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Abstract

We study financial networks with debt contracts and credit default swaps between
specific pairs of banks. Given such a financial system, we want to decide which of the
banks are in default, and how much of their liabilities can these defaulting banks pay.
There can easily be multiple different solutions to this problem, leading to a situation of
default ambiguity, and a range of possible solutions to implement for a financial authority.

In this paper, we study the properties of the solution space of such financial systems,
and analyze a wide range of reasonable objective functions for selecting from the set
of solutions. Examples of such objective functions include minimizing the number of
defaulting banks, minimizing the amount of unpaid debt, maximizing the number of
satisfied banks, and many others. We show that for all of these objectives, it is NP-hard
to approximate the optimal solution to an n!~¢ factor for any € > 0, with n denoting the
number of banks. Furthermore, we show that this situation is rather difficult to avoid
from a financial regulator’s perspective: the same hardness results also hold if we apply
strong restrictions on the weights of the debts, the structure of the network, or the amount
of funds that banks must possess. However, if we restrict both the network structure and
the amount of funds simultaneously, then the solution becomes unique, and it can be
found efficiently.

1 Introduction

Financial systems are often called “highly complex”, suggesting that relations and contracts
between different financial institutions such as banks form a networked system that is basically
impossible to understand. In order to model this phenomenon, there is a recent line of work
that aims to describe this complexity in terms of computational complexity.

At the core of understanding financial systems is the so-called clearing problem: given a
system of banks with (conditional or unconditional) debt contracts between specific banks,
we need to decide which of the banks are in default due to these debts, and how much of
their liabilities can these defaulting banks pay. This is a fundamental problem in a financial



system, and an essential task for a financial regulator after a shock, with the 2008 financial
crisis as a recent example.

Earlier results show that the clearing problem is computationally easy if all contracts
between the banks are unconditional debts, or more generally, if the contracts in the network
represent “long” positions; that is, a better outcome for one bank ensures a better (or the
same) outcome for other banks. However, this is not always the case in practice: banks often
have “short” positions on each other, when it is more favorable for a bank if another bank is
in a worse situation. Typical short positions are credit default swaps (CDSs), short-selling
options and other types of derivatives.

This suggests that a realistic analysis of financial systems requires a model that can capture
both long and short positions. However, with both long and short positions in the network,
financial systems exhibit significantly richer behavior: we can easily have situations of default
ambiguity when there are multiple solutions in the system, and none of these solutions is
obviously superior to the others in terms of clearing.

In practice, a clearing authority has to make a choice among these different solutions of
the system, yielding an outcome that is more favorable to some banks and less favorable to
others. In this paper, we focus on such cases of default ambiguity; we study the different
solutions of the system, and various criteria that the authority could apply to evaluate these
solutions and select one of them to implement.

We begin with some fundamental observations about the solution space of financial systems.
We then introduce a wide range of problems that aim to find the best solution in the system
according to a specific objective function. These include finding e.g. the solution with the
smallest number of defaults, the solution which is preferred by the largest number of banks,
the best solution for a specific bank, and many others.

Our first main contribution is negative, showing that all these problems are not only
NP-hard to solve, but also NP-hard to approximate to any n'=¢ factor (for any € > 0). This
shows that even if the clearing authority has a well-defined objective to select among the
solutions, finding a reasonably good solution is still not viable in practice.

We then study the same problem from a financial regulator’s perspective, showing that it
is rather difficult to come up with restrictions on the network to prevent this situation. In
particular, we show that the same hardness results still hold in many restricted variants of
the model: with unit-weight contracts, with severe restrictions on the network structure, and
also if we require banks to own a positive amount of funds.

However, on the positive side, we also show that if we restrict both the network structure
and the funds of banks simultaneously, then the resulting financial networks have a unique
solution, and this solution can be found efficiently.

2 Related Work

The fundamental model of financial systems was introduced by Eisenberg and Noe [9], which
only assumes simple debt contracts between the banks. Following works have also extended
this model by e.g. default costs [22], cross-ownership relations [10, 25] or so-called covered
CDSs [16]. However, these model variants can only describe long positions in a network. This
means that there is always a maximal solution in the system that is simultaneously the best
for all banks, and thus the clearing problem is not particularly interesting in this setting.



In contrast to this, the recent work of Schuldenzucker et al. [23, 24] introduces a model
which also allows CDSs in the network, i.e. conditional debt contracts where the payment
obligation depends on the default of a specific third bank. While a CDS is still a very simple
contract, it already allows us to capture short positions in the network. Moreover, CDSs are
a prominent kind of derivative in real-world financial systems that also played a major role in
the 2008 financial crisis [12].

We use this model of Schuldenzucker et al. as the base model for our findings. With both
debts and CDSs, the clearing problem suddenly becomes significantly more challenging. The
work of [23, 24] mostly focuses on the existence of a solution in this model, and the complexity
of finding an arbitrary solution; we summarize these results in Section 4.

However, in the general case, these financial networks do not have a maximal solution,
and thus an authority has to select from a set of solutions that represent a trade-off between
the interests of different banks. The work of [23, 24] does not study this situation, describing
it as unwanted since it is prone to the lobbying activity of banks in the system. Our work
analyzes the clearing problem in this general case; to our knowledge, the problem has not
been studied from this perspective before.

In general, there are many previous works that study the propagation of shocks in financial
networks, and its dependence on the connectivity of the network [1, 3, 6, 11]. There are also
several results that study the topic from a computational complexity perspective; however,
they mostly assume a simple debt-only model, and focus on more complex questions, such as
sensitivity to shocks or bailout policies [8, 15, 18, 20]. Other works introduce more substantial
changes into these models, e.g. time-dependent clearing mechanisms [2, 21] or game-theoretic
aspects [4, 19].

There is also a wide literature on different financial derivatives, and CDSs in particular
[7, 12, 17]. On the more practical side, the clearing problem also plays a central role in stress
tests to evaluate the sensitivity of financial systems, e.g. in the European Central Bank’s
stress test framework [5].

3 Model definition

3.1 Banks and contracts

A financial network consists of a set of banks B. Individual banks are mostly denoted by u,
v or w, the number of banks by n = |B|. Each bank v has a certain amount of funds (in
financial terms: external assets) available to the bank, denoted by e,.

We assume that there are contracts for payments between given pairs of banks in the
system. Each such contract is between two specific banks u and v, and obliges u (the debtor)
to pay a specific amount of money (known as the notional) to the other bank v (the creditor),
either unconditionally or based on a specific condition.

These contracts result in a specific amount of payment obligation for each bank v. If v
cannot fulfill these obligations, then we say that v is in default. In this case, the recovery rate
of v, denoted by r,, is the proportion of liabilities that v is able to pay. Note that r, € [0, 1],
and v is in default exactly if r, < 1.

The model allows two kinds of contracts between banks. Debt contracts (or simply debts)
oblige bank u to pay a specific amount to v unconditionally, i.e. in any case. On the other
hand, we also allow credit default swaps (CDSs) between u and v in reference to a third bank



w. A CDS represents a conditional debt that obliges u to pay a specific amount to v only in
case if bank w is in default. More specifically, if the weight of the CDS is § and the recovery
rate of bank w is 7, then the CDS incurs a payment obligation of ¢ - (1 — 7,) from node u to
v. In practice, CDSs are often used as an insurance policy against the default of the debtors
of the bank, or as a speculative bet based on insights into the market.

Before a formal definition, let us consider the example in Figure 1. In this system, bank u
has a total liability of 4 due to the 2 outgoing debts, but it only has funds of 2; hence it is in
default, and its recovery rate is 7, = % = % The model assumes that in this case, it makes
payments proportionally to the respective liabilities in the contracts; thus it transfers 1 unit of
money to w and 1 unit to v.

Since u has a recovery rate of r, = %, the CDS from w to v translates to a liability of
2-(1 —=7,) = 1. Although w has no funds, it receives 1 unit of money from u, so it can fulfill
this payment obligation and narrowly avoids default, r,, = 1.

Finally, v has no liabilities at all, so 7, = 1. Since it receives 1 unit of money from both

and w, and has e, = 1, it has 3 units of money after the clearing of the system.

3.2 Assets and liabilities

Formally, our systems are defined by a vector e = (e,)vep, the matrix D = (0y,4)u,veB, Where
du,» denotes the weight of debt from u to v (interpreted as d,,, = 0 if there is no such debt),
and the matrix C' = (4, )u,vweB, Where §,;,, denotes the weight of the CDS from u to v in
reference to w. We assume that no bank enters into a contract with itself or in reference to
itself. Given a financial system on B by (e, D, ('), we are interested in the recovery rates r,
of banks, which can also be represented as a vector r = (r)yeB.

Given a recovery rate vector r, the liability of u to v is formally defined as

Luw(r) = Buw + Y 00, - (1= 1y).

weB

The total liability of bank u is 1,(r) = 3 cp luw(r), i.e. the sum of payment obligations for
u. However, the actual payment from u to v can be lower than [, ,(r) if u is in default. The
model assumes that defaulting banks always use all their assets to pay for liabilities, and they
make payments proportionally to the respective liabilities. With a recovery rate of r, u can
pay an r,, portion of each liability, so the payment from u to v is py () = 7y - lyw (7).

On the other hand, the assets of v are defined as

ay(r) = e, + Z Duw (7).

ueB

Given the assets and liabilities of v, the recovery rate r, has to satisfy r, = 1 if a,(r) > [, (r)

(i.e. if v is not in default), and 7, = ‘Zs((:)) if ay(r) < ly(r) (if v is in default). If a vector r is an

equilibrium point of these equations, i.e. it satisfies this condition on a,(r) and I,(r) for every
bank v, then r is a clearing vector of the system. Our main goal is to analyze the different
clearing vectors.

The equity of v in a solution is defined as

qv(r) = max (ay(r) — ly(r), 0) ,



Figure 1: Example system on 3 banks. Ex- Figure 2: Branching gadget consisting of

ternal assets are shown in rectangles besides two nodes x and y, both having an outgoing
the bank, simple debts are shown as blue ar- debt to a sink ¢ and an incoming CDS from
rows, and CDSs are shown as brown arrows a source S.

with a dotted line to the reference bank.

i.e. the amount of money available to v after clearing. In the example of Figure 1, we have
¢u = 0, g = 0 and ¢, = 3. We assume that the main goal of banks is to maximize their
equity. Note that we have written ¢, instead of ¢,(r) in order to simplify notation; we often
do not show the dependence on r when r is clear from the context.

Previous works also consider an extension of this base model with default costs [23, 24, 22];
we also refer to this setting as systems with loss. In this case, the financial network has two
more parameters a, 8 € [0, 1], and when a bank goes into default, it loses a specific fraction of
its assets. More specifically, if v is in default, then its assets are defined as

av(r) =a-e,+ - Zpu,v(r)~

ueEB

Throughout the paper, we mostly focus on the base model without loss, i.e. we always assume
a = 8 =1 unless specified otherwise. However, we discuss the extension of our proofs to
systems with loss in Appendix D, and we also briefly study some questions that only arise in
case of default costs.

