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Abstract. In this paper we propose a new routing paradigm, called pseudo-
geometric routing. In pseudo-geometric routing, each node u of a network of
computing elements is assigned a pseudo coordinate composed of the graph (hop)
distances from u to a set of designated nodes (the anchors) in the network. On
theses pseudo coordinates we employ greedy geometric routing. Almost as a side
effect, pseudo-geometric routing is not restricted to planar unit disk graph net-
works anymore, but succeeds on general networks.

1 Introduction

With the advent of ad hoc, sensor, mesh or peer-to-peer systems, networking research
has recently received a second wind of attention. In the center of interest is the routing
problem. Contrary to established networks such as the Internet, these new networks ask
for a novel generation of routing protocols. First, ad hoc or sensor networks run on plain
and feeble hardware that does not allow nodes to store large routing tables as needed by
classic routing algorithms such as distance-vector or link-state routing. Second, peer-to-
peer or ad hoc networks are highly dynamic – the topology of the network is changing
constantly, at much higher rates than in conventional networks such as the Internet.
Consequently, this leads to an immense exchange of control messages in classic routing
protocols.

In order to tackle the routing problem for ad hoc/sensor/mesh/peer-to-peer net-
works, the research community has proposed an array of innovative routing protocols
and paradigms. Originated from multihop radio networks, geometric routing is a promi-
nent representative, combining small memory overhead with few updates per topology
change. In geometric routing the nodes do not have routing tables at all, instead it is
assumed that the nodes have coordinates in the Euclidean plane.

The early proposals of geometric routing—suggested twenty years ago by Takagi
and Kleinrock [25]—were of purely greedy nature: Each node knows its own coordi-
nate, as well as the coordinates of its neighbors. When receiving a message containing
the coordinate of the destination, a node forwards the message to its “best” neighbor –
the neighbor node geometrically closest to the destination.

Yet, already in simple configurations greedy geo-routing can fail if the message
reaches a local minimum with respect to the distance to the destination, that is a node
without any “better” neighbors. This deadlock, however, can be resolved by using more
elaborate geo-routing protocols (see Section 2). In this paper we advocate using the
original greedy geo-routing, however, with a higher-dimensional geometric space.



Another problem is the availability of position information (coordinates) which is
needed to run a geo-routing algorithm. Clearly, one possible technical solution is to
equip each node with a Global Positioning System (GPS) receiver. However, in com-
parison to a sensor node, a GPS receiver is clumsy, expensive, and energy-inefficient.
Moreover, GPS reception might be obstructed by climatic conditions; if nodes are de-
ployed indoors, there is no reception at all.

As a GPS-alternative, researchers proposed to compute so-called virtual coordi-
nates merely from connectivity or distance information and employ geometric routing
schemes on those coordinates. However, the apparent computational complexity of vir-
tual coordinates [20, 18] discourages from using them in real systems.

In this paper we advocate a paradigm shift. Instead of trying to solve the tough
virtual coordinates problem and then use advanced geo-routing techniques, we go back
to the roots and use greedy geometric routing on down-to-earth virtual coordinates.

In particular, we propose that the virtual (or pseudo) coordinate of a node u is a
vector, composed by the graph (hop) distances from u to a set of designated nodes (the
anchors) in the network. Almost as a side effect, pseudo-geometric routing is not re-
stricted to planar unit disk graph networks anymore, but succeeds on general networks.
We believe that the coordinate of a node will be relatively stable even if the network
topology changes, hence making our routing scheme applicable for highly dynamic
networks.

In order to gain a deeper insight into this new routing paradigm and to explore its
algorithmic foundations and limits, we assess its potential by investigating various basic
network topologies.

After giving an overview of related work in the following section, we state the model
used in this paper in Section 3. In Sections 4 – 9 we analyze the properties of our routing
paradigm for different network topologies, namely rings, trees, grids, unit disk graphs,
butterfly networks, and hypercubes. Section 10 concludes on the paper.

2 Related Work

There are a hand full of routing protocols which are similar in spirit. We discuss selected
protocols in this section.

