
mapping nodes of Gk to nodes of G′

k. The graph Hk consists of Gk and G′
k and

additional edges between nodes v ∈ Gk and v′ ∈ G′
k if and only if v′ = ϕ(v).

94 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

0C0 C’

Figure 3.5: Lower Bound Graph Hk

Hence, each node of Gk is adjacent to its counterpart in G′
k. The set of nodes

of G′
k corresponding to cluster Ci in Gk is called cluster C′

i. The structure of
Hk is illustrated in Figure 3.5. Similarly to Gk where all nodes in clusters C0

and C1 have the same local view (Theorem 3.8), all nodes of clusters C0, C1,
C′

0, and C′
1 have the same distance k view in Hk.

Lemma 3.15. Let u and v be two nodes from any of the clusters C0, C1,
C′

0, and C′
1 of Hk. Up to distance k, u and v see the same topology, that is,

Tu,k = Tv,k.

Proof. Immediate from the definition of Hk and from Theorem 3.8.

As a consequence of Lemma 3.15, no k-round algorithm can distinguish be-
tween edges connecting two nodes in C0 ∪ C1 ∪ C′

0 ∪ C′
1. In particular, edges

between C0 and C1 can not be distinguished from edges between C0 and C′
0.

Based on this observation, we can now derive a lower bound on the approxima-
tion ratio for k-local (LPM)-algorithms. Let OPT be the optimal solution for
(LPM) and let ALG be the solution computed by any algorithm. Further let
S0 := C0 ∪ C′

0 and let S1 := C1 ∪ C′
1.

Lemma 3.16. When applied to Hk = (V, E) as constructed in Subsection 3.2.2,
any distributed, possibly randomized algorithm which runs for at most k rounds
computes, in expectation, an (LPM)-solution of size at most

|ALG| ≤ |S0|
2δ2

+
(
|V | − |S0|

)
.

Proof. We first consider deterministic algorithms. The fractional value assigned
to ei = (u, v) by an algorithm is denoted by yi. The decision of which value
yi is assigned to edge ei depends only on the topologies Tu,k and Tv,k and
on the labelings L(Tu,k) and L(Tv,k) which u and v can collect during the k
communication rounds. Assume that the labeling of Hk is chosen uniformly at
random. In this case, the labeling L(Tu,k) for an arbitrary node u is chosen
uniformly at random, too.

3.3. EXTENDING THE LOWER BOUND TO OTHER PROBLEMS 95

For convenience, we define the view of an edge ei = (u, v) as the union of
the views of u and v. All edges connecting nodes in S0 and S1 see the same
topology. If the labels are chosen uniformly at random, it follows that the
distribution of the views and therefore the distribution of the yi is the same
for all those edges. We call the random variables describing the distribution
of the yi, Yi. Let u ∈ S1 be a node of S1. Node u has δ2 neighbors in S0.
Therefore, for edges ei between nodes in S0 and S1, by linearity of expectation,
E [Yi] ≤ 1/δ2 because otherwise there exist labelings for which the calculated
solution is not feasible. By Lemma 3.15, edges ej connecting nodes in C0 and
C′

0 have the same view as edges between S0 and S1. Hence, also for the value
yj of ej, E [Yj] ≤ 1/δ2 must hold. There are |S0|/2 such edges and therefore the
expected total value contributed by edges between two nodes in S0 is at most
|S0|/(2δ2).

All edges which do not connect two nodes in S0, have one end-point in V \S0.
In order to get a feasible solution, the total value of all edges adjacent to a set
of nodes V ′ can be at most |V ′|. This can for example be seen by looking at
the dual problem, a kind of minimum vertex cover where some edges only have
one end node. Taking all nodes of V ′ (assigning 1 to the respective variables)
yields a feasible solution for this vertex cover problem. The lemma therefore
holds for deterministic algorithms.

For randomized algorithms, we can use the same arguments as in the MVC
lower bound. The claim follows by either applying Yao’s minimax principle or
Theorem 2.32 which states that distributed LP algorithms can be derandomized.

We now derive the lower bound. Lemma 3.16 gives an upper bound on the
number of nodes chosen by any k-local (LPM)-algorithm. Choosing all edges
connecting nodes of Gk and G′

k is feasible, hence, |OPT | ≥ n/2. Let α denote
the approximation ratio achieved by a k-round algorithm. As in the MVC proof
we assume that k + 1 ≤ δ/2. By Lemma 3.10, we have

α ≥ n

|S0|
(

1
2δ2 + k+1

δ−(k+1)

) ≥ |S0|
|S0|

(
1
δ + 2(k+1)

δ

) =
δ

2k + 3
.

The following theorem is now obtained in analogy to Theorem 3.11.

Theorem 3.17. There are graphs G, such that in k communication rounds,
every distributed possibly randomized algorithm for the (fractional) maximum
matching problem on G has approximation ratios at least

Ω

(
nc/k2

k

)
and Ω

(
∆1/k

k

)

for some constant c ≥ 1/4, where n and ∆ denote the number of nodes and the
highest degree in G, respectively.

96 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

Corollary 3.18. In order to obtain a poly-logarithmic or even constant approx-
imation ratio, every distributed algorithm for the linear program (LPM) requires
at least

Ω

(√
log n

log log n

)
and Ω

(
log ∆

log log ∆

)

communication rounds.

3.3.3 Maximal Independent Sets and Matchings

Recall that a maximal matching (MM) of a graph G is a maximal set of edges
which do not share common end-points. Hence, an MM is a set of non-adjacent
edges of G such that all edges in E(G)\MM have a common end-point with an
edge in MM. A maximal independent set (MIS) is a maximal set of non-adjacent
nodes, that is, all nodes not in the MIS are adjacent to some node of the MIS.
The best known lower bound for the distributed computation of an MM or an
MIS is Ω(log∗n) which holds for rings [91]. Based on Theorem 3.12, we get the
following stronger lower bounds.

Theorem 3.19. There are graphs G on which every distributed, possibly ran-
domized algorithm requires time

Ω

(√
log n

log log n

)
and Ω

(
log ∆

log log ∆

)

to compute a maximal matching. The same lower bounds hold for the construc-
tion of maximal independent sets.

Proof. It is well known that the set of all end-points of the edges of an MM
form a 2-approximation for MVC. This simple 2-approximation algorithm is
commonly attributed to Gavril and Yannakakis. For deterministic algorithms,
the lower bound for the construction of an MM therefore directly follows from
Theorem 3.12.

Theorem 3.12 does not directly imply a lower bound for randomized MM al-
gorithms. Theorem 3.12 gives a lower bound on the approximation ratio which
can be achieved in time exactly k. It does not say anything about algorithms
where the time complexity is at most k in expectation or with a certain prob-
ability. However, when considering randomized algorithms for constructing an
MM, we are interested in algorithms which always compute a correct solution
and where only the time complexity depends on randomness. In other words,
Theorem 3.12 bounds the potential of Monte Carlo type algorithms whereas for
constructing an MM, we are interested in Las Vegas type algorithms.

To extend the proof towards randomized algorithms, we show how to convert
any distributed MM algorithm with expected time complexity t into a vertex
cover algorithm with fixed time complexity 2t + 1 and expected approximation
ratio O(log ∆). Assume that we are given a randomized MM algorithm A which

3.3. EXTENDING THE LOWER BOUND TO OTHER PROBLEMS 97

terminates after t rounds in expectation. When running A for 2t rounds, by the
Markov inequality, the probability for having an MM is at least 1/2. We can
therefore modify A to obtain a 2t-round algorithm A′ computing a matching M
which is maximal with probability at least 1/2. Let S ⊆ V be the set consisting
of all nodes adjacent to an edge of M . With probability at least 1/2, S is
a vertex cover. In any case, the size |S| of S is at most twice the size of an
optimal vertex cover. If we make log ∆ independent runs of A′, the probability
for obtaining a vertex cover in one of the runs is at least 1− 1/∆. Because the
runs of A′ are independent, they can be done in parallel. Let S′ be the union
of the log ∆ node sets computed by log ∆ runs of algorithm A. The set S′ can
be computed in time 2t. The size of S′ is at most 2 log ∆ times the size of an
optimal vertex cover. With probability at least 1−1/∆, S′ is a vertex cover. In
case that S′ is not a vertex cover, we can turn S′ into a vertex cover by adding
all nodes which are adjacent to an uncovered edge. Let OPT be the size of an
optimal vertex cover. The expected size of S′ as described is

E [|S′|] ≤
(

1 − 1

∆

)
· 2 log∆ · OPT +

n

∆
≤
(

2 log∆ + 1 +
1

n − 1

)
· OPT

where n is the number of nodes of degree at least one. Note that because every
node can cover at most ∆ edges and since there are at least n − 1 edges, we
have (n − 1)/∆ ≤ OPT . Because the lower bounds of Theorem 3.12 also hold
for polylogarithmic approximation ratios, the MM part of the theorem follows.

For the MIS problem, consider the line graph L(Gk) of Gk. The nodes of a
line graph L(G) of G are the edges of G. Two nodes in L(G) are connected by
an edge whenever the two corresponding edges in G are incident to the same
node. The MM problem on a graph G is equivalent to the MIS problem on
L(G). Further, if the real network graph is G, k communication rounds on
L(G) can be simulated in k + O(1) communication rounds on G. Therefore,
the times t to compute a MIS on L(Gk) and t′ to compute a MM on Gk can
only differ by a constant, t ≥ t′ − O(1). Let n′ and ∆′ denote the number of
nodes and the maximum degree of Gk, respectively. The number of nodes n
of L(Gk) is less than n′2/2, the maximum degree ∆ of Gk is less than 2∆′.
Because n′ only appears as log n′, the squaring does not hurt and the theorem
holds (log n = Θ(log n′)).

98 CHAPTER 3. LOWER BOUNDS FOR DISTRIBUTED PROBLEMS

Chapter 4

Distributed Graph Coloring

In Chapter 2, we have circumvented symmetry breaking by relaxing a given
covering or packing problem to the corresponding linear program. This is of
course only possible if a given combinatorial problem can be locally converted
to an LP for which there is an efficient way to transform a fractional solution
into an integer one. For the problems which are traditionally used to study
symmetry breaking (e.g. MIS construction or graph coloring), the described LP
approach does not work. One such problem is the focus of the present chapter
in which we consider distributed algorithms for coloring the network graph.

4.1 The Minimum Graph Coloring Problem

A proper s-coloring of a graph G = (V, E) is an assignment γ : V → [s] of colors
between 1 and s to nodes such that adjacent nodes have different colors, that
is, (u, v) ∈ E ⇒ γ(u) 6= γ(v). Usually, the goal is to find a coloring of the nodes
of a graph which uses a small number of colors, resulting in the minimum graph
coloring problem. The minimum number of colors which are needed to properly
color the vertices of a given graph G is called the chromatic number χ(G) of G.

Finding a small graph coloring is one of the most fundamental graph prob-
lems and has therefore been studied for a long time. Many network coordination
primitives are based on colorings of the nodes of the network. For example, the
assignment of frequencies or time slots in wireless networks are classical appli-
cations of minimum graph coloring [64, 119]. Like minimum dominating set,
minimum graph coloring is one of the first problems which was shown to be
NP-hard [53, 73]. A lot of progress has been made since then, showing that for
general graphs, we cannot hope to find reasonably good colorings in polynomial
time. In particular, unless P = NP, for every constant ε > 0, minimum graph
coloring cannot be approximated better than |V |1/7−ε [20]. If NP 6= ZPP, one
can even show that minimum graph coloring cannot be approximated better
than Ω(|V |1−ε) [43].

99

100 CHAPTER 4. DISTRIBUTED GRAPH COLORING

4.2 The Distributed Graph Coloring Problem

In the distributed setting, naturally the goal is to color the network graph G.
Symmetries are usually broken either by randomness or by the use of node
identifiers or other a priori node labelings. In this chapter, we concentrate on
the second method since the main focus is on deterministic algorithms. We
consider two variants of the distributed coloring problem. For the first variant,
we make the common assumption that nodes have unique identifiers between 1
and some number N ≥ n, where n = |V |. Often, it is even assumed that N = n.
In the second more general variant, we assume that the algorithm starts with
some proper coloring with colors from {1, . . . , m} of the graph. The goal then
is to obtain a q-coloring with q < m. Clearly, the second variant of the problem
is more general than the first variant because unique identifiers from 1 to N
can be seen as an N -coloring of the graph. For the remainder of this chapter,
the first variant is called the distributed coloring problem, whereas the second
variant is called the distributed color reduction problem [35]. There are several
reasons to look at the color reduction problem.

• Starting from an initial coloring is a natural extension of the classical
problem where nodes need to have unique IDs. There might even be
situations where it is reasonable to have locally unique IDs but impossible
to guarantee globally unique IDs.

• It turns out that many things become clearer or simpler for the more
general problem. In the next section for instance, we show that most
topology information can be ignored.

• Most coloring algorithms in the literature work in the more general set-
ting. They usually consist of several phases which reduce the colors from
originally N to some final number.

In the previous section, we have summarized the most important results con-
cerning the hardness of minimum graph coloring in a non-distributed setting.
We can only hope to approximate coloring in any reasonable fashion in the un-
likely case that ZPP = NP. In principle, the described hardness results cannot
be adopted for the distributed models described in Section 1.2 since we allow
arbitrary local computations. In fact as shown in Section 1.3.2, based on unique
IDs, it is possible to compute an O(log n)-approximation for minimum vertex

coloring in randomized time O(log n) [93] or deterministic time O(nO(1/
√

log n))
[9, 12, 108] in the LOCAL model by first computing a network decomposi-
tion. Nevertheless it seems unreasonable to study a distributed problem where
exponential local computations are unavoidable. Therefore, when considering
distributed coloring algorithms, we usually do not compare an obtained solu-
tion with a global optimal solution. We rather compare a computed coloring
to what we can achieve by a simple sequential greedy algorithm. Therefore, for
distributed algorithms, mostly, the ultimate goal is to achieve a (∆+1)-coloring
or even just an O(∆)-coloring of the graph.

4.3. THE NEIGHBORHOOD GRAPH 101

4.3 The Neighborhood Graph

For the analysis of deterministic algorithms, we use the concept of neighborhood
graphs which was introduced in [91]. Neighborhood graphs are a means to
formalize the possible views on which nodes have to base their decisions and the
neighborhood relationships between different views. For a k-round algorithm,
the node set of the neighborhood graph is the set of all possible views of a
node after k communication rounds. Two nodes of the neighborhood graph are
connected if and only if the corresponding two views can occur together at two
adjacent nodes in the network graph G. In Section 1.2, we have seen that in the
LOCAL model, each node v of a deterministic k-round algorithm computes an
output value based on its view Vv,k. Thereby, Vv,k is the labeled graph induced
by the nodes in Γ+

k (v) excluding edges between nodes at distance exactly k
from v. Throughout Section 4.3, we assume that coloring algorithms start with
an a priori coloring instead of unique identifiers, that is, we consider the color
reduction problem. Hence, the labels of nodes in Vv,k are colors between 1 and
m.

To get some intuition for the neighborhood graph concept, we start with
the simplest case where nodes only communicate for one round before choosing
a color. The view Vv,1 of a node v in a one-round algorithm consists of v and
its neighbors. For coloring algorithms which start with an m-coloring, the view
is a pair (xv, Γx(v)) where xv is the initial color of v and where Γx(v) is the
multi-set of the colors of the neighbors of v. The value of xv and all elements
of Γx(v) are integers between 1 and m. If we only consider graphs with degrees
at most ∆, we have |Γx(v)| ≤ ∆ and because we start with a valid coloring, we
also have xv 6∈ Γx(v). Two views (xu, Γx(u)) and (xv, Γx(u)) are connected by
an edge in the neighborhood graph if and only if xu ∈ Γx(v) and xv ∈ Γx(u).
It is clear that two views can only be adjacent if these conditions holds. It is
also not hard to see that all pairs of views which fulfill the given conditions can
actually occur together in a graph with maximum degree ∆. Because adjacent
nodes must not choose the same color, if two nodes u and v have views which
are adjacent in the neighborhood graph, u and v must choose different colors.
Assigning a color to each view (xv , Γx(v)) therefore corresponds to finding a
proper coloring of the neighborhood graph. Therefore, the chromatic number
of the neighborhood graph characterizes the number of colors of a coloring
which can be achieved by a one-round algorithm. Definition 4.1 generalizes the
neighborhood graph concept for k-round coloring reduction algorithms applied
to m-colored graphs of maximum degree ∆. The subsequent Lemma 4.1 then
formally proves that the above observation about the chromatic number of the
one-round neighborhood graph also holds for the general Definition 4.1.

Definition 4.1. (Neighborhood Graph) The neighborhood graph Nk(m, ∆) =
(Vk(m, ∆), Ek(m, ∆)) is defined as follows.

• Vk(m, ∆) is the set of all properly m-colored, rooted ∆-regular trees of
depth k.

102 CHAPTER 4. DISTRIBUTED GRAPH COLORING

• For a tree α in Vk(m, ∆), let vα
0 be the root node of α and vα

1 , . . . , vα
∆ be

the neighbors of vα
0 . Further, for i = 0, . . . , ∆, T α

i is the ∆-regular tree of
depth k − 1, rooted at vα

i . Two trees α and β of the neighborhood graph
are neighbors (i.e., (α, β) ∈ Ek(m, ∆)) if and only if there are i, j ∈ [∆]

for which T α
0 = T β

i and T β
0 = T α

j .

Lemma 4.1. Let G denote the class of m-colored graphs with maximum degree
∆. In k rounds, a deterministic distributed algorithm can color a graph of G
with exactly q = χ(Nk(m, ∆)) colors, that is, there is an algorithm which colors
every graph of G with at most q colors and for every algorithm, there is a graph
in G for which the resulting number of colors is at least q.

Proof. We first prove that there is an algorithm which colors every properly
m-colored graph G with q colors in k rounds. Slightly more general, we show
that every t-coloring γt : Vk(m, ∆) → [t] of Nk(m, ∆) can be turned into a
k-round algorithm Ak(γt) for t-coloring arbitrary m-colored graphs with maxi-
mum degree ∆. Assume that we have a t-coloring γt which is globally known,
that is, all nodes of G know γt. Note that this is no problem since the neigh-
borhood graph and therefore also γt are independent of a particular network
graph G. In a first phase of the algorithm Ak(γt), all nodes of G collect their
complete neighborhoods up to distance k in k communication rounds. From
this information, a node v of G constructs a tree αv of depth k of its view as
follows. The root of αv is v and the children of the root node are the neighbors
of v in G. The children of every other node u at depth at most k − 1 of the
tree αv are all neighbors of u in G except of the parent node of u in αv. Note
that if v is part of a cycle of length smaller than 2k + 1 in G, there are nodes
which occur at different places in v’s tree. We m-color the tree by assigning
each node the color of the corresponding node in G. Remember that we start
our algorithm with an m-coloring of G. To obtain a ∆-regular tree of depth k,
we add all the necessary additional nodes to the tree. In a root-to-leaf fashion,
we assign the smallest possible color to each of the additional nodes. Note that
each additional subtree is colored with the colors 1 and 2. The assignment of v’s
new color by algorithm Ak(γt) is now straightforward by applying γt, that is, v
chooses the color γt(αv). By the construction of αv and by Definition 4.1, the
trees αu, αv ∈ Vk(m, ∆) of two neighboring nodes u and v in G are neighbors
in Nk(m, ∆). We therefore have γt(αu) 6= γt(αv) which implies that Ak(γt)
computes a valid t-coloring of G in k rounds.

To show that q also is a lower bound on the number of colors which a
k-round algorithm can achieve, we have to prove that any two adjacent nodes
(α, β) ∈ Ek(m, ∆) of Nk(m, ∆) can occur as the k-neighborhoods of two adjacent
nodes in an m-colored graph G with maximum degree ∆. However, Nk(m, ∆)
is defined such that Ek(m, ∆) contains an edge (α, β) if and only if α and β can
be the views of adjacent nodes on m-colored ∆-regular trees. Hence, the lemma
is tight for ∆-regular trees of depth at least k + 1.

4.4. DETERMINISTIC ONE-ROUND ALGORITHMS 103

4.3.1 Properties of the Neighborhood Graph

As a consequence of Lemma 4.1, understanding distributed color reduction algo-
rithms is tightly coupled to understanding the chromatic number of the neigh-
borhood graph Nk(m, ∆). Before starting a more detailed discussion, let us look
at a few simple properties of χ

(
Nk(m, ∆)

)
. From the definition of Nk(m, ∆), it

is immediate that

χ
(
Nk(m, ∆)

)
≤ χ

(
Nk−1(m, ∆)

)
, (4.1)

χ
(
Nk(m, ∆)

)
≥ χ

(
Nk(m − 1, ∆)

)
, and (4.2)

χ
(
Nk(m, ∆)

)
≥ χ

(
Nk(m, ∆ − 1)

)
. (4.3)

Lemma 4.2. For every k and every m ≥ ∆ + 1, the chromatic number of the
neighborhood graph Nk(m, ∆) is

χ
(
Nk(m, ∆)

)
≥ ∆ + 1.

Proof. Let Tk,i be the ∆-regular tree of depth k, representing the distance k view
of a node of color i in a (∆+1)-colored complete graph K∆+1. By definition, the
trees Tk,1, . . . , Tk,∆+1 ∈ Vk(∆+1, ∆) form a (∆+1)-clique in Nk(∆+1, ∆) and
hence χ(Nk(∆ + 1, ∆)) ≥ ∆ + 1. The claim now follows by Equation (4.2).