In the rest of the paper, we switch to a computer science terminology: we refer to banks
in the system as nodes, clearing vectors as solutions (with the set of solutions denoted by S),
and the notionals of contracts as the weight of the contracts.

4 Properties of the solution space

Previous work. The work of Schuldenzucker et al. mostly focuses on the existence and
computability of solutions [23, 24]. Their main results can be summarized as follows:

e Loss-free systems (a« = = 1): in this case, there always exists a solution. However, the
proof is non-constructive; finding an (approximate) solution is PPAD-hard.

e Systems with loss (« < 1 or f < 1): in this case, a solution might not exist at all.
Deciding if a system has an (approximate) solution is an NP-hard problem.

Once we know that a solution exists, another natural question is if there exists a maximal
solution, i.e. a solution r such that ¢,(r) > g,(r") for every node v and every solution r’. If
such a maximal solution exists, then we can assume that a clearing authority always prefers



to implement this solution. However, in both settings, a system can easily have multiple
solutions with none of them being maximal.

Branching gadget. A basic building block in our constructions is the branching gadget
shown in Figure 2, which has already been used with some parametrizations in the works of
[23, 24], e.g. as an example system with no maximal solution. For the weight parameters ¢,
and ¢, of the gadget, we always assume 6, > 6, > 1.

Since the source and sink nodes can never go into default, we only analyze the recovery
rate subvector (ry,7,). First, observe that we cannot have both nodes surviving, i.e. (1,1)
as a solution: both nodes only receive any funds if the other node is in default. However, if
either 7, = 0 or r, = 0, then the other node can already pay its debt, thus (0,1) and (1,0)
are always solutions in this system.

Besides this, there may be other solutions when both nodes are in default with a positive
recovery rate; these depend on the concrete values of ¢, and d,. If x and y are in default,
then their assets are equal to the amount of debt they can pay, so the remaining solutions are
obtained from the equations r, = 6, - (1 —ry) and 7y =y - (1 — 72).

However, there are also choices of d,, ¢, for which these equations confirm that (0,1) and
(1,0) are indeed the only solutions. One such example is 6, = 2, §, = 1; we refer to this case
as the clean branching gadget, and we assume this parametrization unless specified otherwise.
This gadget variant is a natural candidate for representing a binary choice: r, is either 0 or 1
in any solution, and r, offers a convenient representation of its negation.

Number of solutions. Let us now discuss the size of the solution space in our systems.
Lemma 1. There exists a financial system with infinitely many solutions.

Proof. Consider the branching gadget of Figure 2 with ¢, = ¢, = 1. For any p € [0, 1], the
vector (p, 1—p) satisfies the equations above, thus it is a solution of the system. O

While this shows that the number of solutions is potentially unlimited, the difference
between most of these vectors is only the extent of the defaults. Thus it is also natural to
study another concept of difference between solutions: we say that two solutions r and 7’ are
essentially different if there is a node v such that either r, = 1 but r/ < 1, or 7}, = 1 but
ry < 1. Since we only consider a boolean value for each node in this definition, the number of
pairwise essentially different solutions is at most 2™.

Lemma 2. There exists a system with 22" solutions that are pairwise essentially different.

Proof. Let us take 7 independent copies of the clean branching gadget. In each gadget, there
are two possible subsolutions: (0,1) or (1,0). Over the distinct gadgets, these can be combined
in any way, adding up to 2"/* solutions that are pairwise essentially different. O

Better and worse solutions. While financial systems may not always have a maximal
solution, it is still reasonable to say that some solutions are better than others.

Definition 3. Given two solutions r and r’, we say that v’ is strictly better than r if
qu(r") > qu(r) for every node v, and there exists a node u such that q,(r') > qu(r). A solution
r is Pareto-optimal if there is no solution 1’ that is strictly better than r (otherwise, r is
Pareto-suboptimal ).



A financial authority might want to avoid implementing Pareto-suboptimal solutions, and
prefer a strictly better solution instead. However, selecting among Pareto-optimal solutions is
more difficult, since they represent a trade-off between the preferences of different nodes.

We first show that in our base financial system model without loss (a« = 8 = 1), every
solution is Pareto-optimal. One can consider this claim as slight generalization of the similar
claim in [9] for debt-only networks, adapted to our more complex network model.

Lemma 4. In loss-free financial systems, every solution is Pareto-optimal.

Proof. We show that in every solution, }° _pqv = > ,cpev. Since ) pe, is a fixed
parameter of the input problem, this already proves the statement.

Recall that in a given solution, p, = ZueB Do and a, = e, + ZueB Du,» denotes the
payments and assets of node v, respectively. Furthermore, the equity of v is always g, = a, —py,
regardless of v being in default or not. This implies

Z Qv = Z(av_pv) = Z (ev + Zpu,v - va,u) = Z eyt Z (pu,v _pu,v) = Z €y-

vEB vEB veEB ueB ueB veEB u,vEB veEB
]

However, once we have default costs in the system, then some funds are lost when a node
goes into default. Since the total amount of lost funds depends on the number of nodes in
default, the funds remaining in the system might differ among different solutions, so some of
them might turn out to be Pareto-suboptimal.

Lemma 5. In systems with loss, there can be solutions that are Pareto-suboptimal.

Proof. Let 8 = %, a € (0,1), and let us consider the branching gadget with 0, = 6, = % To
avoid confusion, let us now assume that e, = 3 instead of infinity. For simplicity, we express
the recovery rate and equity vectors in the gadget by (7, 7,7y, 7¢) and (s, ¢z, @y, Gt)-

The vectors (1,0,1,1) are (1,1,0, 1) are still solutions of this system; these induce equity
vectors of (%,O, %, 1) and (%, %,0, 1), respectively. Any other solution must satisfy r, =
% -B-(1—ry) and ry = % B+ (1 —=ry). Solving this system of equations, we get that the third
solution is (1, %, %, 1), resulting in an equity vector of (%, 0,0, g)

One can observe that this third solution is strictly worse than the previous two solutions. [

5 Finding the “best” solution

In this section, we discuss a wide range of realistic objective functions for selecting a solution
in out networks. We show that for these objectives, the optimal solution is even hard to
reasonably approximate. The details of these proofs are discussed in Appendix B.

5.1 Tools and gadgets

We first provide a quick overview of the gadgets that we use as building blocks in our
constructions. Note that most of these gadgets have already been used before in the work of
[23, 24], sometimes in a slightly different form.
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Figure 3: NOT gate Figure 4: OR gate

Most nodes in these gadget will have the convenient property that their recovery rate
is always either 0 or 1. Generally, we will say that v is a binary node if r, € {0,1} in any
solution.

e Clean branching gadget: this gadget was already discussed in Section 4. Recall that
the banks x and y represent a binary state: in every solution, we have either r, = 1 and
ry =0, 0rr, =0and r, = 1.

e Cutoff gadget: given two parameters 0 < 1 < 12 < 1, this gadget from [24] takes
an input node v, and transforms it into a binary node w if r, ¢ (11,72), ensuring that
ry = 0if ry, < np, and ry, = 1 if 7, > 19. We will only use cutoff gadgets for adapting
our results to some restricted model variants.

e Logical gates: we can also develop gadgets that simulate boolean operations on nodes.
More specifically, given two binary nodes v and v, we can construct the following gadgets:

— a NOT gate, i.e. a node w such that r, =1ifr, =0, and r, =0 if r, = 1,
— an OR gate, i.e. a node w such that r,, =0 if r, = r, =0, and r,, = 1 otherwise,

— an AND gate, i.e. a node w such that r, =1 if r, =7, = 1, and 1, = 0 otherwise.

We demonstrate the NOT and OR gates in Figures 3 and 4, and discuss the behavior of
these gadgets in Appendix A. Note that Figure 4 already uses the NOT gate as black box,
denoted by a = symbol. In a similar fashion, we can also create AND and OR gates on multiple
inputs.

Finally, when adding incoming or outgoing contracts to a bank v in our constructions,
our main goal is often to establish a certain behavior for v, and thus it is unimportant where
these contracts come from or go to. Hence for simplicity, we add a specific source node s
to our constructions with e; = co which is the source of all such incoming contracts, and a
specific sink node t which is the recipient of all such outgoing contracts.

5.2 Example: maximizing the equity of a node

To demonstrate the main idea behind our constructions, we first discuss the problem of
maximizing the equity of a specific node. That is, given a node v, we define the value of a
solution r as the equity ¢,, and we denote the search problem of finding the highest-value
solution by MaxEQUITY(v). This is a very natural problem, and a crucial question for v if it
wants to understand its situation in the network.

However, this problem is already hard to solve in our model.



Theorem 6. The problem MaxEQUITY(v) is NP-hard to approzimate to any n'=¢ factor.

Proof. We use a reduction from the boolean satisfiability (SAT) problem, which is known
to be NP-complete [13]. Given an input boolean formula ¢ on N variables and M clauses,
we transform this into a financial system representation by creating N distinct branching
gadgets, each corresponding to a specific variable. Recall that if we understand r, to be the
value of the variable in an assignment, then r, represents its negation.

Given these variables, we can use our logical gates to compute the value of ¢ for a specific
assignment: we first combine each clause into a node with an OR gate, and then combine all
these nodes with an AND gate. This provides a binary indicator node vy which describes the
value of ¢ under a specific assignment. We also add a further NOT gate on top of v; to obtain
a convenient representation of its negation in a new bank v7.

Most of our hardness results will use this base construction, extended by further gadgets
representing the specific objective function. For the MaxEQUITY(v) objective, we only add a
node v that has e, = 0, and an incoming CDS of weight n in reference to v7.

If there exists a satisfying assignment to ¢, then there is a solution in this system that has
ry7 = 0, and thus ¢, = n. As such, any n'—¢ approximation algorithm must return a solution
in this case with g, > n® > 0. On the other hand, if ¢ is unsatisfiable, then every solution of
the system has ¢, = 0. Hence a polynomial-time approximation would also allow us to decide
whether ¢ is satisfiable, which completes the reduction. O

We point out that the branching gadgets already determine the recovery rate of all other
nodes in this system. As such, the system has exactly the 2V solutions that correspond to
the different variable assignments. This means that the source of this computational hardness
is not the fact that we cannot even find a single solution, as described in [24] before; in our
case, it is not only straightforward to find an (arbitrary) solution in the network, but we can
also easily characterize the entire solution space of the system.

We also note that weight of the CDS in the proof was chosen as n in order to demonstrate
that inapproximability still holds if we also allow a constant offset besides the n!'~¢ factor.