The link-reversal paradigm [11] improves significantly on the standard distance-
vector routing protocol3 by not updating the distances with each topology change. Re-
cently, the performance of the link-reversal paradigm was analyzed [4]. Besides being
more apt than distance-vector routing to be applicable in highly dynamic networks, the
link-reversal protocol also requires less memory.

Speaking of memory-efficiency: In classic large scale communication networks a
dominant problem is to develop compact routing schemes which feature low memory
overhead per node and still produce efficient routes between source and destination.
The first routing scheme which addresses the efficiency-memory tradeoff was proposed
in [16], where the idea of hierarchically clustering a network into levels and using the
resulting structure for routing was introduced.

3 In distance-vector, each node stores the distance to each destination, and which link to follow
– a derivative of distance-vector is deployed in the Internet BGP protocol.



Subsequently, the trade-off between memory space and stretch factor was theo-
retically analyzed [21, 14] and a plethora of compact routing schemes was proposed
[8, 5, 26, 2]. For comprehensive surveys on compact routing see [12, 13, 15].

An important branch of compact routing, so called interval routing, is based on
the idea of grouping nodes in cyclic intervals and was first suggested in [23] for tree
networks. Later on this work was extended to other network topologies [27, 9, 7]. It is
worth noting that an interval routing scheme, once computed for a graph, can be used
to perform other tasks than routing. [10] proposed a Θ(n) broadcast algorithm that uses
only interval routing labels.

The best compact routing schemes provide amazing memory-stretch ratios. How-
ever, they are hardly applicable in dynamic networks since all routing tables have to be
computed from scratch if the topology of the network changes.

A well-studied routing paradigm for radio networks is geometric (a.k.a. geographic,
location-based, position-based, or simply geo-routing) routing. The first proposals were
of purely greedy nature. As pointed out in the introduction, already in simple configura-
tions greedy geo-routing can fail if a message reaches a local minimum. This deadlock
problem, however, was resolved by the employment of face routing, which explores the
boundaries of faces of the planarized network graph [17]. In recent years, geo-routing
has experienced several improvements. The routing schemes GFG [3] and GOAFR+
[19] advocate a combination of greedy and face routing. Whereas GFG does not give
competitive worst-case guarantees, GOAFR+ is a routing algorithm which is efficient
for average-case networks as well as asymptotically worst-case optimal. Recently, the
locality aware location service LLS [1] proposes a solution how the coordinates of mo-
bile destinations can be learned efficiently using a peer-to-peer-like scheme.

Unfortunately, it is not always feasible to assume that each node in the network
knows its position. As an alternative, researchers proposed to compute so-called virtual
coordinates, coordinates computed merely from connectivity or distance information,
and employ geo-routing schemes on top of these coordinates. In [22] a greedy routing
scheme is employed on the virtual coordinates which are obtained by a spring-based
algorithm. By solving a convex linear program the coordinates of the network nodes
are estimated in [6], whereas the heuristic in [24] is based on multidimensional scaling.

Apart from these heuristics there is little work on virtual coordinates: In [20] the
authors present an approximation algorithm for the virtual coordinates problem, with
polylogarithmic approximation ratio only. In a lower bound paper [18] it is shown that
virtual coordinates cannot be approximated arbitrarily well. These two results dampen
our hopes that using geo-routing on virtual coordinates in real systems is practical.

Instead of embedding the nodes in the two dimensional Euclidean space, in this pa-
per we propose to embed the nodes in a sufficiently high dimensional pseudo geometric
space and employ a greedy geo-routing scheme on top.

3 Model

Let a network on n nodes be given, where k nodes a1, a2, . . . , ak are designated anchors
and there exists a unique order on the anchors with a1 ≺ a2 ≺ . . . ≺ ak. Each node
u in the networks knows the underlying network topology and is furthermore able to



determine its graph (hop) distance di to each one of the k anchors ai. The (pseudo-)
coordinate of node u is then defined to be (d1, . . . , dk). Thus, the network is embedded
in a pseudo k-dimensional space. Each node knows in addition to its own coordinate
the coordinates of all its direct neighbors.

