
Contents lists available at SciVerse ScienceDirect
Signal Processing: Image Communication

Signal Processing: Image Communication 27 (2012) 457–469
0923-59

doi:10.1

n Corr

E-m

wattenh
journal homepage: www.elsevier.com/locate/image
Peer-to-peer streaming in heterogeneous environments
Remo Meier n, Roger Wattenhofer

Swiss Federal Institute of Technology, Distributed Computing Group, 8092 Zurich, Switzerland
a r t i c l e i n f o

Available online 21 February 2012

Keywords:

Peer-to-peer

Streaming

Scalable coding

Erasure coding
65/$ - see front matter & 2012 Elsevier B.V. A

016/j.image.2012.02.008

esponding author.

ail addresses: remmeier@tik.ee.ethz.ch (R. Me

ofer@tik.ee.ethz.ch (R. Wattenhofer).
a b s t r a c t

Peer-to-peer overlay networks are comprised of different kinds of devices, from mobile

phones to high-definition televisions. They differ in size, computational power, and

Internet access. The design of any peer-to-peer system has to account for such

heterogeneous environments. For example, in the context of content delivery systems,

the content must be delivered reliably, on time, and in a format suitable for each peer.

This work addresses the heterogeneity and reliability of peers in peer-to-peer

streaming applications. It applies lessons learned from distributed hash tables (DHTs)

by adopting a prefix-based overlay structure. The flexibility of its neighbor selection

policy is exploited to make use of scalable coding and erasure coding schemes, bringing

different kinds of peers together in a single overlay network. Thereby, each peer can

select the appropriate number of scalable coding layers to obtain content in a suitable

format. The prefix-based nature further allows efficient content distribution with low-

delay, simple maintenance, strong connectivity, and quick adaption to changing

conditions; making the proposed algorithms desirable for real-world use, for both

peer-to-peer live and on-demand streaming.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Peer-to-peer technology is an appealing paradigm for
the distribution of audio and video content. It allows
utilizing the resources of participating peers to overcome
the shortcomings of more centralized, server-based
approaches. More recently, there is a trend toward appli-
cations that deliver content in real-time, such as peer-to-
peer streaming applications. At the same time, we witness
a variety of devices from mobile phones and tablet
computers up to high-definition three-dimensional tele-
visions gaining access to the Internet. The design of any
peer-to-peer system has to consider this heterogeneous
nature of peers.

For file-sharing applications, the capabilities of peers
only influence the average download time. In contrast,
ll rights reserved.

ier),
streaming applications face the challenge of delivering
content with strict a playback deadline; content not
delivered on time is of no use to a peer, and is discarded.
This makes the design of any peer-to-peer streaming
system more intricate. It is practically impossible to
distribute content encoded in a single format, i.e., with a
given resolution and bitrate. Peers may lack the band-
width to sustain a stream. Weaker peers may be unable to
process the incoming content. Action sequences in a video
stream can lead to bursts of packets. Mobile devices lack
the display to output high definition content. And chan-
ging network conditions may abruptly alter the situation
of individual peers.

In this work we present novel techniques to cope with
heterogeneous peers. A structured yet flexible overlay net-
work is able to accommodate arbitrary heterogeneous sets
of peers, and allows the delivery of both live and on-demand
streams. The overlay employs a prefixed-based routing
policy, similar to distributed hash tables, to gain desirable
properties, such as an efficient distribution with low delay,
robustness to churn, and guaranteed connectivity among all

www.elsevier.com/locate/image
www.elsevier.com/locate/image
dx.doi.org/10.1016/j.image.2012.02.008
mailto:remmeier@tik.ee.ethz.ch
mailto:wattenhofer@tik.ee.ethz.ch
dx.doi.org/10.1016/j.image.2012.02.008

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469458
peers with a logarithmic overlay diameter. Scalable audio
and video coding schemes (whereas content is partitioned
into multiple coding layers) and erasure coding schemes
complement the overlay structure to address the varying
capabilities and reliability of peers. In contrast to other
work, a single connected prefix-based overlay network is
sufficient to distribute all coding layers. This eases the
implementation, provides better robustness, and allows peers
to more quickly adapt to changing network conditions.

The subsequent Section 2 reviews techniques to
approach the heterogeneous nature of peers and studies
related literature. Scalable coding schemes are presented
in Section 3. Section 4 presents our overlay structure and
content distribution mechanism. While the focus is on
live streaming protocols, the used techniques are also
applicable to on-demand and live/on-demand hybrid
streaming protocols. Finally, Section 5 evaluates the
proposed mechanisms and Section 6 concludes this paper.
1 http://tools.ietf.org/html/draft-pantos-http-live-streaming-06
2. Related work

Peer-to-peer live streaming protocols are mainly cate-
gorized according to the topology maintained among the
peers or, equivalently, the neighbor selection algorithms
the peers employ. Simple multicast systems are based on
overlay trees [3,7,29]. While tree topologies are concep-
tually simple, there are rather serious drawbacks which
render such systems inefficient. For example, resources
are wasted as the leaves of such a tree do not contribute
anything to the system, while inner nodes having two
children need to upload at twice the bitrate of the stream.
The fragile tree structure is not resistant to peer failures
or churn, and a peer is limited by its weakest predecessor
in the tree. While maintaining several trees [2] improves
the robustness of a system, each tree can break individu-
ally, and the overhead potentially increases as more trees
have to be repaired continuously (and concurrently).

Since a rigidly structured overlay requires permanent
maintenance, care has to be taken not to burden the
individual peers. Therefore, unstructured overlays have
been favored over structured overlays, and various pro-
tocols based on unstructured overlays have been pro-
posed, e.g., CoolStreaming/DONet [31], Chainsaw [18] and
GridMedia [14]. Typically in unstructured overlays, peers
have to notify neighboring peers about available blocks of
data, and peers that are interested in obtaining these
blocks must explicitly request them before any data is
exchanged, because there is no structure in the network
that can be used to disseminate data. Unstructured over-
lays are considered more robust, whereas they have the
disadvantage that notifying peers and subsequently
requesting data blocks potentially results in long delays
before any data is exchanged. If further optimizations are
applied (such as favoring connections among near-by
peers) there is the additional concern that unstructured
overlays fall apart due to the lack of structure and the
formation of clusters.

In the literature, there are four main techniques to fix the
lack of guarantees and the heterogeneous nature of peers:
stream switching, source coding, multiple description
coding (MDC), and scalable coding. Each coding technique
has its own merits.

Stream switching encodes the content at different
bitrates. A peer chooses a bitrate for download based on
its capabilities and available bandwidth. The peer may
later switch between bitrates to adapt to changing net-
work conditions. For video streams, switching takes place
at regular key frames or dedicated switching frames [9].
There are a variety of different implementations. More
recently, HTTP Live Streaming1 (also referred to as HLS)
has been submitted to the IETF for standardization and is
gaining in popularity due to its simplistic HTTP-based
design. Stream switching works well in server-based
environments, but it faces challenges when applied in
peer-to-peer systems. Streams with different bitrates are
independent of one another. Accordingly, peer-to-peer
systems have to partition the peers into groups based
on the chosen bitrate and thereby may separate near-by
peers. Switching between streams is prohibitively expen-
sive; peers have to replace connections to neighboring
peers and the contents of their buffers. Furthermore,
stream switching is not resilient to missing data blocks.
Peers would have to choose a sufficiently low quality to
ensure a timely delivery of all blocks at all times.

Erasure codes, such as Reed–Solomon codes [21], LT
codes [13], and Raptor codes [25], allow the generation of
n coded blocks from k original data blocks with n4k,
whereas any kþE coded blocks with EZ0 allow the
reconstruction of the original data blocks. For a perfect
erasure coding scheme, it holds that E¼ 0. However, most
schemes trade the optimal message complexity for a
lower computational complexity with E40. In the context
of peer-to-peer streaming and file sharing systems, era-
sure codes are used to implement source coding. The
source performs an erasure coding of the content before
distributing it in its swarm. Erasure coding schemes allow
users to cope with lost data blocks caused by unreliable
peers and network links. However, source coding cannot
cope with heterogeneous peers. Any kþE�1 coded blocks
are statistically independent of the original blocks.
Accordingly, the download of an insufficient number of
blocks leads to no useful information at all.

