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ABSTRACT
Coloring the nodes of a graph with a small number of col-
ors is one of the most fundamental problems in theoretical
computer science. In this paper, we study graph coloring
in a distributed setting. Processors of a distributed system
are nodes of an undirected graph G. There is an edge be-
tween two nodes whenever the corresponding processors can
directly communicate with each other. We assume that dis-
tributed coloring algorithms start with an initial m-coloring
of G. In the paper, we prove new strong lower bounds for
two special kinds of coloring algorithms. For algorithms
which run for a single communication round—i.e., every
node of the network can only send its initial color to all its
neighbors—, we show that the number of colors of the com-
puted coloring has to be at least Ω(∆2/ log2 ∆ + log log m).
If such one-round algorithms are iteratively applied to re-
duce the number of colors step-by-step, we prove a time
lower bound of Ω(∆/ log2 ∆ + log∗ m) to obtain an O(∆)-
coloring. The best previous lower bounds for the two types
of algorithms are Ω(log log m) and Ω(log∗ m), respectively.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
chromatic number, distributed algorithms, graph coloring,
locality, neighborhood graph, symmetry breaking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’06, July 22-26, 2006, Denver, Colorado, USA.
Copyright 2006 ACM 1-59593-384-0/06/0007 ...$5.00.

1. INTRODUCTION
Many problems which are simple in standard sequential

systems become much harder in a distributed setting. A
classic example is the problem of coloring the nodes of a
graph with O(∆) colors where ∆ is the largest degree ∆ of
the graph. While in sequential systems, a (∆ + 1)-coloring
can be obtained by a simple greedy algorithm, the complex-
ity of finding such a coloring in a distributed way is unknown
and considered to be an important open problem. Apart
from being interesting from a theoretical perspective, the
problem is important because many network coordination
primitives are based on colorings of the nodes of the net-
work. For example, the assignment of frequencies or time
slots in wireless networks are classical applications of min-
imum graph coloring [12, 24]. In contrast to many other
distributed graph-theoretic problems [7, 13, 16], not much
progress has been made on distributed coloring in the last
few years. The goal of this paper is to improve this situation
and to make a step towards understanding the distributed
complexity of graph coloring.

Throughout the paper, we study the standard message
passing model for distributed computing [17, 23]. Proces-
sors of a distributed system are represented by nodes of an
undirected graph G = (V, E). Two processors can com-
municate with each other directly if and only if they are
connected by an edge in the graph. We assume that the
processors operate in synchrony1, that is, communication is
round-based. In each round, every node can send a message
to all its neighbors in the graph, receive the messages sent by
its neighbors, and perform some local computation based on
the information contained in the received messages. Since
in distributed systems the running time of an algorithm is
mainly determined by the time needed for the communica-
tion, we make no restrictions on local computations. Further
we assume that all processors start an algorithm at the same
time. The time complexity of a distributed algorithm then is
the maximum possible number of rounds needed until every
node has completed its computation.

A proper s-coloring of a graph G = (V, E) is an assign-
ment γ : V → {1. . . . , s} of colors between 1 and s to
nodes such that adjacent nodes have different colors, that
is, (u, v) ∈ E ⇒ γ(u) 6= γ(v). The minimum number of col-
ors which are needed to properly color the vertices of a given
graph G is called the chromatic number χ(G) of G. In the
distributed setting, the goal is to color the network graph

1As long as we only care about running time and not about
the number of messages that have to be sent, synchronous
and asynchronous message passing models are equivalent.



G. We assume that the distributed computation starts with
an initial proper m-coloring of G.2 Initially, every node only
knows its own color. By exchanging messages, the nodes of
G have to learn about the colors of other nodes and compute
a new color based on this information.

In this paper, we look at two special kinds of distributed
coloring algorithms. We first study the most simple case
by considering algorithms which run for one round only. In
one round, every node can learn the initial colors of its di-
rect neighbors. Based on this information, each node has to
choose a new color such that the colors chosen by adjacent
nodes are different. In [17], it has been shown that given an
initial coloring with m colors, it is possible to determinis-
tically compute an O(∆2 log m)-coloring in a single round.
The best known lower bound is also from [17] where it is
shown that Ω(log log m) colors are needed. We show that
if m ∈ Ω(∆2/ log ∆), a coloring computed by a one-round
algorithm must consist of least Ω(∆2/ log2 ∆ + log log m)
colors. In Section 6, we show that for appropriate val-
ues of ∆, m, and n—the number of nodes of G—, this
lower bound can be broken by using randomization. We
present a randomized one-round algorithm which computes
a O(∆ log n log m)-coloring with high probability.