In pseudo-geometric routing algorithms when receiving a message containing the
(pseudo) coordinate of the destination, a node forwards the message to its “best” neigh-
bor – the neighbor node geometrically closest (in the pseudo geometric space) to the
destination. In the following we say that the pseudo-geometric routing problem can
be solved if there is a pseudo-geometric routing algorithm which guarantees message
delivery.

In general, a routing algorithm may have two basic problems. The first and foremost
problem, we henceforth also call naming problem, is that all nodes must have unique
identifiers, otherwise the destination is not identifiable in general. Once the naming
problem is solved, the algorithm furthermore has to guarantee that any destination must
finally be reached from any source –the routing problem.

In the following, we exemplarily demonstrate at the showcase where the graph is a
line which properties of the pseudo-geometric routing problem we analyze, why these
properties are important from a theoretical and practical point of view and how the next
sections are structured. In general, we first concentrate on the naming problem before
we finally give a pseudo-geometric routing scheme.

The first property we explore is the minimal number of anchors we need to solve
the naming problem. Theoretically speaking, we give a lower bound on the number of
anchors. From a practical point of view this is a quite natural property. Amongst others,
it gives the minimal amount of storage which is needed per node to solve the naming
problem.

Example: If a node a with degree one on the line is chosen to be an anchor, each
node on the line has a unique coordinate, since each node has a unique distance to a.
This leads to the following lemma.

Lemma 1 (min). Choosing a node on the line with degree one solves the naming prob-
lem.

The second property we are interested in is an upper bound on the number of an-
chors which are needed to solve the naming problem, in the following sense. If we allow
an adversary to choose the anchors arbitrarily, how many anchors must be chosen until
the naming problem is solved? In practice it is often not feasible to deliberately assign
anchors, but anchors are chosen more or less arbitrarily, hence we might come across
this upper bound.

Example: For the line, this upper bound is trivially obtained by observing that for
any two nodes on the line each node has a unique distance vector.

Lemma 2 (any). Two arbitrarily chosen anchors on a line solve the naming problem.

In networks another crucial factor is the degree of locality. Having a local solution
is clearly favorable to having a global solution, where we use local in the sense of the
anchors being in a constant size neighborhood of each other. The advantage of local



solutions lies in the fact that failures and updates can be dealt with locally. Leading to
the third property we look at our example.

Example: Since two arbitrary anchors on the line solve the naming problem, clearly
two incident anchors solve the naming problem.

Lemma 3 (local). Two incident nodes on the line solve the naming problem.

Finally, we give a pseudo-geometric routing scheme. Towards this goal we explicitly
assume that the anchors are chosen in some way and based on this choice of anchors
show how nodes pass a message such that it eventually reaches the destination. For
most of the analyzed topologies we show that the chosen path is actually the shortest
path between source and destination.

Example: Choose one anchor on the line, namely a node with degree one. Based on
its own coordinate and the coordinate of the destination, a node immediately knows to
which neighbor to pass the message such that it reaches the destination on the shortest
path.

Theorem 4. The pseudo-geometric routing problem on the line can be solved (locally)
with one anchor.

Wrapping up, in the following sections we concentrate for each topology on three
important properties related to the naming problem. The first property called min is a
lower bound on the number of anchors we need to solve the naming problem, whereas
any is an upper bound. Local gives a choice of anchors which solves the naming prob-
lem and is local, if such a choice exists. With local we mean that the anchors are within
constant graph distance from each other. We then give a pseudo-geometric routing
scheme which guarantees message delivery.

4 Ring

4.1 Naming

With one anchor a only, there are �(n−1)/2� pairs of nodes with pairwise same distance
to a, that is, they cannot be distinguished. On the other hand, with two anchors a and
b, which are at distance d �= n/2 to each other, or arbitrary three anchors each node has
a unique coordinate. Leading to following lemmas.