With a slightly different gadget appended to the base construction, we can present a
similar reduction for the problem of minimizing the equity of a bank v.

Theorem 7. The problem MinEQUITY(v) is NP-hard to approzimate to any n'~¢ factor.

Proof. This only requires a slight modification to the same setting: we now need to add a
bank v with e, = n, and an outgoing CDS of weight n in reference to v7. With this the
optimum value is g, = 0 if ¢ is satisfiable, and g, = n otherwise. O

5.3 Global objective functions

Given a financial system with many solutions, there are various objectives that an authority
could follow when choosing the solution to implement. Some of the most natural objective
functions are as follows:

e MinDEFAULT: minimize the number of defaulting nodes, i.e. minimize |{v € B|r, < 1}|

e MaxPREFER: find the solution that is the primary preference of most nodes, i.e.
define the maximal equity of bank v as g max) — max,ycs qv(r), and then maximize

Hv e Blg(r) = QU(maX)Ha



e MinUNPAID: minimize the amount of unpaid liabilities, i.e. minimize ), veB iy = Puw-

One can show that these are indeed different problems: they can obtain their optimum in
distinct solutions, and the optimum for one objective might give a very low-quality solution
in terms of another one.

Theorem 8. For any objectives f1, fo from above, there is a system such that in the optimal
solution for fi, the value of fa is a ©(n) factor worse than the optimum value of fo.

We provide example constructions for these claims in Appendix C. In fact, one can even
combine these examples into a single system with a very different optimum for each function.

Theorem 9. There exists a financial system such that the optima for the objective functions
above are all obtained in different solutions, and in terms of the respective metrics, each of
these optima are a factor of Q(y/n) better than any other solution in the system.

Now let us analyze these problems from a complexity perspective. We can apply a similar
technique to Theorem 6 to show that it is hard to approximate any of these objectives.

Theorem 10. The problem MinDEFAULT is NP-hard to approzimate to any n'=¢ factor.

Proof sketch. Given a fixed constant €, let us select an ¢’ such that 0 < ¢ < e. Also, given a
formula ¢ on N variables and M clauses, let us introduce m := N + M. We extend the base
construction of Section 5.2 by introducing m'/¢ distinct new banks u; to the system that all
have e,, = 0, and an outgoing CDS of weight 1 in reference to the indicator node vy.

For every variable assignment that evaluates to false, we have 7, = 0, so all the new nodes
are in default; as such, the number of defaulting nodes is m'/¢ + O(m). On the other hand,
if there is a satisfying assignment, then the banks u; have no liability in the corresponding
solution, so the number of defaulting banks is only O(m). Since n = ©(m!/¢) in this system,
the best solution has either ©(n) or O(n¢') < n¢ defaults, depending on whether ¢ is satisfiable;
this shows an inapproximability to any n!'~¢ factor.

Since € is a constant, our construction on O(m!/ €/) nodes still has a size that is polynomial
in the size m of the original formula ¢. As such, any polynomial-time approximation algorithm
in n would also have a running time that is polynomial in m. O

We can also rephrase the MinDEFAULT problem as maximizing the number of surviving
(non-defaulting) nodes; the two problems clearly have the same optimal solution. However,
this MaxSURVIVING problem is defined by a different metric in its objective function, so it
could behave very differently in terms of approximability (see e.g. the minimum vertex cover
and maximum independent set problems, which are also complements [13, 14]). However, it
turns out that in our case, the problem is hard to approximate in both metrics.

Theorem 11. The problem MazSURVIVING is NP-hard to approzimate to any n'~¢ factor.

We can use different variants of the same proof technique to show the same hardness result
for the other two objectives. Furthermore, similar to MaxSURVIVING, we can also define dual
problems for these objectives, which are also hard to approximate.

Theorem 12. The problems MaxPREFER and MinUNPAID (as well as their dual problems
MinLEASTPREFER and MazPAID) are NP-hard to approzimate to any n'~¢ factor.
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5.4 More complex objectives

Most balanced solution. In a slightly different setting, an authority could want to find
a solution where the distribution of equity is balanced in some sense. E.g. if we have two
larger alliances of banks (i.e. sets of nodes), then our goal might be to find a solution that
distributes the total equity evenly between these alliances.

In the simplest case of this problem, we consider two nodes v1 and vy, and we define the
problem MinDi1FF (v, v9) of finding the solution where |g,, — ¢y, | is minimal.

Theorem 13. The problem MinDIFF(vy,v2) is NP-hard to approzimate to any n'=¢ factor.

Proof. We can simply consider the MinEQUITY (v) construction with v; := v, and add an
extra bank ve such that ¢,, = 0. This system has |q,, — qu,| = v, S0 We can apply the same
reduction as in the MinEQUITY case. ]

This already shows that the more general problem of minimizing |, cv: G, — D u,evs ool
for two sets of nodes V7 and V5 is also hard. One can also show that the problem still remains
hard in the special case when Vi U Vo = B, i.e. if the alliances cover the whole system.

Most representative solution. It could also be a reasonable goal to select a solution that
is somehow representative of the whole solution space S. Assuming a fixed distance metric
between two solutions (for example, let d(r,7") := Y _p|ry, — 1), there are many natural
ways to define a metric of centrality for a given solution r in S.

We only discuss one natural approach here: let us define the centrality of a solution r as

and let MinDIST denote the problem of finding the solution r with the lowest cent(r) value.

Note that our result essentially shows that the solution space can exhibit a threshold
behavior between two very different shapes, and it is already hard to decide which of the
two shapes is obtained. This suggests that the problem is also hard in any other reasonable
formulation, i.e. for other distance functions or centrality metrics.

Theorem 14. The problem MinDIST is NP-hard to approzimate to any n'~¢ factor.

Proof sketch. The main idea is to add two large sets of nodes to our construction, as sketched
in Figure 5. The generating group consists of N? independent branching gadgets, while the
control group has m'/ ¢ single nodes with an outgoing debt (where m denotes the size of ¢
and €’ < e as before). We ensure that both groups only receive funds if r,,, = 1; otherwise, all
the new nodes are in default.

Since the control group contains almost all of the nodes asymptotically, the centrality of a
solution is essentially defined by the recovery rates of the nodes in the control group. If ¢ is
unsatisfiable, then every assignment produces r,, = 0, and thus the control nodes have recovery
rates of 0 in every solution. On the other hand, if ¢ is satisfiable, then the branching gadgets
in the generating group will introduce 2V * new solutions (for each satisfying assignment),
which reduces the at most 2V unsatisfying solutions to an asymptotically irrelevant part of S.
In this case, the control nodes have a recovery rate of 1 in almost every solution.
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Hence the two cases are very different in terms of solution space. An approximation
algorithm would always need to find a satisfying assignment if one exists; otherwise, it returns
a solution with an average distance of at least m/¢ ~ n, while the optimum has a distance of
only O(m) ~n'~¢. O

Strictly better solution. Recall that in case of systems with loss, we can also have Pareto-
suboptimal solutions, so it is natural to ask if a specific solution can be improved: if there is
a solution 7’ strictly better than r, then we would probably want to implement r’ instead of r.
If such an 7’ was easy to find, then we could iteratively improve an initial solution until we
eventually find a Pareto-optimal solution.

Theorem 15. Given a solution r, it is NP-hard to decide if r is Pareto-suboptimal.

Proof sketch. The construction, shown in Figure 6, is built around a binary node vg. To each
node u of our base construction, we add a so-called unhappy penalty gadget. This essentially
means that if r,, = 0, then u pays a large penalty to a special sink tp; however, ¢y has further
gadgets attached to ensure that ¢y is still worse off if r,, = 0, even though it receives money
from this penalty. As such, the default of v is not favorable to any node in the system; note
that this is only possible in systems with loss.

The base idea then is to add another node w, which, on the other hand, receives 1 unit of
money if either r,, =0, or r,, = 1. Let r be the solution where r,, = 0, and thus all nodes in
the base construction are in default, but ¢, = 1. Any solution strictly better than r must
also have q,, > 1. If vg is not in default, this is only possible if we find a satisfying assignment
of ¢, thus ensuring 7,, = 1. O

6 Restricted financial networks

Our final goal in the paper is to understand the key reasons behind this computational
complexity, and whether we can introduce some restrictions to our network model to eliminate
this phenomenon. In particular, we show that the same hardness results also hold in many
severely restricted variants of our financial system model, and it takes a combination of
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multiple restrictions to ensure that the solution space is sufficiently simple. These model
variants and the corresponding proofs are discussed in more detail in Appendix D.

Before considering restrictions to the network, let us first briefly discuss a familiar extension
of the model: default costs. We point out that while our hardness results were mostly shown
for systems without loss, they can also be extended to systems with loss with some minor
modifications.

Theorem 16. Theorems 6-7 and 10-15 also hold for any «, B € (0, 1].

6.1 Unweighted networks

For convenience, we have sometimes used rather large edge weights in our constructions. One
could argue that this is unrealistic, since in practice, the payment obligations are often in
the same magnitude. As such, we first show that our hardness results also carry over to the
setting when each contract in the network has the same weight.

Theorem 17. Theorems 6-7 and 10-15 also hold in unit-weight networks.

Proof sketch. The modifications required for this setting are rather straightforward: most
edges in our constructions have unit weight to begin with. Whenever the weight is a larger
integer k, we can usually split this into k distinct contracts that come from/go to k distinct
source/sink nodes. The only cases that require some extra consideration are the gadgets used
in Theorems 14 and 15. O

6.2 Restricted network structure

In their work, Schuldenzucker et al. also discuss several restrictions to the network structure
[23, 24]. While they study these restrictions from a different perspective (their goal is to
ensure that the system always has a solution, even with default costs), it is natural to ask
whether our hardness results still hold in these restricted network models.

In particular, the authors define the so-called dependency graph to express the relations of
banks in a directed graph with edges of two colors:

o Green edges: intuitively, these indicate long positions. For example, there is a green
edge from u to v if u has a contract towards v (debt or CDS), or if v has an outgoing
CDS in reference to wu.

e Red edges: intuitively, these indicate short positions. There is a red edge from w to v if
v has an incoming CDS in reference to w (unless there is a debt of even larger weight
from w to v).

For details on the dependency graph, we refer the reader to Appendix D or the work of [23].
The work of [23] studies different restrictions to the network based on this dependency

graph. In the most restricted case, they study systems where the dependency graph contains

exclusively (or almost exclusively) green edges, so short positions are essentially banned.

Definition 18. We say that a financial network is a green system if its dependency graph
only contains green edges.
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Figure 7: A simple debt-only network with multiple solutions

Using a fixed-point theorem, one can show that green systems are similar to debt-only
networks in the sense that they always contain a maximal solution. As such, this simpler case
is not so interesting for us in terms of default ambiguity.

On the other hand, [23] also studies a more general setting where short positions are still
allowed in the network, but only in a structurally restricted fashion.

