
Deterministic Leader Election in Multi-Hop
Beeping Networks

[Extended Abstract]?

Klaus-Tycho Foerster, Jochen Seidel, and Roger Wattenhofer

Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland

{foklaus,seidelj,wattenhofer}@ethz.ch

Abstract. We study deterministic leader election in multi-hop radio
networks in the beeping model. More specifically, we address explicit
leader election: One node is elected as the leader, the other nodes know its
identifier, and the algorithm terminates at some point with the network
being quiescent. No initial knowledge of the network is assumed, i.e.,
nodes know neither the size of the network nor their degree, they only
have a unique identifier. Our main contribution is a deterministic explicit
leader election algorithm in the synchronous beeping model with a run
time of O(D logn) rounds. This is achieved by carefully combining a fast
local election algorithm with two new techniques for synchronization and
communication in radio networks.

1 Introduction

Distributed computing and wireless communication are prime application areas
for randomization, as randomized algorithms are often both simpler and more
efficient than their deterministic counterparts. However, in some cases the ran-
domized algorithm is only of Monte Carlo nature, i.e., with some probability the
algorithm fails. This is a problem if the randomized algorithm is used as a start-
ing point for other (deterministic and Las Vegas) algorithms, as the algorithm as
a whole can also not provide any guarantees anymore. A classic example for such
a basic problem is leader election, which is often used to as a first step for other
wireless algorithms. We would argue in this paper that leader election deserves
to be understood deterministically as well, and we present a new algorithm that
solves leader election in the wireless beeping model – our algorithm is slower
than the fastest known randomized algorithm, but the overhead is bearable.

The beeping model has emerged as an alternative to the traditional radio
network model. The beeping model is binary, in a synchronous time step nodes
can only choose to beep or not to beep. If a node is beeping, it does not get any
feedback regarding other nodes. On the other hand, if a node is silent, it will

? The full version of this paper is available at http://disco.ethz.ch/publications/
DISC2014-leader.pdf

http://disco.ethz.ch/publications/DISC2014-leader.pdf
http://disco.ethz.ch/publications/DISC2014-leader.pdf


2 Klaus-Tycho Foerster, Jochen Seidel, Roger Wattenhofer

learn whether all its neighbors are also silent, or whether at least one neighbor
is beeping. The beeping model was introduced to the distributed computing
community by Cornejo and Kuhn [7] shortly after it was implemented [8].

In this model, we deterministically solve leader election: All the nodes in
the multi-hop network have to agree on a single leader. As leader election is
impossible without nodes having unique identifiers [1], we assume that each
node is equipped with a unique ID. We want our algorithm to be uniform, i.e.,
apart from their ID, nodes have no knowledge about any global or local network
properties (e.g., the network size, or their degree).

Our main result is an algorithm that deterministically solves the leader elec-
tion problem in O(D log n) time, where D is the diameter of the network and n
is the number of nodes. Once a leader is elected, all nodes in the network know
the leader’s ID, and the network is quiescent. We achieve this task by carefully
combining several methods.

1.1 Overview

First, we describe a Campaigning algorithm (Section 3) that can be compared
to one iteration of a real word political campaign: Every node is equipped with a
candidate leader and attempts to convince its neighborhood that this candidate
would make a great leader. The idea is that, if enough campaigns are performed,
everyone will be convinced of the same leader, since her influence spreads at
least one hop per iteration. In other words, we would like to perform multiple
campaigns, one after another.

As it turns out, in the beeping model ensuring that the next algorithm starts
synchronized is a non-trivial task. We thus develop a technique that allows us
to sequentially execute algorithms (Section 4) and apply it to the Campaigning

algorithm (Section 4.3).
The third method establishes a “back-channel” (Section 5) that directs mes-

sages towards a specific node, in our case the current candidate leaders. This
allows the last remaining candidate to detect its election and turn the network
quiescent. Our main result is now obtained by executing the Campaigning algo-
rithm multiple times sequentially, while at the same time using the back-channel
to notify the global leader when its successful election is detected. Lastly, we
briefly sketch how our algorithm can be extended to include a simple synchro-
nized wake-up protocol (Section 6).

1.2 Related Work

Leader election is one of the fundamental problems in distributed computing,
often used as the first step for solving a myriad of other problems in networks.
As such, the problem was studied over decades in various communication and
network models [17].

In radio networks, communication takes usually place in synchronous rounds,
and nodes may either transmit or listen in every round. If a node transmits, it



Deterministic Leader Election in Multi-Hop Beeping Networks 3

cannot hear incoming messages, but the message is sent to all its neighbors at
once. If a node listens, it receives messages from all its neighbors, but the message
obtained depends on the model of collision detection. Should collision detection
be available, then a node can separate between no message sent, exactly one
message sent, or a collision of multiple messages. With no collision detection
available nodes can only distinguish between exactly one message sent to it or
just noise.