The second kind of algorithms that we address are distrib-
uted coloring methods which are based on iterative applica-
tions of one-round coloring algorithms to reduce the number
of colors step by step, a technique which is applied by many
known algorithms [2, 11, 17]. We show that in order to
obtain an O(∆)-coloring, any such algorithm needs at least
Ω(∆/ log2 ∆ + log∗ m) rounds. The log-star function log∗ m
denotes the number of logarithms one has to apply to m in
order to get a value smaller than 1. The best previous lower
bound is proved in [17] where it is shown that every dis-
tributed coloring algorithm needs at least Ω(log∗ m) rounds
to obtain an O(∆)-coloring of the ring. In addition to the
lower bound, we also slightly improve the best upper bound
for computing a (∆ + 1)-coloring from O(∆ log m) [2] and
O(∆2 + log∗ m) [11] to O(∆ log ∆ + log∗ m) rounds. Using
randomization, the number of one-round steps needed to
obtain a (∆ + 1)-coloring is O(∆ log log n) with high proba-
bility.

The remainder of the paper is organized as follows. In
Section 2, we summarize important previous work. Section
3 introduces the concept of neighborhood graphs which we
will need to analyze one-round coloring algorithms. Neigh-
borhood graphs have first been used in [17]. In Sections 4
and 5, we describe our results about deterministic one-round
algorithms and iterative applications of one-round color re-
ductions, respectively. Section 6 shows that randomization
can help in some situations. Finally, Section 7 concludes the
paper.

2. RELATED WORK
Finding a coloring with χ(G) colors is one of the first

problems which was shown to be NP-hard [10, 14]. A lot of
progress has been made since then, showing that for general
graphs, we cannot hope to find reasonably good colorings in
polynomial time. In particular, unless P = NP, for every

2Instead of having an initial coloring, it is usually assumed
that all nodes have a unique identifier. Note that this can
be seen as a special initial coloring where the colors of all
nodes are different.

constant ε > 0, minimum graph coloring cannot be approx-
imated better than |V |1/7−ε [3]. If NP 6= ZPP, that is, if
NP-problems cannot be solved by a randomized algorithm
in expected polynomial time, one can even show that min-
imum graph coloring cannot be approximated better than
Ω(|V |1−ε) [9]. Clearly, when considering distributed coloring
algorithms, our goal cannot be to achieve better colorings
than in a non-distributed scenario.3 We therefore usually
do not compare an obtained solution with a global optimal
solution. We rather compare a computed coloring to what
we can achieve by a sequential algorithm. Therefore, for dis-
tributed algorithms, mostly, the ultimate goal is to achieve
a (∆ + 1)-coloring or even just an O(∆)-coloring of the net-
work graph.

There is an intriguing relation between the distributed
complexities of computing (∆ + 1)-colorings and maximal
independent sets (MIS). On the one hand, the best coloring
algorithms for general graphs are based on MIS algorithms.
On the other hand, the best MIS algorithms for small-degree
graphs are based on coloring algorithms.

The best distributed MIS algorithm for general graphs is a
simple randomized algorithm with expected time complexity
O(log n) [1, 19]. In [17], a nice reduction from (∆ + 1)-
coloring to the MIS problem is described. For a given graph
G which we want to color with ∆ + 1 colors, a graph G′

is constructed as follows. We make ∆ + 1 copies v0, . . . , v∆

for every node v of G. All ∆ + 1 copies are connected to
form a clique. Two nodes ui and vj of G′ are connected if
(u, v) ∈ E(G) and if i = j. Then an MIS of G′ is computed
by a given distributed algorithm. For every node v of G,
exactly one of the ∆ + 1 copies v0, . . . , v∆ is in an MIS
of G′. If it is vi, we assign color i to node v. Because
(u, v) ∈ E(G) implies that ui and vi cannot both be in
the MIS, this gives a (∆ + 1)-coloring of the original graph.
Applying this reduction with the algorithm of [1, 19] results
in a randomized (∆ + 1)-coloring algorithm with expected
time complexity O(log n). Note that the maximal message
size grows from O(log n) to O(∆ log n) when applying the
described reduction.

The problem of finding an MIS or a (∆+1)-coloring with
a deterministic algorithm turns out to be a lot harder. For
general graphs, the best algorithms are based on comput-
ing a small-diameter network decomposition as described in
[2, 21]. With this technique, it is possible to compute both

structures in time nO(1/
√

log n). There are special graphs for
which extremely efficient deterministic algorithms exist. On
a ring or on a rooted tree, it is possible to compute an MIS
or a 3-coloring in time O(log∗ n) [5, 11]. Using the algorithm
of [5, 11], it is also possible to (∆+1)-color a constant-degree
graph in time O(log∗ n). Because any k-coloring can be con-
verted into an MIS in k rounds, the time complexity for com-
puting an MIS in bounded degree graphs is also O(log∗ n).
These upper bounds are matched by a lower bound in [17],
stating that Ω(log∗ n) rounds are needed to compute an MIS