Corollary 4.3. For every k and every m ≥ ∆ + 1, there are m-colored trees
(graphs with chromatic number 2) which cannot be colored with less than ∆ + 1
colors by a k-round color reduction algorithm.

Lemma 4.2 and Corollary 4.3 give another reason why the goal of distributed
coloring algorithms is to find a (∆+1) or an O(∆)-coloring rather than to find a
good approximation for the minimum coloring problem. In some way, Corollary
4.3 can also be seen as an extension to Theorem 3.1 in [91]. There, it is shown
that ∆-regular trees of depth r cannot be colored with less than

√
∆ colors

in less than 2r/3 rounds. In [91], it is assumed that the nodes of the given
∆-regular tree have IDs from 1 to n. Corollary 4.3 extends the result to color
reduction algorithms.

4.4 Deterministic One-Round Algorithms

After looking at a few general properties of Nk(m, ∆) in Section 4.3.1, we make
a detailed analysis of the most simple case where k = 1 in this section. After
one communication round, each node knows its own color and the colors of its
at most ∆ neighbors. Based on this information, all nodes have to decide on a
new color.

Beyond being the simplest non-trivial case for general graphs, there are
several reasons why looking at the one-round case is interesting. Most known
distributed coloring algorithms are iterative applications of one-round color re-
duction algorithms [33, 55, 91]. From a practical point of view, this technique

104 CHAPTER 4. DISTRIBUTED GRAPH COLORING

is especially interesting because it results in algorithms for the CONGEST BC

model. In every round, each node sends a message (its own color) to all of its
neighbors. If we make the reasonable assumption that the number of colors m is
polynomial in the number of nodes n of the network graph, the sizes of all sent
messages are logarithmic in n. Understanding one-round color reduction algo-
rithms is therefore essential to understanding an important class of distributed
coloring algorithms.

The best known bounds for one-round coloring algorithms come from [91]
where it is proven that

χ
(
N1(m, ∆)

)
∈ O

(
∆2 log m

)
and χ

(
N1(m, 2)

)
∈ Ω(log log m).

The upper bound is based on the existence of the following set system. For
t ∈ O(∆2 log m), there are m subsets S1, . . . , Sm of {1, . . . , t} such that for
every (∆ + 1)-tuple of sets Si0 , . . . , Si∆ for ij ∈ {1, . . . , m}, we have

Si0 \
∆⋃

j=1

Sij 6= ∅.

A node v of color i0 with neighbors of colors i1, . . . , i∆ then chooses a number
which is in Si0 but not in Sij for j ∈ {1, . . . , ∆} as its new color. Based on a
result in [40], it is also proven in [91] that with such a set system, we cannot
obtain a coloring with less than Ω(∆2) colors. In the following, we extend this
result to general one-round algorithms proving that for large enough m,

χ
(
N1(m, ∆)

)
∈ Ω

(
∆2

log2 ∆

)
.

4.4.1 Independent Sets of the Neighborhood Graph

We start our analysis of the chromatic number χ
(
N1(m, ∆)

)
by looking at the

structure of independent sets of the neighborhood graph N1(m, ∆). Because
in a proper coloring of a graph, the nodes of each individual color form an
independent set, finding a minimum coloring can equivalently be formulated as
finding a minimum number of independent sets such that each node belongs to
at least one independent set.

By Definition 4.1, the nodes α ∈ V1(m, ∆) of the (k = 1)-neighborhood
graph are m-colored star graphs consisting of a center node and ∆ peripheral
nodes. Two stars α and β are neighbors in N1(m, ∆) if the center color of α
occurs among the peripheral colors of β and vice versa. Figure 4.1 illustrates
this by showing a part of N1(6, 3).

In general, for a star representing a node of N1(m, ∆), more than one pe-
ripheral node can have the same color. The following lemma shows that as long
as we are only interested in the chromatic number of N1(m, ∆), we can w.l.o.g.
assume that the peripheral nodes of a star in V1(m, ∆) all have distinct colors.

4.4. DETERMINISTIC ONE-ROUND ALGORITHMS 105

5

1

2

3

5

3

3

1

6

6

43

3

4

3 2

1

1 2

5
2 4

22

3

5

3 2

1

61

3

Figure 4.1: Looking into the one-round neighborhood graph N1(6, 3) of 6-
colored degree 3 graphs.

Lemma 4.4. For m > ∆, let N ′
1(m, ∆) be the subgraph of N1(m, ∆) induced

by all nodes in V1(m, ∆) for which the ∆ peripheral nodes of the corresponding
star graph have ∆ different colors. We have

χ
(
N ′

1(m, ∆)
)

= χ
(
N1(m, ∆)

)
.

Proof. Because N ′
1(m, ∆) is a subgraph of N1(m, ∆), it is clear that

χ
(
N ′

1(m, ∆)
)

≤ χ
(
N1(m, ∆)

)
.

To prove equality, we show that every t-coloring of N ′
1(m, ∆) can be extended

to a t-coloring of N1(m, ∆). Let α be an m-colored ∆-star graph with at least
two peripheral nodes of the same color. Hence, α is a node of N1(m, ∆) but
not a node of N ′

1(m, ∆). Further, let β be a node of N ′
1(m, ∆) for which the set

of peripheral colors is a super-set of the set of peripheral colors of α. By the
definition of N1(m, ∆), the neighbor set of α is a sub-set of the neighbor set of
β: Γ(α) ⊂ Γ(β). We can therefore safely color α with the color of β to obtain
a t-coloring of N1(m, ∆).

Note that Lemma 4.4 implies that for the one-round case, there is no dif-
ference between deterministic distributed coloring and deterministic distributed
color reduction. As we will see in Section 4.5, this is not true for randomized
one-round algorithms. Based on Lemma 4.4, we assume that N1(m, ∆) only

106 CHAPTER 4. DISTRIBUTED GRAPH COLORING

consists of m-colored stars with distinct peripheral colors for the remainder of
Chapter 4. We can therefore represent nodes of N1(m, ∆) by a pair (x, Γx)
where x ∈ [m] is the center color and Γx ⊂ 2[m] is the set of peripheral colors.
We have x 6∈ Γx and |Γx| = ∆. Two nodes (x, Γx) and (y, Γy) are adjacent in
N1(m, ∆) if x ∈ Γy and y ∈ Γx. The number of nodes N of N1(m, ∆) is

N = (∆ + 1) ·
(

m

∆ + 1

)

because for each (∆ + 1)-set of colors, there are ∆ + 1 nodes in N1(m, ∆) (one
for each of the ∆ + 1 possible center colors).

The above observations allow to define a relation ⊳S among the colors
1, . . . , m for each independent set S of N1(m, ∆). For an independent set S
and two colors x, y ∈ [m], we define x ⊳S y if and only if there is a node
(x, Γx) ∈ S for which y ∈ Γx. By the definition of N1(m, ∆) and because S is
an independent set, ⊳S is antisymmetric:

x ⊳S y =⇒ ¬(y ⊳S x).

For convenience, we define the complementary relation as x 6⊳S y := ¬(x ⊳S y).
In the described manner, it is not only possible to define an antisymmetric
relation ⊳S for each independent set S, we can also find an independent set S⊳

for each antisymmetric relation ⊳. The independent set S⊳ consists of all nodes
(x, Γx) for which x ⊳ y for all y ∈ Γx. We call ⊳ maximal if ¬(y ⊳ x) ⇒ x ⊳ y.
The set S⊳ is a maximal independent set if and only if ⊳ is maximal. Conversely,
every maximal independent set S has a maximal antisymmetric relation ⊳S ,
that is, every maximal independent set can be defined by a maximal ⊳ as
described. The following lemma shows that S is a maximum independent set
whenever ⊳ is a total order on [m].

Lemma 4.5. Let N be the number of nodes of N1(m, ∆) and let ≺ be a total
order on [m]. The resulting independent set S≺ is a maximum independent set
of size N/(∆ + 1) of N1(m, ∆).

Proof. Let D be a (∆ + 1)-subset of [m]. For each x ∈ D, there is a node
(x, D \ {x}) in N1(m, ∆). For a given total order ≺ on [m], exactly one of the
∆ + 1 colors is the smallest w.r.t. ≺. Hence, exactly one of the ∆ + 1 nodes
with colors in D is in S≺. Consequently, a 1/(∆ + 1)-fraction of all nodes of
N1(m, ∆) is in S≺. Because every node of N1(m, ∆) is in a (∆+1)-clique (proof
of Lemma 4.2), S≺ is a maximum independent set.

In fact, it can even be shown that the maximum independent sets defined
by total orders in the described way are the only maximum independent sets
of N1(m, ∆). In other words, the relation ⊳S of a maximum independent set
S is a total order on [m]. A direct implication of the structure of maximum
independent sets of N1(m, ∆) is given by the following corollary. The fractional
chromatic number of a graph G is defined as the size of the smallest fractional
covering of the nodes of G with independent sets of G.

4.4. DETERMINISTIC ONE-ROUND ALGORITHMS 107

Corollary 4.6. For all k ≥ 1 and m > ∆, the fractional chromatic number of
the neighborhood graph is

χf

(
Nk(m, ∆)

)
= ∆ + 1.

Proof. By Lemma 4.5 and by symmetry, every node of N1(m, ∆) is in m!/(∆+1)
independent sets of size N/(∆ + 1) defined by the m! possible total orders on
[m]. To obtain a fractional covering of the nodes with independent sets, we have
to assign a weight xS to each independent set S of G such that for each node v
of G, the sum of the weights of all independent sets containing v is at least 1.
By assigning xS = (∆ + 1)/m! to each of the m! maximum independent sets of
N1(m, ∆), we obtain a fractional covering of size ∆+1. For k ≥ 1, we therefore
have

χf

(
Nk(m, ∆)

)
≤ χf

(
N1(m, ∆)

)
≤ ∆ + 1.

In the proof of Lemma 4.2, we have shown that for all k and for all m > ∆,
Nk(m, ∆) contains a (∆ + 1)-clique. Hence, χf (Nk(m, ∆)) ≥ ∆ + 1.

Theorem 4.7. For all m > ∆, the chromatic number of the one-round neigh-
borhood graph is

χ
(
N1(m, ∆)

)
≤ (∆ + 1)2(lnm + 1).

Proof. The chromatic number χ(G) of a graph G equals the number of inde-
pendent sets needed to cover all nodes of G. Hence, χ(G) is the solution of a
minimum set cover instance. Because the integrality gap of minimum set cover
is at most ln s + 1, where s is the size of the largest set, we have

χ(G) ≤
(
ln(α(G)) + 1

)
χf (G)

where α(G) is the size of a maximum independent set of G. The theorem follows
because

α
(
N1(m, ∆)

)
=

(
m

∆ + 1

)
< m∆+1.

Remark: In [91], it has also been shown that χ
(
N1(m, ∆)

)
∈ O(∆2 log m).

Theorem 4.7 is a small constant improvement over the result of [91]. Up to
lower-order terms, it is better by a factor of 4.

The upper bound given by Theorem 4.7 is strong if ∆2 ≪ m. The following
theorem shows that also for m ≤ ∆2, the number of colors can be reduced in
one round.

Theorem 4.8. For all m, the chromatic number of the one-round neighborhood
graph is at most

χ
(
N1(m, ∆)

)
≤
⌈
m · ∆ + 1

∆ + 2

⌉
=

⌈
m ·

(
1 − 1

∆ + 2

)⌉
.

108 CHAPTER 4. DISTRIBUTED GRAPH COLORING

Proof. Let G be an m-colored graph of maximum degree ∆. We can construct
a q-coloring for G for any q satisfying

q +
q

∆ + 1
= q · ∆ + 2

∆ + 1
≥ m

as follows. Every node v with color xv ≤ q keeps its color. We now still have
to assign a color from {1, . . . , q} to all nodes having a color greater than q. Let
the number of such colors be t = m − q. From the above condition, we have
t ≤ ⌊q/(∆ + 1)⌋. We number those colors from x0 to xt−1, that is, we can for
example set xi = m − i. A node v with color xi chooses a color from the set
{i(∆ + 1) + 1, . . . , (i + 1)(∆ + 1)} which is not equal to the original color of
any of v’s neighbors. Because v can choose among ∆ + 1 colors, such a color
exists. Because nodes having colors xi and xj for i 6= j choose their colors from
disjoint color ranges, the obtained q-coloring is valid. The given upper bound
on χ

(
N1(m, ∆)

)
satisfies the condition for q because

⌈
m · ∆ + 1

∆ + 2

⌉
· ∆ + 2

∆ + 1
≥ m · ∆ + 1

∆ + 2
· ∆ + 2

∆ + 1
= m.

Theorem 4.8 gives a simple algorithm to transform an m coloring into a
∆+1-coloring in O(∆ log(m/∆)) rounds. In particular, the theorem shows that
χ
(
N1(m, ∆)

)
≤ m − 1 as long as m ≥ ∆ + 2. Combined with the O(log∗ m)-

time, O(∆2)-coloring algorithm, Theorem 4.8 implies an O(∆ log ∆ + log∗ n)-
time algorithm for coloring a graph with (∆ + 1) colors. Because an MIS can
be computed from a t-coloring in O(t) time, this also gives an algorithm for
constructing an MIS in O(∆ log ∆ + log∗ n) time.

4.4.2 Lower Bound for One-Round Algorithms

In [91], it is shown that even for degree 2 graphs, every one-round coloring
algorithm needs at least Ω(log log m) colors. Together with Lemma 4.2 this
gives the following lower bound on the chromatic number of the one-round
neighborhood graph:

χ
(
N1(m, ∆)

)
∈ Ω(∆ + log log m).

In this section, we significantly improve this lower bound showing that the
Ω(∆2) lower bound for algorithms based on the technique described in [91] is
almost tight for general one-round algorithms.

We start with an outline of the lower bound proof. Let S1, . . . , Sq be q inde-
pendent sets of N1(m, ∆) for some given m and ∆. If every node of N1(m, ∆) is
in at least one of the q independent sets, the chromatic number of N1(m, ∆) is
at most q. To prove a lower bound, the goal therefore is to show that if q is small

4.4. DETERMINISTIC ONE-ROUND ALGORITHMS 109

enough, we can find at least one node which is not in any of the independent
sets. To argue about the role of a color x in independent set S, we define

ΦS(x) :=
{
y |x 6⊳S y

}
and ϕS(x) :=

∣∣ΦS(x)
∣∣.

Hence, ΦS(x) denotes the set of colors y for which y 6∈ Γx for all nodes (x, Γx) ∈
S. Consequently ϕS(x) is the number of colors which do not occur in Γx for
(x, Γx) ∈ S. Our goal is to show that for small enough q, we can find ∆ + 1
colors x, y1, . . . , y∆ ∈ [m] such that

∀i ∈ [q], ∃j ∈ [∆] : yj ∈ ΦSi(x) (4.4)

for any possible choice of independent sets S1, . . . , Sq. If we can find such colors,
it follows that (x, {y1, . . . , y∆}) is not in any of the q independent sets S1, . . . , Sq.
Hence, those q independent sets do not define a valid coloring of N1(m, ∆). For
a given color x, the problem to find yj for which Condition (4.4) is satisfied can
be interpreted as an instance of minimum set cover. The colors [m] \ {x} define
the sets and the independent sets Si define the elements. An independent set
Si is covered by a color yj if yj ∈ ΦSi(x). To prove that a one-round coloring
algorithm needs more than q colors, we show that there is an x ∈ [m] for which
the optimal solution of the described set cover problem is at most ∆. In order
to find such an x, we need the following lemma.

Lemma 4.9. Let A ⊆ [m] be a set of colors. For every independent set S of
N1(m, ∆), we have

∑

x∈A

ϕS(x) ≥
(|A|

2

)
.

Proof. Because ⊳S is an antisymmetric relation, for any two colors x1, x2 ∈ A,
we have

(x1 6⊳S x2) ∨ (x2 6⊳S x1). (4.5)

By definition, ϕS(x) is the number of colors y for which x 6⊳S y. Hence, Equa-
tion (4.5) implies that for any two colors x1, x2 ∈ A, either ϕS(x1) or ϕS(x2) is

increased by 1. Because the number of pairs in A is
(|A|

2

)
, the claim follows.

Lemma 4.9 implies that for each independent set S and each set A of colors,
for at least half of the |A| colors, ϕS(x) ∈ Ω(|A|). Hence, for each independent
set S, many colors x are bad center colors because there are many colors which
cannot occur as peripheral colors. In the following, we show that for small
enough q, there must be a color x for which ϕSi(x) is large for almost all
independent sets Si, i ∈ [q]. To do so, for every x, we sort the values ϕSi(x)
(i = 1, . . . , q) in increasing order. For all j ∈ [q], we denote the jth value ϕSi(x)
in this sorted order by hj(x). Ties are broken arbitrarily. The next lemma
shows that there is an x for which hj(x) grows linearly with j.

110 CHAPTER 4. DISTRIBUTED GRAPH COLORING

Lemma 4.10. If t
(
(m − q)t − q

)
> 2q(m − 1), there is an x ∈ [m] for which

t∑

i=1

hi(x) ≥ m and h1(x) > 0.

Proof. Let Q ⊂ [m] be the set of colors x for which there is an i ∈ [q] such
that ϕSi(x) = 0, that is, Q = {x ∈ [m]

∣∣h1(x) = 0}. For each independent
set S, ϕS(x) = 0 for at most one color x. If ϕS(x) = ϕS(y) = 0 for two
different colors x 6= y, this would imply that x ⊳S y ∧ y ⊳S x which is not
possible because ⊳S is antisymmetric. We therefore have |Q| ≤ q. Let P be the
complementary color set of Q, that is, P = [m] \ Q. We want to show that if
t
(
(m − q)t − q

)
> 2q(m − 1), there is an x ∈ P for which

∑t
i=1 hi(x) ≥ m. For

the sake of contradiction, assume that this is not the case and thus

∀x ∈ P :

t∑

i=1

hi(x) ≤ m − 1 =⇒
∑

x∈P

t∑

i=1

hi(x) ≤ |P |(m − 1). (4.6)

Let us take a closer look at the double sum in the right inequality of (4.6). The
sum is over |P | · t different hi(x) values and therefore also over |P | · t different
ϕS(x) values. Let us denote the number of ϕS(x) values for independent set S
in the double sum of Inequality (4.6) by a(S). By Lemma 4.9, we have

∑

x∈|P |

t∑

i=1

hi(x) ≥
q∑

j=1

(
a(Sj)

2

)
, where

q∑

j=1

a(Sj) = |P | · t. (4.7)

For two integers A and B with A < B, we have

(
A

2

)
+

(
B

2

)
=

A2 − A + B2 − B

2
≥ A2 − A + B2 − B + 2(A − B + 1)

2

=
A2 + A − B2 − 3B + 2

2
=

(
A + 1

2

)
+

(
B − 1

2

)
. (4.8)

Combining Inequalities (4.8) and (4.7), we obtain

∑

x∈|P |

t∑

i=1

hi(x) ≥
q∑

j=1

(
a(Sj)

2

)
≥ q ·

(|P |t/q

2

)
=

|P |t · (|P |t − q)

2q
.

Note that the above inequality also holds if |P |t/q is not integral. Combined
with Inequality (4.6), we therefore have

2q(m − 1) ≥ t(|P |t − q) ≥ t
(
(m − q)t − q

)

which is a contradiction because we assumed that t
(
(m−q)t−q

)
> 2q(m−1).

4.4. DETERMINISTIC ONE-ROUND ALGORITHMS 111

As described above, for each center color x, finding a node of N1(m, ∆)
which is not covered by a given set of q independent sets of N1(m, ∆) can be
seen as a minimum set cover problem where the colors [m] are the sets and the
q independent sets are the elements. Using Lemma 4.10, we can now prove that
there is a color for which the above described set cover has a small fractional
solution.

Lemma 4.11. If t
(
(m−q)t−q

)
> 2q(m−1), there is a color x ∈ [m] for which

the above described minimum set cover problem has a fractional solution of size
at most t.

Proof. We have to assign a fractional value λy to each color y ∈ [m] \ {x} such
that

∀i ∈ [q] :
∑

y∈ΦSi
(x)

λy ≥ 1. (4.9)

We define

λy :=
1

min
{
ϕSi(x)

∣∣ y ∈ ΦSi(x)
} .

Clearly, this definition satisfies Condition (4.9). The value of the given fractional
set cover solution is

∑
y λy. By the definition of h1(x), h1(x) colors y have a

value λy = 1/h1(x). Further, at most hi(x) colors y have a value λy = 1/hi(x).
Because of Lemma 4.10, there is a color x for which

∑

y

λy ≤
t∑

i=1

hi(x)
1

hi(x)
= t.

which concludes the proof. Note that we need that h1(x) > 0 because the
independent set S for which ϕS(x) = 0 contains all nodes (i.e., stars) with
center color x.

Based on Lemma 4.11, we can now also find a color x for which the described
set cover problem has a small integer solution. This allows to derive the next
lemma.