Leader election in radio networks was first considered in single-hop radio
networks, followed by the study of multi-hop radio networks. We start with a
short coverage of the single-hop case:

For deterministic algorithms in single-hop radio networks, the run time highly
depends on the availability of collision detection: With collision detection, it is
Θ(log n) [3,12,13,19], while without collision detection, it is Θ(n log n) [6]. A
similar case can be made for randomized algorithms in single-hop radio networks:
With collision detection, the expected run time is Θ(log log n) [20]. The expected
run time goes to O(log n) if w.h.p. is desired. Should no collision detection be
available, then the run time increases to Θ(log n) in the expected case [2,16],
and to Θ(log2 n) w.h.p. [14].

We would argue that the study of leader election in multi-hop radio networks
can be divided into the following fields for related work to our results. One
can consider (1) radio networks with or (2) without collision detection, and
(3) the beeping model. Second, the used algorithms can be either deterministic
or randomized. We refer to [4,10,15] for an extended overview of these areas.

For deterministic algorithms, Kowalski and Pelc [15] displayed the discrep-
ancy between models with and without collision detection. They showed that if
collision detection is available, the runtime is Θ(n), while without collision de-
tection, there is a lower bound of Ω(n log n). Their O(n) algorithm with collision
detection relies on a careful combination of multiple innovative techniques, e.g.,
remote token elimination and distributed fuzzy-degree clustering. In contrast
to the model in this paper, they require messages of logarithmic size, collision
detection, and the knowledge of an upper bound polynomial in the number of
identifiers. Our algorithm can be simulated therein since their model is strictly
stronger. Asymptotically, we achieve a better run time for graphs with a diameter
D ∈ o(n/ log n), cf. [10].

For randomized algorithms in radio networks without collision detection,
Chlebus, Kowalski, and Pelc [4] broke the Ω(n log n) barrier: They present a
randomized algorithm with O(n) expected time and prove a lower bound ofΩ(n).
Furthermore, they give a deterministic algorithm for the model without collision
detection with a run time of O(n log3/2 n

√
log log n). They use logarithmic size

messages and also assume that an upper bound on the network size is known.

Finally, Ghaffari and Haeupler [10] considered randomized leader election in
the beeping model. Their algorithm runs in O((D+log n log log n) ·min(log log n,
log n/D)) time. To choose the random starting set of candidates, they rely on
knowledge of n, while we assume our algorithms to be uniform. To cope with
overlapping transmissions, they present a sophisticated technique using super-



4 Klaus-Tycho Foerster, Jochen Seidel, Roger Wattenhofer

imposed codes. We deem our overhead of O(log n) in the worst case bearable.
To the best of our knowledge, no results are published for deterministic leader
election in the beeping model.

The authors of [10] also consider a variant of the beeping model in which
only a subset S ⊆ V of the nodes wakes up in round 0 [11]. We adapt our
algorithm to this setting in Section 6. The difficulty is to allow nodes that are
being woken up by neighbors to synchronize their execution with that of nodes
that are already awake. The related wake-up problem, where nodes may also
activate spontaneously and no collision detection is available was studied in its
own right, for single-hop [9] as well as multi-hop [5] networks. In [18] the goal is
to activate the whole network if exactly one node is active initially.

2 Preliminaries

Network Model. The network is modeled as a connected undirected graph G =
(V,E) with node set V and edge set E. We denote by D the diameter of G, and
by n the number of nodes in V . All nodes u ∈ V have a unique identifier (ID),
denoted by id(u), from the range {1, 2, . . . , O(nγ)}, with γ ≥ 1 being a constant.
We denote by l(v) the length of u’s identifier in bits, i.e., l(u) = dlog2(id(u))e.
The neighborhood N (u) of u is the set {u}∪{v : (u, v) ∈ E}. In a similar fashion,
the d-neighborhood N (u, d) of a node u contains all nodes with a distance of at
most d to u, e.g., N (u, 1) = N (u).

Beeping Model. We consider one of the most basic communication models, the
synchronous beeping model: All nodes start synchronized1 in round 0, and com-
munication between nodes proceeds in synchronous rounds, where messages are
transmitted via the edges of the network. In every round, each node may choose
to either beep or listen to incoming messages. If a node v beeps, the beep will
be transmitted to all nodes in N (v). Otherwise, if v listens, then the message
received by v in a round is defined as follows: (i) if no node in N (v) beeps, then
v receives a 0 (silence), and (ii) if one or more nodes in N (v) beeps, then v
receives a 1 (beep).

Uniform Algorithms. We only consider uniform algorithms. That is, unless men-
tioned otherwise, the input for a node v consists of only id(v) (but not the value
of γ). Note that neither n, nor D, nor any upper bounds on those network pa-
rameters, can be inferred from the value id(v) (or l(v)) of a single node v. Nodes
also do not have any knowledge about the network topology, e.g., the IDs of
their neighbors, or even their own degree. Moreover, we require that in every
network the algorithm reaches a quiescent state, i.e., a state in which no node
transmits beeps anymore.