Finally, the (related) coding techniques multiple

description coding (MDC) [5] and scalable coding [23]:
Both coding schemes produce pictures and audio samples
from subsets of data blocks. The size of the subset
determines the quality. While MDC decodes any subset
of data blocks, scalable coding enforces a pyramid-like
structure: data is partitioned into a base layer and multi-
ple enhancement layers. The base layer is mandatory to
obtain an initial low quality result. The download of
additional enhancement layers gradually improves the
quality, but only if the layers beneath are available as
well. While MDC is more flexible, scalable coding is more
efficient. With a pyramid-like structure, scalable coding
schemes more closely resemble current state-of-the-art
coding schemes such as H.264 [30]. Simply speaking,
H.264 employs two mechanisms. First, the current picture

http://tools.ietf.org/html/draft-pantos-http-live-streaming-06

Fig. 1. Spatial scalability with three spatial layers. The resolution

doubles with each layer.

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469 459
is estimated from previous (reference) pictures by encod-
ing a set of motion vectors into the bitstream. Second, it
transforms the estimation errors into a frequency domain,
quantizes the frequency coefficients, and encodes the
quantized frequency coefficients into the bitstream.
A pyramid-like structure allows efficient implementation
of scalable coding schemes by gradually improving, for
example, the quantized frequency coefficients. In con-
trast, MDC has to use more elaborate techniques to gain
its properties, rendering an implementation expensive in
terms of computational complexity and bitrate. The close
relation of scalable and regular coding schemes further
allows the reuse of many existing software and hardware-
based optimizations.

The properties of MDC and scalable coding make these
coding schemes desirable for use in heterogeneous peer-
to-peer systems. Multi tree-based systems like Split-
Stream [2] frequently refer to MDC to mask problems in
the employed distribution trees inflicted by selfish beha-
vior, churn, and congestion. A more detailed study of MDC
in the context of tree-based systems is given in [20].
Reasonable playback quality is achieved whenever a
sufficient number of trees provide data blocks. Scalable
coding schemes garner less attention because they
address only the heterogeneous nature of peers, not their
reliability. A missing key frame in the base layer prevents
the use of any downloaded data from any layer. Never-
theless, considering their close relation to existing
schemes and their superior efficiency, and taking into
account that bandwidth is the most precious resource in
content delivery systems, scalable coding is the more
suitable approach.

Source coding, applied to each scalable coding layer,
may complement scalable coding to gain the needed
resilience against unreliable peers. In [15,16], the authors
propose a similar approach by employing network coding
in addition to scalable coding. While network coding is
more flexible than source coding, it entails significant
computational overhead for both the reconstruction of
the original data blocks and the necessary techniques to
authenticate network coded blocks.

Baccichet et al. [1] augment the Stanford Peer-to-Peer

Multicast (SPPM) protocol [17] with scalable video coding
support. Peers are organized into multicast trees. Unlike
SplitStream, blocks of different coding layers are distrib-
uted within the same trees. To account for the pyramid-
like structure of scalable content, more powerful peers are
positioned closer to the source and peers drop higher
(optional) coding layers if they are not able to forward all
incoming data to their children. Unfortunately, the pro-
posed protocol assumes a static setting wherein peers
have a known upload capacity. Changing the download
rate of a peer requires restructuring the distribution trees.
The received download rate of a peer is further limited by
the weakest predecessor. And peers have an incentive to
move close to the source to obtain the best possible
quality, which can promote selfish behavior.

This work advocates the use of structured overlays
based on a prefix-routing neighbor selection policy [19,22].
The prefix-based nature allows an efficient content dis-
tribution with low delay, similar to tree-based systems,
while maintaining flexible neighbor selection and content
exchange policies, similar to unstructured overlays. The
flexibility further lets peers make use of scalable and
erasure coding schemes. In doing so, arbitrary heteroge-
neous sets of peers can join the same overlay network,
wherein peers can choose the number of consumed
coding layers. The prefix-based structure ensures that
the overlay remains connected regardless of the interest
of peers and the applied optimizations.

3. Overview of scalable coding

There are scalable coding schemes for both video and
audio content. Audio content usually has a bitrate from
32 Kbps to 2 Mbps. In contrast, the bitrate of video
content ranges from 192 Kbps to 40 Mbps. Clearly, video
content dominates in terms of bit complexity. Accord-
ingly, the main focus of this work is on scalable video
coding schemes. Scalable audio coding becomes necessary
to support low-end devices at low bitrates.

The subsequent subsections discuss scalable video in
the context of H.264, which is, at the time of this writing,
considered the state-of-the-art video coding scheme. SVC
is the scalable video extension of H.264. The reader is
referred to [23,30] for a more detailed description. Scal-
able video coding allows scaling video content in three
dimensions: spatial, quality, and temporal scalability.
Accordingly, each data block carries a spatial, a quality,
and a temporal index. Three-dimensional video, employ-
ing separate pictures for different viewing angles, can be
considered being a fourth dimension of scalability.

3.1. Spatial scalability

Spatial enhancement layers increase the resolution of a
video. Typically, every enhancement layer doubles both
the width and height. Three or four spatial layers cover a
variety of devices from mobile phones to high-definition
televisions. H.264 uses macroblocks 16�16 pixels in size
that may further be subdivided into 16�8, 8�16, 8�8,
8�4, 4�8, and 4�4 blocks. For this reason, spatial
scalability with a factor two fits in naturally when scaling
macroblocks from lower layers. A sample screenshot with
three spatial layers is depicted in Fig. 1.

Fig. 2. Refinement of the 16 DCT frequency coefficients of a 4�4 pixel

block by a quality enhancement layer. In this example, the base layer

quantizes the DCT coefficients to five different values. The enhancement

layer doubles the quality of the quantization by allowing 10 different

values.

Fig. 3. Quality scalability with four quality layers. The picture quality

increases with each layer; the resolution remains the same. The H.264

quantization parameter QP is decreased by 6 with each layer.

0

3
2

3

1
0

3
2

3

I P P P P P P P P

without
B-Frames

0

3
2

3

1
0

3
2

3

I B B B B B B B P

with
B-Frames

Fig. 4. Reference structure of video frames when temporal scalability is

used. The numbers denote the temporal index of a frame. One may or

may not place I-frames in a dedicated temporal layer.

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469460
3.2. Quality scalability

Quality enhancement layers improve upon the quality
by refining the quantized frequency coefficients (see
Fig. 2). The resulting pictures are sharper with fewer
artifacts, while the resolution stays the same. Typically
two, but not more than three, quality layers should be
used. Otherwise, the quantization becomes too coarse to
give an acceptable quality to lower layers. In such a case,
it is more reasonable to change the resolution by introdu-
cing additional spatial layers. The bitrates of quality layers
are usually chosen to match the bitrate of all the layers
underneath, i.e., doubling the total bitrate. A sample
screenshot with four quality layers is depicted in Fig. 3.

3.3. Temporal scalability

Temporal scalability adjusts the frame rate of a video.
The motion mechanism of H.264 estimates the current
frame from one or more reference frames. By carefully
selecting reference frames, it is possible to skip some
(non-referenced) frames altogether. Fig. 4 depicts an
example with four temporal layers. The decoder may skip
up to seven frames by only downloading the temporal
base layer. However, the exponential reference structure
forces the encoder to encode changes, like the change
from one scene to another, multiple times for each
temporal layer. A more efficient approach employs bi-
predictive frames (B-Frames) whereby the encoder reor-
ders frames before the encoding process; a frame may
reference frames from both the past and the future,
avoiding the aforementioned issue of redundant coding.
While the number of frames grows exponentially with
every temporal enhancement layer, temporal layers are of
about equal size because the distance to reference frames
becomes exponentially smaller.

Temporal scalability serves two purposes. Besides
allowing the skipping of frames without breaking the
decoding loop, it may complement quality scalability,
known as medium grained quality scalability. The down-
load of all enhancement frames is not mandatory. The
download of enhancement frames with a low temporal
index gives an initial slight increase in quality. Clients are
not constrained by fixed coding layers and can more
efficiently adapt to the available bitrate. The exponential
reference structure of temporal scalability ensures that
small coding errors inflicted by missing blocks do not
propagate and accumulate over a large number of frames.