Lemma 5 (min, local). If chosen properly, exactly 2 anchors solve the naming problem
in the ring, specifically two incident anchors solve the naming problem.

Lemma 6 (any). 3 arbitrarily chosen anchors solve the naming problem in the ring.

4.2 Routing

Suppose we have two anchors which solve the naming problem in the ring. A node
u can reconstruct the position of the anchors based on its and its neighbors’ coordi-
nates. Furthermore, u knows the position of the destination relative to the anchors and
hence can pass the message to the neighbor which is nearest to the destination. By this
discussion and Lemma 5 the following theorem can be deduced immediately.



Theorem 7. The pseudo-geometric routing problem on the ring can be solved (locally)
with 2 anchors. Furthermore, the chosen route between source and destination is a
shortest path.

5 Grid

5.1 Naming

With one anchor only at least
√

n nodes do have the same coordinate in the grid. On
the other hand, if we choose one anchor a such that it lies in the upper left corner of the
grid and another anchor b which lies in the upper right corner of the grid, all nodes have
different coordinates (see Figure 1(a)).

Lemma 8 (min). If chosen properly, we need exactly 2 anchors in the grid to solve the
naming problem.

a b

(2, 3)

(a) Two An-
chors Solve
the Naming
Problem.

v

u

(b) (
√

n −
1)2 + 1
anchors do
not solve
the naming
problem.

Fig. 1. min and any for the grid.

Lemma 9 (local). It is not possible to solve the naming problem in the grid locally.

Proof. Consider an arbitrary subgraph of the grid with constant diameter, where all
nodes in the subgraph are anchors. Then there are two nodes incident to a corner node
which are not anchors. Those two nodes cannot be distinguished by the anchors. (See
Figure 1(b) for an example.)

Lemma 10 (any). If the anchors are chosen arbitrarily, then at least (
√

n − 1)2 + 2
anchors are needed to solve the naming problem.



Proof. We prove the Lemma by giving an example where (
√

n − 1)2 + 1 anchors are
already chosen, but there are still two nodes which are not distinguishable. Hence, at
least (

√
n − 1)2 + 2 nodes are needed to solve the naming problem. The example is

depicted in Figure 1(b). The white nodes are the anchors which are already chosen,
whereas u, v are the nodes with same coordinate.

5.2 Routing

Given that the anchors a, b are placed as proposed in Lemma 8, a node u can compute
the position of each anchor, based on its coordinate and the coordinate of its neighbors.
It thus knows where the destination lies and hence can pass the message to one of its
neighbors which lies in the quadrant of the destination guaranteeing that the message
always reaches the destination on a shortest path.

Theorem 11. The pseudo-geometric routing problem on the grid can be solved with
two anchors. Furthermore, the chosen route between source and destination is a short-
est path.

6 Tree

6.1 Naming

Before we prove the minimal number of anchors needed to solve the naming problem
in a tree, we define the following helpful term. Given a tree T = (V,E), let the root r
of the tree be an arbitrary node and call the such rooted tree Tr. Consider those nodes in
Tr which have degree at least three and have no descendant with degree at least three.
Formally L(Tr) = {v ∈ V ; deg(v) ≥ 3,maxu∈Tr(v) deg(u) ≤ 2}, where deg(v) is the
degree of a node v and Tr(v) is the subtree of Tr rooted in v. Then the minimal coverage
number mc(T ) of T is defined as mc(T ) = maxr∈V

∑
v∈L(Tr) (deg(v) − 2).

v

S

B

Fig. 2. Minimal coverage number in stair-tree S and complete binary tree B.

To get an intuitive understanding of the minimal coverage number, we depict two
examples in Figure 2.

In the stair-tree S, L(S) = {v} and mc(S) = deg(v) − 2 = 1. Note, that choosing
v and the root as anchors also solves the naming problem.

In the complete binary tree B = (V,E), L(B) = {v ∈ V ;∃l ∈ V, deg(l) =
1, d(v, l) = 1}, that is all nodes which are neighbors of a leaf. Then, mc(B) = |L(B)| ·



(3 − 2) = (n + 1)/4. Again, note that choosing every second leaf as an anchor also
solves the naming problem.