1 In Section 6 we also handle the case in which only a subset of the nodes wakes up.



Deterministic Leader Election in Multi-Hop Beeping Networks 5

3 Convincing Your Neighbors

In this section, we give an algorithm called Campaigning that can be compared
to a political campaign at a word of mouth level. Everyone is convinced that
either she herself is a good candidate, or that she knows the name of a good
candidate. If you know a better candidate than all of your neighbors and their
neighbors, you will try to convince your direct neighbors. However, if they are
aware that a better candidate is out there — they will ignore your conversion
attempts. Some candidates might reach a good deal of local followers, but only
a globally best candidate can guarantee to spread her sphere of influence all the
time.

The algorithm Campaigning can be seen as one iteration of this process,
where nodes exchange information only with their local neighborhood. The gen-
eral idea is that after D iterations are performed, “There can be only one!”2,
and all nodes will be convinced of the same leader. Hence, the candidates of the
different nodes do not have to be unique, e.g., the algorithm works with just one
candidate for all nodes or n different candidates.

We have to reach a state where nodes can transmit information to their neigh-
bors, without other nodes disturbing them, since beeps do not encode relevant
further information. Particular challenges arise from the facts that the algorithm
has to be uniform, i.e., that n is not known, and that we are confined to the
restricted beeping model. E.g., one cannot just “beep the identifier” and then
proceed with another part of the algorithm, since any receiving node will hear
all its neighbors – and cannot distinguish if all sent a beep or just one.

The main idea is to first reach local consensus on the longest identifier, then
to agree locally on the highest identifier, and finally, to let those with the locally
highest identifier transmit their identifier to their neighbors. To reach a state of
local consensus, we turn some nodes into buffer-nodes that no longer participate.
Therefore, we divide our algorithm into three separate procedures campaign

longest id, campaign highest id, and campaign transmit id.
We first give an overview of the three procedures in Subsection 3.1, followed

by a detailed mode of operations for Campaigning in Subsection 3.2. The full
version also contains a pseudo code description of our algorithm. We conclude
by stating correctness and run time results in Subsection 3.3.

3.1 Overview of the Procedures

Every node v gets as input an id, referred to as campaigning-identifier, that is
stored in v’s variable idin. Also, all nodes start in an active role, but can change
to be passive or inactive during the algorithm. Active nodes might convince their
neighbors at the end and passive nodes might receive a new candidate, but it
can be necessary to turn nodes inactive to let them act as local separators.

After the first procedure, campaign longest id, exactly those nodes v with
the longest idin in their 2-neighborhood are still active. If a node v is not active,

2 Connor MacLeod, 1985. In Highlander



6 Klaus-Tycho Foerster, Jochen Seidel, Roger Wattenhofer

but has an active neighbor w, then v turns passive, since it is interested in the
campaigning-identifier of w. Nodes not fulfilling either of these requirements turn
inactive. Furthermore, to separate clusters of active nodes with campaigning-
identifiers of different length, the procedure creates buffers of inactive nodes
between them. Thus, inside a cluster, all active campaigning-identifiers are of
equal length, allowing each cluster to agree on a common starting time for the
following procedure.

The second procedure campaign highest id mimics the first procedure, but
now for the highest instead of the longest identifier. After campaign highest id,
exactly those nodes v with the highest idin in their 2-neighborhood remain active.
The buffer of inactive nodes is extended to separate active nodes with different
campaigning-identifiers. Hence, in the third procedure campaign transmit id,
all still active nodes can convince their passive neighbors unhindered.

3.2 Details of the Algorithm

In this subsection, we describe the algorithm Campaigning and each of its three
procedures for a node v ∈ V . We describe the algorithm from the perspective of
a single node v. The input campaigning-identifier for v is stored in idin, and the
length of idin in bits is stored in the variable lin. Furthermore, v initializes the
variables role← active, lout ← lin, and idout ← idin. Then, the node v executes
campaign longest id, campaign highest id, campaign transmit id, and the
output of node v is idout. Should a node become inactive at any time, i.e.,
if role = inactive, then the algorithm immediately terminates and the value
currently stored in idout is returned as v’s output.

