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Machine Learning Deals with …



Networks
Social Networks

Neural Networks
Mobile Networks

Wireless Networks
Financial Networks

Economic Networks
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GNNs vs. Distributed Computing



Distributed Computing (Message Passing)

Nodes communicate with neighbors by sending messages.

In each synchronous round, every node sends a message to its neighbors.



Graph Neural Networks

Nodes communicate with neighbors by sending messages.

In each synchronous round, every node sends a message to its neighbors.



ML

“Designed” algorithm

Usually, node IDs

Individual messages

Solve graph problems 

like coloring or routing 

“Learned” parameters

Usually, node features

Aggregated messages

Solve classification 

(node, edge, graph)



More Details, Please!



Graph Neural Networks
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Graph Neural Networks

av = AGGREGATE ( {{ hu |  u ∈ N(v) }} )

hv
(t+1) = UPDATE ( hv , av )

v

(Min, Max, Mean, Sum)
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GNN Limitations?



Limits of GNNs
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Graph Neural Networks

av = AGGREGATE ( {{ hu |  u ∈ N(v) }} )

hv
(t+1) = UPDATE ( hv , av )

v

GNNs  ≤  Weisfeiler-Lehman test 



Weisfeiler-Lehman Graph Isomorphism Test



Shrikande vs. Rooks



GNNs Fail on e.g. Cycles

v
v



ML

anonymous

local

congest

oversmoothing

underreaching

oversquashing



More Expressive GNNs?
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GNNs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently
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Run #2

Multiple runs of the GNN

Each node removed with probability p independently



GNNs with Dropouts

Run #3

Multiple runs of the GNN

Each node removed with probability p independently
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GNNs with Dropouts

hv = RUNAGGREGATE (hv
[1], hv

[2], … , hv
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Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

both training 

and testing!

hv = RUNAGGREGATE (hv
[1], hv

[2], … , hv
[r])



GNNs with Dropouts

MEAN aggregation of neighbors
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GNNs with Dropouts
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MEAN aggregation of neighbors



0

GNNs with Dropouts

0

1

01

1

MEAN = 0.66MEAN ∈ {0, 0.5, 1}

vv

MEAN aggregation of neighbors



More runs:

+ more stable distribution

‒ more runtime overhead

DropGNN with 1-dropouts

v



N nodes

2N dropout 

combinations

DropGNN with 1-dropouts

v

More runs:

+ more stable distribution

‒ more runtime overhead



N nodes

N different 

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead



N nodes

N different 

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead



N nodes

N different 

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead



N nodes

N different 

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead



N nodes

N different 

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead



N nodes

N different 

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead



Theorem: if #runs ≈ N ∙ log N, then we observe 

every 1-dropout with high probability.

N nodes

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead



DropGNN with 1-dropouts

Theorem: There are graphs that cannot be 

distinguished from 1-dropouts only.
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DropGNN with 1-dropouts
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Theorem: There are graphs that cannot be 

distinguished from 1-dropouts only.



DropGNN with 1-dropouts

Theorem: in DropGNNs with port numbers, any 

two graphs can be distinguished with 1-dropouts.

vv

Theorem: There are graphs that cannot be 

distinguished from 1-dropouts only.



Port Numbers



Angle Features



Random Features





Easier Learning                    More Expressivity

Base GNN DropGNN Ports

Reminiscent of Advice Complexity?

Rand IDs





Without Aggregation?











Explainable GNNs







Reminiscent of Stone Age Model?



Extrapolation



Towards Learning Algorithms?



GNN Benchmarks



Example: CORA Benchmark



Example: CORA Benchmark

Title Keywords Neighbor 

Labels

Neighbor 

Keywords

Primes is in P … Crypto, … …



Can Good GNN Benchmarks Exist?



Networks
Social Networks

Neural Networks
Mobile Networks

Wireless Networks
Financial Networks

Economic Networks
Biological Networks
Computer Networks







Automating Rigid Origami Design
Jeremia Geiger, Karolis Martinkus, Oliver Richter, Roger Wattenhofer





The Bigger Picture



Explainability

Graph 
Generation

Benchmarks

Graph 
Isomorphism

Algorithm 
Learning

Cellular 
Automata

Extrapolation
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Distributed
Computing
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Machine
Learning

(ML)
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Distributed
Computing

(DC)

Machine
Learning

(ML)



Thank You!
Questions & Comments?

Roger Wattenhofer, ETH Zurich, www.disco.ethz.ch
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