Definition 19. A financial network is an RFC (red-free cycle) system if no directed cycle of
the dependency graph contains a red edge.

The authors show that in RFC systems, one can always find a solution efficiently. Intuitively,
one can iterate through the strongly connected components (SCCs) of the dependency graph
in topological order, since every SCC is only dependent on the preceding ones. Since each
SCC is a green system, there is always a maximal subsolution in the current SCC (if the
subsolutions in previous SCCs are already fixed), and we can find this efficiently.

In contrast to this, our goal of finding the best solution is still not straightforward in these
RFC systems. In particular, selecting a different (non-maximal) solution in the first SCC
could allow us to find a different solution in the second SCC; while this is unfavorable to
banks in the first SCC, it might be much better in terms of our global objective. In fact, our
hardness results even hold in this heavily restricted class of networks.

Theorem 20. Theorems 6—7 and 10-15 also hold in RFC systems.

Proof sketch. The key observation is that directed cycles are in fact very rare in the dependency
graphs of our constructions: we mostly use logical gates that follow a specific ordering, and
thus the dependency graphs are already very close to DAGs. The only exception is within the
branching gadgets, where banks x and y have short position on each other, and hence there
is a red edge between them in both directions. As such, it is sufficient to come up with an
alternative branching gadget design that satisfies the RFC property.

The main idea of this gadget is to consider two banks v; and vy as in Figure 7. For any
p € 10,1], ry =14, = p is a solution of this system.

We can then use the small and large p values in this system to represent the two binary
states; this can be achieved by creating two banks x and y as the outputs of two cutoff gadgets
on u, having parameters e.g. 1 = %77]2 = % and n; = %,772 = %, respectively.

Finally, we exclude the intermediate p values by appending further gadgets to artificially
make the solution significantly worse (in terms of our desired objective function) whenever

we have p € [%, %] This means that in any reasonable solution, we will have either p < % or
p > 2, and hence either 7, = 1,7, =0 or r, = 0,7, = 1. -

We note that the situation in Figure 7 seems rather artificial. However, recall that default
ambiguity often arises after an external shock hits the market; as such, one should imagine
this as a situation where banks in a cycle have lost all their funds due to such an event.
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6.3 Green systems and regularity

Our alternative construction in Theorem 20 uses the fact that a debt-only network can still
have multiple solutions in some special edge cases, thus allowing us to create a large solution
space. To prevent this phenomenon, we first need a deeper understanding of these cases when
green system have multiple solutions.

The work of [9] already studies this question in debt-only networks, showing that the
solution is unique if from any bank there is a directed path to another bank with positive
funds. We prove a more general version of this result, extending the theorem to any green
system, and using a weaker assumption on the topology. In particular, we show that green
systems can only have multiple solutions in a special edge case: when we have a network
segment with no funds and no incoming assets at all.

Theorem 21. Let G be a green system, and assume that v is a bank that has two distinct
recovery rates r, # r. in two solutions. Let C' be the set of nodes reachable from v on a path
of simple debts. Then the following must hold:

o for all u € C' we have e, =0,

o if there is a path of contracts from a bank w € G to a bank u € C, then e, = 0.

Proof sketch. The main steps of the proof are as follows:

e Recall from before that a green system always has a maximal solution r (and also a
minimal solution 7’); these assigns the highest/lowest recovery rate to all banks.

e In such a setting, all banks must have the same equity in any solution. Intuitively, in
systems without loss, if a bank had less equity in a solution 79 than in the maximal
solution 7, then some other bank would need to have more equity in rg than in r.

e If r, > 1 (i.e. v can have different recovery rates), then v makes strictly more payment
on its outgoing debts in r than in 7/. In a loss-free system, these extra payments traverse
the network in until they either (i) reach a node v with no more unfulfilled liabilities,
or (ii) they arrive back at v. However, the first option is not possible, since this would
mean ¢, > ¢,; hence all such payments must ultimately arrive back at v.

e This means that from v, any path of contracts (with positive liability) must eventually
lead back to v, implying that these contracts form an SCC C.

e Finally, no node u € C can have e, > 0, and also no node w € G can have a positive
payment towards a bank uw € C'. This is because C' is closed under outgoing payments,
so if any funds arrive in C', then the loss-free property implies that some node v € C
must have ¢/, > 0. This means that we already have 7/, = 1 in the solution r’. However,
if , > 7}, then in r there is a strictly positive extra payment arriving at u; this implies
qu > ¢.,, which is again a contradiction. ]

Note that the proof also makes a structural observation that the banks reachable from v
must form a SCC in the graph of “meaningful” contracts (which induce a positive liability in
some solution). However, since it is not immediately clear whether a CDS is meaningful, we
expressed Theorem 21 in a weaker form, stating the restrictions only for the set of nodes C
that are reachable from v on simple debts.
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The situation described in Theorem 21 is a very special case, so there are various ways
to ensure that we exclude such networks. One natural approach is to restrict the amount of
funds that banks must possess, since this is usually strictly supervised in practice.

Definition 22. We say that a financial system G is regular if we have e, > 0 for allv € B.

This assumption is realistic in many legal frameworks: financial regulations usually require
banks to possess enough funds to cover at least a specific portion of their liabilities. Considering
that default ambiguity often happens after a shock hits the market, an alternative (more
practical) interpretation of this property is that all banks must keep at least some of their
funds in a format that is resilient to external shocks.

Note that there are various other options to exclude the edge case of Theorem 21 with
weaker conditions; however, most of these approaches are difficult to enforce from a regulator’s
perspective.

On the other hand, note that Theorem 21 only applies to green systems. If our network is
not a green system, then even this rather strong condition is not sufficient to ensure that the
solution is unique.

Theorem 23. Theorems 6—7 and 1015 also hold in reqular financial systems.

Proof sketch. The main idea is to consider a new representation of the binary states in our
gadgets: instead of r, = 0 and r, = 1, the two binary states will be represented by r, = 0.5
and r, = 1. This allows us to give some funds to every node in our construction, thus fulfilling
the regularity condition.

Most of our gadgets are actually rather easy to adapt to this setting; it is again only the
constructions of Theorems 14 and 15 where this is somewhat more technical. O

6.4 Combined restrictions: a unique solution

This shows that we need both the RFC property and regularity together to ensure that the
solution of the system is unique, and thus our hardness results can be avoided. This provides
an interesting final message from our analysis: it suggests that financial regulators might need
to use both topological and fund-based restrictions simultaneously in order to eliminate the
computational problems arising from default ambiguity.

Theorem 24. If a system is both reqular and RFC, then it has a unique solution. This
solution can be efficiently approximated in polynomial time.

Proof. We can now apply the approach of [23] for RFC systems, computing a solution by
visiting the SCCs in topological order. The payments coming from the previous SCCs can
simply be considered as extra funds at the bank when processing the current SCC of the
network.

Due to the RFC property, the current SCC is always a green system. Regularity implies
that every node u in the SCC has e,, > 0; this is only further increased by the payments from
previous SCCs. As such, Theorem 21 shows that there is always a unique subsolution in the
current SCC. Altogether, this implies that the solution r is unique in the whole network; as
such, we can indeed simply apply the algorithm of [23] for RFC systems, which always finds
an arbitrary solution.
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Note, however, that the solution of our networks can also be irrational in some cases, so
we can only claim that it is efficiently approximated with this method. It is already discussed
in [23, 24] that given an error margin € > 0, this algorithm finds a recovery rate vector r¢
such that |r, — 7| < € for all v € B, and its running time is polynomial in n and 1/e. O

Finally, we point out that if we have default costs, then our hardness results still hold
even in the setting of Theorem 24. This is because with default costs, a green system can still
have multiple solutions even if it is regular. If we modify Figure 7 to have e, = ¢, = % and
we assume o = 3 = %, then both r, =r,=1and r, =r, = % are solutions; while the former
is clearly better for v and v, the latter might be superior in terms of our objective.
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Appendices

A Gadgets and logical gates

This section provides a more detailed overview of the basic gadgets we apply in our construc-
tions. Note that we have already discussed the clean branching gadget in the main part of
the paper. For details on the cutoff gadget, we refer the reader to the work of [24].

It remains to discuss the logical NOT, OR and AND gates. We again point out that some of
these gadgets (in particular, the NOT gate, and a similar gadget which behaves as a NAND
gate) were also used before in [23, 24]. Figure 8 summarizes the notation of these gadgets in
our figures.

For negation, we can consider the simple gadget in Figure 3. If r, = 0, then w receives 1
unit of money, and it can pay its debt entirely. However, if r, = 1, then w has no assets at
all, and thus r,, = 0.

The gadget for the OR relation is shown in Figure 4; note that it already uses the previously
described NOT gadget. If r, or r, is 1, then at least one of the connected NOT gadgets is in
default, and thus w has assets of at least 1; this already implies r,, = 1. Otherwise w has no
assets at all, and hence we have r,, = 0.

Finally, one possibility to implement the AND relation is illustrated in Figure 9. In this
case, if at most one of the nodes r, and r, is 1, then wy receives a payment on at most one of
the two CDSs. Therefore, wg has at most 1 assets, thus r,, < % Since the connected cutoff
gadget has n; = 0.7, we have r,, = 0 in this case. On the other hand, if r, = r, = 1, then
Tw, = 1, and 7, = 1 follows.

We point out, however, that this version of the AND gate is more difficult to adapt to
different variants of the network model, so it is often a more convenient solution to express
the AND relations with a combination of NOT and OR gates instead.

Note that all of these gadgets only use the input nodes v; and vy as reference entities for
CDSs, and thus inserting such gadgets has no effect on the behavior of the input nodes.

B Details of the hardness proofs

In this section we discuss our inapproximability proofs in more detail. Note that all of these
proofs begin with the use of the base SAT construction, and then they append further gadgets
on the indicator nodes v; and vy to express a specific objective function.

The construction for MaxEQUITY (v) has already been described in Section 5.2. We note
here that the idea of this proof suggests that we could obtain similar hardness results for even
higher factors than n if we use e.g. very large edge weights. However, since this makes the
model somewhat unrealistic, we limit our interest to approximations of up to a factor n.

B.1 Global objectives in Section 5.3

Theorem 11 can be shown with the same construction as in Theorem 10. For every assignment
where ¢ evaluates to false, the new nodes are all in default, so the number of surviving nodes
is only O(m). On the other hand, for a satisfying assignment, the number of surviving nodes
is at least m!/¢. This again creates a factor of n'=¢ difference between the two cases, so any
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approximation algorithm must return a solution with at least w(m) surviving nodes if ¢ is
satisfiable; this completes our reduction.