Each procedure consist of phases, which are divided into three rounds each.
For ease of notation, we call the rounds in one phase slots, i.e., slot 0, slot 1,
and slot 2. Conceptually, the first two slots 0 and 1 of each phase are used to
transmit data, while slot 2 will exclusively be used for notification signals from
active nodes. Recall that v hears a beep only if some node u ∈ N (v), u 6= v
transmits a beep, i.e., v does not hear beeps of itself.

campaign longest id. The length of campaign longest id may vary; at the
end of the procedure, node v stores the number of elapsed phases in lout if at
the end of the procedure v is active or passive. Node v starts by beeping in slots
0 and 1 for the first lin − 1 phases. Then, v listens in slot 0, and beeps received
in slot 0 are relayed in slot 1. If v relays at least one beep, it turns passive.
Should a beep be heard in the next slot 2, the node v turns inactive. Otherwise,
already in phase lin there was no beep to relay. In that case, if a (relayed) beep
is received in slot 1, then v turns inactive. Else v beeps in slot 2 of that phase
and finishes the procedure as active. Should after phase lin a beep be heard in
slot 1, the passive relaying node v turns inactive as well. Should there be a phase
where the passive node v hears no beeps in slot 0,1, it either i) turns inactive
if no beep is heard in slot 2, or ii) finishes the procedure as passive if a beep is
heard in slot 2.



Deterministic Leader Election in Multi-Hop Beeping Networks 7

campaign highest id. This procedure consists of lout phases, and we denote
the current phase of node v by p.

If v is passive at the beginning of phase p, then beeps heard in slot 0 are
relayed in slot 1. Should no beep be heard in slot 0, but a beep is heard in slot
1, v turns inactive. Also, if no beep is heard in slot 2 of phase lout(v), then v
turns inactive.

We denote by the positions 1, . . . , lin the bits of idin, starting from the most
significant bit. If v is active at the beginning of phase p, then v beeps in slots 0
and 1 if position p in idin is a 1 bit. Else, when a beep is heard in slot 0 or 1,
v turns passive. If the current phase is lout and v is still active, then v beeps in
slot 2.

campaign transmit id. Much like campaign highest id, this procedure con-
sists of lout phases. An active node v uses the lout phases to transmit the lout
bits of idin, whereas passive nodes store the lout received bits in idout.

3.3 Convincing via Campaigning

We can now state some important properties of the algorithm Campaigning,
which will be used in the next sections to prove our main result. For formal
proofs please refer to the full version of this paper; here we restrict ourselves
to presenting the necessary key ideas. We begin with the following correctness
lemma, which essentially states that nodes may only adopt identifiers from their
neighborhood, i.e., identifiers spread only locally and no new identifiers are cre-
ated.

Lemma 1. Let v be a node that just finished algorithm Campaigning(idin(v)).
Then idout(v) ≤ maxw∈N (v,1) idin(w) and ∃x ∈ N (v, 1) s.t. idout(v) = idin(x).

The proof to Lemma 1 consists of a careful case distinction based on the
node’s role in the Campaigning algorithm. In Theorem 2, we show that the
influence of a potential leader will spread one hop per round. This is crucial for
the whole leader election process, since it will be extended later on to show that
D executions of the algorithm suffice to convince all nodes of the leader.

Theorem 2. Execute algorithm Campaigning(idin(v)) for ∀v ∈ V . Let v′ ∈ V
be a node with idin(v′) = maxw∈N (v′,3) idin(w). Then for all nodes u ∈ N (v′, 1)
holds: idout(u) = idin(v′).

The above theorem is established by observing that a node v with a locally
highest campaigning-identifier (i.e., the highest idin in N (v, 3)) remains active,
its neighbors do not turn inactive, and thus the campaigning-identifier is prop-
agated one hop. Finally, Theorem 3 states that the run time of Campaigning

depends only on the largest campaigning-identifier length in the 1-neighborhood.

Theorem 3. Execute algorithm Campaigning(idin(v)) for ∀v ∈ V . The run
time for each node v is O(maxw∈N (v,1) lin(w)) rounds.



8 Klaus-Tycho Foerster, Jochen Seidel, Roger Wattenhofer

This is true since the maximum run time of a node is completely determined
after campaign longest id has finished. Recall that all identifiers are at most
in O(nγ), and hence the run time is bounded by O(log n) rounds. Since Lemma
1 ensures that no new identifiers are created in the network, we obtain the
following corollary.

Corollary 4. Let maxv∈V lin(v) ∈ O(log n). It holds that the run time of algo-
rithm Campaigning(idin(v)) is O(log n) rounds for ∀v ∈ V .

4 Convincing Your Network

We would like to apply the campaigning method presented in the previous sec-
tion to propagate the highest ID further. In other words, we need to execute
Campaigning multiple times in succession. This task would be easy if there was
some kind of global synchronization in order to guarantee that all nodes can start
the next invocation of the campaigning algorithm at the same time. However,
since the node labels have different lengths, so does each campaign. To overcome
this obstacle, we design a generic approach to sequentially execute arbitrarily
many algorithms in the beeping model. The key ingredient in our approach is
the following balanced counter technique.

4.1 Balanced Counters

We present a method that enables the network to manage a balanced counter for
every node u. At every node u, our balanced counter technique stores an integer
value denoted by counter. To manipulate counter the two methods increment

and reset, which instruct the counter to increment its value by one or reset it
to zero, respectively, are provided. Our goal is to satisfy the following balancing
property : For any two neighboring nodes u, v participating, i.e., not currently
resetting their counters, the counter values of u and v shall differ by at most 1.

