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write a poem about traffic lights

In the heart of a bustling city’'s night,
A sentinel stands, glowing with light,
With colors of red, yellow, and green,

A triad of hues, a silent machine.

A beacon of order midst chaos and speed,

Guiding the masses, an unspoken creed,
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Machine Learning Deals with ...
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Networks

Social Networks
Neural Networks
Mobile Networks
Wireless Networks
Financial Networks
Economic Networks
Biological Networks
Computer Networks









Graph Neural Networks




An Introduction to Graph Neural Networks from
a Distributed Computing Perspective

Pal Andras Papp and Roger Wattenhofer

ETH Ziirich, Switzerland
{apapp,wattenhofer}@ethz.ch

Abstract. The paper provides an introduction into the theoretical ex-
pressiveness of graph neural networks. We discuss the basic properties
and main applications of standard GNN models, and we show how these
constructions are both upper and lower bounded in expressive power by
the Weisfeiler-Lehman test. We then outline a wide variety of approaches
to increase the expressiveness of GNNs above this theoretical limit, and
discuss the strengths and weaknesses of these methods.



GNNs vs. Distributed Computing



Distributed Computing (Message Passing)

Nodes communicate with neighbors by sending messages.
In each synchronous round, every node sends a message to its neighbors.




Graph Neural Networks

Nodes communicate with neighbors by sending messages.
In each synchronous round, every node sends a message to its neighbors.




DC Track

“Designed” algorithm
Usually, node IDs
Individual messages

Solve graph problems
like coloring or routing

ML Track

“‘Learned” parameters
Usually, node features
Aggregated messages

Solve classification
(node, edge, graph)




More Details, Pleasel



Graph Neural Networks



Graph Neural Networks

a, = AGGREGATE ({{ h,| ue N(v) }}) (Min, Max, Mean, Sum)



Graph Neural Networks

a, = AGGREGATE ({{ h,| ue N(v) }}) (Min, Max, Mean, Sum)

h, &Y =UprDATE (h,, a,)
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Graph Neural Networks

OO0

e YaYaTarTa
CHCHCHC ) )

OO0

e YaYaTarTa
CHCHCHC ) )

aTalalala'

ONOYOOO

CNINCNI\
{ ) ) ) | ) )
NANANANANS



GNN Limitations?



Limits of GNNSs
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Graph Neural Networks

GNNs < Weisfeiler-Lehman test

a, = AGGREGATE ({{ h,| ue N(v) }})

h, &Y =UprDATE (h,, a,)



Weisfeiler-Lehman Graph Isomorphism Test

Original labels Relabeled Relabeled
i=0 i=1 =2

B.AB B AAB AB

= = =

0Y0Y0

- C = C = F -

E={A;B} E={AJBF£‘!DJ‘£;} E={A!BJE*D'E'FT ’ ’ }



Shrikande vs. Rooks




GNNs Falil on e.g. Cycles
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DC Track ML Track

anonymous 12 oversmoothing

local underreaching

congest oversquashing




More Expressive GNNs?



DropGNN: Random Dropouts Increase the
Expressiveness of Graph Neural Networks
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GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently
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Each node removed with probability p independently

Run #1
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GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #2



GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #3



GNNSs with Dropouts
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GNNSs with Dropouts
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GNNSs with Dropouts
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GNNSs with Dropouts
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GNNSs with Dropouts
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GNNSs with Dropouts
pexl L

_Q/éOOOi ?;é@@@:




GNNSs with Dropouts
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GNNSs with Dropouts
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GNNSs with Dropouts
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GNNSs with Dropouts
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GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently



GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE (h 1], h 2], ... h I)



GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE h 2, ..., hM)



GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE (h 4, ..., h I



GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE (h 1], h 2], ... h I)



GNNSs with Dropouts

both training
and testing!

Multiple runs of the GNN }

Each node removed with probability p independently

h, = RUNAGGREGATE (h 1], h 2], ... h I)



GNNSs with Dropouts

MEAN aggregation of neighbors




GNNSs with Dropouts

MEAN aggregation of neighbors




GNNSs with Dropouts

MEAN aggregation of neighbors
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GNNSs with Dropouts

MEAN aggregation of neighbors
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o :

MEeaN € {0, 0.5, 1} MEAN = 0.66



DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead




DropGNN with 1-dropouts

More runs: N nodes

—————————————

+ more stable distribution
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DropGNN with 1-dropouts

More runs: N nodes

—————————————

I |
+ more stable distribution | :
. | |

— more runtime overhead ! |
: .