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469 461
3.4. Example

Various configurations combining the three dimen-
sions of scalability are feasible. A configuration may use
three spatial layers, i.e., three different resolutions. If the
base layer has a resolution of 480�270 pixels then the
first enhancement layer has a resolution of 960�540
pixels and the second enhancement layer has a resolution
of 1920�1080 pixels. Each resolution may be further
partitioned into two quality layers, creating six layers in
total. Both quality layers are of about equal size. Seven
temporal layers allow skipping up to 63 frames and
smoothly adjusting the quality scalability.
3.5. Audio scalability

Scalable audio coding works in a similar fashion by
adapting the number of channels, the sample rate, and the
quality. Scalable audio coding has, however, no equivalent
to the temporal scalability of scalable video coding.
Scalable audio coding schemes are implemented, for
example, based on AAC, a state-of-the-art audio coding
scheme.2
4. Protocol

In the following, an overview of our techniques to
design a peer-to-peer streaming protocol suitable for
heterogeneous environments is given. The focus is on live
streaming systems, but the necessary changes for on-
demand and hybrid systems are outlined as well. The
proposed techniques are independent from the under-
lying transport mechanism and are applicable to both
UDP and TCP-based systems. Our implementation makes
use of both UDP and TCP to maximize connectivity among
peers in the presence of NAT devices, firewalls, and proxy
servers.

First, the protocol defines a data structure to hold
scalable content. Second, it specifies the interconnections
among peers, i.e., an overlay structure. The overlay is
inspired by the structured topologies of distributed hash

tables (DHTs) which guarantee connectivity and a loga-
rithmic diameter. The flexibility of the neighbor selection
policy is exploited to account for the different kinds of
peers and additional factors which influence performance,
for instance, bandwidth requirements and latency con-
straints. The topology aims at being resilient during churn
and massive correlated failures. Third, the protocol spe-
cifies how data is distributed in the overlay network. It
introduces a combination of fast push operations and
robust pull operations. Fresh data blocks are pushed
directly to a fraction of the peers without preceding
requests, in order to fuel the subsequent pull-based
exchanges and to achieve low latencies in the swarm.
The content distribution honors the pyramid-like struc-
ture of scalable content; delivering the appropriate num-
ber of coding layers to the individual peers.
2 See http://www.iis.fraunhofer.de/
4.1. Data structure

Our protocol makes use of both source coding and
scalable coding as argued in the related work section.
Scalable coding partitions the audio and video content
into multiple coding layers to serve different peers at
different bitrates. Accordingly, it is used to address
the heterogeneity of peers, but not their reliability.
A missing key frame in the base layer makes the use of
any downloaded content impossible. Conversely, erasure
coding allows the reconstruction of the original k blocks
from kþE out of n coded blocks, but any kþE�1 coded
blocks usually give no information about the original
blocks.

Scalable audio and video frames have a variable size
from a few hundred bytes to several hundred kilobytes
and carry a spatial, quality, and temporal index to denote
their position within the coding layers. The presented
protocol aims to work with small blocks fitting into the
maximum transfer unit (MTU) of typically 1500 bytes. In
doing so, peers can immediately forward incoming blocks
without having to wait for further fragments. Accordingly,
a data block may contain any number of (small) complete
media frames and may start, continue, or finish with a
fragment of a larger media frame.

Peer maintain multiple buffers for the most recent
blocks. Blocks are discarded if they reach some predefined
age. There is a dedicated buffer for the base layer and each
quality or spatial enhancement layer. Separate buffers
ease the exchange of blocks from subsets of layers. Each
buffer uses (independent) sequence numbers to address
blocks. Accordingly, a spatial index, a quality index, and a
sequence number uniquely address a data block from any
layer at any given time. The temporal index of a data
block is given by the lowest temporal index of a media
frame contained within the data block. Data blocks from
different temporal layers share a buffer to limit the
number of buffers to maintain. In doing so, only six
instead of 42 buffers have to be maintained to accom-
modate three spatial, two quality, and seven temporal
layers.

Each data block further carries references to other data
blocks. The reference structure is used for the (ordered)
delivery of media frames and to prioritize the download
of lower layer blocks. Recall that enhancement layer
blocks are of no use without the associated base layer
blocks. There are two types of references: layer references
and temporal references. A layer reference points toward
the corresponding data block in the next higher layer with
its sequence number. A single bit marks whether the
reference follows a spatial or a quality enhancement
layer. A temporal reference points to the closest prior

data block from the next lower temporal layer within the
same buffer. In case of a data block from the temporal
base, i.e., a key frame, the reference points to the prior
data block from the temporal base. Only the base layer
carries temporal references. Temporal indices of enhance-
ment blocks are estimated by following layer references
from lower layers with known temporal indices. If a data
block holds several media frames, it may also hold several
references. An example is depicted in Fig. 5.

http://www.iis.fraunhofer.de/

0 0 1 1 2 2 3 3 3 0 1 1

0 0 1 1 2 2 3 0 0 10 3

0 2 30 1Temporal layers:

12 15 18

36 39 42

seq:

seq:

Enhancement

Base layer

Quality reference:

Temporal reference:
44

0

45

3333 02

3

3837 4140 4746454443

1413 1716 2322212019

Fig. 5. Example with two buffers holding two quality layers and four

temporal layers. Each rectangle represents a data block. Each data block

carries a sequence number and some possibly fragmented media frames.

For example, the block with sequence number 44 carries four media

frames with a temporal index of 3 each (compare with Fig. 4). Part of the

first frame is already contained in the previous block. The number and

color of a data block denotes its temporal index. The temporal index

corresponds to the lowest temporal index of a media frame contained

within the data block. References among data blocks are depicted as

arrows. For example, the block with sequence number 44 has a temporal

reference to the block with the sequence number 43 and multiple

quality references to the blocks with the sequence numbers 18, 19,

and 20.

3 Depending on the application, the temporal priority may be

treated separately from the spatial and the quality priorities.

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469462
4.2. Neighbor selection policy

To maintain desirable overlay properties such as guar-
anteed small diameter, locality awareness, and robustness
to churn, our neighbor selection policy [10] applies
techniques used in the context of DHTs, for instance in
Pastry [22]. This DHT-like overlay is merely used to
maintain an efficient streaming topology—no data is
stored in the DHT. Each peer carries a d-bit peer identifier
and maintains connections to neighboring peers based on
shared prefixes of their respective identifiers. These iden-
tifiers are later used for prefix-routing, as links to neigh-
bors are stored for different shared prefix lengths. Let b
denote the number of bits that can be fixed at a peer to
route any message to an arbitrary destination. For
i¼ f0,b,2b,3b, . . .g, a peer chooses, if possible, 2b

�1 neigh-
bors whose identifiers are equal in the i most significant
bits and differ in the subsequent b bits by one of 2b

�1
possibilities. For example, in the case of b¼ 1, a peer with
identifier 01100 chooses neighboring peers for the iden-
tifier prefixes 1, 00, 010, 0111, and 01101 (if such peers
exist). If peer identifiers are chosen uniformly at random
or in a balanced manner, the length of the longest shared
prefix is bounded by Oðlog nÞ in an overlay containing n

peers; thus, only Oðlog nð2b
�1Þ=bÞ connections need to be

maintained. Moreover, every peer reaches every other
peer in Oðlog n=bÞ hops by repetitively selecting the next
hop to fix b more bits toward the destination peer
identifier yielding a logarithmic overlay diameter.

Similar to DHTs based on prefix-routing, the proposed
solution has the advantage that there is a large choice of
neighbors for short prefixes, which means that an opti-
mizing secondary criterion can be used to pick neighbors.
With n peers, there are roughly n=2pþb possibilities to
select a neighboring peer for a shared prefix length p. For
example, for a shared prefix length p¼ 0, a peer can
choose among half of all the peers to find a suitable
neighbor. The possibility of a secondary criterion is used
to address the diverse interest of peers in different coding
layers. Different kinds of peers may join the same overlay.
It is unnecessary to maintain multiple overlays for differ-
ent coding layers or to position more powerful peers
closer to the source – the common approaches to imple-
ment scalable coding support – since the prefix-based
nature of the proposed overlay already provides the
desired flexibility.