Note that transmitting the whole counter value in every round is not feasible
due to the limited nature of the communication means the nodes have at their
disposal. However, it turns out that transmitting the counter value modulo 3
suffices to ensure the balancing property. The transmission technique we use
requires three reserved rounds, and allows a node to determine whether their
neighbors have a lower counter value than themselves. The idea is now that
nodes refrain from incrementing the counter as long as there are neighbors that
are still behind.

We describe the balanced counter technique from the perspective of some
node u using a state machine. Each node may be in one of the following states:
Count, Reset-Notify, or Reset-Wait, and we denote u’s current state by
state. If state = Count, then u is considered to be a participating node, and
either increment or reset may be invoked at u. In the other two states those
operations are not available to u. The only allowed state transitions for node u
are



Deterministic Leader Election in Multi-Hop Beeping Networks 9

1. Count → Reset-Notify if no node v ∈ N (u) is in Reset-Wait,
2. Reset-Notify → Reset-Wait if no node v ∈ N(u) is in Count, and
3. Reset-Wait → Count if no node v ∈ N(u) is in Reset-Notify.
Communication of the balanced counter technique is subdivided into phases in-
dexed by the positive integers. Each individual phase consists of 6 rounds; to
avoid confusion we use the term slot to refer to the individual rounds within
a phase. The role of the first three slots (0, 1, 2) is to transmit the counter in-
crements, whereas the last three slots (3, 4, 5) are used to transmit the node’s
current state. We now give a detailed description of the balanced counter tech-
nique; the full version also includes a pseudo-code description.

Initially, the state of u is Count, and counter = 0. In each phase, the
operation at node u is as follows:
1. If state = Count, then u beeps in slot counter (mod 3) and in slot 3;
2. If state = Reset-Notify, then u beeps in slot 4; and
3. If state = Reset-Wait, then u beeps in slot counter (mod 3) and in slot 5.
Node u listens in all slots in which it does not beep.

Increment. The purpose of this operation is to increment counter by one with-
out violating the balancing property. When increment is invoked at node u,
then u waits for the first phase in which no beep is received in slot counter − 1
(mod 3) (note that u never transmits in slot counter − 1 (mod 3)). Node v in-
crements counter by 1 at the end of that phase and returns from the increment

operation.

Reset. The purpose of this operation is to reset node u’s value of counter
to zero in accord with neighboring nodes v ∈ N(u), while allowing nodes v
to proceed participating before invoking reset themselves. Specifically, when
reset is invoked at node u, then u successively transitions (1) from Count
to Reset-Notify, thereby setting counter ← 0, (2) from Reset-Notify to
Reset-Wait, and eventually (3) from Reset-Wait back to Count. In this
process u respects the aforementioned restrictions for state transitions, utilizing
the transmissions in slots 3 to 5. In particular, the aforementioned transition (i),
1 ≤ i ≤ 3, is consummated in the first phase in which no beep is received in slot
2 + i.

An inductive argument can be used to establish the following lemma; a formal
proof is presented in the full version of this paper.

Lemma 5. The balanced counter technique satisfies the balancing property.

4.2 Balanced Executions

Consider two algorithms A and B that shall be simulated sequentially. To achieve
our goal, we intend to simulate the execution of A and B in the network. In A’s
simulation, the balanced counter is used as a round counter. Since the round
counter satisfies the balancing property, it is ensured that the simulations per-
formed by neighboring nodes progress at the same rate. When at some node u



10 Klaus-Tycho Foerster, Jochen Seidel, Roger Wattenhofer

the simulation of A terminates, the round counter is reset by u. Node u then
waits until its round counter returns to the Count state and thereupon starts
the simulation of B.

One needs to ensure that when round r of A (or B) is simulated at node u,
then u can determine whether one of its neighbors transmitted a beep in round
r − 1 of the simulation. To that end, we extend each phase of the counter tech-
nique by three additional slots and reserve the first 6 slots (0–5) for the balanced
counter technique. Consider a phase p and a node u currently simulating algo-
rithm A, and denote by r the counter value for node u at the beginning of phase
p. The three new slots (6–8) are used to transmit and receive the beeps emitted
during the simulation as follows.

Assuming that A did not terminate in round r − 1, the goal in phase p is
to simulate A’s round r. Node u simulates round r of algorithm A utilizing
slot r (mod 3) + 6 to replace A’s access to the communication channel, where
beeps received in slot (r− 1 (mod 3) + 6) replace the beeps received by v in the
simulation if node u listened in round r−1 of A. Moreover, in slot r−1 (mod 3),
node u re-transmits a beep if u beeped in the last simulated round r − 1 under
A. If u incremented the counter to the value r in the current phase, i.e., the
counter progressed from r − 1 to r, then v invokes increment again. Note that
increment may delay incrementing r for several phases; in that case, the same
round r of A is simulated in phase p multiple times, and if the beeps received in
slot r − 1 change, then so does the simulated execution of A’s round r.