I I

I |

I |

Observe every 1-dropout

Theorem: if #runs = N - log N, then we observe
every 1-dropout with high probability.



DropGNN with 1-dropouts

Theorem: There are graphs that cannot be
distinguished from 1-dropouts only.




DropGNN with 1-dropouts

Theorem: There are graphs that cannot be
distinguished from 1-dropouts only.




DropGNN with 1-dropouts

Theorem: There are graphs that cannot be
distinguished from 1-dropouts only.

Theorem: in DropGNNs with port numbers, any
two graphs can be distinguished with 1-dropouts.
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Angle Features




input graph

what GNNs see

Random Features




A Theoretical Comparison of Graph Neural Network Extensions

Pal Andras Papp' Roger Wattenhofer !
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Base GNN DropGNN Ports Rand IDs

Easier Learning More Expressivity

Reminiscent of Advice Complexity?
e \
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(Efficiently)




Without Aggregation?



Asynchronous Neural Networks
for Learning in Graphs
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AGENT-BASED GRAPH NEURAL NETWORKS

Karolis Martinkus', Pal Andras Papp?, Benedikt Schesch!, Roger Wattenhofer!
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AGENT-BASED GRAPH NEURAL NETWORKS

Karolis Martinkus', Pal Andras Papp?, Benedikt Schesch!, Roger Wattenhofer!

The Graph has
triangles!

! I see a triangle! l

I didn't see a
triangle.

1. Node Update 2. Neighborhood Agregation
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Model 4-CYCLES [59] CIRCULAR SKIP LINKS [15] 2-WL
GIN [75] 50.0 £0.0 10.0 £0.0 50.0 £0.0
GIN with random features [64; 1] 09.7 +0.4 95.8 £2.1 92.4 +1.6
SMP [71] 100.0 +0.0 100.0 £0.0 50.0 +£0.0
DROPGIN [59] 100.0 +0.0 100.0 £0.0 100.0 0.0
ESAN [8] 100.0 0.0 100.0 £0.0 100.0 £0.0*
1-2-3 GNN [53] 100.0 +0.0 100.0 +0.0 100.0 £0.07
PPGN [51] 100.0 +0.0 100.0 +0.0 50.0 £0.0
CRAWL [67] 100.0 +0.0 100.0 +0.0 100.0 +0.0
RANDOM WALK AGENTNET 100.0 £0.0 100.0 £0.0 50.5 4.5
SIMPLIFIED AGENTNET 100.0 +0.0 100.0 +0.0 100.0 +0.0
AGENTNET 100.0 =0.0 100.0 £0.0 100.0 +0.0




Explainable GNNs



GraphChef: Learning the Recipe of Your Dataset
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GraphChef: Learning the Recipe of Your Dataset
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Reminiscent of Stone Age Model?



Extrapolation



Learning Graph Algorithms With Recurrent Graph Neural Networks

Florian Grotschla®,! Joél Mathys*, ! Roger Wattenhofer !
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Skip Input

Towards Learning Algorithms?




GNN Benchmarks



Example: CORA Benchmark

cites content

cited_paper_id [int paper_id int
citing_paper_id |int word_cited_id | varchar

"o

paper

paper_id |int
class_label|varchar

o o

| omie%a




Example: CORA Benchmark
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Can Good GNN Benchmarks Exist? S
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Networks

Social Networks
Neural Networks
Mobile Networks
Wireless Networks
Financial Networks
Economic Networks
Biological Networks
Computer Networks









Automating Rigid Origami Design

Jeremia Geiger, Karolis Martinkus, Oliver Richter, Roger Wattenhofer




Planar

SBM

Proteins

True Graphs

SPECTRE : Spectral Conditioning Helps to Overcome the Expressivity Limits
of One-shot Graph Generators

Karolis Martinkus' Andreas Loukas > Nathanaél Perraudin *° Roger Wattenhofer '

GraphRNN MolGAN* GG-GAN (RS)* GG-GAN*

SPECTRE
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Distributed Machine

Computing Learning
(DC) (ML)







Thank You!

Questions & Comments?
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Roger Wattenhofer, ETH Zurich, www.disco.ethz.ch
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