Lemma 4.12. We have χ
(
N1(m, ∆)

)
> q if the following condition holds:

∆

(
∆ − q ln(eq)

m − q

)
>

2(m − 1)q ln2(eq)

m − q
. (4.10)

Proof. Let s be the size of the largest set of some given minimum set cover
problem. By the analysis of the set cover greedy algorithm [31], the integrality
gap of the minimum set cover problem is at most H(s) ≤ ln s+1 = ln(es). The
largest set of the set cover instance considered in Lemma 4.11 has size less than
q. The integrality gap of the considered set cover problem therefore is bounded
by ln(eq). We have seen that if there is some center color x for which there is a
solution of size ∆ for the problem of covering independent sets with colors, at

112 CHAPTER 4. DISTRIBUTED GRAPH COLORING

least one node of N1(m, ∆) is not covered by any of the independent sets. It
therefore follows from Lemma 4.11 that χ

(
N1(m, ∆)

)
> q if

∆ ≥ t ln(eq) and t
(
(m − q)t − q

)
> 2q(m − 1). (4.11)

Plugging the first inequality of (4.11) into the second inequality of (4.11), yields

∆

(
∆ − q ln(eq)

m − q

)
>

2(m − 1)q ln2(eq)

m − q
.

This allows us to compute a lower bound for one-round coloring algorithms
as given by the following theorem.

Theorem 4.13. For m ∈ Ω(∆2/ log∆), the chromatic number of the one-round
neighborhood graph is

χ
(
N1(m, ∆)

)
∈ Ω

(
∆2

log2 ∆
+ log log m

)
.

Proof. We have to show that Inequality (4.10) of Lemma 4.12 holds for q ∈
Ω(∆2/ log2 ∆) if m ∈ Ω(∆2/ log ∆). Hence, we assume that m = d∆2/ ln∆ for
some d ∈ Ω(1) and show how to find a c ∈ Ω(1) such that Inequality (4.10)
holds for q = c∆2/ ln2 ∆. For c < d, we have

m − q =
∆2

ln ∆
·
(
d − c

ln ∆

)
≥ ∆2

ln ∆
· ln ∆ − 1

ln ∆
.

Hence, there is a small enough constant c for which the left-hand side of In-
equality (4.10) is bounded by

∆

(
∆ − q ln(eq)

m − q

)
≥ ∆

(
∆ − c∆2(ln(ec) + 2 ln∆ − 2 ln ln ∆) ln2 ∆

ln2 ∆ · ∆2(ln ∆ − 1)

)

> ∆(∆ − 1).

There is a constant c′ such that

m

m − q
≤ d∆2 ln2 ∆

ln ∆ · ∆2(ln ∆ − 1)
≤ c′.

For the right-hand side of Inequality (4.10), we therefore obtain

2(m − 1)q ln2(eq)

m − q
≤ 2c′c∆2(ln(ec) + 2 ln ∆ − 2 ln ln ∆)2

ln2 ∆
< ∆(∆ − 1)

if the constant c is chosen small enough. The Ω(log log m) lower bound follows
from the proof of Theorem 2.1 in [91].

4.4. DETERMINISTIC ONE-ROUND ALGORITHMS 113

4.4.3 Lower Bound for Iterative One-Round Color Reduction

We have seen that many of the published coloring algorithms are iterative appli-
cations of one-round color reduction schemes. It would therefore be nice to have
a lower bound for one-round color reduction steps which allows to analyze the
potential of such iterative color reduction algorithms. The lower bound given
by Theorem 4.13 can only be applied if m is large enough. However, if we want
to lower bound the number of one-round color reduction steps needed to for
example achieve an O(∆)-coloring, we have to bound χ(N1(m, ∆) for small m.
Based on the condition given by Lemma 4.12, we obtain the following theorem.

Theorem 4.14. Assume that m = ρ∆ for an arbitrary ρ > 1. We have

χ
(
N1(m, ∆)

)
≥
(

1 − O

(
ρ log2 ∆

∆

))
· m.

Proof. By Lemma 4.12, we have χ(N1(m, ∆)) > q if

∆

(
∆ − q ln(eq)

m − q

)
>

2(m − 1)q ln2(eq)

m − q
.

By substituting ρ∆ for m and (1 − ε)m for q, we obtain

ε∆
(
∆ − (1 − ε) ln(e(1 − ε)ρ∆)

)
> 2(ρ∆ − 1)(1 − ε) ln2(e(1 − ε)ρ∆) (4.12)

W.l.o.g., we can assume that ρ ∈ O(∆/ log2 ∆). We thus have ln2(e(1−ε)ρ∆) ≤
c ln∆ for some constant c. The left-hand side and the right-hand side of In-
equality 4.12 can be bounded as follows:

ε∆
(
∆ − (1 − ε) ln(e(1 − ε)ρ∆)

)
≥ ε(∆2 − c∆ln ∆),

2(ρ∆ − 1)(1 − ε) ln2(e(1 − ε)ρ∆) ≤ 2cρ∆ln2 ∆.

Inequality 4.12 therefore holds if

ε ≥ 2cρ∆ln2 ∆

∆2 − c∆ln ∆
∈ O

(
ρ log2 ∆

∆

)

which concludes the proof.

Theorem 4.14 shows that if we start with a ρ∆-coloring, we need at least
Ω
(
∆/(ρ log2 ∆)

)
rounds to reduce the number of colors by a constant factor.

Combining with the Ω(log∗ m) lower bound for coloring a graph with O(∆)
colors [91], we obtain the following bound on the number of one-round color
reduction steps needed to color a given graph.

Corollary 4.15. Assume that m ≥ cβ(∆ + 1) for some constant c > 1 and
some β > 1. The number of one-round color reduction steps needed to obtain a
β(∆+1)-coloring is at least Ω

(
∆/(β log2 ∆)

)
. In particular, any O(∆)-coloring

algorithm which is based on iterative applications of one-round color reduction
steps, needs at least Ω(∆/ log2 ∆ + log∗ m) rounds.

114 CHAPTER 4. DISTRIBUTED GRAPH COLORING

4.5 Randomized Distributed Coloring

Up to this point, we have focused on deterministic coloring algorithms. Let
us now explore the potentials of randomized coloring algorithms. In [91], it
has been proven that randomization does not help for distributed coloring al-
gorithms. However, in the proof of [91], it is implicitly assumed that a k-round
randomized coloring algorithm colors a graph with s colors if the algorithm
always stops with a proper s-coloring after k rounds. The proof of [91] does
not hold if it suffices that the number of rounds is k or the number of colors
is s in expectation or with high probability. In the following, we show that on
the one hand, randomization does not help for k-round color reduction because
we possibly have n ≫ m, ∆. On the other hand, random distributed coloring
algorithms are strictly stronger than deterministic ones if the results for either
time complexity or number of colors only have to hold with high probability.

Theorem 4.16. Assume that there is a randomized k-round color reduction
algorithm AR which colors every m-colored graph G with maximum degree ∆
with q colors with probability p(m, ∆) > 0. Then there exists a deterministic
k-round color reduction algorithm AD which colors G with q colors, that is,

χ
(
Nk(m, ∆)

)
≤ q.

Proof. The theorem follows from Theorem 5.1 in [105] where it is proven that
randomization does not help to compute a locally checkable labeling if the num-
ber of rounds and the number of labels do not depend on the number of nodes
n of the network graph. For completeness, we outline a possible proof.

For the sake of contradiction assume that the number of colors computed by
the randomized color reduction algorithm AR is q < χ

(
Nk(m, ∆)

)
. By Lemma

4.1, there is a graph G for which every deterministic color reduction algorithm
needs at least χ

(
Nk(m, ∆)

)
colors. Hence, there is a positive probability ε > 0

that AR fails to compute a q-coloring for G. We construct an m-colored graph
G′ by taking t m-colored copies of G. Since the random choices of the nodes
of different copies of G are independent, algorithm AR independently fails for
each copy of G with probability ε. If we choose t large enough, the success
probability (1− ε)t becomes smaller than p(m, ∆) which is contradiction to the
assumption that q < χ

(
Nk(m, ∆)

)
.

The reason that randomization does not help for color reduction is that the
number of nodes n of the network graph can be arbitrarily greater than m and
∆. If we allow the number of colors q to depend on n or if we assume that m is
a function of n, Theorem 4.16 does not hold. In particular, if we assume that
initially all nodes have unique IDs between 1 and N , that is, m = N , randomiza-
tion might help. We show that for certain ∆, m, and n, randomized one-round
coloring algorithms can beat the one-round lower bound for deterministic algo-
rithms given by Theorem 4.13. For deterministic algorithms, we assumed that
in one round, every node can learn the labels of all its neighbors. In a random-
ized algorithm, it is additionally possible to collect all random decisions (i.e., all

4.5. RANDOMIZED DISTRIBUTED COLORING 115

Algorithm 8 Randomized coloring in one round (code for node v)

1: choose color tv uniformly at random from {1, . . . , ⌈∆/ lnn⌉};
2: send ID(v) and tv to all neighbors;
3: let Gtv be the graph induced by all nodes u with tu = tv;
4: let ∆tv be the maximum degree of Gtv ;
5: compute O(∆2

tv
log m)-coloring of Gtv =⇒ color yv;

6: color xv := yv⌈∆/ lnn⌉ + tv − 1

random bits) of the neighbors. Algorithm 8 describes a randomized algorithm
which colors a given network graph in one round. The following theorem shows
that Algorithm 8 computes a small, proper coloring. We assume that all nodes
know ∆, m, and n.

Theorem 4.17. For any constant c and with probability 1− 1/nc, Algorithm 8
computes a proper coloring of the network graph G with O(∆ log n logm) colors
in one round. The choice of the constant c only influences the number of colors
by a constant factor.

Proof. Let ∆T be max{∆t|t ∈ [⌈∆/ lnn⌉]}. We first show that Algorithm 8
computes a O(∆∆2

T log m/ logn)-coloring in one round. The only places where
something has to be computed are Lines 1, 5, and 6. The only problem occurs
in Line 5. If v knew ∆tv , an O(∆2

tv
log m)-coloring could be computed by using

Theorem 4.7 or by applying the algorithm of [91]. If we are willing to pay a
small constant factor in the number of colors, the described algorithms can be
adapted to the case where the maximum degree is not known. Let ∆i := 2i.
Assume that we are given O(∆2

i log m)-colorings of N1(∆i, m) for all i such that
different colors are used for different ∆i. A node v with degree δ(v) can choose
its color according to the respective color of the neighborhood graph for the
smallest ∆i ≥ δ(v).

In order to complete the proof, it therefore suffices to show that ∆T ∈
O(log n) with probability 1 − 1/nc. To do so, we compute a high probability
upper bound for the degree δtv (v) of v in Gtv using Chernoff (Theorem 1.3).
Let Q := ⌈∆/ lnn⌉. The probability that a neighbor u of v chooses the same
color in Line 1 (i.e., tu = tv) is 1/Q. The expected number of neighbors u of v
for which tu = tv is therefore at most ∆/Q ≤ lnn. By Theorem 1.3, we thus
get

Pr[δtv (v) ≥ κe lnn] <

(
eκe−1

(κe)(κe)

)lnn

=
1

n1+lnκ·κe
.

We then have

Pr[∆T ≥ κe lnn] ≤ n · Pr[δtv (v) ≥ κe lnn] <
1

nln κ·κe
.

Choosing κ such that c = lnκ · κe completes the proof.

116 CHAPTER 4. DISTRIBUTED GRAPH COLORING

If log n ≪ ∆, Theorem 4.17 together with the lower bound of Theorem 4.13
shows that randomization can help in distributed coloring.

In Line 5, we apply a deterministic one-round algorithm which colors an
m-colored graph with maximum degree ∆ with O(∆2 log m) colors. In [91],
it is shown that by applying such an algorithm O(log∗ m) times, it is possible
to compute an O(∆2)-coloring in O(log∗ m) rounds. If we replace Line 5 of
Algorithm 8 by this better (but slower) algorithm, we obtain the following
corollary to the above theorem.

Corollary 4.18. For any constant c, it is possible to color any m-colored graph
G with maximum degree ∆ with O(∆ log n) colors in O(log∗ m) rounds with
probability 1 − 1/nc.

The next corollary follows from the above corollary and from Theorem 4.8.

Corollary 4.19. For any constant c, it is possible to color a graph with O(∆+1)
colors in O(∆ log log n) rounds with probability 1 − 1/nc.

4.6 Time Division Multiple Access in Two Rounds

In Section 1.1.3, we have described time division multiple access (TDMA)
schemes as a possible application of colorings of the network graph. The goal of
a TDMA scheme is to assign time slots to nodes such that possibly interfering
nodes use different time slots. The signals of two nodes u and v of G = (V, E)
can interfere if they both communicate with each other or if both communicate
with the same additional node w. Hence, we have to assign different time slots
to nodes which are at distance 1 or 2 from each other [64, 119].

Let G2 be the graph with node set V and an edge between u and v if and
only if dG(u, v) ≤ 2. Clearly, a coloring of graph G2 yields a valid assignment
of time slots. Each color represents a time slot. Since interfering nodes u and
v have different colors, they also use different time slots. However, even if we
are given an optimal coloring of G2, the assignment of time slots might be far
from optimal. Assume for instance that a large part of the graph G2 can be
colored using t ≪ χ(G2) colors whereas the χ(G2) colors are only needed for
a very small part of the graph. With the straightforward approach, each of
the χ(G2) colors is assigned to one of χ(G2) time slots. This means that in
the part of the graph where t colors would suffice, only roughly a t/χ(G2)-
fraction of the time slots is really assigned. This results in a TDMA scheme for
which a large fraction of the total bandwidth is unused. In reality, the problem
becomes even worse since we cannot hope to find a coloring which is close to
an optimal one. Because we need χ(G2) time slots for the part of G2 having a
high chromatic number, the only solution is to assign several slots to nodes in
parts of G2 having a small chromatic number. In the following, we show that
two communication rounds suffice to assign an O(1/δ2(v))-fraction of all slots
to a node v with degree δ2(v) in G2. A node v only needs to know the IDs of

4.6. TIME DIVISION MULTIPLE ACCESS IN TWO ROUNDS 117

all its neighbors in G2 and thus the 2-hop neighbors in G to be able to use an
O(1/δ2(v))-fraction of all time slots. For convenience, we define H := G2. The
maximum degree of H is denoted by ∆H and the degree of a node v in H is
denoted by δH(v). When formulated for graph H , the problem is to assign a
set of colors to each node v of H such that the color sets of adjacent nodes are
disjoint and such that the number of colors per node is maximized. In order to
obtain a two-round algorithm for G, the algorithm for H must terminate after
a single round.

Theorem 4.20. Let C be the total number of colors and assume that all nodes
of a graph H with maximum degree ∆H have a unique ID between 1 and N .
For C ∈ O(∆2

H log N), there is a one-round algorithm which assigns colors to
nodes such that a node v with degree δH(v) gets assigned Ω(∆2

H log N/δH(v))
colors and such that the color sets assigned to adjacent nodes are disjoint.

Proof. We have seen in Lemma 4.5 that each total order ≺ on {1, . . . , N} induces
a maximum independent set S≺ of N1(N, ∆H). A node (x, Γx) of N1(N, ∆H)
is in S≺ if and only if ∀y ∈ Γx : x ≺ y. If we assign a color x to all nodes
in S≺, in the graph H , a node u can choose color x if ID(u) ≺ ID(v) for all
neighbors v of u. We have seen in Theorem 4.7 that (∆H + 1)2(lnN + 1) such
maximum independent sets suffice to cover each node of N1(N, ∆H) at least
once. How many independent sets are needed such that every node u of degree
δH(u) ≤ ∆H is covered at least Ω(∆2

H log N/δH(u)) times?

To analyze this, we have to extend the node set of N1(N, ∆H) to all nodes
(x, Γx) for which x 6∈ Γx and for which |Γx| ≤ ∆H . Note that before, we could
assume that |Γx| = ∆H . The number of nodes K of the extended neighborhood
graph is

K =

∆H∑

i=1

(
N

i + 1

)
(i+1) ≤

∆H∑

i=1

(
eN

i + 1

)i+1

·(i+1) ≤
∆H∑

i=1

(eN)i+1 ∈ O
(
(eN)∆H+1

)
.

We show that O(∆2
H log N) independent set are enough to cover all K nodes

sufficiently often using the probabilistic method. Assume that we choose t
independent sets at random. If the probability for not covering all K nodes
sufficiently often is smaller than 1, there is a non-zero probability that the choice
of independent sets is successful. This proves that it is possible to cover all K
nodes (x, Γx) of the neighborhood graph sufficiently often (Ω(∆2

H log N/|Γx|)
times) with t independent sets. To choose a maximal independent set S≺ at
random, we choose a total order ≺ uniformly at random. The probability
that a given node (x, Γx) is covered by S≺ is 1/(|Γx| + 1). Let X be the
random variable denoting the number of times (x, Γx) is covered. If we choose
t = 8(∆H + 1) lnK = O(∆2

H log N), the probability that X < t/(2(|Γx| + 1))

118 CHAPTER 4. DISTRIBUTED GRAPH COLORING

can be bounded using Chernoff (Theorem 1.2). We have

Pr

[
X <

(
1 − 1

2

)
t

|Γx| + 1

]
< e−

t
8(|Γx |+1) < e

− t
8(∆H+1)

= e
− 8 ln K(∆H+1)

8(∆H+1) =
1

K
.

Therefore the probability that at least one of the K nodes (x, Γx) is not covered
t/(2(|Γx|+ 1)) times is less than 1. This implies that there exist t independent
sets of N1(N, ∆H) such that all of the K nodes (x, Γx) are covered at least
t/(2(|Γx| + 1)) times.

Remark: Note that the TDMA scheme given by Theorem 4.20 is not optimal.
If v is the center of a Θ(

√
n)-regular tree of depth 2, the degree of v in G2 is n and

the degrees of all other nodes in G2 are Θ(
√

n). The described algorithm assigns
only a Θ(1/n)-fraction of all time slots to v although it would be possible to
assign Θ(1/

√
n)-fractions to all nodes. However, the algorithm is asymptotically

optimal for two rounds because it is not possible for v to distinguish between
the given graph G2 an a case where G2 is a complete graph Kn in two rounds.

Chapter 5

On The Locality of Bounded
Growth

5.1 Introduction

In Chapters 2–4, we have considered the distributed complexity of several basic
graph theoretic problems. Although there is clearly room from improvements,
for most of the problems the presented upper bounds are at least in the same
range as the given lower bounds. We have for example seen that in a constant
number of rounds the achievable approximation ratio for covering and packing
problems is a constant root of n or ∆. What do these results mean for real
networks? Given that we have to solve such a problem, can we really not do
any better?

Up to here, we always assumed that the topology of the network can be an
arbitrary graph. Especially when proving the lower bounds in Chapter 3, we
made extensive use of this assumption. The constructed cluster tree is definitely
far from any graph occurring in a real-world network. In the following, we will
therefore drop this general graph assumption. We will look at a restricted class
of graphs which we call growth-bounded graphs. We believe that the underlying
assumptions for this graph class are realistic in many situations, especially when
considering wireless ad hoc and sensor networks.

5.1.1 Unit Disk Graphs

Very often, ad hoc and sensor networks are modeled as unit disk graphs (UDG).
In a UDG, it is assumed that all network nodes are located on a two-dimensional
plane. All wireless nodes have the same transmission range, two nodes can
communicate directly with each other whenever they are within each other’s
transmission range. Hence, a graph G is a unit disk graph exactly if there is an
assignment of coordinates in R

2 such that there is an edge between two nodes
if and only if their distance is at most 1.

119

120 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

Many of the classical graph theoretic problems of Chapters 2–4 are much
easier to approximate on UDGs than on general graphs, at least in a non-
distributed setting. A maximal independent set for example is a constant ap-
proximation for minimum dominating set and for maximum independent set
and a (∆ + 1)-coloring is a constant approximation for minimum graph col-
oring (see e.g. [98]). For the minimum vertex cover problem, things are even
simpler. It can be shown that the set of all non-isolated nodes of a UDG is
a constant approximation for the MVC problem. As a consequence, there is a
trivial constant-time distributed approximation algorithm for MVC on UDGs.
This is in sharp contrast to the distributed MVC lower bound of Chapter 3 for
general graphs.

Although the UDG model is the most popular graph model for ad hoc and
sensor networks, it appears clear that the underlying assumptions are much too
ideal to be realistic. The devices of a wireless network are usually not on a
plane surface with no obstacles in-between. Even if they were, we could not
assume that all transmission radii are exactly equal. Nevertheless, some of the
properties of UDGs are realistic. In the following, the most basic properties of
UDGs are used to develop the notion of growth-bounded graphs.

5.2 Growth-Bounded Graphs

In Section 5.1.1, we have mentioned that on a UDG, MDS, maximum indepen-
dent set, and graph coloring can be approximated by computing an MIS or a
(∆+1)-coloring, respectively. What properties of the UDG do we need to prove
these statements?

Let us look at the MDS problem. Assume that we are given a UDG G
and an MIS S of G. From the definition of an MIS, it is clear that S is a
dominating set of G. To prove that S is only by a small factor larger than
an optimal dominating set, consider a single node v of G. Let d(v) be the
number of dominators in Γ+(v), that is, d(v) = |S ∩ Γ+(v)|. If v ∈ S, we have
d(v) = 1 because S is an MIS. If v 6∈ S, we show that d(v) ≤ 5. For the sake of
contradiction, assume that d(v) ≥ 6. In that case, six nodes of S are in a circle
of radius 1 and center v. Because S is an independent set, the distance between
any two of these six nodes has to be larger than one. When looking from the
center v of the circle, the angle between any two points must be larger than
60◦. However because the whole disk has only 360◦, this is not possible and we
therefore have d(v) ≤ 5. Assigning yi = 1/5 to each node vi ∈ S therefore gives
a feasible solution for (DPDS), the dual of the dominating set LP (LPDS). By
LP duality, this implies that an MIS is a 5-approximation for MDS on UDGs.