To augment the overlay structure with scalable coding
support, not only data blocks but also peers carry a
spatial, quality, and temporal index, denoted by is(v),
iq(v), it(v) for peer v. Each peer selects a spatial, quality,
and temporal index to reflect the number of layers it is
able to download, process, and forward. Thereby, the
spatial index is(v) has the largest priority. The quality
index iq(v) has medium priority, and the temporal index
it(v) has the lowest priority.3 A peer may limit its indices
if its display does not output high resolution videos or the
computational power is insufficient to decode all layers.
Otherwise, a peer’s indices reflect its upload capacity, i.e.,
the number of recently forwarded data blocks, estimated
by observing acknowledgements, and packet loss, round
trip times. The upload capacity is mapped to the three
indices by computing average bitrates of downloaded
layers and approximating the bitrates of missing enhance-
ment layers. The proportions between spatial, quality, and
temporal layers are fairly constant and allow the estima-
tion of the bitrate of any layer from any other (down-
loaded) layer. For example, decreasing the quantization
parameter QP of H.264 by 6 in a quality enhancement
layer roughly doubles the total bitrate, resulting in a
quality base layer and a quality enhancement layer of
about equal size.

Peers choose neighboring peers not solely based on
shared prefixes, but also based on the advertised spatial,
quality, and temporal indices as secondary criterion. For
each of the 2b

�1 neighbors of a shared prefix, a peer seeks
to select a neighbor with similar advertised indices:
1.
 Preferably, the routing table selects a peer with the
same spatial index, quality index, and temporal index.
2.
 If there is no such peer, the peer with the next higher
set of indices is selected.
3.
 If no such peer is available either, the peer with the
highest (lower) set of indices is selected.
For example, the subsequent scenario considers an over-
lay with b¼ 1 and two spatial, two quality, and two
temporal layers. Let peer v again have identifier 01100.
Peer v might be a mobile device with a small screen. For
this reason, it limits the download to the spatial base
layer, i.e., isðvÞ ¼ 0. However, the peer has sufficient
bandwidth available and downloads all quality and tem-
poral layers, i.e., ðisðvÞ,iqðvÞ,itðvÞÞ ¼ ð0;1,1Þ. Peer v again

4 The overlay network forces peers to have neighbors with undesir-

able indices to maintain connectivity.

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469 463
connects to neighboring peers for the identifier prefixes 1,
00, 010, 0111, and 01101 (if such peers exist). For each
prefix, it favors the connections to a peer with the same
set of indices. Otherwise, it prefers a peer w with
ðisðwÞ,iqðwÞ,itðwÞÞ ¼ ð1, 0, 0Þ. If such a peer does not exist
either, it favors (1, 0, 1), (1, 1, 0), (1, 1, 1), (0, 1, 0), (0, 0, 1),
or (0, 0, 0) (in this order). Since about half of all the peers
carry the prefix 1, a desired peer is likely to be found. For
longer prefixes, peer v may have to select a peer with a
different set of indices.

The induced overlay structure primarily connects
peers with comparable computational power and upload
capacity and are able to exchange the desired coding
layers. And yet, by obeying the rules of the original DHT-
like prefix-based policy, the overlay structure still guar-
antees connectivity with a logarithmic diameter by main-
taining few links to weaker and stronger peers. Regardless
of the choice of neighbors, the overlay never falls apart.
Peers may continuously refine the selection of neighbors
to maintain the best possible set of neighbors. Peers may
also choose multiple neighbors for a shared prefix to have
a backup should a peer leave or become congested. In
most cases, especially for a large number of peers,
neighboring peers have equal indices and the remaining
flexibility is again used to optimize additional criteria,
such as network latency and available bandwidth. For a
large number of temporal layers, peers do not have to be
too strict when comparing temporal indices. A close
temporal index usually suffices if a peer is desirable for
other reasons. A peer may also choose to make an
exception and ignore the indices altogether for desirable
connections, e.g., to close-by peers; such neighboring
peers can exchange at the least base layer blocks.

The use of a single overlay among all peers allows
peers to smoothly adjust the number of consumed layers
by changing the advertised indices. The simplicity of the
prefix-based policy and the possibility for backup neigh-
bors ease the implementation and allow neighboring
peers to quickly adapt to changing conditions. To boot-
strap the formation of the overlay network, peer may
make use of centralized tracker to obtain an initial list of
peer addresses, similar to protocols like BitTorrent. Later
they are free to exchange further peer addresses among
each other to maintain the overlay structure in a dis-
tributed manner.

4.3. Pushing content

The prime objective of the pushing component is to
quickly distribute a data block to a certain number of peers
in order to fuel the subsequent pull-based exchanges. As
argued before, such a mechanism is needed due to the long
delays of purely pull-based approaches; the push phase
brings the data block into the vicinity of virtually all
peers.

In the following, let, for two peers u and v with
identifiers bu

0 . . .b
u
d�1 and bv

0 . . . b
v
d�1, where bi

u
and bi

v

denote the ith bit of their respective identifiers,
‘ðu,vÞ ¼ k if bu

j ¼ bv
j for all j 2 f0, . . . ,k�1g and bu

kabv
k .

Furthermore, let N v be the set of all neighboring peers
of v. Let b again denote the number of bits that the prefix
routing algorithm fixes at each hop. The source selects 2b

peers from its routing table, if possible, such that the
identifiers of any two peers differ in at least one bit of the
first b bits. A new block is pushed to these peers along
with the information that they must only forward the
block to peers with which they share the first b bits of
their identifiers. Recursively, upon receiving such a push
message with the specified prefix length p that they must
not modify, a recipient selects 2b peers with which it
shares the prefix of length p and which differ in at least
one bit between the ðpþ1Þ st and the ðpþbÞ th bit and
so on.

This straightforward approach to pushing on prefix-
based overlays has an obvious shortcoming. Assume that
b¼ 2 and that the source peer has the identifier consisting
of only zeros. It will push the block to a peer whose
identifier starts with 00, which will in turn forward the
block to a peer whose identifier starts with 0000. This
peer might then forward the block back to the source
again, as the identifier of the source may also start with
000000. Such loops can occur on all paths. A solution to
this duplicates problem is to attach a list L of critical

predecessors of the induced spanning tree to each pushed
block. At each hop, the lists Lj of critical predecessors are
created for all children based on the received list L and
the sender of the block. Any critical predecessor pi of list L
is added to at most one list Lj and only if it is still critical
for this child vj, i.e., ‘ðvj,piÞZpþb. Block are subsequently
only forwarded to peers if their peer identifiers are not
included in their respective lists. The reader is referred to
[10] for a more elaborate algorithm that avoids the use
of lists.

To honor the diverse interest of peers and the pyr-
amid-like structure of scalable coded content, the push
policy follows the first criteria of the neighbor selection
policy whereas peers with unsuitable spatial, quality, and
temporal indices are to be avoided. While the base layer is
exchanged among all peers, higher layers are restricted to
peers which have advertised interest in the respective
layers. For this purpose, neighbors are selected as children
in a push branch based on their advertised indices and the
indices of the data block to be forwarded. A child has to
satisfy the predicate defined by Algorithm 1. If no child
satisfies the predicate, because no further such peers exist
that yet have to receive the block in question, the push
branch is cut off.4

Algorithm 1. push_predicateðv,dataÞ.
return isðdataÞo isðvÞ or (isðdataÞ ¼ isðvÞ and iqðdataÞo iqðvÞ) or

(isðdataÞ ¼ isðvÞ and iqðdataÞ ¼ iqðvÞ and itðdataÞr itðvÞ)
Algorithm 2 depicts the final algorithm ALG. It for-
wards incoming blocks based on the fixed prefix length p
and the neighbors’ identifiers. Possible children are fil-
tered by the critical predecessor list L and the advertised
spatial, quality, and temporal indices. For the sake of

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469464
simplicity, the algorithm is depicted with the number of
fixed bits set to b¼ 1.