Lemma 12 (min). Let mc(T ) be the minimal coverage number in a tree T = (V,E).
Then, we need at least mc(T ) anchors.

Proof. Each node u ∈ V with degree at least 3 must have at least one anchor in each but
one of its neighbor-subtrees, where we use the term neighbor-subtree for subtrees of T
rooted in neighbor nodes of u. Otherwise, if there are no anchors in more than one of its
neighbor-subtrees, there are two neighbors u1, u2 of u which cannot be distinguished,
since the distance from each anchor to u1, u2 is exactly the distance to u plus one for
both. Hence, u1 and u2 have the same coordinate. Thus, the number of anchors we need
is at least the minimal coverage number. (We have to subtract 2 from the degree of each
node to avoid double counting and have a true lower bound.)

It is worthwhile to observe that the above discussion of Figure 2 shows that the
minimal coverage number is –at least for some trees– (almost) tight.

By the Lemma above and the depicted example (Figure 2) the following lemma is
self-explaining.

Lemma 13 (local). It is not possible to solve the naming problem in a tree locally.

Lemma 14 (any). If the anchors are chosen arbitrarily, we need up to n − 1 nodes to
solve the naming problem.

Proof. If in the star we choose the center as an anchor, we additionally have to choose
n − 2 of the n − 1 siblings in order to distinguish each pair of siblings.

Lemma 15. In a tree it is always sufficient to choose all leaves as anchors.

Proof. Consider two arbitrary nodes u, v in the tree. The nodes lie on a path p con-
necting u, v via their least common ancestor and furthermore connecting u, v to a leaf-
anchor l. A leaf-anchor is a node with degree one on this path p. Hence, by Lemma
1, l can distinguish between all nodes on this path, specifically between u and v. This
shows that any two nodes can be distinguished.

6.2 Routing

Assume now that each leaf is an anchor4. Based on its own coordinate and the coordi-
nate of its neighbors a node u knows for each anchor in which direction it lies. By the
choice of the anchors, the coordinate of the destination t is smaller than u’s coordinate
in at least one position i. Then t must lie in the direction of the corresponding anchor
ai, since in all other directions the distance to ai is increasing. Thus, u passes the mes-
sage to its neighbors which lies in this direction and consequently the message always
reaches the destination on the shortest (and only) path.

Theorem 16. The pseudo-geometric routing problem on the tree can be solved with |L|
anchors, where |L| is the number of leaves in the tree.

4 There are trees, where this choice is near to optimal, like the complete binary tree, but there
are others, like the stair-tree in Figure 2, where choosing all leaves is wasteful.



7 Unit Disk Graph

7.1 Naming

In order to prove a lower bound on the number of anchors needed in the unit disk
graph5 to solve the naming problem, we construct a unit disk graph which experiences
this lower bound.6 Specifically, we construct a unit disk grid tree, that is a unit disk
tree, which is a subgraph of the grid graph. As we have seen in Section 6, trees with a
large number of leaf-siblings (that is leaves which have a common father) have a large
minimum coverage number and thus experience a large lower bound. Hence, we build a
unit disk tree in such a way that the number of leaf-siblings is maximal. We henceforth
show how the graph is constructed, lower bound the number of nodes in graph distance
k from the root and then lower bound the total number of nodes in the whole graph.
Based on those bounds we finally prove that there are Θ(n) sibling-leaves and hence,
by Lemma 12 we need Θ(n) anchors to solve the naming problem.

k

T (k)
u

v

Fig. 3. Recursive construction of unit disk graph.

The unit disk grid tree T (k) is built recursively as depicted in Figure 3. The tree with
depth k consists of four trees with depth (k−3)/2 each, depicted by shaded triangles in
the figure. The root of the new tree is connected through two paths of length (k + 1)/2
to two nodes u, v which are each connected themselves to two of the smaller trees.