We only use the fact that G is a UDG in the above argumentation when
bounding the number of dominators d(v) among the neighbors of a node v.
Thereby, we applied the fact the no node of a UDG can have more than 5
independent (i.e., pairwise non-adjacent) neighbors. Such a graph is called

5.2. GROWTH-BOUNDED GRAPHS 121

K1,6-free because there is no set of 7 nodes for which the induced subgraph is
the complete bipartite graph K1,6. In fact, K1,6-freeness also suffices to prove
the described statements about maximum independent set and minimum graph
coloring.

Because many of the UDG complexity results are based on the K1,6-freeness
of UDGs, we would like to keep this property when modeling topologies of ad
hoc or sensor networks. But is it realistic to assume that the graphs of ad hoc
and sensor networks are K1,t-free for some constant t? Although we cannot
assume that nodes can directly communicate if and only if their distance is at
most 1, assuming that close nodes can directly exchange messages rather than
far-away nodes is definitely reasonable. It is therefore also reasonable to assume
that as soon as there are enough nodes within some bounded area on the plane
or some bounded volume in space, there are nodes which can communicate
with each other. Because all neighbors of a node v have to be within a bounded
area or volume to communicate with v via radio, this implies K1,t-freeness for
some bounded t. It even implies a stronger property which we use to define
growth-bounded graphs.

Definition 5.1. (Growth-Bounded Graph) We call a graph G f -growth-
bounded if there is a function f(r) such that every r-neighborhood Γ+

r (v) of G
contains at most f(r) independent (i.e., pairwise non-adjacent) nodes.

Note that f is a function of r and does not depend on any other property
of G. In particular, f(r) is independent of the number of nodes n or the largest
degree ∆. If f(r) is a polynomial in r, we say that G is polynomially growth-
bounded. Note also that an f -growth-bounded graph is K1,f(1)+1-free.

To get some intuition for the above definition, let us determine the function
f for UDGs. All nodes in the r-neighborhood Γ+

r (v) of a node v are in a disk
of radius r around v. Let us look at an independent set S of the subgraph of
G induced by Γ+

r (v). Two nodes of S have distance more than 1. Therefore,
the disk of radius 1/2 around each node u ∈ S contains no other node of S.
The number of nodes in S therefore is bounded by the number of times the
area of a disk of radius 1/2 fits into the area of a disk of radius r and hence
f(r) ≤ πr2/(π/4) = 4r2. If we extend the UDG definition to arbitrary constant-
dimensional Euclidean spaces, the growth function is f(r) ∈ O(rd). Another
simple example which satisfies Definition 5.1 are constant-degree graphs. If the
degree of every node of a graph G is bounded by a constant ∆ > 1, we have
f(r) ∈ O(∆r), that is, the growth of G is exponentially bounded in this case.

5.2.1 Graph Classes Having Bounded Growth

In this section, we look at other graph models which imply bounded growth.
The following definition introduces a natural extension of the UDG model where
we assume that nodes ‘live’ in an arbitrary metric space instead of the Euclidean
plane.

122 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

Definition 5.2. (Unit Ball Graph) Let M = (X, d) be some finite metric
space with n = |X | points and distance function d : X × X → R. The graph
G = (V, E) with node set V = X and edge set E = {(u, v) ∈ V ×V | d(u, v) ≤ 1}
is called the unit ball graph induced by M .

If the metric M is a finite sub-space of the 2-dimensional Euclidean plane,
the unit ball graph (UBG) definition coincides with the UDG definition. In
order to get something interesting, we have to restrict the metric space M in
some way. Note that every undirected graph G is a UBG, namely the UBG
induced by the shortest path metric of G.

In order to bound the growth of a metric, we use the doubling dimension as
introduced in [59]. The doubling dimension of a metric space is the smallest ρ
such that every ball can be covered by at most 2ρ balls of half the radius. If
ρ is a constant, we say that the given metric is doubling. In analogy, we call a
UBG doubling if the underlying metric space is doubling. The following lemma
shows that doubling UBGs are polynomially growth-bounded.

Lemma 5.1. Let G = (V, E) be a UBG which is induced by some metric
M = (X, d) with doubling dimension ρ. G is f -growth-bounded for f(r) ∈ O(rρ).

Proof. Consider an independent set S of the subgraph of G induced by an r-
neighborhood Γ+

r (v) for some node v ∈ V . For every u ∈ Γ+
r (v), the ball

with radius 1/2 around u contains at most one node of S because S is an
independent set of Γ+

r (v). Further, all nodes of Γ+
r (v) and hence also all nodes

of S are contained in a ball B(v, r) of radius r around v. The number of balls
of radius 1/2 needed to cover B(v, r) is at most 2ρ log(2r) = O(rρ).

One of the problems of the UDG model is that there is a sharp bound
specifying whether two nodes hear each other. In [16, 83], a generalization of
the UDG model relaxing this issue has been introduced. For general metric
spaces, we obtain the following definition.

Definition 5.3. (Quasi Unit Ball Graph) Let M = (X, d) be a finite metric
space and let λ < 1 be a constant. We defined a graph G = (V, E) with node set
V = X and the following edge set E:

• d(u, v) ≤ λ =⇒ (u, v) ∈ E,

• d(u, v) > 1 =⇒ (u, v) 6∈ E.

If λ < d(u, v) ≤ 1, it is not specified whether there is an edge between u and v.
G is called a quasi unit ball graph.

Because every ball of radius λ/2 contains at most 1 node of an independent
set of a quasi unit ball graph (QUBG) G, for constant λ and a metric M
with constant doubling dimension, G is polynomially growth-bounded. If the
underlying metric of a QUBG G is a sub-space of the 2-dimensional Euclidean
plane, we call G a quasi unit disk graph (QUDG).

5.2. GROWTH-BOUNDED GRAPHS 123

Metrics with bounded growth in general and doubling metrics in particular
have found quite a lot of attention [59, 74, 76, 115, 126]. Besides UBGs and
QUBGs, there are other network graphs which are based on such metric spaces.
It is often assumed that latencies of many real networks such as peer-to-peer
networks or the Internet are doubling. Although these network graphs are not
growth-bounded in the sense of Definition 5.1, we will see that some of the
results of this chapter also hold in this case. The network-related problems
which have been considered for doubling metrics include metric embeddings
[59, 74], distance labeling and compact routing [126], and nearest neighbor
search [76]. The doubling dimension has been introduced in [59], however, a
similar notion has already been used in [4].

5.2.2 Properties of Growth-Bounded Graphs

We conclude our introduction to growth-bounded graphs by looking at a few,
in the context of this work important properties of such graphs. We have seen
in Section 1.3.2 that every graph has a network decomposition with (strong)
diameter O(log n) and chromatic number O(log n). Finding a good decomposi-
tion allows to devise efficient distributed algorithms for a great number of local
problems. We will see in the following that every growth-bounded graph G has
an (O(1), O(1))-decomposition, that is, G has a decomposition into clusters of
constant diameter such that the cluster graph has constant chromatic number.
In fact, we will see that we can even achieve cluster graphs with constant degree.
We need the following definition from [112].

Definition 5.4. (r-Ruling Set) Let G = (V, E) be an undirected graph. A
subset R ⊆ V is called an r-ruling set of G if for each node u ∈ V , there is a
node v ∈ R with dG(u, v) ≤ r.

If the nodes of an r-ruling set R are independent, that is, if no two nodes
u, v ∈ R are adjacent, we call R an r-ruling independent set. Note that 1-ruling
independent sets are maximal independent sets. Assume that we are given an
r-ruling independent set R of some f -growth-bounded graph G. The set R
naturally induces a clustering of G. We make a cluster Cv for each node v ∈ R.
Thereby, cluster Cv contains all nodes for which v is the closest node of R. Ties
are broken arbitrarily. The following lemma shows that for constant r, the given
clustering implies an (O(1), O(1))-decomposition.

Lemma 5.2. The described clustering gives a (f(2r+1)+1, 2r)-decomposition
of G = (V, E). Moreover, the degree of the cluster graph is bounded by f(2r+1).
For constant r, we obtain an (O(1), O(1))-decomposition of G.

124 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

Proof. The diameter of each cluster is at most 2r because R is an r-ruling set.
It therefore suffices to show that the degree of the cluster graph is at most
f(2r + 1). It then follows that the chromatic number of the cluster graph is at
most f(2r + 1) + 1. Let us look at the neighbor clusters Cv of a cluster Cu for
u, v ∈ R. Because for two neighboring clusters Cu and Cv there must be nodes
u′ ∈ Cu and v′ ∈ Cv with (u′, v′) ∈ E, we have

dG(u, v) ≤ 1 + dG(u, u′) + dG(v, v′) ≤ 2r + 1.

Because R is an independent set, at most f(2r + 1) nodes v ∈ R have distance
at most 2r + 1 from u.

In particular, Lemma 5.2 implies that every MIS S of a growth-bounded
graph G induces an (O(1), O(1))-decomposition of G. Because the cluster graph
given by S has constant degree, it can be colored in time O(log∗ n). There-
fore, an MIS S can be converted into a (O(1), O(1))-decomposition in O(log∗ n)
time on growth-bounded graphs. We have seen in Section 1.3.2 that from a
(χ, d)-decomposition, an MIS can be computed in O(χd) time. Since rings are
growth-bounded graphs, the Ω(log∗ n) lower bound for computing an MIS on
a ring implies an Ω(log∗ n) lower bound on the number of rounds for com-
puting an (O(1), O(1))-decomposition of a growth-bounded graph. Therefore,
up to constant factors, constructing an MIS and computing an (O(1), O(1))-
decomposition are equivalent problems on growth-bounded graphs. On the one
hand, both structures cannot be constructed in fewer than Ω(log∗ n) rounds.
On the other hand, one of the structures can be turned into the other one in
O(log∗ n) time. In Section 5.3.3, we will see that this equivalence even holds
in the CONGEST model if we additionally assume that the cluster graph of
the decomposition has constant degree. In this case, we will show that based
on an (O(1), O(1))-decomposition an MIS can be computed in O(1) time using
messages of size O(log n) only.

Lemma 5.2 shows that on growth-bounded graphs, an O(1)-ruling set im-
plies a decomposition with constant cluster diameter and degree. The following
lemma shows that growth-bounded graphs are the only graphs with this prop-
erty.

Lemma 5.3. Let α ≥ 1 be a constant. Given an α-ruling independent set of a
graph G = (V, E), we construct a 2α-diameter decomposition of G as described
above. If the degree of the obtained cluster graph is bounded by some constant
β ≥ 2 for all α-ruling independent sets of G, G is 2βr-growth-bounded.

Proof. Consider some node u ∈ V . Assume that the decomposition is based on
an α-ruling independent set R which contains a maximum independent set of
the graph induced by the r-neighborhood Γ+

r (u) of u. Let Cu be the cluster
containing u. The node v ∈ R of a clusters Cv at distance at most r from Cu

in the cluster graph is contained in Γ+
r (u). Because the degree of the cluster

graph is bounded by β, it follows that |Γ+
r (u) ∩ R| ≤∑r

i=0 βi ≤ 2βr.

5.3. FAST DETERMINISTIC MIS CONSTRUCTION 125

5.3 Fast Deterministic MIS Construction

In Section 1.3, we have highlighted the importance of distributed MIS construc-
tion in the context of symmetry breaking. Section 5.2.2 shows that for the
class of growth-bounded graphs, computing an MIS is even more fundamental
because it can be used to directly obtain an (O(1), O(1))-decomposition of the
network graph. Therefore, computing an MIS can be used as a basis to obtain ef-
ficient distributed algorithms for almost every local problem on growth-bounded
graphs. In Section 1.3.2, we have seen that finding the distributed complexity
for deterministically constructing an MIS is an important open problem. In
particular, it is not known whether a poly-logarithmic time algorithm exists
for general graphs. In this section, we answer this question in the affirmative
for growth-bounded networks. We will present an algorithm which computes
an MIS in time O(log ∆ log∗ n) in the CONGEST model. Hence, unless ∆ is
large, this even beats the O(log n)-bound of the best randomized algorithms.
The MIS algorithm for growth-bounded graphs consists of three parts which are
described in Sections 5.3.1–5.3.3. In Section 5.3.1, we give an algorithm to com-
pute an O(log ∆)-ruling independent set in time O(log ∆ log∗ n). Section 5.3.2
shows how, also in time O(log ∆ log∗ n), an O(log ∆)-ruling independent set can
be turned into a 3-ruling independent set. Finally, Section 5.3.3 computes an
MIS based on the network decomposition induced by the 3-ruling independent
set of Section 5.3.2.

5.3.1 Constructing a Sparse Independent Set

The first phase of our MIS construction is a distributed algorithm which
locally computes an O(log∆)-ruling independent set S for a given undirected
growth-bounded graph G = (V, E) in time O(log ∆ log∗ n). A detailed descrip-
tion of the first phase is given by Algorithm 9. Before analyzing the algorithm,
we give an informal description of the code.

At the beginning, S is empty and all nodes are active (denoted by the
variables b(v) for v ∈ V). Nodes are active as long as they have not decided
whether to join the independent set S. As soon as a node becomes passive, it
has either joined S in Line 20 or it has decided not to join S. From a general
perspective, Algorithm 9 tries to eliminate active vertices from the network
until single, locally independent nodes are left. It does so with the help of edge-
induced subgraphs of bounded degree. In each iteration of the while-loop, a
constant-degree graph G consisting of active nodes and edges of G is computed.
On G, we can construct an MIS in time O(log∗ n) [33, 55, 91]. Only the nodes
of the MIS of G stay active after the iteration of the while-loop. This way, the
number of active nodes is reduced by at least a constant factor in every while-
loop iteration. As soon as an active node v has no active neighbors, v joins
the independent set S (Line 20). The graph G is constructed as follows. First,
each active node v chooses an active neighbor d(v). Then, each active node u
which has been chosen by at least one neighbor v selects a neighbor p(u) for

126 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

Algorithm 9 Computing a sparse independent set (code for vertex v)

1: S := ∅;
2: b(v) := active;
3: while b(v) = active do
4: if ∃u ∈ Γ(v) | b(u) = active then
5: d(v) := min{u ∈ Γ(v) | b(u) = active};
6: inform neighbor d(v);
7: Av := {u ∈ Γ(v) | d(u) = v};
8: if Av 6= ∅ then
9: p(v) := minAv;

10: inform neighbor p(v)
11: fi;
12: Bv := {u ∈ Γ(v) | p(u) = v};
13: if (Av = ∅) ∧ (Bv = ∅) then
14: b(v) := passive
15: else
16: construct MIS I on graph G = (V , E) with

V := {u ∈ V | b(u) = active} and E := {(u, p(u)) | u ∈ V ∧Au 6= ∅};
17: if v 6∈ I then b(v) := passive fi
18: fi
19: else
20: S := S ∪ {v}; b(v) := passive
21: fi
22: od

which d(p(u)) = u. The edge set of V consists of all edges of the form (u, p(u)).
Because a node u can only be connected to d(u) and p(u), G has at most degree
2. Now, consider a single execution of the while-loop (Lines 3–22, Figure 5.1).

Lemma 5.4. In the graph G = (V , E), every vertex has degree at most 2.

Proof. Consider v ∈ V ; then there are at most two vertices adjacent to v by an
edge in E, namely d(v) if p(d(v)) = v, and p(v).

Note that due to this lemma, Line 16 of the algorithm, that is the local
construction of an MIS I on G, can be completed in O(log∗ n) rounds using
methods described in [33, 55, 91].

Lemma 5.5. Let VA denote the set of active nodes. After k iterations of the
while-loop, S ∪ VA is a 2k-ruling set of G.

Proof. We prove the lemma by induction over the number k of while-loop iter-
ations. Initially all nodes are active, thus the lemma is satisfied for k = 0. For
the induction step, we show that if a node v becomes passive in an iteration of
the while-loop, either v joins S or there is an active node at distance at most
2 from v which remains active until the next while-loop iteration. Node v can

5.3. FAST DETERMINISTIC MIS CONSTRUCTION 127

Figure 5.1: One iteration of Algorithm 9. The dashed nodes are passive at the
outset of the iteration. The dashed arrows between active nodes denote the
links d(v). The graph G is induced by the links p(v) which are denoted by the
solid, bended arrows. Finally, the algorithm computes an MIS on G, leaving
only the black nodes active for the next iteration.

become passive in Lines 14, 17, or 20. If v becomes passive in Line 20, it joins S
and therefore the condition of the lemma is satisfied. In Line 17, v is a node of
G and has a neighbor u of v which is in the MIS I of G. Thus, node u remains
active.

The last remaining case is that v decides to become passive in Line 14. By
the condition in Line 4, we can assume that v has at least one active neighbor
at the beginning of the while-loop iteration. Therefore, v can choose a node
u = d(v) in Line 5. Since Au 6= ∅, u chooses a node p(u) and therefore u is a
node of G. Because all nodes of the MIS I of G remain active, either u or a
neighbor w of u is still active after completing the while-loop iteration. Since
distG(v, w) = 2, this completes the proof.

The following two lemmas give bounds on the number of rounds needed by
Algorithm 9 to complete. Further, the resulting structure is described. Lemma
5.6 bounds Algorithm 9 for general graphs, whereas Lemma 5.7 gives bounds
for the algorithm when applied to growth-bounded graphs.

Lemma 5.6. On any graph G, Algorithm 9 terminates with an O(log n)-ruling
independent set S after O(log n) consecutive executions of the while-loop.

Proof. Let nact be the number of active nodes at the beginning of an iteration
of the while-loop. We prove that in one while-loop iteration, at least nact/3
nodes become passive. The claim then follows by Lemma 5.5.

128 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

v1

v2

v6
v5

v4

v3

v7

Figure 5.2: The cluster with the edges in G. Black nodes will remain active in
the next iteration. The nodes v1, v2, and v3 are in Ci. Nodes v4, v5, and v6 are
connected only to nodes outside of the cluster and hence, are in set Co. Finally,
v6 ∈ Cp.

Let n ≤ nact be the number of nodes of G of some particular iteration of the
while-loop. All nodes which are not part of G become passive in Lines 14 or 20.
It therefore suffices to prove that at least one third of the nodes of G become
passive. However, G is constructed such that it does not contain isolated nodes,
that is, all nodes of G have at least degree 1. Note that G is an edge-induced
subgraph of G. Because the maximum degree of a node in G is 2 (Lemma 5.4),
the MIS I consists of at most 2n/3 nodes. Hence, at least n/3 nodes become
passive in Line 17.

For general graphs, a slightly faster algorithm to compute an O(log n)-ruling
independent set has been presented in [9]. The algorithm of [9] needs O(log n)
rounds and is therefore by a factor of O(log∗ n) faster. However, as the following
lemma shows, Algorithm 9 is faster than the algorithm of [9] for growth-bounded
graphs.

Lemma 5.7. If the network graph G is growth-bounded, after O(log ∆) consecu-
tive executions of the while-loop, Algorithm 9 terminates with a O(log ∆)-ruling
independent set S.

Proof. Let M be a maximal independent set of G. The set M defines a clustering
as described in Section 5.2.2. We associate a cluster Cu with each node u ∈ M .
Each node v 6∈ M is assigned to the cluster of an adjacent node u ∈ M . Note
that each cluster contains at most ∆ + 1 nodes. Let us define the cluster graph
GC as follows. The nodes of GC are the clusters Cu. Two nodes Cu and Cv

are connected if there is an edge connecting the respective clusters. Because
we assume that G is growth-bounded, there is a function f such that there are
at most f(3) = O(1) independent nodes at distance at most 3 from a node u.
Therefore, the maximum degree of GC is bounded by d := f(3).

5.3. FAST DETERMINISTIC MIS CONSTRUCTION 129

In the following, we show that the maximum number of active nodes per
cluster is reduced by a factor of 2 in a constant number of while-loop iterations.
For convenience, we define a unit of time to be one iteration of the while-loop.
Let α be the maximum number of active nodes per cluster at some time t. We
will show that there is a constant k such that at time t+k each cluster contains
at most α/2 active nodes. Note that this implies the lemma because we have
α ≤ ∆+ 1 at time t = 0. Let Cu be a cluster with c > α/2 active nodes. Let us
look at a single iteration of the while-loop of Algorithm 9. We partition the c
active nodes of Cu into three groups according to their neighbors in G (Figure
5.2). We denote the set of nodes v which become passive in Line 6 because
there is no node w for which d(w) = u by Cp. The set of nodes which have
a neighbor inside Cu and which are only connected to nodes outside Cu are
called Ci and Co, respectively. Clearly, we have |Cp| + |Ci| + |Co| = c. Because
the maximum degree of G is 2, during the construction of the MIS in Line 10
at least one third of the nodes in Ci become passive. The nodes in Co can be
divided into the nodes Cp

o which become passive and the nodes Ca
o which stay

active. Each node outside Cu is connected to at most 2 nodes in Ca
o . Therefore,

at least |Ca
o |/2 nodes outside Cu become passive. Let ci := |Cp| + |Ci| + |Cp

o |
and co := |Ca

o |. We have ci + co = c. In each iteration of the while-loop at
least ci/3 nodes in Cu and at least co/2 nodes of clusters which are adjacent to
Cu become passive. Assume that after k iterations of the while-loop there are

still α/2 active nodes in Cu. Let c(j), c
(j)
i , and c

(j)
o be the values of c, ci, and

co of the jth iteration, respectively. Because there are at most α nodes at the
beginning, we have

1

3
·

k∑

j=1

c
(j)
i ≤ α

2
(5.1)

because otherwise at least α/2 nodes of Cu would have become passive. There-
fore, the number of nodes in the neighbor clusters of Cu which have become
passive is at least

1

2
·

k∑

j=1

c(j)
o =

1

2
·

k∑

j=1

c(j) − c
(j)
i ≥ kα

4
− 1

2
·

k∑

j=1

c
(j)
i .