Algorithm 2. ALG: push(p,p,L,data) at peer v.
1:
 S1 :¼ fv
0 2 N v9‘ðv0 ,vÞ ¼pg
2:
 S2 :¼ fv
0 2 N v9‘ðv0 ,vÞZpþ1g
3:
 choose v1 2 S1 : push_predicateðv1 ,dataÞ
4:
 choose v2 2 S2 : push_predicateðv2 ,dataÞ
5:
 for all pi 2 L do

6:
 j :¼ arg maxj2f1;2g‘ðvj ,piÞ
7:
 if ‘ðvj ,piÞZpþb then Lj :¼ Lj [fpig fi
8:
 od

9:
 for j¼ 1;2 do

10:
 send pushðv,pþb,Lj ,dataÞ to vj
11:
 od
The prefix-based, loop-free transmission implies that
data is distributed on induced spanning trees, which are
generally not comparable to structures in which the
overlay graph consists of one or more trees which must
be used to disseminate data. The overlay structure is still
hypercubic, and each packet can induce a different tree on
which it is broadcast. At each hop, peers have the
flexibility to choose among several neighbors to whom
to forward an incoming block. This flexibility allows load-
balancing of the upload bandwidth among peers and
quick adaptation to changing network conditions such
as the joining and leaving of peers and congestion.

The push mechanism does not exhibit a super-peer-like
structure wherein blocks travel from powerful peers with
high indices (super-peers) to weaker peers with lower
indices. Peers are considered equal, and the source may
send a new block to any peer interested in the block. The
same holds for peers forwarding the block. Peers do not
gain an advantage for downloading blocks from lower
layers by advertising high indices; a useful property when
implementing fairness mechanisms. This flexibility of
selecting children from any layer may further be used to
optimize additional criteria. For example, there may be
close-by peers interested in fewer coding layers that are
well suited to exchange blocks from the layers in
question.
4.4. Pulling content

The push phase is followed by a pull phase whereas
peers initiate the transmission of data blocks explicitly by
collecting notifications from neighboring peers about
available data blocks and requesting missing blocks. The
push phase is particularly well suited to attain an initial

distribution of new blocks as it has most flexibility when
the fixed prefix lengths are short. To later reach the
remaining peers, the selection of children is stricter.
Advocating the exchange of blocks in the pull phase by
cutting-off branches in the push phase maintains the
flexibility among all block exchanges. The push phase
may also fail to reach all peers because of malicious
behavior, blocks lost on congested links, or inaccurate
routing tables, due to the perpetual arrival and departure
of peers. Pull operations can be performed efficiently and
with small additional delay; the push phase fuels the
subsequent pull phase.

Like the push policy, the pull policy has to honor the
pyramid-like structure of scalable content; lower layers
have to be requested first. The block format of Section 4.1
allocates dedicated buffers for different coding layers, so
prioritizing their download is simple. Further prioritizing
the download of low temporal layers is more demanding.
Recall that temporal layers share a buffer to limit the
number of buffers and the associated overhead incurred
by periodic notifications. Accordingly, peers first have to
learn the temporal indices of blocks within the various
buffers to prioritize their download. Peers estimate tem-
poral indices based on already received blocks (from both
the push and the pull phase) and the references within
the blocks. An estimation mechanism may further
account for fragmented frames, estimated block sizes,
and block rates.

Prioritizing the download of low temporal layers
serves two purposes. First, the medium grained scalability
of SVC allows the decoding of partially downloaded
layers. Second, peers may skip a large number of frames
without losing the synchronization in the decoding loop,
which otherwise would lead to artifacts until the next key
frame is decoded. Such a scenario may occur during a
brief burst of lost packets.

The push policy from the previous subsection strictly
forbids forwarding blocks to peers with lower than
necessary indices to avoid overloading their upload links.
In contrast, a peer is free to request blocks from any
number of layers regardless of the advertised indices,
given that neighbors have sufficient upload capacity. One
may apply, for example, a tit-for-tat-based fairness
mechanism, such as [4,6,8,11,28,24], to deter peers from
consuming resources without contributing. In conjunc-
tion with scalable coding, fairness mechanisms allow
peers to gradually improve playback quality by contribut-
ing more resources themselves. Peers are no longer bound
to either download all blocks or suffer from unacceptable
artifacts due to missing frames that are not obtained on
time for playback.

4.5. Source coding

Prefix-based overlays allow peers to maintain backup
connections, adapt to congestion, and quickly repair routing
tables after other peers join and leave. Nevertheless, there is
still a small but non-negligible chance of an error that cuts
off a branch in the push phase before the branch reaches a
sufficient number of peers. This may also happen because of
misbehaving peers. In contrast to scalable coding, source
coding allows to address such reliability issues. The down-
load of kþE out of n source coded blocks is sufficient to
reconstruct the original data blocks.

Source coding works well with prefix-based algorithms.
Peers have the flexibility to choose among several neighbors
to whom to forward an incoming block. This flexibility allows
source coded blocks to take different routes to peers and as a
consequence at least some blocks likely attain sufficient
distribution. Again, it is not necessary to maintain multiple
independent overlays, the prefix-based overlay already

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469 465
provides the needed flexibility. To prevent peers from receiv-
ing more than kþE out of n source coded blocks, individual
push branches of source coded blocks are simply cut off
earlier than branches of regular data blocks. Peers then obtain
missing blocks in the subsequent pull phase. To complement
scalable coding and maintain their respective advantages,
source coding has to be applied to each scalable coded layer
separately.

4.6. On-demand streaming

While the proposed techniques are introduced in the
context of peer-to-peer live streaming, they are applicable
to on-demand and hybrid streaming systems as well. In the
latter case, broadcasted live streams become immediately
available as on-demand content. The most notable differ-
ence is that peers are no longer interested in the same
content at the same time. Some peers may already have
obtained the complete file and can act as seeders by caching
downloaded content. Other peers have a playback position
and are interested in the content at that position. Accord-
ingly, one can introduce the playback position as additional
criterion for the neighbor selection policy, similarly to the
spatial, quality, and temporal indices. Usually, peers favor
neighboring peers based on the incurred network latency to
reduce the network load. However, in bandwidth-con-
strained situations, peers download content from peers with
similar playback positions, yielding a linked list-like struc-
ture where a single source can deliver a file to an arbitrary
number of peers. On-demand streams may not employ the
push mechanism (but hybrid systems still can). In doing so,
the same system can be used for both live and on-demand
streaming with only minor adjustments necessary. More-
over, on-demand streams benefit from the same mechan-
isms as live streams, such as a single overlay network,
simple maintenance, and strong connectivity guarantees.

The proposed architecture further eases the imple-
mentation of seeking operations in terms of both locating
desirable neighboring peers and quickly obtaining the
necessary data blocks to start playback. For example, the
DHT-like overlay structure allows the build-up of a dis-
tributed index structure to allow the retrieval of peer
addresses having already downloaded and cached desired
content. The use of scalable and erasure coding shortens
the playback delay after seeking. Peers may choose to
prioritize the download and playback of the scalable base
layer after seeking, saving both download and decoding
time. Erasure coding lets peers more aggressively down-
load sought content. Thereby, peers do not have to wait
for acknowledgements and retransmissions. Downloading
of a sufficient number of arbitrary source coded blocks is
sufficient to reconstruct the original data blocks.

Finally, the evaluation section will show that the
overlay structure is simple to maintain and repair in the
event of joins, leaves, and changes in neighbor prefer-
ences (like the playback positions).

5. Evaluation

Emulations are performed in order to study the proposed
mechanisms in different environments. The emulator makes
use of a real-world implementation executed within a
simulated network environment. The emulator runs on a
single computer using 64 GB of memory. Since each peer
instance merely requires a few kilobytes of memory, we
were able to emulate up to 100,000 peers. As in the previous
section, the protocol is evaluated with a focus on peer-to-
peer live streaming applications.

The evaluation makes use of a scalable video codec
that has been implemented as part of the presented
system. The codec is based on H.264 and resembles the
recently released SVC standard [23]. It supports spatial,
quality, and temporal scalability to adapt the video
resolution, picture quality, and frame rate. Its overhead
over a single-layer stream is between 10% and 20% with
further optimizations possible.