For MaxPREFER, we modify this construction by setting e,, = 1 at the extra nodes. As
such, a satisfying assignment ensures that these nodes all have ¢,, = 1, while an unsatisfying
assignment implies ¢,, = 0. Hence if ¢ is satisfiable, then the satisfying assignment is the
primary preference of m!'/¢ nodes, while the remaining solutions are preferred by at most
O(m) nodes; as such, in order to give an n'~¢ approximation, an algorithm would have to
find a satisfying assignment in polynomial time.

In case of the dual problem MinLEASTPREFER where we define ¢,(™n) = = min,cg ¢,(r) and
minimize |{v € B|q,(r) = ¢{™™}|, we can use the same construction: if we have a satisfying
assignment, then such an assignment is the least preferred solution to at most O(m) nodes,
while an unsatisfying assignment is the least preferred solution to m!/¢ nodes. As such, any
approximation algorithm needs to find a satisfying assignment if one exists.

For MinUNPAID, it once again suffices to use the construction of Theorem 10. For any
unsatisfying assignment, the nodes u; create a total unpaid debt of m'/¢ in the system, besides
the unpaid debts in the base construction. On the other hand, with r,, = 1, the amount of
unpaid debt is only O(m) altogether.

For the dual problem of maximizing Zu,ve B Puw, We can slightly change this construction:
we set e,, = 1, and change the reference nodes of the outgoing CDSs to v7. This way, the
extra nodes can all pay their liabilities in case of r,, = 1, so a true assignment results in a
paid debt of m/¢. On the other hand, any false assignment only has a paid debt of O(m)
altogether.

B.2 Most balanced solution

We have already seen that the setting of Theorem 13 is rather easy to reduce to the case of
MinEQuITY(v). This also settles the general case of minimizing the equity difference between
two subsets of nodes V7 and V5.

In a slight detour, we now also briefly discuss another interesting special case of this
general setting: what if V] and V5 form a disjoint partitioning of the whole node set B, i.e.
the alliances cover the whole system?

For this case, we adapt a similar approach to the MinDEFAULT construction; however, we
now add m'/¢ distinct sink nodes ¢; to the construction (note that strictly speaking, this is
not a necessary modification for our proof, but it provides a more realistic construction that
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does not require a very large amount of funds at a single node). Then for each i € [1, mt/ €’]
we set e,, = e;; = 1, and we create a CDS of weight 1 from u; to ¢; which is in reference to
the indicator node vjy.

Now let Vj contain all the nodes wu; in our network, and Vs consist of all the remaining
nodes (i.e. the sinks ¢; and the nodes of the base construction). If we consider a satisfying
assignment in this network, then r,, = 1, and thus there is no liability between the newly
added banks. This implies that the total equity in V; is m!/ ¢ while the total equity in V5 is
m!'/¢ 4 O(m). This amounts to a difference of only O(m) between the two sets.

On the other hand, any unsatisfying assignment implies that V7 will have no equity at all,
while V4 still has an equity of more than m!'/¢ + O(m); hence the difference in this case is at
least m'/€. As such, any approximation algorithm needs to find a satisfying assignment.

B.3 Most representative solution

We continue with the problem of finding the most representative solution.

Proof of Theorem 14. As outlined before, we add two large sets of nodes to the base con-
struction: the generating group and the control group. The generating group consists of N2
distinct branching gadgets, with the source nodes of these gadgets replaced by a common new
node s,. Let us now slightly change our previous notation, and use m := max(N?2, M); i.e. m
is selected such that the base construction and the generating group altogether contains only
O(m) nodes.

Given a constant € > 0, we again select a smaller constant € € (0,¢). Then we set the
control group to consists of m!/¢ distinct nodes u;, each having ey; = 0, a debt of weight 1
towards ¢, and an incoming debt of 1 from a new common node s.. The nodes s, and s. have
no funds, but we add a CDS of weight co from s to both s, and s, in reference to v7.

Note that we have only chosen to use the two pseudo-source nodes s, and s. to allow a
cleaner illustration in Figure 5. Instead, it would also be possible to introduce a separate
source node with funds of 3 for each branching gadget, and a separate source with funds of
1 for each wu;, and make the payments to each branching gadget/control group node based
on a separate CDS in reference to v7. This change does not affect our distance metrics since
these sources always have a recovery rate of 1; furthermore, executing the change is indeed
necessary if we want to adapt our setting to the case of unit-weight contracts.

The main idea is that in any solution that does not satisfy ¢, we have 5, = r;, = 0. In
the generating group, this implies that none of the branching gadgets have any assets, and
thus all nodes in these gadgets are in complete default (i.e. have recovery rates of 0); with
ry; = 0, this is the only subsolution of this subsystem. In the control group, this means that
all the nodes u; are in complete default, too.

However, if there is a satisfying assignment, then this gives infinitely many assets to both
sg and s.. Hence each branching gadget in the generating group indeed offers a binary choice,
thus introducing 2V ? distinct solutions for each satisfying assignment. In all of these solutions,
the nodes u; in the control group all have r,, = 1. Thus if we have at least one satisfying
assignment, then the number of solutions with 7,, = 0 becomes asymptotically irrelevant.

More specifically, assume that ¢ has a satisfying assignment, and let us show that an
approximation algorithm for MinDIST must return a solution corresponding to a satisfying
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assignment in this case. For simplicity, let us first assume that there is only one satisfying
assignment.

If r1 is the solution corresponding to a satisfying assignment, then there are 2V ? solutions
r such that d(r,r) = O(m), and at most 2V further solutions where d(ry,7) can be as high
as m'/¢ + O(m), resulting in a total distance of at most 2V - O(m) + 2V - (m¢ + O(m)).
Note that the first of the two terms is in a much larger magnitude, at least if we assume that
N is only polynomially smaller than m, i.e. N > m? for some constant § (otherwise, we can
modify our generating group to contain m? branching gadgets instead). This means that we
can upper estimate this expression by 2 - 2V z. O(m) for m large enough.

On the other hand, if our algorithm finds a solution r that does not satisfy ¢, then this
has a total distance of at least 2V - m1/¢ due to the control group. This implies that the
difference of centrality value between the two solutions is at least a factor of ©(1) - m!'/¢ =1, or
in terms of n, at least ©(1) - n'~¢.

This is again asymptotically larger than n'—¢ for n large enough, and hence any approxi-
mation algorithm must find a satisfying assignment for the formula.

Note that if there are more than 1 satisfying assignments for ¢, then we can use the same
argument, the difference between the two solutions only grows even larger. O

Note that there would be many other natural ways to express the fact that it is computa-
tionally hard to understand even the general distribution of the solution space: for example,
we could say that given two specific solutions r and 7’/ it is even NP-hard to decide whether
cent(r) > cent(r’).

B.4 Strictly better solutions

Recall that for Theorem 15, we consider financial systems with loss, i.e. « # 1 or 5 # 1.

Unhappy penalty gadget. A main ingredient for the proof is the unhappy penalty gadget
shown in Figure 10. Assume that there is a node v in the system, and we want to add an
outgoing penalty of some large weight h to v, conditioned on the default of an indicator binary
node vg. If this task was executed by simply adding a CDS from v to the sink ¢, then the
solutions where vg is in default would not be strictly worse for every node in this subsystem,
since t would obtain a higher equity with the received penalty payment. In contrast to this,
the unhappy penalty gadget ensures that the default of vy does provide a smaller-or-equal
equity for each of the nodes.

Consider any parameters «, 8 < 1, and in terms of « and h, let us define a new parameter
b= ?_ig The design of the unhappy penalty gadget requires us to add a CDS of weight h
towards a designated ‘semi-sink’ node ty, which has funds of 1. However, we also add two
further nodes u and ¢, to the gadget. Node u has b+ 1 funds, a simple debt of weight b to
to, and an outgoing CDS of weight 2 to ¢, also in reference to vy. Finally, ¢y has a simple
debt of b towards the sink node t{, (for a simpler analysis, we assume that ¢, is not a general
common sink in the system, but a distinct sink node specifically created for v; this does not
affect our hardness result).

In this subsystem, if v is not in default, then u has no liability towards ¢(,, and thus it is
not in default; it pays its debt to tg and has an equity of 1. Receiving this amount allows tg
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Figure 10: The unhappy penalty gadget

to pay its debt, thus also having an equity of 1. As a result, the sink ¢{, receives a sum of b in
incoming payments from .

On the other hand, if r,, = 0, then u has a total of b+ 2 liabilities, pushing it into default;
thus, it can only use a - (b + 1) from its funds, paying b+L2 ca-(b+1) <a-(b+1) tonode ty
and b% -+ (b+1) < 2 to node t,. Even together with the sum of (at most) h received from
node v as a penalty, this only gives total assets of less than h + 1+ «a - (b+ 1) for ty. Note
that our choice of b ensures that h+ 1+ « - (b+ 1) < b: since b > ilﬁ, we have

«

(1-a)-b>h+2>h+1+a,

implying
b>h+1+a+a-b=h+1+a-(b+1).

Thus node tg also cannot pay its liabilities in this case, and hence it is sent into default. This
means that the sink #{, receives a payment of strictly less than h +1+ - (b+ 1) from ¢¢, and
together with the payment of strictly less then 2 received from wu, it has a total assets (and
equity) of strictly less than b. This is again ensured by our choice of b: the fact that b > %
implies

I1-a)-b>h+4>h+3+q,

which means that
b>h+3+a+a-b=h+1+a-(b+1)+2.

Hence, t{, receives a total payment of strictly less than b from the subsystem in this case.

Therefore, this latter solution is strictly worse for the whole subsystem: v’s equity is
decreased due to the extra penalty of weight h, the nodes vy, u and ty have an equity of 0
now, and the equity of ¢{, is also smaller due to the smaller amount of incoming payments.
Note that such a situation is only possible in systems with loss.

Proof of Theorem 15. Given the unhappy penalty gadget, we now describe the remaining
details of the construction outlined in Section 5.4. To avoid discussing infinite equities, we
introduce a separate source node sq into this construction with eg;, = 2 only, and provide the
incoming CDSs for node w from this node.

As shown in Figure 6 of Section 5.4, our construction is based on a pair of nodes vy and v,
with no funds and a debt of 1 to each other. Clearly the vectors (0,0) and (1, 1) are solutions
to this subsystem. In any other solution, both vy and v{, have to be in default, and thus any
such other solution must satisty r,, = 3 - T, and Ty = B - ry,. For any § < 1 parameter, this
only yields the solution (0,0) again. Thus vy is indeed a binary node, and the subsystem acts
as a different kind of branching gadget for the case of systems with loss.
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Our construction for the theorem uses the base SAT construction, and then through
unhappy penalty gadgets, it adds an arbitrarily large penalty to each node in the base
construction with reference to vy. Furthermore, the indicator nodes v; and o7 also receive
such an unhappy penalty gadget with reference to vy.