Because of Equation (5.1), this is at least (k − 3)α/4. As there are at most
dα active nodes in neighbor clusters of Cu at the beginning, after O(d) = O(1)
iterations of the while-loop there are no active nodes left in the neighborhood
of Cu. From then on, at least one third of the nodes in Cu becomes passive in
every further iteration.

130 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

Algorithm 10 Computing a dense independent set

Input: t-ruling independent set S
Output: 3-ruling independent set S
1: S′ := S;
2: while S′ is not 3-ruling do
3: for each u ∈ S′ do
4: compute Ŝu ⊂ Γ+

4 (u) such that S′ ∪ Ŝu is an IS and ∀v ∈ Γ+
3 (u), ∃w ∈

S′ ∪ Ŝu : {v, w} ∈ E;
5: G is the graph induced by

⋃
u∈S′ Ŝu;

6: S′ := S′ ∪ MIS(G);
7: od;
8: od

Summarizing Lemmas 5.4–5.7, we obtain the following theorem.

Theorem 5.8. Algorithm 9 is a local, distributed algorithm which computes
an O(log ∆)-ruling independent set in O(log ∆ · log∗ n) rounds for any growth-
bounded graph G = (V, E). For general graphs, the algorithm terminates in
O(log n · log∗ n) rounds producing an O(log n)-ruling independent set. All mes-
sages are of size O(log n).

5.3.2 Making the Independent Set Dense

In the following, we show how the relatively sparse independent set which
we constructed so far can be made dense enough to obtain an (O(1), O(1))-
decomposition for growth-bounded graphs. Specifically, we show how on growth-
bounded graphs, a t-ruling independent set can be transformed into a 3-ruling
independent set in O(t log∗ n) rounds using messages of size O(log n). Algo-
rithm 10 describes the basic method to achieve this. The idea is to enlarge the
independent set in small steps such that it gets denser in each step. Before
coming to a detailed analysis, we give a rough overview. In Line 3, each node
of the independent set adds new nodes to the independent set such that each
neighbor in distance at most 3 has a neighbor in the extended set. Because
every independent set node adds new nodes, it is not guaranteed that the ad-
ditional nodes generated by different independent set nodes are independent.
Therefore, in Lines 4 and 5, the independence of the extended independent set
is restored by computing an MIS on the new nodes (see Lemma 5.10). The
following lemma shows that in each iteration of the while-loop, the maximum
distance of any node to the next node of S′ decreases by at least 1.

Lemma 5.9. Let S′ be a t-ruling independent set for t > 3. After one iteration
of the while-loop of Algorithm 10, S′ is a (t − 1)-ruling independent set.

Proof. We first prove that S′ remains an independent set throughout the algo-
rithm. The sets Ŝu are constructed such that nodes in S′ and nodes in Ŝu are

5.3. FAST DETERMINISTIC MIS CONSTRUCTION 131

independent. We therefore only have to prove that all the new nodes form an in-
dependent set. However, this is clearly guaranteed because in Line 6 a maximal
independent set of the graph induced by all the new nodes is computed.

To prove that the maximum distance from a node to the next independent
set node decreases, we consider a node v ∈ V for which the distance to the
nearest node u ∈ S′ is t > 3. We prove that after an iteration of the while-loop,
the distance between v and the closest node in S′ is at most t − 1. The set
Ŝu is constructed such that every node w in the 3-neighborhood Γ+

3 (u) has a

neighbor in S′ ∪ Ŝu. On a shortest path (of length t) connecting u and v, let x
be the node which is at distance exactly 3 from u. There must be a neighbor
y of x for which y ∈ Ŝu. After computing the MIS in Line 6, either y or a
neighbor z of y join the independent set S′. The distance between v and y is
t− 1 and the distance between v and z is t− 1, which concludes the proof.

It remains to be shown that Algorithm 10 can indeed be implemented by
an efficient distributed algorithm. Lemma 5.10 gives exact bounds on the dis-
tributed complexity of Algorithm 10.

Lemma 5.10. Let G be a growth-bounded graph. On G, Algorithm 10 can
be executed by a distributed algorithm with time complexity O(t log∗ n) using
messages of size O(log n).

Proof. By Lemma 5.9, Algorithm 10 terminates after at most t iterations of the
while-loop. We therefore have to prove that each while-loop iteration can be
executed in time O(log∗ n) using messages of size O(log n). Let us first look at
the construction of Ŝu for some node u ∈ S′. A node v ∈ Γ+

4 (u) can potentially

join Ŝu if it has a neighbor in S′ ∪ Ŝu and if it has an uncovered neighbor
w ∈ Γ+

3 (u), that is, w has no neighbor in S′ ∪ Ŝu. We call such a node a

candidate. We add a candidate v to Ŝu if it has a lower ID than all adjacent
candidates. Finding out whether a node is a candidate and whether it has the
lowest ID among its neighbor candidates can be done in 3 rounds. First, all
nodes of S′ ∪ Ŝu inform their neighbors that they are in the independent set.
Then, all covered nodes in Γ+

3 (u) inform their neighbors, which can now decide
whether they are candidates. Finally, the candidates exchange their IDs. We
call those 3 rounds a step. In each step, at least the candidate with the highest
ID joins Ŝu. Because we assume that G is a growth-bounded graph, there can be
at most f(4) = O(1) independent nodes in Γ+

u (u) for some function f . Hence,
the number of nodes in Ŝu and therefore the number of steps needed to construct
Ŝu is constant. Note that if there was no restriction on the message size, u could
collect the complete 4-neighborhood, locally compute Ŝu, and inform the nodes
in Ŝu in 8 rounds.

It now remains to be proved that the construction of the MIS in Line 6 of
Algorithm 10 can be computed in O(log∗ n) rounds. Let us therefore have a
look at the structure of the graph G which is induced by the union of the sets Ŝu

for all u ∈ S′. Consider a node v of G, that is, v ∈ Ŝu for some u ∈ S′. Further,
let w be a neighbor of v in G. The node w is in Ŝu′ for some node u′ ∈ S′ \ {u}.

132 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

Because Ŝu′ consists of nodes of Γ+
4 (u′), the distance between v and u′ is at

most 5. Since G is a growth-bounded graph, there exists a function f such
that there are at most f(5) independent nodes at distance at most 5 from v.
Thus, there are at most f(5) possible nodes u′ ∈ S′ which can cause neighbors
w for v. Because all nodes in Ŝu′ are independent, the number of neighbors of
w in Ŝu′ is at most f(1). Therefore, the maximum degree of the graph G can
be upper-bounded by f(5) · f(1) = O(1). We know that on a constant-degree
graph, an MIS can be constructed in O(log∗ n) rounds using messages of size
O(log n).

Combining Lemmas 5.9 and 5.10 we obtain the next theorem.

Theorem 5.11. On a growth-bounded graph, a t-ruling independent set can be
transformed into a 3-ruling independent set in O(t log∗ n) rounds using messages
of size O(log n).

5.3.3 Computing the MIS

We will now describe the last phase of our algorithm, turning the 3-ruling
independent set S′ from Algorithm 10 into an MIS. As described in Section
5.2.2, S′ induces a natural clustering of the nodes of G. Because S′ is a 3-ruling
set, the distance between the centers u and v of two neighboring clusters Cu and
Cv can be at most 7. The degree of the cluster graph GS′ is therefore bounded by
f(7) = O(1) if G is f -growth-bounded. The first step of the third phase of our
MIS algorithm is to compute GS′ and to color GS′ with f(7)+1 colors, resulting
in a (O(1), O(1))-decomposition of G. Applying algorithms from [33, 55, 91],
this can be achieved in O(log∗ n) rounds using messages of size O(logn).

Having computed this decomposition, we can now compute an MIS M of G
by sequentially computing the contributions from each color of the coloring of
GS′ . For each node v, let xv be the color of v’s cluster. Using the cluster colors
and the node identifiers, we define a lexicographic order ≺ on the set V such
that for u, v ∈ V , u ≺ v if and only if xu < xv or if xu = xv ∧ ID(u) < ID(v).
Each node now proceeds as follows. Initially, we set M = S′. All nodes v of S′

inform their neighbors about the joining of M by sending a JOIN(v) message.
If a node u receives a JOIN(v) message from a neighbor v, it cannot join the
MIS any more and therefore sends a COVERED(u) message to all neighbors. If
a node v has not received a JOIN(u) message but has received COVERED(u)
from all u ∈ Γ(v) for which u ≺ v, it can safely join M . Note that all neighbors
w ∈ Γ(v) with w ≻ v would need to receive a COVERED(v) message from
v before joining M . If a node v joins M , it informs its neighbors by sending
a JOIN(v) message. As shown by the next lemma, the described algorithm
computes an MIS M in time O(1).

5.4. ALGORITHMS BASED ON COORDINATES OR DISTANCES 133

Lemma 5.12. On f -growth-bounded graphs the above algorithm computes an
MIS M in time 2f(7)f(3).

Proof. We first show that M indeed is an independent set of G. For the sake
of contradiction, assume that there are two adjacent nodes u and v which both
join M . W.l.o.g., we assume that u ≺ v. Assuming that v joins M means
that v must have received a COVERED(u) message from u. However, this is
a contradiction to the assumption that u joins M . To see that M is an MIS,
observe that as long as M is not maximal, there is a smallest node u (with
respect to ≺) which is not covered.

What remains to be proved the time complexity of the above algorithm.
First note that because the radius of each cluster is at most 3, there can be
at most f(3) MIS nodes per cluster. Let us now look at a single cluster Cu of
the smallest color 1. Because with respect to the order ≺ the nodes of Cu are
smaller than all nodes of neighboring clusters, the smallest uncovered node of
Cu is always free to join M . When a node v joins M , it takes two rounds until
the neighbors of v have forwarded the information that they have been covered.
Because there are at most f(3) nodes of Cu which join M , it takes at most
2f(3) rounds until all nodes of color 1 are covered or have joined M . As soon
as there is no uncovered node of a color i, the above argument holds for color
i + 1. Therefore, after at most f(7) · 2f(3) rounds, all nodes are either covered
or have joined M .

Combining Theorems 5.8 and 5.11 as well as Lemma 5.12, we obtain the
following upper bound on the complexity of the deterministic MIS construction
on growth-bounded graphs.

Theorem 5.13. Let G be a growth-bounded network graph. There is a deter-
ministic distributed algorithm which constructs a maximal independent set on
G in time O(log ∆ · log∗ n) in the CONGEST model.

5.4 Algorithms Based on Coordinates or Distances

As discussed in Section 5.1.1, wireless ad hoc and sensor networks are often
modeled as unit disk graphs. Additionally, many algorithms assume that nodes
have access to coordinate information [1, 3, 82, 129] or that nodes can mea-
sure distances or angles to neighboring nodes [51, 131, 132]. Coordinates are
obtained from a positioning system such as GPS either directly or by running
a distributed positioning algorithm [21, 25, 121]. In this section, we will have a
closer look at this graph model in the context of local algorithms. In Sections
5.4.1 and 5.4.2, we have a look at the UDG model with coordinate and inter-
node distance information, respectively. In Section 5.4.1, we described how an
(O(1), O(1))-decomposition is essentially obtained for free if nodes know their
coordinates. We show in Section 5.4.2 that if nodes have no access to their
coordinates but can find out the distances to their neighbors, the main ideas

134 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

7 7

77 8 8

8 8

4 4

4

44 2 32

6 5 6

2 3432

3

5

1 3

11

1

1

1

5 6

2

5 6

23

Figure 5.3: Coloring of the grid with 8 colors

of Section 5.4.1 can still be used to compute constant approximations for cov-
ering and packing problems in a constant number of rounds. In Section 5.4.3,
we consider the more general unit ball graph model. If adjacent nodes know
their distance with respect to the underlying metric, it is possible to compute
an (O(1), O(1))-decomposition in O(log∗ n) rounds on a doubling UBG. We will
see that the results of Section 5.4.3 also hold for other network models based on
doubling metric spaces or if distances are only known up to a constant factor.

5.4.1 Global Coordinates

Let us now consider the case where the network graph G is a UDG and where
all nodes of G know their coordinates. Note that this means that all nodes ‘see’
a common global coordinate system. Having a global coordinate system enables
to compute a decomposition as follows. We partition the plane by a grid into
square cells of side length 1/

√
2. Each square cell defines a cluster of nodes. By

checking their coordinates, nodes can decide in which cell they are located and
hence to which cluster they belong. Since the length of the diagonal of a single
square cell is 1, the induced graph of each cluster is a clique. A proper coloring
of the cluster graph is obtained by globally coloring the grid such that no two
cells whose Euclidean distance is at most 1 are colored with the same color.
Figure 5.3 shows how this can be achieved using 8 colors. Hence, by assigning
each cluster the respective color, we obtain a (8, 1)-decomposition.

It is of course not surprising that global information such as coordinates
helps devising fast distributed algorithms. The possibility of computing a
(O(1), O(1))-decomposition from UDG coordinates alone indicates the power
of such coordinate information. In other workds, unit disk graph coordinates
suffice to compute essentially everything which can be computed locally in a
constant number of rounds. In the next section, we will see that the described
simple algorithm for computing a network decomposition can even be applied
in some form in the absence of global information.

5.4. ALGORITHMS BASED ON COORDINATES OR DISTANCES 135

5.4.2 Fractional Covering and Packing Problems

In most cases, it is not realistic to assume that there is a positioning system
which nodes can use to obtain coordinate information. In this section, we show
that the main ideas of the last section can be adapted in order to solve many
interesting problems in a case where no global information is present.

We again consider the standard unit disk graph model. In addition to know-
ing the direct neighbors, we assume that nodes can sense the distances to their
neighbors. By exchanging this information for a few rounds, this enables the
nodes to build up a local coordinate system. That is, distances between nodes
can be used to compute angles and to learn about the geometry of the neigh-
borhood. It is however not possible to align all these local coordinate systems;
each node has its own local view. Assume for instance that we want to compute
a small dominating set. In the presence of global coordinates, we can compute a
network decomposition as described in the last section. Choosing one node per
cluster (e.g., the node with the largest ID) gives a dominating set which is only
by a constant factor larger than an optimal dominating set. If we try to do this
with the local coordinate systems, the clusters of different local systems will
be different. Hence, also the selected nodes (dominating set) will be different
in each coordinate system. This can lead to disastrous solutions and does not
yield a non-trivial approximation.

While all the local coordinate systems inherently differ from each other,
the set of all possible global coordinate systems is the same at every node.
Hence, if we computed all dominating sets corresponding to the clusterings of
all (infinitely many) different global coordinate systems, all nodes would come
up with their local part of the same (multi-)set of different global dominating
sets. It is of course still not possible to globally select one of these dominating
sets. However, if we assign values 0 and 1 to non-dominators and dominators,
respectively, it is possible to compute the average over all dominating sets. This
does not result in a global dominating set, however it does result in a fractional
dominating set solution, that is, we solve the natural LP relaxation (LPDS) of
the dominating set problem. In the following, we present an explicit and more
general algorithm for the above intuitive description. The algorithm can be
applied to general covering LPs (PP) and packing LPs (DP) as introduced in
Section 2.1.3.

Because we restricted the communication graph G to be a UDG, we cannot
use the bipartite network graph of Section 2.1.3. Instead, we assume that all
primal variables xi and all dual variables yi represent some value in the graph,
that is, they belong to some node or edge of G. We assume that the conditions
of the LP are local in the sense that whenever a primal (dual) variable xi (yj)
occurs in the inequality corresponding to a dual (primal) variable yj (xi), xi and
yj are separated by at most a constant number of hops in the network graph.
This locality condition is true in all natural network coordination problems such
as minimum dominating set (MDS), maximum matching (MM), etc. Remember
that in MDS, for each node vi, there is a primal variable xi and a dual variable

136 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

yi. The primal feasibility condition demands that the sum of the x-values in
the 1-neighborhood of all nodes is at least 1, the dual feasibility is achieved if
the sum of the y-values of each 1-neighborhood is a most 1.

We will now first look at a solution of such LPs based on the network decom-
position of Section 5.4.1. We will then show how to convert this into a solution
which does not need global coordinates using the idea of averaging over the set
of all possible solutions.

Assume that we are given a (O(1), 1)-decomposition as described in Section
5.4.1. By exchanging the IDs among direct neighbors, each cluster can select
the node with the largest ID as leader. In parallel, each leader then computes a
local LP such that the combined local solutions form a constant approximation
for (PP) or (DP). The local LPs are computed as in Section 2.4. Let v0 be
the leader of some cluster Cv0 . Let Y0 be the set of all dual y-variables which
belong to nodes at distance at most 1 from v0 or to edges which are adjacent to
neighbors of v0. The set Y0 has a corresponding set E0 of primal inequalities of
(PP). Let X0 be the set of primal x-variables which occur in the inequalities E0.
We define P0 to be the covering problems consisting of the objective function
of (PP) and the inequalities E0. P0 is an LP on the variables X0. The packing
problem D0 is obtained by deleting all variables from (DP) which are not in Y0.
That is, we restrict the matrix A to the rows and columns defined by Y0 and
X0, respectively. By the definition of (PP) and (DP), the nodes and edges of
the variables in X and Y are all within constant distance from v0. Thus, v0 can
locally solve P0 and D0 in a constant number of rounds. The local solutions
for each cluster can be combined by summing up the values of all local LPs for
each variable.

Lemma 5.14. Summing up the described local LPs for all clusters yields so-
lutions for (PP) and (DP) with the same value of the objective function. The
solution of (PP) is a feasible constant approximation, the solution of (DP) can
be made feasible by dividing each y-variable by a constant factor.

Proof. We start by proving the feasibility of (PP). Because all clusters have
diameter 1, all dual y-variables are in the set Yi of at least one cluster leader
vi. Therefore, every inequality of (PP) occurs in some local LP Pi. Because the
x-values of all local LPs are summed up, it is sufficient to make every primal
covering constraint feasible once in order to obtain a globally feasible solution
for (PP).

For the almost-feasibility of (DP), observe that we have chosen the set Y0

such that the solution of the local dual problem D0 is feasible for (DP) (set
all unused y-variables to 0): Clearly all inequalities which appear in D0 are
also feasible for (DP); because all inequalities of (DP) containing a variable
yi ∈ Y0 also appear in D0, all other inequalities of (DP) are of the form 0 ≤ cj

for some j. Because of the locality condition for our LPs, all xi ∈ X0 are at
a constant distance from v0. Therefore, each xi can only occur in a constant
number of local covering LPs. Because there is a one-to-one correspondence
between primal variables and dual inequalities, each dual inequality can as well

5.4. ALGORITHMS BASED ON COORDINATES OR DISTANCES 137

only occur in a constant number of local LPs. Because each local LP is dual-
feasible for (DP), this means that the sum of all local LPs is dual feasible for
(DP) up to a constant factor.

If all local LPs are solved optimally, the values of the objective functions for
a pair (P0, D0) of local LPs are equal. Therefore, when summing up the local
LPs, we get the same objective function values for (PP) and (DP) as well. By
LP duality, the approximation factor of (PP) is at most equal to the constant
factor by which the dual inequalities have to be divided in order to obtain a
feasible (DP) solution.

We will now show how to average the described solution over all possible
coordinate systems. Equivalently to averaging the x and y values for all possible
coordinate systems, we can choose one coordinate system uniformly at random1

and compute the expected values for the x and y variables. In the above descrip-
tion, we have chosen the local LPs such that they are independent of the nodes’
assignments to clusters. They only depend on the choice of the cluster leaders.
Hence, each node vi can compute its local LP. Let pi be the probability that vi

is a cluster leader if the coordinate system is chosen uniformly at random. If we
assume that every node vi can compute its pi, a constant-factor approximation
to a given covering or packing LP can be computed as follows.

1. compute local LP and pi

2. increase all variables xj or yj of LP by pixj or piyj , respectively

3. if LP is a packing problem, divide by appropriate constant factor

It remains to be shows that pi can really be computed. We will present an
elegant way to approximate pi up to a small constant factor. By the construction
of the network decomposition of Section 5.4.1, pi is the probability that vi is the
node with the largest ID within its cell of a random square grid of cell size 1/

√
2.

Hence, pi is the probability that vi has the largest ID in a random square of
side length 1/

√
2 containing vi. Because for every square of side length 1/

√
2,

there is a circle of diameter 1/
√

2 which is completely inside the square, the
probability p′i of having the largest ID in a random circle of diameter 1/

√
2 is

p′i ≥ pi. Using p′i instead of pi in the above algorithm therefore guarantees that
the computed (PP) solution is feasible.