Otherwise, if A terminated its execution in the previous round r − 1, the
goal is to safely start the simulation of the next algorithm B at node u. To that
end, node u invokes the reset operation. However, the simulated execution of
the next algorithm B (possibly using u’s output of A as input) only starts once
u continues participating in the balanced counter, i.e., when state = Count.

In the full paper we explain how to exploit the balanced counter property to
obtain the following correctness lemma. It essentially states that the balanced
execution technique behaves as if global synchronization was used to start the
algorithms one after the other.

Lemma 6. Let A = (A1, . . . ,Ak) be a finite sequence of algorithms. Denote, for
every v ∈ V , by ô1(v) the output produced at v by A1 when executed on G. For
i > 1 and for every v ∈ V , denote by ôi(v) the output produced at v by Ai when
executed on G, where the input to every u ∈ V for Ai is specified as ôi−1(u).

It holds that for every node v, the output o(v) produced at v when using the
balanced execution technique for A is o(v) = ôk(v).

4.3 Leader Election through Campaigning

We now have the tools available to design a non-quiescent leader election al-
gorithm. Utilizing the balanced execution technique, every node executes the
Campaigning algorithm sequentially, again and again. For every node u, the
input to the first invocation of Campaigning is id(u), and the input to every
following invocation of Campaigning is the output of the previous one. In the



Deterministic Leader Election in Multi-Hop Beeping Networks 11

following we refer to this basic protocol as the Restless-LE (for leader election)
algorithm. It is immediate from the design of Restless-LE, that the network
will never reach a quiescent state — for instance, the balanced counter technique
never ceases to transmit. The following lemma states that Restless-LE obtains
the desired result after at most D invocations of Campaigning.

Lemma 7. If the network G executes Restless-LE, then for every node u ∈ V ,
the output produced at u by the D-th invocation of Campaigning is maxv∈V id(v).

Utilizing the balanced execution technique, Lemma 7 can be obtained by
inductively applying Lemma 1 and Theorem 2 for D times. Simulating D invo-
cations of Campaigning takes O(D log n) rounds, as is stated in Theorem 8. The
proofs to both Lemma 7 and Theorem 8 appear in the full version.

Theorem 8. If the network G executes Restless-LE, then for every node u ∈
V , the D-th invocation of Campaigning terminates after O(D log n) rounds.

Note that the network never reaches quiescence since the balanced counter
technique continues to beep even after the D-th invocation of Campaigning has
terminated. Moreover, without knowledge of D, node u has no means to decide
when sufficiently many campaigns have been run.

5 Terminating & Achieving Quiescence

It seems that in the previous section we robbed Peter to pay Paul: We obtained
Restless-LE which finds a leader in time O(D log n), but now our algorithm
does not achieve quiescence, nor does a node know when to terminate. These
two flaws could be considered a major drawback if one wishes to use the leader
election algorithm as a foundation for another algorithm, since it is unclear when
the latter can be started. To overcome this obstacle we implement an overlay
network protocol that executes concurrently to the Campaigning invocations.
The overlay network we establish on top of the original communication graph
resembles the layers of an onion with the elected leader at its core. Utilizing
the overlay network, we then describe how candidates detect whether the leader
election process has terminated. Causing all non-elected nodes to terminate is
now achieved by sending a broadcast message.

In order to form the overlay network, each node u keeps track of one addi-
tional variable depth taking values from the set {0, 1, 2}, initially set to 0. We
say that a path p = (u1, . . . , uk), (ui−1, ui) ∈ E for 2 ≤ i ≤ k, is a downward
overlay path if for all i ≥ 2 it holds that depth(ui) = depth(ui−1) + 1 (mod 3),
and we denote the length k of a path p by length(p). Conversely, we say that p is
an upward overlay path if p reversed is a downward overlay path. One can think
of downward overlay paths as leading away from the network’s core, whereas
upward overlay paths lead towards it. Note that initially, all overlay paths con-
sist of only a single node. The general idea is to relay beeps along upward and
downward overlay paths. Before extending the Restless-LE algorithm to utilize



12 Klaus-Tycho Foerster, Jochen Seidel, Roger Wattenhofer

the overlay network, thus obtaining the quiescent terminating leader election
algorithm Quiescent-LE in Section 5.1, we describe the operation of our overlay
network technique in more detail. Note that in the full version of this paper we
include a pseudo-code representation of the overlay network technique.

Every round r of the leader election algorithm is replaced by phases consisting
of 10 slots, one single slot and three triplets of slots. The single slot is reserved to
execute the non-terminating leader election algorithm we obtained in Section 4.3.
For clarity, we refer to the first slot triplet as control slots, to the second triplet
as up channel slots, and to the last triplet as down channel slots. The control
slots, up channel slots, and down channel slots are numbered from 0 to 2 (e.g.,
up channel slot 2 is the last slot in the second triplet of slots in a phase). While
the role of the control slots is to establish the overlay network, the up and down
channel slots are used to transmit beeps to nodes with smaller and higher depth,
respectively.