Lemma 17. In T (k) there are at least (k+3)2

8 nodes which are at distance k from the

root and (k+3)2

16 which are at distance k − 1 from the root.

Proof. Let L(k) be the number of nodes in distance k from the root. Then

L(k) = 4L((k − 3)/2)

5 A unit disk graph is a graph where there is an edge between two nodes iff their Euclidean
distance is at most one.

6 The complete graph Kn is also a unit disk graph and experiences a lower bound of n − 2, but
from a practical point of view this graph is not interesting since each node can hear each other
node and so a message can just be transmitted with maximal radio strength and is immediately
received by the destination.Thus, the naming problem is not an issue at all.



and L(1) = 2. We now develop this equation recursively, resulting in

L(k) = 4iL(
k − ∑i−1

j=0 3 · 2j

2i
) = 4log((k+3)/4)L(1)

= ((k + 3)/4)2 · 2 = (k + 3)2/8.

Let L′(k) be the number of nodes in distance k − 1. This number can be computed as
above, with the exception that L′(1) = 1. Hence we immediately get

L′(k) = ((k + 3)/4)2 · 1.

Lemma 18. In T (k) there are at most 9 · k2 nodes.

Proof. Let N(k) be the number of nodes in the tree T (k). Then

N(k) < 4N((k − 3)/2) + 2k

and N(1) = 3. As before we develop this equation recursively, and get

N(k) < 4iN(
k − ∑i−1

j=0 3 · 2j

2i
) +

i−1∑

j=0

2 · 4j
k − ∑j−1

p=0 3 · 2p

2j

= 4tN(1) + 2(k(2t − 1) − (4t − 1) + 3(2t − 1)) ≤ 9 · k2,

where we substituted t for log((k + 3)/4) for the sake of readability.

Lemma 19 (min). There are unit disk graphs where we need at least ((
√

n + 9)/12)2

anchors to solve the naming problem.

Proof. By Lemma 17 and the definition of the minimal coverage number in Section
6 the minimal coverage number of the constructed unit disk graph of depth k is (k +
3)2/16. Since by Lemma 18 the graph of depth k has at most 9k2 nodes, we can con-
struct a unit disk graph on n nodes with depth at least

√
n/3. Substituting

√
n/3 for

k we thus obtain a minimal coverage number of at least ((
√

n + 9)/12)2. Following
Lemma 12 this concludes the proof.

The locality-lemma is a direct implication of the lemma above.

Lemma 20 (local). It is not possible to solve the naming problem in a unit disk tree
locally.

Lemma 21 (any). If chosen arbitrarily, we need up to n−1 anchors to solve the naming
problem in unit disk graphs.

Proof. If we choose all nodes in T (
√

n/3) except two sibling-leaves, we still cannot
distinguish between those two siblings. Hence, we have to choose one of them to solve
the naming problem and have in total n − 1 anchors.



7.2 Routing

By the same discussion as in Section 6 the routing problem on the unit disk grid tree
can be solved by choosing all leaves as anchors.

Theorem 22. The pseudo-geometric routing problem on the unit disk grid tree can be
solved with 2 · ((√n+9)/12)2 anchors. Furthermore, the chosen route between source
and destination is the shortest path.

8 Butterfly

Due to the lack of space we omit the proofs for the lemmas in this section and refer the
interested reader to the full paper [28].

8.1 Naming

We say that a node in the butterfly network is in column i if it is in the (i+1)st column
from the left (that is the leftmost column has index 0) and in row j if it is in the jth
row from the top (that is the uppermost row has index 1) (see Figure 4). In a butterfly
network on n nodes we have k rows and (log k + 1) columns, where k(log k + 1) = n,
that is k = cn/ log n, c ≤ 2 . An optimal choice of anchors, as shown in Lemma 23,
is then to select all nodes in column 0 which are in row at most k/2 and all nodes in
column log k which are in odd rows (see Figure 4, where the white nodes are anchors).

1

k

0 log k

Fig. 4. k anchors solve the naming problem.