Finally, we have w and s¢ in the construction, with e,, = 0 and e;, = 2. We add two
distinct CDSs of weight 1 from sg to w, one of them in reference to vy, the other in reference
to a node which indicates that ¢ is satisfied. Note that the illustration in Figure 6 is only a
simplified sketch from this perspective; we cannot add this other CDS directly in reference to
v, since with r,, = 0, the unhappy penalty gadgets do not ensure that vy is a binary node,
so this might provide some assets to w even if r,, = 0.

Instead, as a technical modification, we add an auxiliary node z with e, = 0 and an
incoming CDS in reference to the negation of vy, and an outgoing CDS from z to w in reference
to v7. This path of contracts provides no assets to w if r,, = 0. Note ¢, = 0 is ensured when
Ty, = 0, and we can also ensure that the NOT gate attached to vy has no positive equity nodes
for r,, = 0 with an unhappy penalty gadget on its sink node.

In our reduction, the parameter solution r is the one where r,, = Ty = 0, thus each node
of the base construction is in default (with an equity of 0), and the nodes in the unhappy
penalty gadgets are also not in a favorable state. Node sg has an equity of 1 in this solution.
More importantly, node w also has an equity of 1, and thus any solution that is strictly better
than r must also have g, > 1. Note that if r,, = ry = 01s fixed, then this is the only solution
of the system.

Thus in any other solution, we must have r,, = Ty = 1. However, this implies that w does
not receive any payment through the CDS in reference to vg. Hence a strictly better solution
can only exist if it has r5; = 0 and thus r,, =1, i.e. if we find a satisfying assignment. Any
such assignment indeed provides a strictly better solution: the nodes in the base construction
cannot have less equity than 0, and the nodes in the unhappy penalty gadgets have strictly
larger equities. Nodes vy, v}, still have an equity of 0, and nodes sy and w still have an equity
of 1. Thus a strictly better solution than r exists if and only if ¢ is satisfiable.

C Different optima for different objectives

C.1 Proof of Theorem 8

Let us first describe simple example systems that fulfill the properties outlined in Theorem
8. For all pairs of objective functions f; and fs, we apply a similar approach: we create
a branching gadget to form two different solutions in the system, and we ensure that the
optimum of f; is obtained when r, = 1, but on the other hand, choosing 7, = 1 provides a
much better solution in terms of fo.

Let us now consider all the possible combinations of f; and fs:

e f; =MinDEFAULT: for this case, we can simply use a bank w with e,, = 0 and an
outgoing CDS in reference to x; this already ensures that r, = 0 results in a higher
number of defaults than r, = 1.

— For fo =MaxPREFER, we add ©(n) further nodes u; that have e,, = 2, and an
outgoing CDS of weight 1 in reference to y. These new banks can never go into
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default (so they do not influence the optimum of MinDEFAULT), but if r, = 0, then
their equities decrease from 2 to 1; as such r, = 1 gives a MaxPREFER value of
©(1), while r, =1 gives a MaxPREFER value of ©(n).

— For fo =MinUNPAID, we add a single new node u with e, = 0. This node will
have an outgoing debt of 1, and O(n) distinct outgoing CDSs of weight 1, all in
reference to y (for this, we need to add ©(n) distinct sinks to the system). Note
that this node w is in default in any case, so the optimum for MinDEFAULT is still
obtained when r, = 1. However, now 7, = 1 results in an unpaid debt of O(1)
altogether, while r, = 0 creates a total unpaid debt of ©(n) in the system.

e fi =MaxPREFER: let us choose a parameter n’ = ©(n), and add a large set of n’ nodes
w; that all have e,, = 2, and an outgoing CDS of weight 1 in reference to z (all going
to the same sink t). This ensures that r, = 1 is the most preferred solution of at least
n’ nodes.

— For fo =MinDEFAULT, let us select a large constant k, and add n’ — k distinct nodes
u; that have e,;, = 1 and an outgoing CDS of weight 2 to the sink, in reference to
y. Note that the system now consists of n’ + (n'—k) + O(1) nodes. If r, = 1, then
n’ + O(1) banks are in default, but this is the primary preference of at least n’
nodes. On the other hand, if 7, = 1, then only O(1) banks are in default, but this
solution is only preferred by (n’—k) 4+ O(1) banks. For a choice of a large enough
constant k, this satisfies our requirements.

— For fo =MinUNPAID, it suffices to add a single bank u with e, = 0, and n’ — k
distinct outgoing CDSs of weight 1 in reference to y, going to n’ — k distinct
sink nodes (again for some large constant k). With r, = 1, the unpaid debt is
n'—k = ©(n), but this is the primary preference of at least n’ nodes. With r, =1,
the unpaid debt is only O(1), but this solution is preferred by at most (n'—k)+O(1)
nodes.

e f; =MinUNPAID: we now use a bank w with e,, = 0 and some outgoing CDSs of weight
1 in reference to x; however, the concrete number of these CDSs will now depend on our
choice of fs.

— For fo =MinDEFAULT, we select a parameter n’ = O(n), and add n’ outgoing
unit-weight CDSs from w (in reference to ). We then create n’ — k further nodes w;
with e,, = 0 and an outgoing CDS of weight 1 in reference to y (for some constant
k). If r, = 1, this results in an unpaid debt of only n’ — k, but yields n'—k = ©(n)
defaulting nodes. On the other hand, r, = 1 gives an unpaid debt of n’, but only
results in O(1) defaulting nodes.

— For fo =MaxPREFER, we only add k outgoing CDSs from w (for some constant k),
going towards k distinct sink nodes. Besides this, we create ©(n) banks u; that have
ey; = 2 and an outgoing CDS of weight 1 in reference to y. With r, = 1, we now
have O(1) unpaid debts, but this is only the primary preference of k+ O(1) = O(1)
nodes. With r, = 1, we have k + O(1) unpaid debts, but this solution is preferred
by ©(n) nodes. This satisfies our requirements for a large enough constant k.
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C.2 A combined example

We also show that we can merge these examples into a single construction that satisfies the
properties outlined in Theorem 9; this shows that it is even possible that all the optima are
very far from each other simultaneously.

Furthermore, note that due to the CDSs in the network, the total amount of liabilities in
the system may be drastically different in different solutions. Due to this, we also consider an
alternative version of the MinUNPAID objective (termed MinPROPUNPAID) in this example,
where we minimize the proportion of unpaid liabilities compared to the total liabilities present
in the system; i.e. we minimize (3_, ,cp luv — Puw)/(Qpep lv)-

We also note that in contrast to our other results, this construction requires very large
edge weights to create gaps between all pairs of functions, and allow a straightforward analysis
at the same time. As such, this example does not generalize to the bounded edge-weight case
in a trivial way.

We prove Theorem 9 in the following form:

Theorem. Let h be an arbitrarily large number; for convenience, we assume h = w(n). There
erists a financial system with exactly four solutions r1, ra, T3 and ry, such that:

e in terms of MinDEFAULT, 71 is an Q(y/n) factor better than re, r3 and 1y,
e in terms of MazPREFER, ro is an Q(y/n) factor better than r1, r3 and ry,
e in terms of MinUNPAID, r3 is an Q(h) factor better than ri, ro and ry,

e in terms of MinPROPUNPAID, 14 is an Q(h) factor better than r1, ro and rs.

Proof. The different parts of our proof construction are illustrated in Figure 11. Creating
a system that has exactly 4 solutions is straightforward: we use 2 branching gadgets that
together provide 4 combinations of states. We can then use AND gates to create four indicator
binary nodes ui, us, us, uyq for each of these combinations. In each solution of the system,
exactly one of the four nodes w; has r,, = 1.

We then attach four different sets of nodes to the four indicator nodes in order to ensure
that each solution has the desired properties.

For the case of u;, we add a set W; of ©(y/n) distinct nodes to the system, which all have
0 funds. From each of these nodes, we create a CDS to ¢ with a weight of 1, in reference to u;.
Thus if u; is chosen, then none of these ©(y/n) nodes have any liabilities, and they all survive.
On the other hand, if we choose any other solution, then these CDSs all incur liabilities, and
hence our system has ©(y/n) nodes in default. Besides W7, the system will only have O(1)
nodes that can ever go into default, so in the solution where r,, = 1, the number of defaulting
nodes is only O(1). Thus u; is indeed a factor of (y/n) better than any other solution in
terms of MinDEFAULT.

To ensure that ug is the first preference of ©(n) nodes, we add a set Ws of ©(n) new nodes
to the system, all with 0 funds. We then create a CDS from s to each of these nodes with
a weight of 1, in reference to the negation of uy. If ug is chosen, then these ©(n) nodes all
have an equity of 1; otherwise, their equity is 0. Since the rest of our system will only contain
O(y/n) nodes, this shows that selecting u; is the primary preference of the ©(n) nodes in Wa,
while all other solutions are the primary preference of at most O(y/n) nodes, and thus s is
indeed an Q(y/n) factor better in terms of MaxPREFER.
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Figure 11: Example system where the optima for different objective functions are realized
in different solutions. For simplicity, the different parts of the construction are illustrated
separately.

Finally, we analyze the case of us and u4 together. For us, we only create one new node
w3 with e,, = 0, and add two new CDSs to the system. Both of these CDSs are in reference
to us, going to the sink ¢, and have a weight of h?; one of them comes from w3, the other
comes from s. For u4, we add a single node w4 with e,,, = 0 again, and we create two new
CDSs going to t. The first CDS comes from wy, has a weight of h, and is in reference to ug4.
The second CDS comes from s, has a weight of h3, and is in reference to the negated version
of u4.

This means that if any solution other than us is chosen, then we introduce h? paid and
h? unpaid liabilities into the system. Similarly, if u4 is chosen, then h3 paid liabilities are
introduced, but if u4 is not chosen, then A unpaid liabilities are introduced. In contrast to
this, the CDSs based on u; and ug only result in O(n) paid or unpaid liabilities, so since we
assume h = w(n), the total amount of liabilities is always determined by the CDSs of ug and
Uyg.

Let us analyze the total amount of paid and unpaid liabilities in all four solutions. If u;
or ug is chosen, then the CDSs of u3 ensure that there is a ©(h?) amount of both paid and
unpaid liabilities in the system. If ug is chosen, then the amount of unpaid liabilities is only
©(h), while the amount of paid liabilities is O(n). Finally, if uy is chosen, the amount of
unpaid liabilities is ©(h?), while the total amount of paid liabilities is ©(h?).

This shows that ug and u4 indeed fulfill our requirements. The total amount of unpaid
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liabilities is ©(h) in ug, and ©(h?) in all other solutions, which is indeed a difference of a
factor Q(h) in terms of MinUNPAID. The rate of unpaid to total liabilities is a constant in
u1 and ue, and asymptotically 1 in case of ug, but it is only @(%) in case of us. Thus, ug is

indeed a factor of 2(h) better than all other solutions in terms of MinPROPUNPAID. O

D Different model variants

D.1 Systems with loss

While our constructions were presented for « = 5 = 1, our results also hold for any a, 8 € (0, 1].
Moreover, a different choice of «, 8 only requires minor modifications to our hardness proofs.