More specifically, in every phase p, node u listens in the up channel depth−1
(mod 3) and in the down channel depth+ 1 (mod 3). If a beep is received in one
of those slots, then in the following phase p+ 1, u beeps in the up channel depth
or in the down channel depth, correspondingly. The overlay network further
provides the two operations beep depth and join, which are implemented as
follows. When beep depth is invoked by node u, then u transmits a beep in
control slot depth. The corresponding join operation causes u to listen in the
three control slots; node u then sets depth← i+ 1 (mod 3), where i denotes the
index of the first control slot in which a beep was received, thereby joining the
overlay network of one of its neighbors that invoked beep depth.

5.1 Quiescent Leader Election

In this section, we describe the Quiescent-LE algorithm that utilizes the overlay
network technique in conjunction with the Restless-LE algorithm. Formation
of the overlay network is tightly coupled with Restless-LE and the invocations
of Campaigning therein. Namely, whenever an invocation of Campaigning at
node u returns a new ID x, node u joins the overlay network of a neighbor that
transmitted x to u. Nodes that are currently being convinced of a new leader
emit a signal into the upward channel of neighboring nodes, thus ensuring that
no candidate terminates unless a consensus on the leader’s ID has been reached.

In particular, for a node u in phase p, denote by σ the state in which the
last Campaigning invocation that terminated for node u was upon termination.
Denote further by last role, last in, and last out the values of the corresponding
variables role, idin and idout in σ. In phase p a node u is called a candidate if
last in = id(u), and we say that node c is the candidate of u if last in = id(c).
The idea is now to utilize the overlay network so that nodes may join the overlay
network of their corresponding candidate. This is accomplished by setting the
depth variable accordingly whenever the value of last out changes.

In Quiescent-LE, the operation of node u is as follows (please refer to the
full version for a pseudo-code description). If last role = active, then u invokes
beep depth, thus allowing nodes v ∈ N (u) to set their depth. Correspondingly,



Deterministic Leader Election in Multi-Hop Beeping Networks 13

u invokes join if its candidate has changed (i.e., if last role = passive), in order
to assign a new value to its depth variable. In any case, if last role 6= active, then
node u beeps in all three up channel slots in contrast to the normal up channel
operation. A candidate that has not received a beep through the up channel for
18 consecutive rounds emits a signal in the down channel, thus instructing nodes
to terminate.

Theorem 9. The uniform algorithm Quiescent-LE terminates after O(D log n)
rounds at every node. Every node returns the same output maxv∈V id(v).

The proof to our main result, namely, the above Theorem 9, is based on the
concept of coalitions that form around potential leader nodes. All nodes inside a
coalition share the same potential leader and form an onion layer network with
the potential leader at its core. Eventually, the coalition Z corresponding to the
highest identifier z overrules every other. In particular, coalition Z extends its
borders by one step in every Campaigning invocation. This is crucial in order
to ensure proper formation of the onion layer network, which in turn guarantees
that the leader node (with identifier z) can safely issue the terminating signal.
We refer to the full version of this paper for an extensive proof.

6 Synchronized Wake-Up Protocol

Note that one may also study a variant of the beeping model (see, e.g., [11]) in
which only a subset S ⊆ V of the nodes wakes up in round 0. Nodes in V \ S
are initially asleep, and wake up only if they receive a beep from one of their
neighbors. In particular, such a node is no longer considered asleep. We briefly
discuss how our algorithm can be extended to include a wake-up protocol.

Every original slot in a phase of Quiescent-LE is replaced by two slots, where
the first slot takes the role of the corresponding original slot, and in the second
slot a node is always silent. Additionally, the phase is preceded by another two
slots, referred to as wake-up slots. Consider an asleep node u. As soon as u
receives a beep, it enters an intermediate snooze state, and if u receives a beep
in the next round as well, then it turns awake. Otherwise, snoozing nodes turn
awake after receiving two beeps consecutively. A node that just turned awake
enters the protocol after the wake-up slots, thus aligning its execution with awake
neighbors. That is, the first round in which u participates corresponds to the
first original slot of Quiescent-LE. Note that in particular, due to the balanced
execution technique, node u postpones the progress of awake neighboring nodes.
Lastly, a node u that is awake beeps in both wake-up slots whenever u starts a
phase of Quiescent-LE that coincides with the beginning of a balanced execution
phase, and remains silent in the wake-up slots otherwise.

7 Conclusion

We described a deterministic uniform leader election algorithm in the beeping
model that achieves quiescence after O(D log n) rounds. There are three main
ingredients to our algorithm:



14 Klaus-Tycho Foerster, Jochen Seidel, Roger Wattenhofer

1. A Campaigning algorithm that propagates the locally highest identifier one
hop per invocation.

2. A technique to sequentially execute arbitrarily many algorithms in the beep-
ing model, based on a simple balanced counter approach.