Lemma 23 (min). In the butterfly network we need k anchors to solve the naming
problem, where k(log k + 1) = n.

Lemma 24 (local). It is not possible to solve the naming problem in the butterfly lo-
cally.

Lemma 25 (any). If chosen arbitrarily, we need n−1 anchors in the butterfly network
to solve the naming problem.

8.2 Routing

Given that the anchors are chosen as described above we obtain following result.

Theorem 26. The pseudo-geometric routing problem on the butterfly network can be
solved with k anchors, where k(log k + 1) = n.



9 Hypercube

9.1 Naming

If we subsequently use the term coordinate we mean the classical hypercube coordinate,
with one bit per dimension. For example in a 2-dimensional hypercube the nodes have
classical coordinates (0, 0), (0, 1), (1, 0) and (1, 1). If we refer to the (pseudo) coordi-
nate as obtained by the anchors, we use the term distance vector. Furthermore, with d
we refer to the dimension of the hypercube, where d = log n.

Lemma 27 (min). To solve the naming problem in a d-dimensional hypercube one
needs at least log n/ log log n anchors.

Proof. Each anchor a is able to subdivide the nodes in at most d classes, since the
distance of a node to a is at most d. Thus, k anchors are able to differentiate between
at most dk nodes. Since we need to differentiate between all nodes it must hold that
dk ≥ n and we immediately get k ≥ log n/ log log n.

Lemma 28 (any). If chosen arbitrarily, we need up to n/4+1 anchors in the hypercube
to solve the naming problem

Proof. The goal is to make the points u = (0, 0, 0, . . . , 0) and v = (1, 1, 0, . . . , 0)
indistinguishable for as many anchors as possible. Towards this goal we choose all
anchors to be of the form (1, 0, 0, . . . , 0) + x and (0, 1, 0, . . . , 0) + x, where x is a d-
dimensional vector with first and second coordinate zero, and the other entries can be
chosen arbitrarily. The distance of each anchor to u and v is thus 1+|x|, where |x| is the
number of ones in the coordinate of x. The number of anchors we have chosen, without
being able to distinguish u, v is 2d−2 = n/4. Hence, to solve the naming problem we
need at least one further anchor and the lemma follows.

We subsequently show how to choose d anchors which solve the naming problem
locally.

Lemma 29. Suppose each node with distance one to the origin is an anchor. Then for
each node u in the hypercube it holds that its distance vector is composed of at most
two different values.

Proof. The coordinate of a node p in the hypercube can be expressed in the coordinates
of the anchors a1, . . . , ad, where ai has a 1 in position i of its coordinate, and zeroes
elsewhere: p = t1 ·a1 + t2 ·a2 + . . .+ td ·ad, where ti ∈ {0, 1}. Let Δi be the distance
of p to ai. Then, Δi = t1 + . . .+ ti−1 +¬ti + ti+1 + . . . td, where ¬0 ≡ 1 and ¬1 ≡ 0.
We claim that out of any three distances between one point p and three anchors, at least
two have to be equal. Without loss of generality (wlog) we consider the distances to the
anchors a1, a2, a3.

Δ1 = ¬t1 + t2 + t3 + t4 + . . . + td

Δ2 = t1 + ¬t2 + t3 + t4 + . . . + td

Δ3 = t1 + t2 + ¬t3 + t4 + . . . + td.



Assume further wlog that Δ1 �= Δ2. Thus, it has to hold that t1 �= t2. We now show that
Δ3 has to be equal to either Δ1 or Δ2. First we assume that Δ3 �= Δ1 and consequently
t1 �= t3. Then, t3 = t2 since ti ∈ {0, 1} and by assumption above t1 �= t2. Therefore,
Δ2 = t1 + ¬t2 + t3 + t4 + . . . + td = Δ3. The same argument holds if Δ3 �= Δ2 and
in general for arbitrary three-tuples of distances and the lemma is proved.

Lemma 30 (local). If each node with distance one to the origin is an anchor, all nodes
in the hypercube can obtain unambiguously their coordinate as a function of their dis-
tance vector.