We will now argue that the objective functions are not affected too much
by using p′i instead of pi. Let p′′i be the probability that vi is the node with
largest ID in a square of side length 1/2 containing vi. Taking p′′i instead of
pi corresponds to making the network decomposition with a grid of cell size
1/2 instead of 1/

√
2. Using p′′i in the above algorithm would therefore give a

solution which is at most by a factor of 2 worse than the solution when using pi

because the area of each cell is smaller by a factor of 2. Hence, the number of

1In principle, this means that the origin and the direction of the x-axis are chosen uniformly
at random

138 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

1/(2 2)
1

Figure 5.4: Computation of p′i: Node vi is at the center, the encircled nodes are
the neighbors of vi having a larger ID than vi. The shaded area is proportional
to p′i.

neighboring clusters in the decomposition doubles. Additionally, we have that
p′′i ≥ p′i because every circle of diameter 1/

√
2 completely contains a square

with side length 1/2. Thus, taking p′i instead of pi in the described algorithm
results in a feasible solution for (PP) which is worse than the solution using pi

by at most a factor of 2.
The probability p′i can be computed by vi as follows.

1. exchange 1-hop distances with neighbors

2. compute angles between adjacent neighbors

3. geometrically arrange neighbors in one possible way.

4. For some node v, let D(v) be the disk with radius 1/(2
√

2) around v.
Further, let N+(v) be the set of neighbors of v which have a larger ID
than v. The probability p′i can be computed as the area of

D(vi) \
⋃

u∈N+(vi)

D(u)

divided by the area of D(vi). That is, p′i is the fraction of D(vi) which is
not covered by any of the disks D(u) with ID(u) > ID(vi).

Figure 5.4 illustrates step 4 of the described algorithm.

5.4. ALGORITHMS BASED ON COORDINATES OR DISTANCES 139

Lemma 5.15. The above algorithm correctly computes the probability p′i that vi

is the node with the largest ID in a random circle of diameter 1/
√

2 containing
vi.

Proof. We first assume that step 3 of the algorithm is unique, that is, we have
a local coordinate system where vi and its neighbors are correctly geometrically
arranged. Choosing a random circle of diameter 1/

√
2 containing vi can be

done by placing the center of the circle uniformly at random in the disk of
radius 1/(2

√
2) around vi. For a given center p, vi has the largest ID if there is

no node vj with ID(vj) > ID(vi) at distance at most 1/(2
√

2) from p. Therefore,
vi does have the largest ID if and only if the center p is chosen at distance more
than one from all neighbors vj of vi with ID(vj) > ID(vi). This is exactly the
case if p is in the area which is computed in step 4 of the algorithm. Hence, the
lemma is true if step 3 is unique.

Let N(vi) be the induced graph of vi’s neighbors (not including vi), that
is, the edges of N(vi) are all edges between neighbors of vi. We start with the
case where N(vi) consists of a single component. If we know the distances to
two adjacent neighbors as well as the distance between those two neighbors,
we can compute the angle at vi between the two neighbors. If N(vi) is a
single component, we can then find the angles between all neighbors of vi. The
geometry of the 1-neighborhood of vi is therefore determined up to rotation
around vi, that is, we can compute a local coordinate system for which step 3
of the algorithm is unique.

Step 3 of the algorithm is not unique if N(vi) consists of several connected
components. The geometry of each component can be determined, however
the angle between different components cannot be inferred from the knowledge
of the distances between neighbors alone. However, two nodes from different
components of N(vi) are at distance more than 1 from each other. Therefore,
the disks of radius 1/(2

√
2) around two nodes u, u′ ∈ N(vi) do not intersect

if u and u′ belong to different components in N(vi). Thus, the area which is
computed in step 4 is the same for all possible geometric arrangements of the
neighbors of vi.

The results of this section are summarized in the upcoming theorem. The
time bound for the fractional dominating set problem follows because in this
case the given algorithm becomes particularly simple. The local LPs can be
solved by assigning 1 to all cluster leaders and 0 to all other nodes. Thus, the
values p′i form a constant approximation for minimum fractional dominating
set.

Theorem 5.16. In the given UDG model where distances are known, all local
fractional covering and packing problems can be approximated up to a constant
factor in constant time. In particular, the fractional minimum dominating set
problem can be approximated in a single round.

Combined with the randomized rounding algorithms presented in Section
2.5, Theorem 5.16 allows to compute approximate solutions for many integer

140 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

covering and packing problems in constant time. In particular, in a single round,
it is possible to compute a dominating set with expected approximation ratio
O(log ∆) if the network graph is a UDG and if all nodes know the distances to
their neighbors.

To conclude this section, we would like to highlight an intriguing compari-
son concerning the distributed complexity on unit disk graphs and on general
graphs. In Chapter 3, we have shown that on general graphs, approximating
fractional covering and packing problems up to a constant factor needs time at
least Ω(

√
log n/ log log n). The fact that in the given unit disk graph model we

can compute a constant approximation in a single communication round shows
that there can be a large gap between the distributed complexity of problems
on the unit disk graph and on general graphs.

5.4.3 Network Decomposition

We have seen that for the unit disk graph knowing the distances to direct
neighbors is sufficient to reasonably approximate important problems such as
minimum dominating set in just one round or a constant number of rounds. If we
want to compute more sophisticated structures such as a maximal independent
set or an (O(1), O(1))-decomposition, the methods of Section 2.3 cannot be
used. Based on the Ω(log∗ n)-lower bound for the ring [91], it is in fact not hard
to see that it is not even possible to construct an MIS or a decomposition in a
constant number or rounds. Because a ring where all edges have length 1 is a
unit disk graph, this lower bound applies to our model. Note that it does not
help to know the edge lengths if all edges have length 1. In this section, we
will show that in the model of Section 2.3, it is indeed possible to compute an
(O(1), O(1))-decomposition in O(log∗ n) rounds. Our result even holds if the
network graph is a doubling unit ball graph.

Basic Algorithm

We will first present a (potentially slow) deterministic distributed algorithm
which computes a (O(1), 2)-decomposition. In a second step (Section 5.4.3), we
will then show how the algorithm can be implemented such that its runtime
is O(log∗ n) in the LOCAL model. For the slow version of the algorithm, we
assume that all nodes know the minimum distance dmin between any two nodes.
This assumption would not be necessary. However, making the assumption re-
sults in a simpler, easier to understand algorithm. For the fast implementation,
the assumption is not needed anymore. The computing of the decomposition is
described by Algorithm 11.

Algorithm 11 starts with a small radius r which is increased by a factor of
2 in every iteration of the while-loop. At the beginning, the set V of possible
cluster leaders contains all nodes. In each iteration, a subset of the nodes is
selected such that the nodes selected in the subset form a maximal independent
set on the graph of all edges of length ≤ r.

5.4. ALGORITHMS BASED ON COORDINATES OR DISTANCES 141

Algorithm 11 Network Decomposition: Clustering

1: r := min{2λ|λ ∈ Z ∧ 2λ ≥ dmin};
2: V := V ;
3: while r ≤ 1/2 do
4: G := (V , E) with E = {{u, v}|d(u, v) < r};
5: compute MIS on G;
6: V := {v ∈ V|v in MIS};
7: r := r · 2
8: od;
9: All nodes in V are cluster leaders, the other nodes belong to the cluster of

the nearest leader.
10: Let ∆C be the maximum degree of the cluster graph GC . Color GC with

∆C + 1 colors.

Lemma 5.17. Algorithm 11 computes a (24ρ, 2)-decomposition where ρ is the
doubling dimension of the underlying metric. The maximum degree of the cluster
graph is at most 24ρ − 1.

Proof. We first prove that each node has a cluster leader at distance at most
1 and that therefore the diameter of each cluster is at most 2. The algorithm
maintains a set V of nodes which are cluster leader candidates. In each iteration,
some nodes are removed from V . We have to prove that for all nodes u which
are removed there is a node v with d(u, v) ≤ 1 which stays in V until the end,
that is, v becomes a cluster leader. Let ru = 2λu (λu ∈ Z) be the radius at
which u is removed from V . Whenever a node is removed from V , there is a node
at distance at most r which stays in V . Otherwise, the independent set which
is computed in Line 5 is not maximal. Hence, after removing u, there is a node
u0 ∈ V with d(u, u0) ≤ ru. If u0 is removed in the subsequent iteration, there
is a node u1 with d(u0, u1) ≤ 2ru which remains in V . We thus get a sequence
u0, u1, . . . , ui, . . . of nodes where d(ui−1, ui) ≤ 2iru such that ui remains in
V i iterations after the removal of u. Summing up the distances results in a
geometric series. For the distance between u and ui, we therefore get

d(u, ui) ≤
i∑

j=0

2jru < 2i+1ru = 2rui ,

where rui is the radius of the iteration where node ui remains in V and where
ui−1 is removed from V . Let v be the last node in the sequence, that is, v is a
cluster leader. Because the radius of the last iteration of Algorithm 11 is 1/2,
we have d(u, v) < 1. Thus, the radius of each cluster is at most 1.

It now remains to be shown that the maximum degree ∆C of the cluster
graph is at most 24ρ − 1. On the one hand, from the last iteration of the
algorithm (r = 1/2), it is guaranteed that the distance between any two cluster
leaders is more than 1/2. Otherwise, the nodes of the MIS of Line 5 would not

142 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

be independent. Therefore, each ball of radius 1/4 or smaller contains at most
one cluster leader. On the other hand, because the radius of each cluster is at
most 1, the distance between two cluster leaders of adjacent clusters is at most
3. This means that for a cluster leader v all leaders of adjacent clusters are in
B3(v), the ball with radius 3 around v. By the definition of ρ, B3(v) can be
covered by at most 24ρ balls of radius 3/16 < 1/4. Including v, the number of
cluster leaders in B3(v) is therefore at most 24ρ.

We will now have a close look at the complexity of a single iteration of the
while-loop of Algorithm 11. From a complexity point of view, the most impor-
tant part is the computation of the MIS in Line 5. Everything else (computing
the neighbors in G and informing neighbors about new V) can be done in a
constant number of rounds. On networks of maximum degree ∆, an MIS can
be computed in time O(∆ log ∆ + log∗ n) (see Chapter 4); that is, for constant-
degree networks constructing an MIS needs O(log∗ n) rounds. The following
lemma shows that the maximal node degree of G is indeed bounded.

Lemma 5.18. In each iteration of Algorithm 11, the maximum degree of G is
at most 22ρ.

Proof. Let ℓ denote the minimum distance between any two nodes of G. Because
the algorithm computes an independent set in each iteration, we have ℓ > r/2.
Therefore, every ball of radius r/4 contains only one node. All neighbors of
a node v ∈ V are in the ball Br(v) of radius r around v. By the definition
of the doubling dimension ρ, Br(v) can be covered by 22ρ balls of radius r/4.
Therefore, the number of nodes in Br(v) is at most 22ρ.

Lemma 5.18 implies the following corollary.

Corollary 5.19. The time complexity of a single iteration of the while-loop of
Algorithm 11 is O(log∗ n + ρ22ρ), that is, for constant doubling dimension the
time complexity is O(log∗ n).

Before coming to the description of a faster implementation of the while-loop
of Algorithm 11, we have a look at the complexity of Lines 9 and 10. By Lemma
5.17, we know that each node has a cluster leader in its neighborhood. Line 9
thus can be computed in a single communication round. The time complexity
of Line 10 is more interesting. We have seen in Chapter 4 (Theorem 4.8) that a
(∆+1)-coloring can be constructed in O(∆ log ∆+log∗ n) rounds. We therefore
get the following lemma.

Lemma 5.20. The time complexity of Line 10 of Algorithm 11 is O(log∗ n +
ρ24ρ), that is, for constant doubling dimension the time complexity is O(log∗ n).

5.4. ALGORITHMS BASED ON COORDINATES OR DISTANCES 143

Fast Implementation of the Basic Algorithm

In this section, we will have a second look at Algorithm 11 leading to a better
time complexity. We need to start with a few general considerations concerning
the synchronous message passing model. If nodes communicate for k rounds,
they can only gather information which is at most k hops away. In principle,
every distributed k-round algorithm can be formulated as follows.

1. Collect complete k-neighborhood of graph in k communication rounds.

2. Compute the output by locally simulating the relevant part of the dis-
tributed algorithm (no communication needed).

Collecting the complete k-neighborhood can be achieved if all nodes send their
complete states to all their neighbors in every round. After round i, all nodes
know their i-neighborhood. Learning the i-neighborhoods of all neighbors in
round i + 1 suffices to know the i + 1-neighborhood. The above formulation
of a distributed algorithm of course has the drawback that messages can get
extremely large. We will show that the message size can be kept moderate in
our example.

Let us again consider a single iteration of the while-loop of Algorithm 11.
All communication which is needed to compute an iteration of the while-loop is
on G. Hence, all messages are sent on edges which have length at most r. If we
communicate for k rounds and if all messages of those k rounds are on edges
of length at most r, then all collected information comes from distance at most
k ·r. In order to be able to compute everything locally, the nodes have to collect
the complete neighborhood up to distance kr (w.r.t. the metric). That is, the
nodes have to collect all information which is accessible by paths of length at
most kr. Note that it is not necessary and it might not be possible to collect
the whole ball of radius kr. Because of the triangle inequality, it is possible to
collect this information in 2kr rounds. Applying this to Algorithm 11, we get
Lemma 5.21.

Lemma 5.21. Algorithm 11 can be computed in O(log∗ n+ρ24ρ) rounds, that is,
for constant doubling dimension the time complexity can be reduced to O(log∗ n).

Proof. By Corollary 5.19, the number of rounds of an iteration of the while-loop
of Algorithm 11 is O(log∗ n+ρ22ρ). Nodes therefore need to collect information
from distance at most O(r(log∗ n + ρ22ρ)). To obtain the distance from which
we need information in order to be able to locally compute the results of all
iterations of the while-loop, we have to sum up the distances for all iterations.
We do not know the number of iterations. However, because r grows expo-
nentially by a factor of 2 in each iteration, we have a geometric series and can
upper-bound the sum by taking twice the maximum summand. Therefore, the
whole while-loop can be computed in O(log∗ n + ρ22ρ) rounds. Together with
Lemma 5.20, we get the required result.

144 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

Note that when collecting the whole neighborhood, it is not necessary that
nodes know the minimum distance dmin between nodes. Because the radius
grows exponentially, the locality of the problem is independent of the starting
radius. Each node can just use the smallest distance in the collected neighbor-
hood in order to locally simulate the distributed Algorithm 11. The complete
algorithm to compute a (O(1), O(1))-decomposition in the given network model
can be summarized as follows.

1. Exchange 1-hop distances with neighbors.

2. Locally compute the while-loop of Algorithm 11 for r ∈ O(1/(log∗ n +
ρ22ρ)) (up to the radius for which it suffices to know the 1-neighborhood).

3. Collect O(log∗ n + ρ22ρ)-neighborhood (it is sufficient to only collect data
about nodes which are still in V).

4. Compute the remaining iterations of the while-loop.

5. Compute clusters and cluster coloring (Lines 9 and 10 of Algorithm 11).

Computing the solution for small radii first and then collecting the rest of the
neighborhood is done in order to obtain reasonable message sizes. We are now
ready to formulate our main theorem.

Theorem 5.22. In the unit ball graph model, the above algorithm computes a
(24ρ, 2)-decomposition in time O(log∗ n + ρ24ρ) where ρ is the doubling dimen-
sion of the underlying metric. Given that all distances and node IDs can be
represented by K bits, the maximal message size is at most

O
([(

log∗ n + ρ22ρ
)O(ρ)

+ ∆
]
· K
)

bits. Hence, for constant ρ the time complexity is O(log∗ n) and the largest
message needs at most O(((log∗ n)O(1) + ∆)K) bits.

Proof. The time complexity follows from Lemma 5.21. For the correctness of
the algorithm it remains to be proved that only collecting information about
nodes in V for r ≥ O(1/(log∗ n + ρ22ρ)) (Steps 3 and 4) is sufficient. Because
all communication of Algorithm 11 is on G, this is however clear.

For the bound on the message size, we need to have a closer look at Steps
1, 3, and 5, where messages are exchanged. In Step 1, all nodes send at most
∆ distances and node IDs to their neighbors. This requires messages of size
O(∆ ·K). In Step 3, a message can contain at most the whole R-neighborhood
of a node, where R := O(log∗ n + ρ22ρ). Let N be the maximum number of
nodes which such an R-neighborhood can contain. If r ∈ Θ(1/(log∗ n + 24ρ))
denotes the largest radius for which the while-loop has been computed in Step
2, we know that for all pairs of nodes u, v ∈ V , we have d(u, v) > r. Therefore,

5.5. LOCAL APPROXIMATION SCHEMES 145

balls of radius at most r/2 contain at most 1 such node. By the definition of ρ,
the maximum number of nodes N in a ball of radius R is therefore bounded by

N ≤ (2ρ)(log2(R/r)+1) =

(
R

r

)ρ+1

.

The number of edges in the R-neighborhood is at most quadratic in N . By the
definition of R and r, the theorem thus follows.

Remark 1:
Theorem 5.22 even holds if the nodes only know the distances up to a constant
factor or if the network graph is a doubling quasi unit ball graph instead of
a UBG. It is not hard to see that all results of this section remain true up to
constant factors in these cases. Let d(u, v) be the real distance between u and v

and let d̂(u, v) be the distance as it is measured by u and v. Further assume that

we have d(u, v)/c ≤ d̂(u, v) ≤ cd(u, v) for some constant c. With respect to the
known distances, every ball of radius cd(u, v) can then be covered by 2ρ balls of

radius d̂(u, v)/(2c). Since we do not make use of the triangle inequality in any
part of the analysis, all results still hold if every occurrence of ρ is substituted
by ρ′ = ρ log(c2).

Remark 2:
The results of this section can be extended to other situations than the unit ball
graph model. Assume for instance that we are given a doubling metric (X, d).
All points in X have to provide their part of the solution of a global problem.
Thereby, each member x ∈ X has to base its decision on the ball Br(x) for some
radius r. Theorem 5.22 shows that choosing the radius r ∈ O(log∗n) suffices for
many natural problems. As a particular example, we might wish to construct
an ε-net, that is, we want to select a set of points S such that any two selected
points have distance at least ε and such that any point has a point in S at
distance less than ε. In algorithms for metric spaces, ε-nets are a widely used
structure [62]. Theorem 5.22 shows that every node can decide whether it is in
S based on its O(ε log∗n)-neighborhood only.

5.5 Local Approximation Schemes

As described in Section 5.2, for K1,t-free graphs, an MIS is a t-approximation
for the minimum dominating set and maximum independent set problems. Con-
sequently, an MIS is a constant-factor approximation for the two problems on
growth-bounded graphs. The MIS and decomposition algorithms of Sections 5.3
and 5.4 can therefore be used to compute constant minimum dominating set and
maximum independent set approximations for growth-bounded graphs. This is
significantly stronger than what we can achieve for general graphs. However,
none of the algorithms is capable of computing an arbitrarily good approxima-
tion, that is, a (1 + ε)-approximation for any ε > 0.

146 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

At least for UDGs, this is in contrast to the centralized case, in which polyno-
mial time approximation schemes (PTAS) for independent set and dominating
set problems in geometric intersection graphs, especially in disk graphs, have
been studied in great detail. Most approaches that yield a PTAS exploit the
geometric graph representation, and then apply a shifting strategy introduced
in [14, 66]. In [41], a PTAS for the maximum independent set problem on gen-
eral disk graphs is described, and in [67], the MDS problem is considered for
unit disk graphs together with other problems for which the shifting strategy is
viable. In [28], a PTAS for the minimum connected dominating set problem is
given. Can we exploit those ideas and find a distributed approximation scheme
for problems like minimum dominating set?

Approaches based on the shifting strategy are inherently central and cannot
efficiently be adapted to work in a distributed context. The graph is partitioned
into boxes or stripes, e.g. for independent set construction by removing all
vertices alongside designated boundaries. Then, a candidate solution is created
by solving each component separately and combining the partial subsets. This
is done for several disjunctive and exhaustive boundaries, and the best overall
candidate solution is returned as the desired solution. Clearly, such an approach
requires some sort of centralized control for gathering the partial solutions and
deciding on the best solution among these.

Even when considering centralized approaches, the case when there is no ge-
ometric representation is significantly different: For unit disk graphs, computing
a corresponding representation is an NP-hard problem [24]; in fact, it does not
even admit a PTAS [80]. In [107], a PTAS for maximum independent set on
unit disk graphs without a given representation has been given. The algorithm
described in [107] only relies on the topology of the given graph and does not
make use of any coordinate or distance information. The ideas of [107] have
been extended to the MDS problem in [106]. In the following, we show that
the techniques of [106, 107] can be applied to obtain distributed approximation
schemes for all polynomially growth-bounded graphs. Section 5.5.1 outlines the
main ideas behind the approximation schemes of [106, 107] and Section 5.5.2
shows how the algorithms can be applied in a distributed setting.