We start by first evaluating the proposed content
distribution mechanism in terms of overlay diameter,
latency, and resilience to congestion. Later, we show that
peers are able to exploit the temporal structure of
encoded pictures to optimize the use of the available
bandwidth. With limited download capacity, peers favor
the download of blocks from low temporal layers and, in
particular, key frames. Subsequently, a tit-for-tat policy is
applied to add fairness among a heterogeneous set of
peers. While resource-rich peers are able to obtain all
blocks on time for playback, weaker peers cannot down-
load significantly more than they contribute. Neverthe-
less, the weaker peers successfully obtain the lower
coding layers for playback. The associated scalable coding
overhead is then put in perspective by analyzing gains in
topology awareness. Finally, resilience to churn is studied.

5.1. Overlay diameter

The diameter is a key property of any overlay struc-
ture. It specifies the maximum number of hops necessary
to reach any peer from any other peer. Given the prefix-
based nature of the proposed algorithms, the diameter is
given by log n=b as it is possible to fix at least b bits with
each hop’s identifier to get closer to the destination
identifier. Most importantly, a bounded diameter ensures
that the overlay never falls apart. Regardless of the choice
of neighbors for shared prefixes, the overlay remains
connected.

The hop count, like the diameter, grows logarithmi-
cally with the number of peers. Fig. 6 depicts the average
number of hops taken by a data block to reach a peer for
100 up to 100,000 peers. The logarithmic hop count and
overlay diameter ensure that the overlay scales well from
a few to millions of peers.

5.2. Low delay

In the context of live streaming, peers benefit from a
low distribution delay by adopting the proposed push-to-
pull-based content distribution mechanism. Peers are
enabled to choose among a number of neighbors to
immediately forward incoming data blocks. Peers may
favor close-by and non-congested peers. As a result, while
the number of hops taken by data blocks grows logarith-
mically with the number of peers, delays remain almost

0

2

4

6

8

10

12

14

16

100000100001000100

A
ve

ra
ge

 H
op

s

Number of Peers

Fig. 6. Average number of hops taken by a block to reach a destination

peer for 100 up to 100,000 peers.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000

Pe
er

s

Delay (ms)

 100

 1000

 10000

Fig. 7. Delay in milliseconds required for a data block to reach a given

ratio of peers for different overlay sizes. The topology awareness allows

the delay to remain almost constant regardless of the number of peers.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2000 4000 6000 8000

Pe
er

s

Delay (ms)

Push-only

Push-to-pull

Pull-only

Fig. 8. Delay in milliseconds required by a data block to reach a given

ratio of 10,000 emulated peers for different content distribution

strategies.

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469466
constant. For a larger number of peers, more close-by
neighbors are available to forward blocks.

In the next scenario, the emulator makes use of a
simulated network environment whereas peers are uni-
formly at random distributed within a bounded two-
dimensional Euclidean space. The network latency
between two peers is determined by the sum of the
distance in the Euclidean space and an additional constant
latency of 3 ms. The maximum latency, bounded by the
size of the Euclidean space, is 200 ms, giving a maximum
round trip time of 400 ms. This reflects the Internet
latencies observed among distant locations, such as Eur-
ope and Australia. The used methodology is conceptually
simple to focus on the proposed techniques and capture
their essential properties. One may consider such a ran-
dom distribution of peers in the Euclidean space a
particularly bad distribution. In real world deployments,
peers are likely to be clustered by continents, countries,
regions, cities, or Internet service providers.

Fig. 7 depicts the distribution delays of the proposed
protocol for different numbers of peers. For this scenario,
the source is located at the center of the simulated topology
and reachable by any peer within 100 ms, providing a lower
bound for the achievable delay. On average, a data block
reaches a peer after 170 ms for 100 peers. The average delay
grows to 196 ms for 1000 peers and 214 ms for 10,000
peers. For the larger networks, a considerable part of the
additional delay can be attributed to the 3 ms of local
processing that the emulator enforces with each hop. In
real world scenarios, the processing delay strongly depends
on the capabilities and the network access of the deployed
peers. Increasing the number of fixed bits b from 1 bit to 2
or more bits, i.e., increasing the number of children at each
hop in the push phase, allows for a further reduction of the
delay. The impact of congestion on the distribution delays is
studied in a subsequent subsection.

5.3. Push vs pull

Fig. 8 compares three different strategies: a push-only
strategy, a hybrid push-to-pull strategy, and a pull-only
strategy. The push-only strategy applies the techniques from
[10] to avoid cut-off branches. For the hybrid push-to-pull
strategy, pushing is limited to about 20%. The pull-only
strategy resembles the more commonly used unstructured
peer-to-peer systems, but still benefits from the bounded
overlay diameter and the flexible neighbor selection policy.

The push-only approach outperforms the other strate-
gies in terms of delay. It reaches half of the peers after
160 ms and all peers after 220 ms. The push-only approach
is able to maintain its performance lead as long as packet
loss and malicious behavior of peers are negligible; other-
wise, source coding may counter cut-off branches at the cost
of duplicates, causing peers to obtain more than kþE blocks.

In contrast to the push-only strategy, the pull-only
strategy suffers from high latencies, as notifications and
requests have to be sent back and forth. A major part of
the time is spent reaching the first 10% of all peers. However,
once a sufficient distribution of fresh blocks is reached, pull
exchanges perform nearly as fast as push exchanges. Thus,
the hybrid push-to-pull strategy incurs only a moderate
delay over a push-only strategy; the push phase fuels the
subsequent pull exchanges. With a hybrid push-to-pull
approach, the system further gains in flexibility as noted in
Section 4.4.

5.4. Robustness to congestion

In heterogeneous environments, some peers are likely
congested and exhibit significantly higher network latencies.

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469 467
The flexible nature of prefix-based overlays and the push
phase enables peers to circumvent congested links. The
push phase quickly attains sufficient distribution of new
blocks among non-congested peers. The subsequent sce-
nario considers 10,000 peers where 25% of the peers are
congested. Like in the previous subsection, peers are
uniformly at random distributed within a two-dimen-
sional Euclidean area and the latency between peers is
determined by their distance. Congested peers are
assumed to have an additional network latency penalty
of 200 ms. Without congestion, the average delay for a
block to reach a peer from the source is 214 ms. With
congestion, there is only a moderate additional delay of
10% for the non-congested peers. In contrast, the delay
almost triples for the congested peers. The additional use
of source coding can prevent additional delay for non-
congested peers with high probability.

5.5. Temporal accuracy

Temporal scalability gives peers a more finely grained
control of the download rate. While the push phase simply
compares the temporal index of an incoming block with the
advertised temporal indices of neighbors, the pull phase has
to estimate the temporal index of a (missing) block based on
the available blocks and their references to other blocks.

The following scenario studies a stream with seven
temporal layers. The stream has a bitrate of 100 KB/s. Half
of the peers have an unlimited download rate, while the
others have a limited download rate between 10 and
100 KB/s. Push branches are cut off in order that 20% of
the peers obtain a block in the push phase, while the others
obtain it in the subsequent pull phase. Fig. 9 depicts the
ratio of useful data downloaded by weak peers with respect
to their download rate. Data is considered useful if it can be
decoded by a scalable video decoder, i.e., all referenced data
must be downloaded as well. The studied implementation
performs well for practical purposes, with more optimiza-
tions possible. In most cases, peers are able to decode 90% or
more of the downloaded data. For low bitrates, peers fail to
decode a significant amount of data because there is
insufficient capacity to download the temporal base layer
(the key frames). In such a scenario, the use of additional
spatial and quality layers is more useful. Note that the given
example only considers the prioritization of data blocks in
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 30 50 70 90 110

D
ec

od
ed

 D
at

a

Download Rate (KB/s)

Fig. 9. Ratio of decodable data as a function of the maximal download

rate for a base layer with seven temporal layers.
the base layer. Given a downloaded base layer, peers
(exactly) determine the temporal indices of enhancement
blocks by following the layer references. As a result, peers
can make use of virtually all data downloaded from further
enhancement layers.