Proof. The coordinate of node p in the hypercube can be expressed in the coordinates
of the anchors a1, . . . , ad: p = t1 · a1 + t2 · a2 + . . . + td · ad, where ti ∈ {0, 1}.
By Lemma 30 each distance vector is comprised of at most two values x, y, where we
assume wlog that x < y. We show how the coordinate of p is derived by its distance
vector. Start with Δ1 and Δ2. There are two cases, either Δ1 = Δ2 or Δ1 �= Δ2.
In the first case, ¬t1 + t2 + t3 + . . . + td = t1 + ¬t2 + t3 + . . . + td, and hence
¬t1 + t2 = t1 + ¬t2, which means that t1 = t2. If on the other hand Δ1 �= Δ2, we
get ¬t1 + t2 �= t1 + ¬t2. We can distinguish further whether Δ1 < Δ2 or not and get
¬t1 + t2 < t1 + ¬t2. if Δ1 < Δ2 or ¬t1 + t2 > t1 + ¬t2. if Δ1 > Δ2. In the first
case the only feasible solution is t1 = 1, t2 = 0 in the second one t1 = 0, t2 = 1.
The equations above hold for each pair of distances and hence we can deduce that if the
distance vector is comprised of exactly two different values, then mapping the smaller
value to one and the larger value to zero gives the exact coordinate of the node. The
mapping is unambiguous, since there is only one feasible solution to the inequalities.
If on the other hand the distance vector is comprised of exactly one value, we merely
obtain the relation t1 = t2 = . . . = td. Therefore, we basically have two possibilities
of mapping the nodes: Either we map to the origin or to the coordinate (1, 1, . . . , 1).
Since the distance vector of the origin contains only 1s, whereas the distance vector of
the point (1, 1, . . . , 1) contains only ds, we can additionally distinguish between those
two points and map (1, 1, . . . , 1) to (0, 0, . . . , 0) and (d, d, . . . , d) to (1, 1, . . . , 1) and
the lemma is proved.

9.2 Routing

Assume now that each node with distance one to the origin is an anchor as proposed in
Lemma 30. Based on its own, its neighbors’ and the destination’s distance vector each
node u can compute its own, its neighbors’ and the destination’s coordinate. If u passes
the message to the neighbor v with the smallest Hamming distance to the destination’s
coordinate, the message always reaches the destination on a shortest path.

Theorem 31. The pseudo-geometric routing problem on the hypercube can be solved
(locally) with log n anchors. Furthermore, the chosen route between source and desti-
nation is a shortest path.

10 Conclusions

In this paper we proposed a new routing algorithm called pseudo-geometric routing,
and analyzed it for the usual suspects of network topologies. We believe that pseudo-



geometric routing may evolve into a promising new routing paradigm, for highly dy-
namic real world networks with memory constraints.

In the table below we summarize the results of the previous sections. For each topol-
ogy we give the lower and upper bound, indicate by a checkmark whether a local solu-
tion exists and whether the routing scheme finds the shortest path between an arbitrary
source and destination, or only an approximation.

min any local s.p.
Line 1 2 � �
Ring 2 3 � �
Grid 2 (

√
n − 1)2 + 2 − �

Tree mc(T ) n − 1 − �
UDG ((

√
n + 9)/12)2 n − 1 − �

Butterfly n
log n

n − 1 − −
Hypercube log n

log log n
n/4 + 1 � �

There are still a lot of questions open with regard to pseudo-geometric routing, or
routing for dynamic networks in general. Most importantly, we plan to study the “real-
world” behavior of our algorithm. In particular, the lower bound for unit disk graphs
(which are a generally accepted model for all sorts of multihop radio networks) is rather
discouraging. On the other hand, the result for highly regular unit disk graphs such as
the grid, is encouraging. Real sensor networks will be somewhere in-between general
unit disk graphs and a grid. In this context, an in-depth analysis of mobility vs. updates
is also a direction of future research.
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