5.5.1 A PTAS for Polynomially Growth-Bounded Graphs

The approximation schemes [106, 107] for minimum dominating set and maxi-
mum independent set both work in the same general manner. The algorithms
work in phases. In each phase, an arbitrary node v of G = (V, E) is selected.
Node v then computes an optimal solution for the respective problem for some
bounded neighborhood. The phase is completed by removing the considered
local neighborhood from the graph G. In detail, the algorithms are constructed
such that in the end, that is, when no nodes are left, a feasible solution is ob-
tained. Further, the neighborhoods are chosen such that the computed solution
is a (1 + ε)-approximation for an arbitrary parameter ε > 0.

5.5. LOCAL APPROXIMATION SCHEMES 147

Let us now have a closer look at the described algorithms. We first consider
the maximum independent set case. Let Ir(v) be a maximum independent set
of the subgraph of G induced by the r-neighborhood Γ+

r (v) of v. For a given
ε > 0, we choose r such that

|Ir+1(v)| ≤ (1 + ε)|Ir(v)|. (5.2)

Let r(v) be the smallest r for which the above criterion holds. The following
lemma shows that r(v) ∈ O(1) for polynomially growth-bounded graphs.

Lemma 5.23. Let G = (V, E) be a p(r)-growth-bounded graph where p(r) is a
polynomial in r. There exists a constant c = c(ε) such that r(v) ≤ c.

Proof. By the definition of p(r)-growth-boundedness, we have |Ir(v)| ≤ p(r).
From the definition of r(v), we have |Ir(v)| > (1+ε)|Ir−1(v)| as long as r ≤ r(v).
For r ≤ r(v), we therefore get

p(r) ≥ |Ir(v)| > (1 + ε)|Ir−1(v)| > · · · > (1 + ε)r|I0(v)| = (1 + ε)r,

and the claim follows for every constant ε.

The maximum independent set algorithm now works as follows. Initially,
the independent set I of G is empty. As described, in each phase a node v of
G is chosen. The radius r(v) is found by computing Ir(v) until Condition (5.2)
is satisfied. Note that since r(v) ∈ O(1) and because G is growth-bounded,
we have |Ir(v)| ∈ O(1) for r ≤ r(v) + 1. Therefore, Ir(v) can be computed
in polynomial time. We add the independent set Ir(v)(v) to I and remove all
nodes w ∈ Γ+(u) for u ∈ Ir(v)(v) from G. This procedure is iterated as long as
there are nodes in G. Because we remove all neighbors of u from G whenever
we add a node u to I, I always remains an independent set of G. It remains
to be proved that I is at most by a factor of (1 + ε) smaller than a maximum
independent set.

Theorem 5.24. Let I∗ be a maximum independent set of G. For the indepen-
dent set I computed by the above algorithm, we have |I∗| ≤ (1 + ε)|I|.

Proof. Let vi be the node which computes a local independent set Ir(vi) in phase
i. Further let T denote the total number of phases. By the construction of the
algorithm, we have

T⋃

i=1

Γ+
r(vi)+1(vi) = V.

We therefore obtain

(1 + ε)|I| = (1 + ε)

T∑

i=1

|Ir(vi)(vi)| ≥
T∑

i=1

|Ir(vi)+1(vi)| ≥ |I∗|.

148 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

For the minimum dominating set problem, we proceed in an analogous fash-
ion. Let Dr(v) be a minimum cardinality subset of the nodes of G such that all
nodes of Γ+

r (v) are covered. Let r(v) denote the minimum radius r for which

|Dr+2(v)| ≤ (1 + ε)|Dr(v)|. (5.3)

As in the maximum independent set case, r(v) can be bounded by a constant
for polynomially growth-bounded graphs.

Lemma 5.25. Let G = (V, E) be a p(r)-growth-bounded graph where p(r) is a
polynomial in r. There exists a constant c = c(ε) such that r(v) ≤ c.

Proof. We use the fact that any maximal independent set is also a dominating
set. We therefore have |Ir(v)| ≥ |Dr(v)|. If r is even and r ≤ r(v), we obtain

p(r) ≥ |Ir(v)| ≥ |Dr(v)| > (1+ε)|Ir−2(v)| > · · · > (1+ε)r/2|D0(v)| = (1+ε)r/2

in analogy to Lemma 5.23. For odd r, a similar argumentation holds and thus
the claim follows for every constant ε.

As in the independent set algorithm, in each phase a node v is selected.
Initially the dominating set D is empty. Node v adds Dr(v)+2(v) to D and
removes all nodes from G which are covered by nodes in Dr(v)+2. Because only
covered nodes are removed from G, D is a dominating set at the end of the
algorithm. The following theorem shows that D is only by a factor of (1 + ε)
larger than an optimal dominating set.

Theorem 5.26. Let D∗ be a minimum dominating set of G and let D be the
dominating set computed by the described algorithm. We have |D| ≤ (1+ε)|D∗|.

Proof. As in the proof of Theorem 5.24, let vi be the node computing a local
solution in phase i. After adding Dr(vi)+2(vi) to D, all nodes which are cov-
ered by Dr(vi)+2(vi) are removed from G. In particular, by the definition of

Dr(vi)+2(vi), all nodes in Γ+
r(vi)+2(v) are removed from G. If T denotes the

total number of phases, we therefore have

|D| =

∣∣∣∣∣

T⋃

i=1

Dr(vi)+2(v)

∣∣∣∣∣ ≤
T∑

i=1

|Dr(vi)+2(v)| ≤ (1+ε)

T∑

i=1

|Dr(vi)(v)| ≤ (1+ε)|D∗|.

5.5.2 Distributed Approximation Schemes

The approximation schemes described in the previous section seem to be per-
fectly suited for a distributed implementation. The final solutions are composed
of many small (constant) local solutions. The only problem is that different local
solutions have to be selected such that they do not intersect too much.

5.5. LOCAL APPROXIMATION SCHEMES 149

Algorithm 12 Local approximation scheme for independent and dominating
sets
1: compute MIS S of G;
2: make cluster Cu for each u ∈ S;
3: each v 6∈ S joins a cluster Cu for u ∈ Γ(v);
4: color clusters such that clusters containing nodes at distance at most 2R+7

get different colors;
5: for all cluster colors x do
6: while ∃v ∈ Cu where color(Cu) = x do
7: select a node v ∈ Cu for each cluster Cu with color(Cu) = x;
8: v computes local solution according to Section 5.5.1
9: od

10: od

Let R be the largest possible radius r(v). According to the proofs of Lemmas
5.23 and 5.25, on polynomially growth-bounded graphs, for both problems, there
is a constant c such that R is

R = min
r

{rc ≥ (1 + ε)r} ∈ O

(
log(1/ε)

ε

)
.

For the maximum independent set algorithm, two local solutions Ir(vi) and Ir(vj)

do not interfere if dG(vi, vj) ≥ r(vi)+r(vj)+1. For the MDS algorithm, two local
solutions Dr(vi)+2 and Dr(vj)+2 do not interfere if dG(vi, vj) ≥ r(vi)+ r(vj)+7.
Hence, if u and v are chosen such that dG(u, v) ≥ 2R + 7, local computations
by u and v do not interfere in both cases. They can therefore be carried out
in parallel. For each phase of the algorithm, the goal is to find a large set of
nodes which have pairwise distance at least 2R + 7. All nodes v of this set can
then compute the local solution Ir(v)(v) or Dr(v)+2(v) in parallel. In detail, the
distributed algorithm is given by Algorithm 12. The following theorem shows
that for any constant ε > 0, the algorithm computes (1+ ε)-approximations for
maximum independent set or minimum dominating set in time O(TMIS+log∗ n)
where TMIS denotes the time to compute an MIS of G.

Theorem 5.27. In the LOCAL model, Algorithm 12 computes (1+ε)-approxi-
mations for maximum independent set or minimum dominating set in time

O

(
TMIS +

(
log(1/ε)

ε

)
log∗ n +

(
log(1/ε)

ε

)O(1)
)

on polynomially growth-bounded graphs.

Proof. The algorithm is constructed such that no two nodes at distance less
than 2R + 7 compute local independent or dominating sets at the same time.
The result of the algorithm therefore is the same as for a sequential execution

150 CHAPTER 5. ON THE LOCALITY OF BOUNDED GROWTH

as described in Section 5.5.1. It therefore follows that an approximation ratio
of (1 + ε) is achieved.

Let us now consider the time complexity of Algorithm 12. The first three
steps are clearly within the given bounds. Let G be the graph for which we
compute a coloring in Line 4. The nodes of G are all nodes of the MIS S,
two nodes u, v ∈ S are connected if and only if their distance with respect to
the network graph G is at most 2R + 7. Because R ∈ O(log(1/ε)/ε) and G is
polynomially growth-bounded, the degree of G is at most O(RO(1)). Sending a
message on G needs O(R) time. Therefore, G can be colored in O(R log∗ n +
RO(1)) rounds (cf. Chapter 4).

The two loops in Lines 5–10 remain to be looked at. Because G is colored
with O(RO(1)) colors, the for-loop is executed O(RO(1)) times. Computing a
local solution in Lines 7 and 8 can be done in O(R) rounds by the definition of
R. If we can show that the while-loop is only executed a constant number of
times for each color x, the theorem follows. To prove this, we need to have a
closer look at the local dominating or independent sets computed in Lines 7 and
8. In the maximum independent set case, all nodes in Ir(v)(v) and all neighbors
of nodes in Ir(v)(v) are removed from G. In the MDS case, all nodes covered
by nodes from Dr(v)+2(v) are removed from G. In both cases, this includes all
nodes of Γ+(v). Assume that G is f -growth-bounded. For each color x, after
at most f(1) ∈ O(1) iterations of the while-loop, all nodes of a cluster Cu with
color x are removed from G. This completes the proof.

Combined with Theorems 5.13 and 5.22, we obtain the following two corol-
laries.

Corollary 5.28. Let G be a polynomially growth-bounded graph. For any con-
stant ε > 0, (1+ε)-approximations for minimum dominating set and maximum
matching can be computed in O(log ∆ log∗ n) rounds in the LOCAL model.

Corollary 5.29. Let G be a doubling unit ball graph. If nodes know the dis-
tances to their neighbors, for any constant ε > 0, (1 + ε)-approximations for
minimum dominating set and maximum matching can be computed in O(log∗ n)
rounds in the LOCAL model.

Chapter 6

Conclusions and Outlook

When devising algorithms which run on computer networks, we encounter diffi-
culties that are not present in standard non-distributed settings. In most cases,
the input for a problem at hand is distributed among the nodes of the network
and nodes need to communicate with each other in order to obtain the data
from other nodes. In a large network, it is in general not possible to learn
the complete input. Thus, each node has to compute its part of the output
based on partial information about the state of the system. We saw that most
importantly, in k rounds, every node can only gather data from its k-hop neigh-
borhood in the network graph. Hence, all nodes have to base their decisions
on a local view. We used the LOCAL model to study this locality condition
and the following associated question: How good can a global solution be if the
output of every node has to be based on local information?

We analyzed the price of locality for different problems and different classes
of network graphs. For distributed covering and packing problems, strong upper
and lower bounds on the possible trade-offs between time complexity (locality)
and achievable approximation ratio in the LOCAL model were found. For
distributed graph coloring, we established a new lower bound for one-round
algorithms which almost matches the best known upper bound. All these re-
sults are based on the assumption that the network topology can be arbitrary.
Restricting the class of possible network graphs can lead to much faster algo-
rithms. We introduced the class of growth-bounded graphs which we believe
to be a reasonable graph model for wireless ad hoc and sensor networks. For
growth-bounded graphs and certain natural sub-classes of these graphs, many
important distributed problems become significantly easier.

In reality, locality is not the only factor restricting the information upon
which nodes have to base their computations. Learning the complete k-hop
neighborhood in k rounds can in general require unreasonably large messages.
Therefore, bandwidth restrictions further reduce the amount of information
which can be gathered in k communication rounds. To comply with this fact, we
introduced the CONGEST and CONGEST BC models. Many of the presented

151

152 CHAPTER 6. CONCLUSIONS AND OUTLOOK

algorithms are designed to also work in these much more restricting models. In
particular, we showed that for covering and packing problems almost the same
trade-offs between time complexity k and approximation ratio can be achieved
in the LOCAL model and in the CONGEST BC model. Note that this is only
true as long as the diameter of the network is large. If the diameter is at most k,
problems can be solved optimally in the LOCAL model. In the CONGEST and
CONGEST BC models however, we do not know how to improve the trade-off
between time complexity and approximation ratio even for constant diameter
graphs. Studying the complexity of distributed problems in the CONGEST
and CONGEST BC models for constant-diameter graphs is a fascinating open
problem.

The presence of large, complex, and sometimes even dynamic computer net-
works such as the Internet, peer-to-peer networks, or wireless ad hoc and sensor
networks shows that it is a necessity to understand the complexity of distributed
algorithms. This thesis does not provide a general theory for local computa-
tions. It does however introduce tools and techniques which we believe are
important steps towards developing such a theory. We can of course not yet
know the exact significance of our results for future research.

The techniques used to solve fractional covering and packing problems can
be adapted for other types of linear programs. In fact, it seems that all set-
cover-like greedy algorithms can be converted into a distributed protocol for
the respective fractional problems using the method described in Chapter 2
(see e.g. [101]). It is not clear whether the method can still be applied if we
consider even more general LPs. However, studying the fractional versions of
distributed problems seems to be a good idea in general, because it allows to
avoid the symmetry breaking problem. Based on the current knowledge, the
lower bound results of Chapter 3 appear to be the most significant ones of
this thesis. It will be interesting to see whether the used techniques will find
additional applications in the future. Our work on distributed coloring can be
seen as one step on a long way towards understanding one of the most important
problems in the area of distributed computing. Although understanding the
one-round case is an important step, new insight is needed to generalize the
obtained results to two and more rounds. Chapter 5, which considers growth-
bounded network graphs, shows one of the directions which future research in
the area should follow. While it is definitely important to study the general
graph case, it is also fundamental to study network topologies which really
occur in practice.

In this thesis, we have made a step forward in an extremely fascinating area
which has been started 18 years ago. During these 18 years, only slow progress
has been made regarding the core problem of the area, namely understanding
the distributed complexity of problems in the LOCAL model. We hope that
this thesis brings new life into the intriguing research on locality phenomena in
graphs in general and in distributed computations in particular.

Bibliography

[1] I. Abraham, D. Dolev, and D. Malkhi. Lls: A locality aware location
service for mobile ad hoc networks. In Proc. of 2nd Joint Workshop on
Foundations of Mobile Computing (DIALM-POMC), pages 75–84, 2004.

[2] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel al-
gorithm for the maximal independent set problem. Journal of Algorithms,
7(4):567–583, 1986.

[3] K. Alzoubi, P.-J. Wan, and O. Frieder. Message-optimal connected domi-
nating sets in mobile ad hoc networks. In Proceedings of the 3rd ACM Int.
Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC),
pages 157–164, 2002.

[4] P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France,
111(4):429–448, 1983.

[5] B. Awerbuch. Complexity of network synchronization. Journal of the
ACM, 32(4):804–823, 1985.

[6] B. Awerbuch. Optimal distributed algorithms for minimum-weight span-
ning tree, counting, leader election and related problems. In Proc. of the
19th Symposium on Theory of Computing (STOC), pages 230–240, 1987.

[7] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Low-diameter graph
decomposition is in NC. Random Structures and Algorithms, 5(3):441–
452, 1994.

[8] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast network de-
compositions and covers. Journal of Parallel and Distributed Computing,
39(2):105–114, 1996.

[9] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network de-
composition and locality in distributed computation. In Proc. of the 30th
Symposium on Foundations of Computer Science (FOCS), pages 364–369,
1989.

153

154 BIBLIOGRAPHY

[10] B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic
overhead. In Proc. of the 31st Symposium on Foundations of Computer
Science (FOCS), pages 514–522, 1990.

[11] B. Awerbuch and D. Peleg. Sparse partitions. In Proc. of the 31st Sympo-
sium on Foundations of Computer Science (FOCS), pages 503–513, 1990.

[12] B. Awerbuch and D. Peleg. Routing with polynomial communication-
space trade-off. SIAM Journal on Mathematics, 5(2):151–162, 1992.

[13] B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of
the ACM, 42(5):1021–1058, 1995.

[14] B. Baker. Approximation algorithms for NP-complete problems on planar
graphs. Journal of the ACM, 41(1):153–180, 1994.

[15] D. J. Baker and A. Ephremides. The architectural organization of a mobile
radio network via a distributed algorithm. IEEE Trans. Communications,
COM-29(11):1694–1701, 1981.

[16] L. Barrière, P. Fraigniaud, and L. Narayanan. Robust position-based
routing in wireless ad hoc networks with unstable transmission ranges. In
Proc. of the 5th Int. Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications (DIALM), pages 19–27, 2001.

[17] Y. Bartal, J. W. Byers, and D. Raz. Global optimization using local
information with applications to flow control. In Proc. of the 38th IEEE
Symposium on the Foundations of Computer Science (FOCS), pages 303–
312, 1997.

[18] S. Basagni. A distributed algorithm for finding a maximal weighted in-
dependent set in wireless networks. In Proc. of the 11th IASTED Int.
Conference on Parallel and Distributed Computing and Systems (PDCS),
pages 517–522, 1999.

[19] S. Basagni. Distributed clustering for ad hoc networks. In Proc. of the
IEEE Int. Symposium on Parallel Architectures, Algorithms, and Net-
works (I-SPAN), pages 310–315, 1999.

[20] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-
approximability – towards tight results. SIAM Journal on Computing,
27:804–915, 1998.

[21] R. Bischoff and R. Wattenhofer. Analyzing connectivity-based, multi-hop
ad-hoc positioning. In Proc. of 2nd IEEE Int. Conference on Pervasive
Computing and Communications (PERCOM), pages 165–176, 2004.

[22] B. Bollobás. Extremal Graph Theory. Academic Press, New York, 1978.

BIBLIOGRAPHY 155

[23] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaran-
teed delivery in ad hoc wireless networks. In Proc. of Discrete Algorithms
and Methods for Mobility (DIALM), pages 48–55, 1999.

[24] H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is np-hard.
Computational Geometry. Theory and Applications, 9(1-2):3–24, 1998.

[25] S. Capkun, M. Hamdi, and J. P. Hubaux. GPS-free positioning in mobile
ad-hoc networks. Cluster Computing, 5(2), 2002.

[26] M. Cardei, X. Cheng, X. Cheng, and D. Z. Du. Connected domination in
multihop ad hoc wireless networks. In Proceedings of the 6th Int. Confer-
ence on Computer Science and Informatics, 2002.

[27] M. Chatterjee, S. K. Das, and D. Turgut. An on-demand weighted clus-
tering algorithm (WCA) for ad-hoc networks. In Proc. of IEEE GLOBE-
COM, pages 1697–1701, 2000.

[28] X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du. A polynomial-time
approximation scheme for the minimum-connected dominating set in ad
hoc wireless networks. Networks, 42(4):202–208, 2003.

[29] C. Chiang, H. Wu, W. Liu, and M. Gerla. Routing in clustered multihop,
mobile wireless networks. In Proc. of the IEEE Singapore International
Conference on Networks, pages 197–211, 1997.

[30] F. Chin and H. F. Ting. An almost linear time and O(n log(n) + e) mes-
sages distributed algorithm for minimum-weight spanning trees. In Proc.
of the 26th Symposium on Foundations of Computer Science (FOCS),
pages 257–266, 1985.

[31] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics
of Operations Research, 4(3), 1979.

[32] V. Chvátal. Linear Programming. W. H. Freeman and Company, 1983.

[33] R. Cole and U. Vishkin. Deterministic coin tossing with applications to
optimal parallel list ranking. Information and Control, 70(1):32–53, 1986.

[34] A. Czygrinow, M. Hańćkowiak, and M. Karoński. Distributed O(δ log n)-
edge-coloring algorithm. In Proc. of 9th Annual European Symposium on
Algorithms (ESA), volume 2161 of LNCS, pages 345–355, 2001.

[35] G. De Marco and A. Pelc. Fast distributed graph coloring with O(∆) col-
ors. In Proc. of the 12th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 630–635, 2001.

[36] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan.
Fast distributed algorithms for (weakly) connected dominating sets and
linear-size skeletons. In Proc. of the 14th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 717–724, 2003.

156 BIBLIOGRAPHY

[37] F. Eisenbrand, S. Funke, N. Garg, and J. Könemann. A combinato-
rial algorithm for computing a maximum independent set in a t-perfect
graph. In Proc. of the 14th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 517–522, 2003.

[38] M. Elkin. A faster distributed protocol for constructing a minimum span-
ning tree. In Proc. of the 15th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 359–368, 2004.

[39] M. Elkin. Unconditional lower bounds on the time-approximation trade-
offs for the distributed minimum spanning tree problem. In Proc. of the
36th ACM Symposium on Theory of Computing (STOC), pages 331–340,
2004.

[40] P. Erdős, P. Frankl, and Z. Füredi. Families of finite sets in which no
set is covered by the union of r others. Israel Journal of Mathematics,
51:79–89, 1985.

[41] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation
schemes for geometric graphs. In Proc. of the 12th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 671–679, 2001.

[42] U. Feige. A threshold of ln n for approximating set cover. Journal of the
ACM (JACM), 45(4):634–652, 1998.

[43] U. Feige and J. Kilian. Zero knowledge and the chromatic number. Journal
of Computer and System Sciences, 57:187–199, 1998.

[44] F. Fich and E. Ruppert. Hundreds of impossibility results for distributed
computing. Distributed Computing, 16(2-3):121–163, 2003.