5.6. Fairness

The next scenario enforces a tit-for-tat-based exchange
of content [11] to ensure fairness among peers. It applies the
fairness mechanism to manage content exchanges among
three different groups of peers. A first group has unlimited
upload capacity, a second group has 110 KB/s upload
capacity, and a third group has 50 KB/s upload capacity.
The stream has a bitrate of 200 KB/s and partitions the data
into three spatial and seven temporal layers. The example
enforces a repayment ratio a¼ 1 and a one-time credit g¼ 1
applicable to a quarter of all blocks ðd¼ 4Þ. A repayment
ratio a¼ 1 forces neighboring peers to send (about) the
same number of blocks to each other. The one-time credit
allows a neighboring peer to download one block for free
without having to give anything in return. However, to
prevent large view exploits [12,26], the one-time credit only
applies to a subset of all blocks ð1=d¼ 25%Þ. Fig. 10 depicts
the ratio of decodable blocks in relation to their spatial and
temporal indices for all three groups. The resource-rich
group obtains and decodes all blocks, while the weaker
groups are limited to the lower two layers according to their
upload capacities. For example, all peers in the weakest
group manage to decode the lowest spatial layer, which has
a bitrate that matches their upload limit. In accordance with
the tit-for-tat model, these peers fail to obtain and decode
most enhancement data.

5.7. Topology awareness

The emulated protocol favors the exchange of content
among near-by peers to reduce the network load. Because
of the use of a single overlay, peers come closer together
and can more efficiently distribute base layers and lower
enhancement layers among a larger number of peers. The
result is a more efficient content distribution that can
offset the overhead incurred by scalable coding, leaving
only its benefits.
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3

Pe
er

s

3 spatial layers with 7 temporal layers each

Unlimited
110 KB/s
50 KB/s

Fig. 10. Ratio of decoded blocks with respect to their spatial and

temporal indices for three groups of peers with different upload

capacities.

0

20

40

60

80

100

120

140

160

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000

D
ow

nl
oa

d
ra

te
 (K

B
/s

)

C
on

ne
ct

iv
ity

 (%
)

Time (ms)

Connectivity:
resource-rich peers

Connectivity:
switching peers

Download:
resource-rich peers

Download:
switching peers

Fig. 11. Effect of half of the peers switching from the enhancement layer

to the base layer. Shows the percentage of correct routing table entries

and the download rate for both the switching and the remaining

resource-rich peers. After 1 s, the peers are again almost fully connected.

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469468
The following scenario considers an overlay with 30,000
emulated peers and three quality layers. Peers are again
uniformly at random distributed within a two-dimensional
Euclidean area. There is a base layer with two enhancement
layers. The enhancement layers match the size of the lower
layers, i.e., the base layer accounts for 25% of the bitrate, the
first enhancement layer for 25%, and the second enhance-
ment layer for 50%. In total, the third and best quality has
four times the bitrate of the base quality. Peers are assigned
uniformly at random to one of the three quality layers. The
network load is defined as the sum of the size of all network
packets weighted by the distance travelled. The total net-
work load for three independent streams is 100%þ200%þ
400%¼700% the network load of 10,000 peers downloading
the base quality (at a quarter of the bitrate). In contrast, if
the peers join a single scalable overlay network, they benefit
from additional near-by peers to exchange the base layer
and the first enhancement layer. In our emulated protocol,
an overlay with 20,000 instead of 10,000 peers incurs a 40%
higher network load, while 30,000 instead of 10,000 peers
incurs a 70% higher network load. The network load does
not increase linearly because peers may obtain data blocks
from near-by peers interested in different sets of layers that
would otherwise belong to independent streams. Conse-
quently, in the considered scenario, the network load grows
to 170% for the base layer with 30,000 peers, to 140% for the
first enhancement layer with 20,000 peers, and to 200% for
the 10,000 peers in the second enhancement layer with
twice the bitrate of the base layer. The total network load is
170%þ140%þ200%¼510%, but an additional overhead of
10–15% for scalable coding has to be added. This corre-
sponds to a reduction of 27% without the coding overhead
and about 15% with the coding overhead. Additionally,
scalable coding almost halves the traffic among distant
peers. Only a single stream has to be distributed instead of
multiple independent streams. In real world scenarios, this
yields a lower Internet backbone load, which one may
consider the most precious resource. The actual gain, how-
ever, strongly depends on the capabilities and locations of
the participating peers.

5.8. Robustness to churn

The high connectivity of the proposed prefix-based over-
lay and the flexible choice of neighbors allow for building up
and fixing routing tables quickly. As a consequence, a prefix-
based overlay becomes easy to maintain and to recover
even from massive concurrent changes. In contrast to most
other peer-to-peer applications, it is essential to evaluate
such scenarios in live streaming systems. With a live stream,
all peers playback the same content at the same time and
may react to this content. A commercial break may lead to a
lot of people switching channels for a short period of time.
The end of a program may trigger a large fraction of all peers
to leave the channel. One may denote such behavior as
correlated churn.

Four different kinds of events may occur: peers joining,
peers leaving, peers switching coding layers, and peers
switching playback positions in on-demand streams. For
all four kinds of events, neighboring peers may have to
update their routing tables accordingly. In this subsection,
a scenario with 2000 peers and a 100 KB/s stream is
considered. There are two coding layers: a base layer
and a spatial enhancement layer of equal size. In the
beginning, all peers download both layers. At some point,
half of the peers switch to the base layer by setting their
advertised spatial index from 1 to 0. In doing so, they no
longer participate in the push phase of the enhancement
layer and do not issue any pull requests for enhancement
blocks. The (remaining) resource-rich peers downloading
both layers have to repair their routing tables accordingly
to still be able to forward enhancement blocks.

Neighbors are selected based on shared prefixes. For each
shared prefix, peers maintain roughly two to three connec-
tions to other peers with identifiers that match the specific
prefix. Each peer maintains the set of shared prefixes with
their connections in a routing table. For both the switching
peers and the (remaining) resource-rich peers, Fig. 11 depicts
the number of accurate routing table entries and the down-
load rates at a given time after half of the peers switched
layers. The download rates are averaged over a period of
250 ms. As expected, the switching peers remain fully con-
nected because any peer from either layer is suitable as
neighbor. For approximately 70% of the stored prefixes at the
resource-rich peers, at least one connection to another
resource-rich peer is retained due to the backup connections.
Only a second later, a suitable replacement is found for most
entries. During this transition period, the resource-rich peers
may still use the switching peers to forward enhancement
blocks if no resource-rich peer is known. Moreover, the
download rate of the switching peers declines rapidly allow-
ing them to focus almost exclusively on the base layer. Given
this fast repairing process, the protocol also copes well with
any other kind of membership change.

Other kind of overlay structures have a harder time
adapting in such scenarios. For example, Chunkyspread [27]
uses a multi-tree structure and employs a variety of
optimizations to ease construction and maintenance. If
10% out of 10,000 peers fail simultaneously, the average
disconnect period for a peer is about 6 s, and the maximum
disconnect period is 12 s. The introduction of additional

R. Meier, R. Wattenhofer / Signal Processing: Image Communication 27 (2012) 457–469 469
redundancy is proposed by the adoption of source coding.
A 18.75% redundancy (3 out of 16 slices) roughly halved
disconnect durations. This comes at the cost of the same
amount of additional traffic as peers usually obtain more
than the minimum number of required blocks. From the
perspective of a resource-rich peer that downloads all
layers, this scenario is similar to the preceding scenario
where peers switch layers. The proposed prefix-based
structure is hardly affected and peers do not experience a
disconnection period. Further emulations have shown that
the results also hold if up to 90% of the peers are switching
or leaving and if the overlay consists of up to 100,000 peers.
Unstructured overlay networks also cope well in such
scenarios, but fail to provide other important properties,
like guaranteed connectivity, a low overlay diameter, and a
low latency.