Firstly, note that the choice of o and S only affects the behavior of nodes v that have
0 < r, < 1. Since the majority of our gadgets work with binary nodes, they require no
modification for any choice of «, 8. Recall that AND gates can be replaced by combinations of
NOT and OR gates, and cutoff gadgets are not used in our constructions. The only building
block we need to modify is the clean branching gadget: one can observe that a choice of
0y = % and ¢, = 1 provides a similar tool of binary choice for any «, 3.

The nodes representing the objective functions in our constructions are also binary nodes,
so they require no changes either. The only exception to this is the unhappy penalty gadget
in Theorem 15, but this was already defined with respect to a specific o, § in a default cost
setting.

D.2 Unit-weight contracts

We now discuss how to adapt our results to the case when we are only allowed to use debts and
CDSs of weight 1. We have already noted that in most cases when the weight of a contract is
not 1 (but a larger integer k), we can usually split this into k distinct contracts that come
from/go to k distinct source/sink nodes. In particular, we can apply this on the incoming
CDS of z in the clean branching gadget, or on node v of the MaxEQUITY reduction.

Note that if we also want to reduce e, in the MinEQUITY case to a constant, we can
similarly do this by introducing ©(n) new source nodes that are debtors of v.

Removing the infinitely large funds and weights in the construction of Theorem 14 is also
straightforward, as we have already noted in Appendix B.3.

The only more involved case is Theorem 15, and in particular, the unhappy penalty gadgets.
Note that in this gadget, for any integer weight k, we can again replace a contract of weight
k by k new intermediate nodes: e.g. for the contract from wu to £y, we create b intermediate
nodes with no funds that have a unit-weight incoming debt from « and a unit-weight outgoing
debt towards tg. Thus in order to adapt the gadget to this setting, we only have to ensure
that the parameters h and b are integers.

Recall that the choice of h is entirely up to us: we just need to select it large enough such
that it sends the corresponding node of the base construction into default, which can always
be done with a constant integer value. On the other hand, the value of b only needs to satisfy
b > %, so any integer value above this threshold suffices.
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Figure 12: Illustration of the transformation into the dependency graph, in line with [23].
Green arrows (with filled arrowheads) express long positions, while red arrows (with empty
arrowheads) express short positions.

D.3 The dependency graph

In order to gain a deeper understanding of the relations between nodes, the authors of [23, 24]
introduce the so-called colored dependency graph. This graph is essentially a transformation
of the financial system which removes the ternary relations (i.e. CDSs), and instead models
the system as a simple directed graph with edges of two colors: red and green. Intuitively,
a green edge from u to v means a long position, i.e. that it is better for v if u has a larger
recovery rate. On the other hand, a red edge from u to v means a short position, i.e. that a
smaller recovery rate at u is more beneficial to v. We now outline the formal definition for
the colored dependency graph; see [23] for more details.

The dependency graph has the same node set as the original financial system. The edges
of the dependency graph are then formed according to the following rules:

e [f there is a debt or CDS from u to v, we draw a green edge from u to v.

e If there is a CDS from wu in reference to w, we draw a green edge from w to u.

e If the incoming CDSs of v in reference to w have a total weight of >~ 5 Ii, = do in
the system, and we have [, , < dg, we draw a red edge from w to v.

w
u,v

An illustration of these rules, originally from [23], is visible in Figure 12. The rule set provides
a simple directed graph with two-colored edges. Note that given CDSs [y, ,, from nodes u;, a
red edge from w to v is only added if the CDSs together have larger weight than the debt
from w to v; otherwise, a higher r,, value is more beneficial for v altogether, so we call these
CDSs covered.

Based on the dependency graph, the work of [23] discusses 3 restricted classes of financial
systems that always guarantee the existence of a solution. The most general of these classes
is the class that we refer to as RFC systems, when no directed cycle in the dependency graph
contains a red edge. This model already ensures the existence of a solution [23], while still
allowing reasonably rich behavior, so it might be of particular interest.

For the general intuition behind this restricted model, we can consider the strongly
connected components (SCCs) of the dependency graph. Within each such SCC we only have
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Figure 13: Modified branching gadget for RFC systems

green edges, which ensures that if the recovery rate outside this component is fixed, then
there exists a maximal solution within this component. Given a topological ordering of SCCs,
every component is only affected by the preceding components in the ordering. Therefore,
we can iterate through the components in this order, and always select the maximal solution
in the current component, considering the recovery rates of the preceding components to be
already fixed.

D.4 Hardness results for RFC systems

We now discuss the proof of Theorem 20, i.e. adapting our constructions to the restricted
case of RFC systems.

We have already noted that the key observation is that, in fact, directed cycles are very
rare in the dependency graphs of our constructions: we mostly use logical gates that follow a
specific ordering, and thus the dependency graphs are already very close to DAGs. The only
exceptions are branching gadgets, where x and y both have a CDS in reference to each other,
and hence there is a red edge between them in both directions. Indeed, x and y clearly have a
short position on each other.

Hence we only need to devise a branching gadget that has the same functionality, while
also satisfying the RFC property. This modified branching gadget is illustrated in Figure
13. The gadget is based on two nodes that are connected as shown in Figure 7 earlier; we
now term them vy and v{. These nodes have no funds, a debt of 1 to each other, and are not
affected by any other banks. The solutions of this subsystem are exactly the clearing vectors
with ry, =1, = p for some p € [0, 1].

The key idea behind our approach is to ensure that in any reasonable solution, this
subsystem obtains either a very small or a very large p value; then the value of p being small
or large indicates the binary choice that was previously represented by our branching gadgets.

We ensure that in every reasonable solution, we have either p < % or p > % in this
branching gadget. To achieve this, we append two cutoff gadgets to vy, one with parameters
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n = % and 79 = %, and the other with n; = % and 1y = %. Let the output nodes of these
cutoff gadgets be denoted by w; and ws, respectively. We then encode the condition w; AND
(NOT wq) through logical gates, and if this condition holds, we introduce a very large penalty
to our objective function (discussed in detail below).

This already ensures that we cannot have p € [%, %] in any reasonable solution. If an
approximation algorithm would return such a solution, then we could easily improve the
objective function value by simply selecting an arbitrary assignment of variables (that either
satisfies ¢ or it does not), and consider this assignment instead, thus obtaining a strictly
better approximation algorithm.

Finally, we add two further cutoff gadgets to node vy, with parameters 71 = %, N = %
and parameters 177 = %, N = % If we denote the output of the first gadget by x, and the
negation of the output of the second gadget by y, then we can use x and y to represent a
binary choice like our original branching gadget. These gadgets ensure that if p < %, then
ry =1 and ry, =0, andifpz%,thenrx:Oandryzl.

We note that when p € (2, %) or p € (2, 2), then the cutoff gadgets do not ensure that w;
and we are binary nodes, and thus our penalty indicator node might also not be binary. This
means that for this alternative branching gadget, some fraction of the penalty might already
apply when p € (%, %) or p € (%, %) However, any such solution can be improved by selecting
p < % or p > % instead, respectively; thus, we could even assume that reasonable solutions
always have p ¢ (%, %) Note that we are indirectly using two properties in this claim: (i) that
the recovery rate of the cutoff gadget’s output is monotonic in the input even on the interval
[m1,m2], and (ii) that the penalties we introduce for the specific objectives are also monotonic
in the recovery rate of our penalty indicator node.

Also note that our alternative branching gadget becomes significantly simpler for the case
of f < 1. In this case, the only valid solutions to the subsystem consisting of vy and v{, are

(0,0) and (1,1), so vy itself can already represent the binary choice without the cutoff gadgets.

Penalty functions for the objectives For most of the objective functions we have studied,
it is rather straightforward to add a very large penalty in case our restrictions on any of
the alternative branching gadgets is violated. For convenience, we assume that the penalty
indicators of the branching gadgets are first merged into a single node with an OR gate, and
then negate it; this node indicates whether all the branching gadgets are “initialized” properly.

For example, if we add n new nodes with funds of 0 and an outgoing CDS of weight 1
(in reference to this penalty indicator), then this already suffices for the MinDEFAULT and
MinUNPAID objectives. Any incorrect initialization of a branching gadget will then result in
n extra defaults and an extra unpaid debt of n, so any such solution is only improved if we
replace it by an arbitrary variable assignment. If we change the funds of the nodes to 1 and
the CDS weight to 2, then this also works for MinLEASTPREFER. Note that given our original
construction on n nodes, we can indeed add O(n) new nodes to this system without changing
its basic properties: all functions values will still have the same magnitude compared to the
network size.

For MinEQUITY, we can simply add a large-weight incoming CDS to v if the penalty
applies; the same approach also works with MinDIFF.

For maximization problems, we use a different approach to avoid adding a value of ©(n)
to any solution. Here we simply add a large-weight outgoing CDS to every bank of our
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original system, in reference to the penalty node. This is sufficient for both MaxEQUITY and
MaxPREFER, as well as for MaxSURVIVING.

MaxPAID requires a slightly different approach: we consider the extra nodes wu; that
implement the objective function, and instead of giving them funds of 1, we give them an
incoming CDS of weight 1 in reference to the negation of the penalty indicator node. If
the constraints are violated, then even if we find a satisfying assignment of ¢, this results
in no paid liabilities in the network, since the banks u; have no assets at all. As such, if ¢
is satisfiable, then an approximation algorithm must return a solution where the branching
gadgets are initialized properly.

In case of Theorem 14, we add a further, even larger control group where the recovery
rates are always 1, unless the penalty indicator is set to true; thus any arbitrary assignment
of ¢ is more optimal than violating a constraint.

In case of Theorem 15, we add an outgoing CDS from w with weight 2 in reference to the
penalty node.

D.5 Green systems and regularity

As discussed before, the alternative branching gadget in Theorem 20 uses a debt-only network
with multiple solutions to create a large solution space. As such, we now take a detour to
study such systems, or more generally, any systems with only long positions (i.e. greens
systems). Recall that a green system can only contain simple debts and so-called covered
CDSs (see the definition of the dependency graph). Theorem 21 shows that in these systems,
default ambiguity can only happen in very special cases.

Before the proof, we note that one might wonder if the second observation in Theorem
21 can also be phrased with a path of green edges instead of a path of contracts. However,
this is not the case. Essentially, the property we require for the proof is that a, > 0 already
implies a, > 0; this indeed holds if we have a debt or a covered CDS from u to v. On the
other hand, a green edge from u to v can also be present because v has an outgoing CDS in
reference to u (see the second point in the definition of the dependency graph), which does
not satisfy this property.