[45] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, 1985.

[46] L. Fleischer. Approximating fractional multicommodity flow indepen-
dent of the number of commodities. SIAM Journal on Discrete Math.,
13(4):505–520, 2000.

[47] L. Fleischer. A fast approximation scheme for fractional covering problems
with variable upper bounds. In Proc. of the 15th ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2004.

[48] S. Funke, A. Kesselmann, Z. Lotker, and M. Segal. Improved approxima-
tion algorithms for connected sensor cover. In Proc. of 3rd International
Conference on AD-HOC Networks & Wireless (ADHOC-NOW), 2004.

[49] E. Gafni. Improvements in the time complexity of two message-optimal
election algorithms. In Proc. of the 4th Symposium on Principles of Dis-
tributed Computing (PODC), pages 175–185, 1985.

BIBLIOGRAPHY 157

[50] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algo-
rithm for minimum-weight spanning trees. ACM Trans. on Programming
Languages and Systems, 5:66–77, 1983.

[51] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete mo-
bile centers. In Proc. of the 17th Annual Symposium on Computational
Geometry (SCG), pages 188–196, 2001.

[52] J. Garay, S. Kutten, and D. Peleg. A sub-linear time distributed algo-
rithm for minimum-weight spanning trees. SIAM Journal on Computing,
27:302–316, 1998.

[53] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[54] M. Gerla and J. Tsai. Multicluster, mobile, multimedia radio network.
ACM/Baltzer Journal of Wireless Networks, 1(3):255–265, 1995.

[55] A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-breaking
in sparse graphs. SIAM Journal on Discrete Mathematics, 1(4):434–446,
1988.

[56] D. A. Grable and A. Panconesi. Nearly optimal distributed edge coloring
in O(log log n) rounds. Random Structures and Algorithms, 10(3):385–405,
1997.

[57] F. Grandoni, J. Könemann, A. Panconesi, and M. Sozio. Primal-dual
based distributed algorithms for vertex cover with semi-hard capacities. In
Proc. of the 24th ACM Symposium on Principles of Distributed Computing
(PODC), pages 118–125, 2005.

[58] S. Guha and S. Khuller. Approximation algorithms for connected dom-
inating sets. In Proc. of the 4th Annual European Symposium on Algo-
rithms (ESA), volume 1136 of Lecture Notes in Computer Science, pages
179–193, 1996.

[59] A. Gupta, R. Krauthgamer, and J. Lee. Bounded geometries, fractals,
and low-distortion embeddings. In Proc. of the 44th IEEE Symposium on
Foundations of Computer Science (FOCS), 2003.

[60] M. Hańćkoviak, M. Karoński, and A. Panconesi. On the distributed com-
plexity of computing maximal matchings. In Proc. of the 9th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 219–225, 1998.

[61] M. Hańćkoviak, M. Karoński, and A. Panconesi. A faster distributed algo-
rithm for computing maximal matchings deterministically. In Proc. of the
18th ACM Symposium on Principles of Distributed Computing (PODC),
pages 219–228, 1999.

158 BIBLIOGRAPHY

[62] J. Heinonen. Lectures on Analysis of Metric Spaces. Springer-Verlag,
2001. New York.

[63] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient
communication protocol for wireless microsensor networks. In Proc. of
the 33rd Annual Hawaii Int. Conference on System Sciences, pages 3005–
3014, 2000.

[64] T. Hermann and S. Tixeuil. A distributed TDMA slot assignment algo-
rithm for wireless sensor networks. In Proc. of 1st Workshop on Algo-
rithmic Aspects of Wireless Sensor Networks (ALGOSENSORS), volume
3121 of Lecture Notes in Computer Science, pages 45–58, 2004.

[65] D. Hochbaum, editor. Approximation Algorithms for NP-hard Problems.
PWS Publishing Company, 1997.

[66] D. Hochbaum and W. Maass. Approximation schemes for covering and
packing problems. Journal of the ACM, 32(1):130–136, 1985.

[67] H. Hunt, M. Marathe, V. Radhakrishnan, S. Ravi, D. Rosenkrantz, and
R. Stearns. NC-approximation schemes for NP- and PSPACE-hard prob-
lems for geometric graphs. Journal of Algorithms, 26(2):238–274, 1998.

[68] A. Israeli and A. Itai. A fast and simple randomized parallel algorithm
for maximal matching. Information Processing Letters, 22:77–80, 1986.

[69] L. Jia, R. Rajaraman, and R. Suel. An efficient distributed algorithm for
constructing small dominating sets. Distributed Computing, 15(4):193–
205, 2002.

[70] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless
networks. In Mobile Computing, volume 353, chapter 5. 1996.

[71] D. S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9:256–278, 1974.

[72] R. E. Johnson and F. B. Schneider. Symmetry and similarity in dis-
tributed systems. In Proc. of the 4th ACM Symposium on Principles of
Distributed Computing (PODC), pages 13–22, 1985.

[73] R. M. Karp. Reducibility among combinatorial problems. In Proc. of a
Symposium on the Complexity of Computer Computations, pages 85–103,
1972.

[74] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and embedding
using small sets of beacons. In Proc. of the 45th IEEE Symposium on
Foundations of Computer Science (FOCS), 2004.

BIBLIOGRAPHY 159

[75] S. G. Kolliopoulos and N. E. Young. Tight approximation results for
general covering integer programs. In Proc. of the 42nd IEEE Symposium
on Foundations of Computer Science (FOCS), pages 522–528, 2001.

[76] R. Krauthgamer and J. Lee. Navigating nets: Simple algorithms for prox-
imity search. In Proc. of the 15th ACM-SIAM Symp. on Discrete Algo-
rithms (SODA), 2004.

[77] P. Krishna, M. Chatterjee, N. H. Vaidya, and D. K. Pradhan. A cluster-
based approach for routing in ad-hoc networks. In Proc. of the 2nd
USENIX Symposium on Mobile and Location-Independent Computing,
pages 1–10, 1995.

[78] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing newly deployed
ad hoc and sensor networks. In Proc. of the 10th Annual Int. Conference
on Mobile Computing and Networking (MOBICOM), pages 260–274, 2004.

[79] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Radio clustering from
scratch. In Proc. of 12th Annual European Symposium on Algorithms
(ESA), volume 3221 of LNCS, pages 460–471, 2004.

[80] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit disk graph approx-
imation. In Proc. of the 2nd Joint Workshop on Foundations of Mobile
Computing (DIALM-POMC), pages 17–23, 2004.

[81] F. Kuhn and R. Wattenhofer. Constant-time distributed dominating set
approximation. In Proc. of the 22nd ACM Symposium on Principles of
Distributed Computing (PODC), pages 25–32, 2003.

[82] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc
routing: Of theory and practice. In Proc. of the 22nd ACM Symposium
on Principles of Distributed Computing (PODC), pages 63–72, 2003.

[83] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-hoc networks beyong unit
disk graphs. In Proc. of the 1st Joint Workshop on Foundations of Mobile
Computing (DIALM-POMC), pages 69–78, 2003.

[84] F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-case optimal and
average-case efficient geometric ad-hoc routing. In Proc. of the 4th ACM
Int. Symposium on Mobile Ad Hoc Networking and Computing (MOBI-
HOC), pages 267–278, 2003.

[85] E. Kushilevitz and Y. Mansour. An ω(d log(n/d)) lower bound for broad-
cast in radio networks. SIAM Journal on Computing, 27(3):702–712, 1998.

[86] S. Kutten and D. Peleg. Fast distributed construction of small k-
dominating sets and applications. Journal of Algorithms, 28:40–66, 1998.

160 BIBLIOGRAPHY

[87] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–
401, 1982.

[88] F. Lazebnik and V. A. Ustimenko. Explicit construction of graphs with
an arbitrary large girth and of large size. Discrete Applied Mathematics,
60(1-3):275–284, 1995.

[89] F. Lazebnik, V. A. Ustimenko, and A. J. Woldar. A new series of dense
graphs of high girth. Bulletin of the American Mathematical Society
(N.S.), 32(1):73–79, 1995.

[90] C. R. Lin and M. Gerla. Adaptive clustering in mobile wireless networks.
IEEE Journal on Selected Areas in Communications, 16:1265–1275, 1997.

[91] N. Linial. Locality in distributed graph algorithms. SIAM Journal on
Computing, 21(1):193–201, February 1992.

[92] N. Linial. Local-global phenomena in graphs. Combinatorics Probability
and Computing, 2:491–503, 1993.

[93] N. Linial and M. Saks. Low diameter graph decompositions. Combina-
torica, 13(4):441–454, 1993.

[94] Z. Lotker, B. Patt-Shamir, and D. Peleg. Distributed MST for constant
diameter graphs. In Proc. of the 20th ACM Symposium on Principles of
Distributed Computing (PODC), pages 63–71, 2001.

[95] Z. Lotker, E. Pavlov, B. Patt-Shamir, and D. Peleg. MST construction in
O(log log n) communication rounds. In Proc. of the 16th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 94–100,
2003.

[96] M. Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM Journal on Computing, 15:1036–1053, 1986.

[97] M. Luby and N. Nisan. A parallel approximation algorithm for positive
linear programming. In Proc. of the 25th ACM Symposium on Theory of
Computing (STOC), pages 448–457, 1993.

[98] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz.
Simple heuristics for unit disk graphs. Networks, 25:59–68, 1995.

[99] T. Moscibroda and R. Wattenhofer. Efficient computation of maximal
independent sets in unstructured multi-hop radio networks. In Proc. of
1st IEEE Int. Conference on Mobile Ad-hoc and Sensor Systems (MASS),
pages 51–59, 2004.

BIBLIOGRAPHY 161

[100] T. Moscibroda and R. Wattenhofer. Coloring unstructured radio net-
works. In Proc. of the 17th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 39–48, 2005.

[101] T. Moscibroda and R. Wattenhofer. Facility location: Distributed approx-
imation. In Proc. of the 24th ACM Symposium on Principles of Distributed
Computing (PODC), pages 108–117, 2005.

[102] T. Moscibroda and R. Wattenhofer. Maximal independent sets in radio
networks. In Proc. of the 24th ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 148–157, 2005.

[103] T. Moscibroda and R. Wattenhofer. Maximizing the lifetime of dominat-
ing sets. In Proc. of the 5th International Workshop on Algorithms for
Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN), 2005.

[104] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

[105] M. Naor and L. Stockmeyer. What can be computed locally? In Proc.
of the 25th Annual ACM Symposium on Theory of Computing (STOC),
pages 184–193, 1993.

[106] T. Nieberg and J. Hurink. A PTAS for the minimum dominating set
problem in unit disk graphs. Technical Report 1732, Dept. of Applied
Mathematics, University of Twente, Enschede, The Netherlands, 2004.

[107] T. Nieberg, J. Hurink, and W. Kern. A robust PTAS for maximum
independent sets in unit disk graphs. In Proc. of the 30th Workshop on
Graph Theoretic Concepts in Computer Science, pages 214–221, 2004.

[108] A. Panconesi and A. Srinivasan. On the complexity of distributed network
decomposition. Journal of Algorithms, 20(2):581–592, 1995.

[109] A. Panconesi and A. Srinivasan. Randomized distributed edge coloring
via an extension of the Chernoff-Hoeffding bounds. SIAM Journal on
Computing, 26(2):350–368, 1997.

[110] C. Papadimitriou and M. Yannakakis. Linear programming without the
matrix. In Proc. of the 25th ACM Symposium on Theory of Computing
(STOC), pages 121–129, 1993.

[111] A. Pelc. Personal communication.

[112] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM,
2000.

[113] D. Peleg and V. Rubinovich. A near-tight lower bound on the time com-
plexity of distributed MST construction. SIAM Journal on Computing,
30(5):1427–1442, 2001.

162 BIBLIOGRAPHY

[114] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector rout-
ing. In Proc. of 2nd IEEE Workshop on Mobile Computing Systems and
Applications, pages 90–100, 1999.

[115] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies
of replicated objects in a distributed environment. In Proceedings of the
9th ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 311–320, 1997.

[116] S. Plotkin, D. Shmoys, and E. Tardos. Fast approximation algorithms
for fractional packing and covering problems. Mathematics of Operations
Research, 20:257–301, 1995.

[117] P. Raghavan and C. D. Thompson. Randomized rounding: A technique
for provably good algorithms and algorithmic proofs. Combinatorica,
7(4):365–374, 1987.

[118] S. Rajagopalan and V. Vazirani. Primal-dual RNC approximation algo-
rithms for set cover and covering integer programs. SIAM Journal on
Computing, 28:525–540, 1998.

[119] S. Ramanathan. A unified framework and algorithm for channel assign-
ment in wireless networks. Wireless Networks, 5:81–94, 1999.

[120] E. M. Royer and C. Toh. A review of current routing protocols for ad-hoc
mobile wireless networks. In IEEE Personal Communications, volume 6,
April 1999.

[121] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained lo-
calization in ad-hoc networks of sensors. In Proc. of the 7th Int. Confer-
ence on Mobile Computing and Networking (MOBICOM), pages 166–179,
2001.

[122] P. Sinha, R. Sivakumar, and V. Bharghavan. Enhancing ad hoc routing
with dynamic virtual infrastructures. In Proc. of the 20th IEEE Confer-
ence on Computer Communications (INFOCOM), pages 1763–1772, 2001.

[123] P. Slav́ık. A tight analysis of the greedy algorithm for set cover. In Proc.
of the 28th ACM Symposium on Theory of Computing (STOC), pages
435–441, 1996.

[124] A. Srinivasan. Improved approximations of packing and covering prob-
lems. In Proc. of the 27th ACM Symposium on Theory of Computing
(STOC), pages 268–276, 1995.

[125] I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating sets and neighbor
elimination-based broadcasting algorithms in wireless networks. IEEE
Transactions on Parallel and Distributed Systems, 12(12):14–25, 2001.

BIBLIOGRAPHY 163

[126] K. Talwar. Bypassing the embedding: Approximation schemes and com-
pact representations for low dimensional metrics. In Proc. of the 36th
ACM Symposium on Theory of Computing (STOC), 2004.

[127] V. Vazirani. Approximation Algorithms. Springer, 2001.

[128] Y. Wang and X.-Y. Li. Geometric spanners for wireless ad hoc networks.
In Proc. of the 22nd Int. Conference on Distributed Computing Systems
(ICDCS), 2002.

[129] Y. Wang and X.-Y. Li. Localized construction of bounded degree and
planar spanner for wireless ad hoc networks. In Proc. of 1st Joint Work-
shop on Foundations of Mobile Computing (DIALM-POMC), pages 59–
68, 2003.

[130] M. Wattenhofer and R. Wattenhofer. Distributed weighted matching.
In Proc. of th 18th Int. Conference on Distributed Computing (DISC),
number 3274 in LNCS, pages 335–348, 2004.

[131] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang. Distributed topology
control for power efficient operation in multihop wireless ad hoc networks.
In Proc. of 20th INFOCOM, 2001.

[132] R. Wattenhofer and A. Zollinger. Xtc: A practical topology control algo-
rithm for ad-hoc networks. In Proc. of the 4th International Workshop on
Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN),
2004.

[133] J. Wu and H. Li. On calculating connected dominating sets for efficient
routing in ad hoc wireless networks. In Proc. of the 3rd Int. Workshop
on Discrete Algorithms and Methods for Mobile Computing and Commu-
nications (DIALM), pages 7–14, 1999.

[134] N. E. Young. Randomized rounding without solving the linear program. In
Proc. of the 6th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 170–178, 1995.

[135] N. E. Young. Sequential and parallel algorithms for mixed packing and
covering. In Proc. of the 42nd IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 538–546, 2001.

164 BIBLIOGRAPHY

Curriculum Vitae

July 30, 1976 Born in Basel, Switzerland

1983–1995 Primary school and high schools in Hofstetten-Flüh SO,
Bättwil SO, and Oberwil BL, Switzerland

1996 military service

1996–2001 Studies in computer science, ETH Zurich, Switzerland

October 2001 Diploma in computer science, ETH Zurich, Switzerland

2002–2005 Ph.D. student, research and teaching assistent
Distributed Computing Group, Prof. Roger Wattenhofer,
ETH Zurich, Switzerland

August 2005 Ph.D. degree, Distributed Computing Group, ETH Zurich,
Switzerland

Advisor: Prof. Roger Wattenfhoer
Co-examiner: Prof. Nathan Linial,

Hebrew University, Jerusalem, Israel
Co-examiner: Prof. Friedhelm Meyer auf der Heide,

University of Paderborn, Germany

165

166 BIBLIOGRAPHY

Publications

In the following, all publications which were written during the three and a half
years in which I was a Ph.D. student at ETH Zurich are listed.

1. The Price of Being Near-Sighted. Fabian Kuhn, Thomas Moscibroda, and
Roger Wattenhofer. 17th ACM-SIAM Symposium on Discrete Algorithms
(SODA), Miami, Florida, USA, 2006.

2. Improved Approximation Algorithms for Connected Sensor Cover. Ste-
fan Funke, Alexander Kesselman, Fabian Kuhn, Zvi Lotker, and Michael
Segal. Wireless Networks Journal.

3. Fast Deterministic Distributed Maximal Independent Set Computation on
Growth-Bounded Graphs. Fabian Kuhn, Thomas Moscibroda, Tim Nieberg,
and Roger Wattenhofer. 19th International Symposium on Distributed
Computing (DISC), Cracow, Poland, September 2005.

4. Local Approximation Schemes for Ad Hoc and Sensor Networks. Fabian
Kuhn, Thomas Moscibroda, Tim Nieberg, and Roger Wattenhofer. 3rd
ACM Joint Workshop on Foundations of Mobile Computing (DIALM-
POMC), Cologne, Germany, September 2005.

5. Interference in Cellular Networks: The Minimum Membership Set Cover
Problem. Fabian Kuhn, Pascal von Rickenbach, Roger Wattenhofer, Emo
Welzl, and Aaron Zollinger. 11th International Computing and Combina-
torics Conference (COCOON), Kunming, China, August 2005.

6. On the Locality of Bounded Growth. Fabian Kuhn, Thomas Moscibroda,
and Roger Wattenhofer. 24th ACM Symposium on the Principles of Dis-
tributed Computing (PODC), Las Vegas, Nevada, USA, July 2005.

7. A Self-Repairing Peer-to-Peer System Resilient to Dynamic Adversarial
Churn. Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. 4th Inter-
national Workshop on Peer-to-Peer Systems (IPTPS), Ithaca, NY, Febru-
ary 2005.

167

168 BIBLIOGRAPHY

8. Efficient Adaptive Collect using Randomization. Hagit Attiya, Fabian
Kuhn, Mirjam Wattenhofer, and Roger Wattenhofer. 18th Annual In-
ternational Conference on Distributed Computing (DISC), Amsterdam,
Netherlands, October 2004.

9. Unit Disk Graph Approximation. Fabian Kuhn, Thomas Moscibroda, and
Roger Wattenhofer. 2nd ACM DIALM-POMC Joint Workshop on Foun-
dations of Mobile Computing (DIALM-POMC), Philadelphia, PA, Octo-
ber 2004.

10. Initializing Newly Deployed Ad Hoc and Sensor Networks. Fabian Kuhn,
Thomas Moscibroda, and Roger Wattenhofer. 10th ACM International
Conference on Mobile Computing and Networking (MOBICOM), Philadel-
phia, PA, September 2004.

11. Radio Network Clustering from Scratch. Fabian Kuhn, Thomas Mosci-
broda, and Roger Wattenhofer. 12th Annual European Symposium on
Algorithms (ESA), Bergen, Norway, September 2004.

12. What Cannot Be Computed Locally! Fabian Kuhn, Thomas Moscibroda,
and Roger Wattenhofer. 23rd ACM Symposium on the Principles of Dis-
tributed Computing (PODC), St. John’s, Newfoundland, Canada, July
2004.

13. Dynamic Analysis of the Arrow Distributed Protocol. Fabian Kuhn and
Roger Wattenhofer. 16th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Barcelona, Spain, June 2004.

14. Ad-Hoc Networks Beyond Unit Disk Graphs. Fabian Kuhn, Roger Wat-
tenhofer, and Aaron Zollinger. 1st ACM DIALM-POMC Joint Workshop
on Foundations of Mobile Computing (DIALM-POMC), San Diego, Cal-
ifornia, USA, September 2003.

15. Constant-Time Distributed Dominating Set Approximation. Fabian Kuhn
and Roger Wattenhofer. 22nd ACM Symposium on the Principles of Dis-
tributed Computing (PODC), Boston, Massachusetts, USA, July 2003.
To appear in Distributed Computing Journal

16. Geometric Ad-Hoc Routing: Of Theory and Practice. Fabian Kuhn, Roger
Wattenhofer, Yan Zhang, and Aaron Zollinger. 22nd ACM Symposium on
the Principles of Distributed Computing (PODC), Boston, Massachusetts,
USA, July 2003.

17. Worst-Case Optimal and Average-Case Efficient Geometric Ad-Hoc Rout-
ing. Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. 4th ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MOBIHOC), Annapolis, Maryland, USA, June 2003.

BIBLIOGRAPHY 169

18. Asymptotically Optimal Geometric Mobile Ad-Hoc Routing. Fabian Kuhn,
Roger Wattenhofer, and Aaron Zollinger. 6th International Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communi-
cations (DIALM), Atlanta, Georgia, September 2002.