3. An overlay network, based on the onion layer principle.

Our algorithm is obtained by using the sequential execution technique (2.)
to execute the Campaigning method (1.) multiple times, one after the other.
In its first invocation, the algorithm essentially creates a 2-hop independent set
containing at least one node. The independent nodes are potential leaders and
transmit their identifier to their neighbors. In subsequent invocations, potential
leaders correspond to clusters of nodes with the same campaigning-identifier.
When clusters touch, the cluster C having the larger campaigning-identifier wins,
and the neighboring clusters shrink as bordering nodes join C. This yields a non-
quiescent uniform algorithm Restless-LE for leader election, where the leader
is not informed about her successful election.

If the diameter D was known to all nodes, then termination could be achieved
by stopping after the Dth invocation of Campaigning. However, we want our
algorithm to be uniform. We create an onion layer overlay network (3.) in order
to achieve uniformity and quiescence. Potential leaders form the core of an onion,
and nodes in a cluster are layered according to their distance to the core. Since
the cluster of the eventual leader grows in each step, eventually all nodes will be
part of a single cluster. The onion layer principle can now be used to establish a
communication channel from outer layers towards the core and vice versa. When
the cluster stops growing, the leader is informed about her successful election,
in turn allowing her to issue a termination signal to all nodes. Lastly, we explain
how the algorithm can be extended to handle the synchronous wake-up situation
described in [11].

References

1. Dana Angluin. Local and global properties in networks of processors (extended
abstract). In STOC, pages 82–93. 1980.

2. Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the time-complexity of
broadcast in multi-hop radio networks: An exponential gap between determinism
and randomization. J. Comput. Syst. Sci., 45 (1): pages 104–126, 1992.

3. John Capetanakis. Tree algorithms for packet broadcast channels. IEEE Transac-
tions on Information Theory, 25 (5): pages 505–515, 1979.

4. Bogdan S. Chlebus, Dariusz R. Kowalski, and Andrzej Pelc. Electing a leader in
multi-hop radio networks. In OPODIS, pages 106–120. 2012.

5. Marek Chrobak, Leszek Gasieniec, and Dariusz R. Kowalski. The wake-up problem
in multihop radio networks. SIAM J. Comput., 36 (5): pages 1453–1471, 2007.

6. Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Distributed broad-
cast in radio networks of unknown topology. Theor. Comput. Sci., 302 (1-3): pages
337–364, 2003.

7. Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In
DISC, pages 148–162. 2010.



Deterministic Leader Election in Multi-Hop Beeping Networks 15

8. Roland Flury and Roger Wattenhofer. Slotted programming for sensor networks.
In IPSN, pages 24–34. 2010.

9. Leszek Gasieniec, Andrzej Pelc, and David Peleg. The wakeup problem in syn-
chronous broadcast systems. SIAM J. Discrete Math., 14 (2): pages 207–222,
2001.

10. Mohsen Ghaffari and Bernhard Haeupler. Near optimal leader election in multi-hop
radio networks. In SODA, pages 748–766. 2013.

11. Mohsen Ghaffari and Bernhard Haeupler. Near optimal leader election in multi-hop
radio networks. CoRR, abs/1210.8439v2, April 2014.

12. Albert G. Greenberg and Schmuel Winograd. A lower bound on the time needed
in the worst case to resolve conflicts deterministically in multiple access channels.
J. ACM, 32 (3): pages 589–596, 1985.

13. Jeremiah F. Hayes. An adaptive technique for local distribution. Communications,
IEEE Transactions on, 26 (8): pages 1178–1186, 1978.

14. Tomasz Jurdzinski and Grzegorz Stachowiak. Probabilistic algorithms for the
wake-up problem in single-hop radio networks. Theory Comput. Syst., 38 (3):
pages 347–367, 2005.

15. Dariusz R. Kowalski and Andrzej Pelc. Leader election in ad hoc radio networks:
A keen ear helps. Journal of Computer and System Sciences, 79 (7): pages 1164 –
1180, 2013.

16. Eyal Kushilevitz and Yishay Mansour. An Ω(D log(N/D)) lower bound for broad-
cast in radio networks. SIAM J. Comput., 27 (3): pages 702–712, 1998.

17. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
18. Andrzej Pelc. Activating anonymous ad hoc radio networks. Distributed Comput-

ing, 19 (5-6): pages 361–371, 2007.
19. Boris S. Tsybakov and V.A. Mikhailov. Free synchronous packet access in a broad-

cast channel with feedback. Probl Inf Transm, 14 (4): pages 259–280, 1978.
20. Dan E. Willard. Log-logarithmic selection resolution protocols in a multiple access

channel. SIAM J. Comput., 15 (2): pages 468–477, 1986.


	Lecture Notes in Computer Science