The early work of Noe has already studied default ambiguity in debt-only networks,
showing that the solution is unique if from any bank there is a directed path to another
bank with positive funds [9]. We now prove a more general version of this result, generalizing
the theorem to any green system. In particular, we show that green systems can only have
multiple solutions in a special edge case: when we essentially have a strongly connected
component of positive liabilities, with no funds and no incoming assets at all.

The first step of the proof is to note that a green system ensures the existence of a maximal
and minimal solution. This has already been proven in the work of [23]: intuitively, the
payment functions are monotonous due to the long positions, so one can use the Knaster-
Tarski fixed point theorem to prove that a maximal solution r and minimal solution r’ exists.
This maximal (minimal) solution assigns the highest (lowest) recovery rate to every bank
simultaneously.

We first outline the rest of the proof for debt-only networks, and then we separately
discuss the changes required for the case of green systems. The proof for debt-only networks
is basically the same as in the analysis of Eisenberg and Noe [9], extended with some further
observations.
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Proof for debt-only networks. Using r and 7/, one can first show that any bank v must have
¢y = ¢, in these two solutions r and r/. Intuitively, since the sum of equity is fixed in any
solution (see Lemma 4), if a bank had lower equity in ' than in r, then another bank would
need to have a larger equity in r’ than in r, which is a contradiction. Since the equity of each
bank v is maximized in r and minimized in 7/, this also implies that v has the same equity in
every solution of the system.

Now let us assume that a bank vg has two different recovery rates in two solutions of
the system; since r and 7’ contain the maximal and minimal recovery rates for vg, this also
implies 7, > 7, . As such, it is enough to show that our observations hold if r,, > 77, .

Since vy is still in default in the solution 7/, there will be strictly more payment on the
outgoing debts of vy in r. As the system is loss-free, each defaulting bank will relay these
extra payments, and they will traverse the network until either reaching a bank u with 7/, = 1,
or arriving back at vg. However, the former is also not possible: if a bank with 7/, = 1 receives
more incoming payment, then its equity strictly increases, which contradicts the previous
observations.

This means that every directed path of debts starting from vg must lead back to vy,
implying that the nodes reachable from vy form an SCC C. Moreover, note that it must also
hold that each bank u € C has ¢, = 0 in both solutions. This also implies that e, = 0 for any
u € C" since no outgoing payment leaves the SCC, we would otherwise have a positive equity
in at least one of the banks in C' (again due to the argument in Lemma 4). Similarly, having
ew > 0 at a bank w with a path of debts to C' implies that a positive amount of assets arrive
in C, so again at least one bank in C' would have a positive equity. O

Hence for debt-only networks, the nodes reachable from vy form an SCC C with no funds
and no incoming assets at all.

Proof for green systems. Adapting the same argument to green systems is not straightforward,
since we also have CDS contracts, and these might carry less payment in 7 than in " if the
reference entity has a higher recovery rate in r. As such, it is not immediately clear that a
higher r,, value at v always translates to strictly more payment for the creditors of u.

This could be a problem for our proof: if there are funds in C' that indirectly provide
an equity to a node v, but v does not receive extra payments in r, then we do not have our
previous contradiction. As such, the technical part of the proof is to prove the following claim
in green systems.

Lemma 25. Ifr, >, and p,,, >0 in 7', then a, > a,.

Since we have [, < [, for any liability, a, > a}, will then imply r,, > r} if v is still in default
in 7.

We can then again use C' to denote the set of banks that are reachable from vy on a path
of contracts that all have positive payment in r’. As before, an inductive argument shows
that for any node u € C' we must have a, > aj,.

This once again ensures that each bank v € C has e, = 0: otherwise, since there are no
outgoing payments from C in 7/, we would have a bank v in C' with positive equity ¢}. Then
a, > a, would imply ¢, > ¢, which is a contradiction. Similarly, having e,, > 0 at a bank
w ¢ C but with a path of contracts to C' would imply that a positive amount of assets arrive

in C, so again at least one bank in C' would have a positive equity. O

33



Recall that for debt-only networks, we have also noted that the nodes reachable from vg
form an SCC. Making an analogous statement is not so straightforward in this case, since
the same claim only holds for the contracts that have a positive liability; e.g. if there is a
CDS from vy to a bank u such that the liability on the CDS is 0 in any solution, then no
restrictions follow for u. As such, in this case, it is not straightforward to find the component
C' that is affected by the extra payments; we have to compute 7’ in order to do so. Due to
this, we have limited the scope of Theorem 21 to nodes reachable on debt contracts.

Altogether, the solution of a green system is known to be unique if we ensure that for
every bank vy, there is either (i) a bank u reachable from vy on a path of debt contracts, with
ey > 0, or (ii) a bank w with e,, > 0 such that vy is reachable from w on a path of contracts
of any kind.

Regularity is the simplest way to ensure this property, but we can also come up with
weaker conditions instead: e.g. we could specifically say that a system is path-regular if for all
v € B, there exists a bank w with e,, > 0 such that there is a path of contracts from w to v
in G. However, enforcing this would be much more difficult from a regulator’s perspective.

Finally, let us discuss the proof of our technical lemma.

Proof of Lemma 25. We first create an auxiliary network that separates the effects of each
covered CDS contract. Given a CDS 4§y, we introduce a fictitious node z for this specific
CDS: we (i) set 2z to be the new creditor of the CDS 4,/,, (ii) add a debt of weight d,;, from
w to z, (iii) decrease the debt from w to v by &}/, and (iv) introduce an infinite liability from
z to v. This bank z essentially captures the payments we attribute altogether to the CDS
and the “part” of the debt from w to v that covers it. The payment is visible as p, ,. Note
that each CDS is covered in our green system, so we can introduce such an auxiliary node for
all incoming CDSs of v in reference to w, and the weight of the debt from w to v will still
remain non-negative.

Now let us begin the proof of a, > a,. First, note that since payments on each debt
contract are monotonic in the recovery rates, each incoming debt of v has at least as much
payment in r as in 7. Also, for a covered CDS 0y, if r, > r,, and r, > ry,, then we have
Pzw > P, from the corresponding auxiliary node z. This already implies a, > a;,. It only
remains to show that if r, > 77, and p;,, > 0, then the contracts from u to v indeed carry
strictly more payments, so we have a, > a,.

If the payment from u to v happens (partially) on a simple debt contract, then this is
straightforward: r, > r], implies a strictly higher payment on any such contract.

If the payment happens on a CDS in reference to w, and the payment becomes strictly
larger in the solution r (e.g. because r,, = r,,), then we are again finished. This leaves the
more involved case when the payment on this CDS does not increase: this can indeed happen
if we have r,, > 7/, and thus the liability on the CDS is smaller in 7.

Hence assume that we have r,, - ;- (1 —7y) <7, - 6,7, - (1 —1,). First note that since
ry > 1), this implies r,, > r/,. Let z denote the auxiliary node for this CDS; we need to show
that even though the payment on the CDS did not increase, we still have a, > a’,. For this,
we need to show for the sum of payments that

ru-5$v~(1—rw)+5$v-rw>r;~(5}fyv-(1—riu)+5$v-riu.

The definition of 2 allows us to conveniently remove the coefficients 4,/ , from each term. We
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expand the brackets to obtain

Tu+Tw — Ty Tw > Thy + T —Th - Th.
Adding —1 and reorganizing provides (1 —ry) - (1 —7y,) < (1 —7),) - (1 —r},), which indeed
holds since r,, > 7!, and 1y, > 1},. O

D.6 Hardness results for regular systems

We now discuss the proof of Theorem 23, i.e. that our hardness results carry over to the case
when each bank v has e, > 0.

Proof of Theorem 23. We have already outlined that the main idea is to consider a new pair
of binary states at a bank v: we still have r, = 1 as one of the two states, but now the other
state will be represented by 7, = % This will allow us to give some funds to every node in
our construction, thus fulfilling the regularity condition.

In fact our main building blocks are surprisingly easy to adapt to this setting: one can
observe that by setting e, = e, = 0.5 in the clean branching gadget, setting e,, = 0.5 in
the NOT gate and also e,, = 0.5 in the OR gate, all of these gadgets will exhibit the same
functionality as before (assuming, of course, that the inputs now also follow this new binary
representation). Any AND gates can be replaced by a combination of NOT and OR gates, and
the cutoff gadgets are not used in the base versions of our hardness proofs.

As such, these simple changes already allow us to adapt the base construction to the case
of regular systems. It remains to discuss the modifications in the rest of the system for each
of our hardness results.

For both of the equity objectives, we can simply set e, = 1 and add a new outgoing debt
of weight 1 from v; this does not affect the equity of v in any solution. This also settles the
reduction for MinDIFF, where we execute this for both v; and wvs.

In the construction used for MinDEFAULT, MaxSURVIVING and MinUNPAID, we can simply
set the funds of the extra nodes to e,, = 0.5; this still ensures that the attached CDS will
result in defaults and unpaid debts. On the other hand, the extra nodes in the constructions
for MaxPREFER, MinLEASTPREFER and MaxPAID already satisfy regularity.

Adapting the system in Theorem 14 is a more difficult task. Fortunately, the nodes in
the control group do not cause any problem in this setting: we can change their funds to
some small value, e.g. e,, = 0.1, so their recovery rates in the two cases will be r,, = 0.1 and
ry; = 1. This still ensures that an unsatisfying assignment results in a total distance of at
least 0.9 - 2V° . m1/ ¢ and thus we can apply the same argument as before.

On the other hand, the branching gadgets in the generating group require more attention.
Note that we only want these gadgets to introduce a binary choice when their source nodes
receives funds, but otherwise, we want them to have a single solution only. One can show
that this happens if we provide e.g. % funds to their source node: a clean branching gadget
with e; = § and e, = e, = 1 indeed has only one solution (at r, = 1 +/3/4, ry = 1 —/3/4).
On the other hand, if the source node receives 2 more assets, then it behaves like a regular
branching gadget as discussed above.

Theorem 15 is again a more involved case, since we have to adapt our gadgets to the
case of systems with loss. We discuss this construction for « = 8 = 0.5. One can observe
that we can again use the original clean branching gadget, NOT gate and OR gate with minor
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modifications: we now set the funds of the corresponding nodes to % instead of % This way,
when the nodes are in default, they only have a recovery rate of % after applying default costs,
S0 in this case, our binary states will be represented by recovery rates of 1 and %

Adapting the rest of the construction is a simpler task: we can set e,, = ey = % to ensure
that the subsystem has two solutions ry, =7, =1 and ry, =1,y = %, as discussed at the
end of Section 6. We also set e,, = 1. Note that in the unhappy penalty gadgets, every node
(except for the sink) has funds already, so this requires no major modification; we only need
to scale up the weights of the CDSs to account for the fact that the lower binary state is now
represented by 7, = % instead of r,, = 0. O
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