6. Conclusions

A variety of devices from mobile phones to televisions
gained access to the Internet in recent years. For this purpose,
we presented a peer-to-peer streaming protocol that is able
to accommodate an arbitrary heterogeneous set of peers in a
single overlay network. The protocol advocates an approach
based on three complementing techniques: prefix-based
overlays, scalable coding, and erasure coding. Prefix-based
overlays make an efficient content distribution with low
delay possible, guarantee connectivity, provide fairness, and
have the flexibility to distribute scalable and erasure coded
content. In doing so, scalable coding addresses the hetero-
geneity of peers by providing multiple coding layers that
gradually improve playback quality. Erasure coding ensures
that peers obtain the desired coding layers even if some of
the blocks are lost due to congestion, churn, or malicious
behavior. Moreover, the presented techniques are applicable
to live, on-demand, and hybrid systems; easing the imple-
mentation of a system that supports multiple use cases.

References

[1] P. Baccichet, T. Schierl, T. Wiegand, B. Girod, Low-delay peer-to-
peer streaming using scalable video coding, in: Proceedings of 18th
Data Compression Conference (DCC), Snowbird, Utah, USA, 2008.

[2] M. Castro, P. Druschel, A.M. Kermarrec, A. Nandi, A. Rowstron, A.
Singh, SplitStream: high-bandwidth content distribution in a coopera-
tive environment, in: Proceedings of 2nd International Workshop on
Peer-to-Peer Systems (IPTPS), Berkeley, California, USA, 2003.

[3] Y. Chu, S. Rao, H. Zhang, A case for end system multicast, in:
Proceedings of International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 2000.

[4] M. Feldman, K. Lai, I. Stoica, J. Chuang, Robust incentive techniques
for peer-to-peer networks, in: Proceedings of ACM Electronic
Commerce, 2004.

[5] V.K. Goyal, Multiple description coding: compression meets the
network, IEEE Signal Processing Magazine (2001).

[6] G. Halkes, J. Pouwelse, Verifiable encryption for p2p block
exchange, in: Proceedings of 10th IEEE International Conference
on Peer-to-Peer Computing (P2P), Delft, The Netherlands, 2010.

[7] J. Jannotti, D.K. Gifford, K.L. Johnson, M.F. Kaashoek, J.W. O’Toole,
Overcast: reliable multicasting with an overlay network, in: Pro-
ceedings of 4th Symposium on Operating System Design and
Implementation (OSDI), 2000.

[8] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The eigentrust algo-
rithm for reputation management in P2P networks, in: Proceedings of
12th International World Wide Web Conference (WWW), 2003.
[9] M. Karczewicz, R. Kurceren, The SP- and SI-frames design for H.264/
AVC, in: Proceedings of IEEE Transactions on Circuits and Systems
for Video Technology, 2003.

[10] T. Locher, R. Meier, S. Schmid, R. Wattenhofer, Push-to-pull peer-to-
peer live streaming, in: Proceedings of 21st International Sympo-
sium on Distributed Computing (DISC), Lemesos, Cryprus, 2007.

[11] T. Locher, R. Meier, S. Schmid, R. Wattenhofer, Robust live media
streaming in swarms, in: Proceedings of 18th International Work-
shop on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV), Williamsburg, Virginia, USA, 2009.

[12] T. Locher, P. Moor, S. Schmid, R. Wattenhofer, Free riding in
BitTorrent is cheap, in: Proceedings of Workshop on Hot Topics in
Networks (HotNets), Irvine, California, USA, 2006.

[13] M. Luby, LT codes, in: Proceedings of 43rd IEEE Symposium on
Foundations of Computer Science (FOCS), Vancouver, British
Columbia, Canada, 2002.

[14] Z. Meng, T. Yun, Z. Li, L. Jian-Guang, Y. Shi-Qiang, Gridmedia: a
multi-sender based peer-to-peer multicast system for video
streaming, in: IEEE International Conference on Multimedia and
Expo (ICME), 2005.

[15] S. Mirshokraie, M. Hefeeda, Peer-to-peer streaming with hierarch-
ical network coding, in: Proceedings of IEEE International Confer-
ence on Multimedia and Expo, Beijing, China, 2007.

[16] S. Mirshokraie, M. Hefeeda, Live peer-to-peer streaming with
scalable video coding and networking coding, in: Proceedings of
1st ACM Conference on Multimedia Systems (MMSys), Scottsdale,
Arizona, USA, 2010.

[17] J. Noh, P. Baccichet, F. Hartung, A. Mavlankar, B. Girod, Stanford
peer-to-peer multicast (sppm): overview and recent extensions, in:
Proceedings of 27th Conference on Picture Coding Symposium
(PCS), Chicago, Illinois, USA, 2009.

[18] V. Pai, K. Tamilmani, V. Sambamurthy, K. Kumar, A. Mohr, Chainsaw:
eliminating trees from overlay multicast, in: Proceedings of 4th
International Workshop on Peer-To-Peer Systems (IPTPS), 2005.

[19] C.G. Plaxton, R. Rajaraman, A. Richa, Accessing nearby copies of
replicated objects in a distributed environment, in: Proceedings of
9th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), 1997.

[20] J. Pouwelse, J. Taal, R. Lagendijk, D. Epema, H. Sips, Real-time video
delivery using peer-to-peer bartering networks and multiple
description coding, in: Proceedings of IEEE International Confer-
ence on Systems, Man and Cybernetics, 2004.

[21] I.S. Reed, G. Solomon, Polynomial codes over certain finite fields,
SIAM Journal on Applied Mathematics (1960).

[22] A. Rowstron, P. Druschel, Pastry: scalable, decentralized object
location, and routing for large-scale peer-to-peer systems, in:
Proceedings of International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, 2001.

[23] H. Schwarz, D. Marpe, T. Wiegand, Overview of the scalable H.264/
MPEG4-AVC extension, in: Proceedings of IEEE International Con-
ference on Image Processing (ICIP), Atlanta, Georgia, USA, 2006.

[24] K. Shin, D. Reeves, I. Rhee, Treat-before-trick: free-riding preven-
tion for BitTorrent-like peer-to-peer networks, in: Proceedings of
IEEE International Symposium on Parallel and Distributed Proces-
sing (IPDPS), Rome, Italy, 2009.

[25] A. Shokrollahi, Raptor codes, IEEE Transactions on Information
Theory (2006).

[26] M. Sirivianos, J.H. Park, R. Chen, X. Yang, Free-riding in BitTorrent
networks with the large view exploit, in: Proceedings of 1st
International Workshop on Peer-to-Peer Systems (IPTPS), Cam-
bridge, Massachusetts, USA, 2007.

[27] V. Venkataraman, P. Francis, J. Calandrino, Chunkyspread: multi-tree
unstructured peer-to-peer, in: Proceedings of 5th International Work-
shop on Peer-to-Peer Systems (IPTPS), Santa Barbara, California, USA,
2006.

[28] V. Vishnumurthy, S. Chandrakumar, E.G. Sirer, KARMA: a secure
economic framework for P2P resource sharing, in: Proceedings of 1st
Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, 2003.

[29] W. Wang, D.A. Helder, S. Jamin, L. Zhang, Overlay optimizations for
end-host multicast, in: Proceedings of Networked Group Commu-
nications, Boston, Massachusetts, USA, 2002.

[30] T. Wiegand, G.J. Sullivan, G. Bjøntegaard, A. Luthra, Overview of the
H.264/AVC video coding standard, in: Proceedings of IEEE Transac-
tions on Circuits and Systems for Video Technology, 2003.

[31] X. Zhang, J. Liu, B. Li, Y. Yum, CoolStreaming/DONet: a data-driven
overlay network for peer-to-peer live media streaming, in: Pro-
ceedings of 24th IEEE Conference on Computer Communications
(INFOCOM), Amsterdam, The Netherlands, 2005.

	Peer-to-peer streaming in heterogeneous environments
	Introduction
	Related work
	Overview of scalable coding
	Spatial scalability
	Quality scalability
	Temporal scalability
	Example
	Audio scalability

	Protocol
	Data structure
	Neighbor selection policy
	Pushing content
	Pulling content
	Source coding
	On-demand streaming

	Evaluation
	Overlay diameter
	Low delay
	Push vs pull
	Robustness to congestion
	Temporal accuracy
	Fairness
	Topology awareness
	Robustness to churn

	Conclusions
	References