3Because we do not bound local computations, the described
distributed model in principle allows to achieve better ap-
proximation ratios. In fact, if we do not restrict the maxi-
mum message size and local computations, it can be shown
that there is a randomized O(log n)-round algorithm with
an expected approximation ratio of O(log n) [15, 18]. How-
ever, it certainly seems unreasonable to study a distributed
problem where exponential local computations are unavoid-
able.
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Figure 1: Looking into the one-round neighborhood
graph N1(6, 3) of 6-colored degree 3 graphs. Nodes
(x, {x1, x2, x3}) are depicted as star graphs with cen-
ter color x and leaf colors x1, x2, and x3.

or a coloring with a constant number of colors for the ring.
Also interesting for graphs with moderate degrees is an al-
gorithm which finds a (∆+1)-coloring of an arbitrary graph
in time O(∆ log n) [2, 11, 23]. In [17], a deterministic algo-
rithm which colors any graph with O(∆2) colors in O(log∗ n)
rounds is presented. Because any t-coloring can be turned
into a t′ coloring in t − t′ rounds, the algorithm implies
an O(∆2 + log∗ n)-time algorithm for computing a (∆ + 1)-
coloring, a result which has also been presented in [11]. New
interesting ideas for the problem of coloring a graph by a lo-
cal algorithm have been presented in [6]. In [6], it is claimed
that the presented algorithm colors any graph with O(∆)
colors in O(log∗ n) rounds. Unfortunately, there is an error
in the analysis [22]. With a correct analysis, we can only
show that the given algorithm achieves an O(∆2)-coloring
in O(log∗ n) time, that is, asymptotically, the algorithm is
not better than [17].

3. THE NEIGHBORHOOD GRAPH
For the analysis of deterministic algorithms, we use the

concept of neighborhood graphs which was introduced for
ring networks in [17]. The nodes of a k-neighborhood graph
are all possible distance k views of the nodes of a network.
Two nodes of a neighborhood graph are adjacent if the cor-
responding views can occur at adjacent nodes of a given
network. For distributed coloring algorithms, neighborhood
graphs are a means to formalize the possible views on which
nodes have to base their decisions and the neighborhood
relationships between different views. If two views are ad-
jacent in the neighborhood graph, the corresponding nodes
have to choose different colors because otherwise two adja-
cent nodes having the given views would choose the same
color. If two nodes have views which are not adjacent in the
neighborhood graph. they may choose the same color.

In a one-round algorithm, every node can send its initial
color to all its neighbors. All nodes then have to decide on a
new color. Hence, every node has to choose a color based on
its own color and the colors of its neighbors only. Therefore

after one round, the view of each node is a pair (xv, Γx(v))
where xv is the initial color of v and where Γx(v) is the
multi-set of the colors of the neighbors of v.

The value of xv and all elements of Γx(v) are integers be-
tween 1 and m. If we only consider graphs with degrees at
most ∆, we have |Γx(v)| ≤ ∆ and because we start with
a valid coloring, we also have xv 6∈ Γx(v). There is a net-
work graph with initial coloring in which two one-hop views
(xu, Γx(u)) and (xv, Γx(u)) are the one-hop views of adja-
cent nodes if and only if xu ∈ Γx(v) and xv ∈ Γx(u). It
turns out that we can w.l.o.g. assume that all nodes have
exactly degree ∆ and that all neighbors of any node v have
different colors (cf. Lemma 3.1). The neighborhood graph
N1(m,∆) for one-round algorithms on m-colored graphs of
degree at most ∆ can therefore be defined as follows.

Definition 3.1. (Neighborhood Graph) Let ∆ ≥ 1
and m > ∆ be two integer parameters. The node set of the
neighborhood graph N1(m, ∆) consists of all pairs (x, Γx)
for which x ∈ {1, . . . , m}, Γx ⊂ {1, . . . , m}, |Γx| = ∆, and
x 6∈ Γx. There is an edge between two nodes (x, Γx) and
(y, Γy) if and only if x ∈ Γy and y ∈ Γx.

Figure 1 illustrates Definition 3.1 by showing a small part
of N1(6, 3). The fundamental relation between the neighbor-
hood graph N1(m, ∆) and one-round coloring algorithms is
given by the following lemma.

Lemma 3.1. Let G denote the class of m-colored graphs
with maximum degree ∆. In one round, a deterministic
distributed algorithm can color a graph of G with exactly
q = χ

�
N1(m, ∆)� colors. In other words, there is an algo-

rithm which colors every graph of G with at most q colors
and for every algorithm, there is a graph in G for which the
resulting number of colors is at least q.

Proof. We first prove that there is an algorithm which
colors every properly m-colored graph G with q colors in
one round. Slightly more general, we show that every t-
coloring of N1(m,∆) can be turned into a one-round algo-
rithm for t-coloring arbitrary m-colored graphs with max-
imum degree ∆. Assume that we have a t-coloring which
is globally known, that is, all nodes of G know the color-
ing. Note that this is no problem since N1(m, ∆) does only
depend on m and ∆ and is independent of a particular net-
work graph G. Let v be a node of G and let xv be the
initial color of v. Further, let Γx(v) denote the set of ini-
tial colors of the neighbors of v. If |Γx(v)| = ∆, v selects
the color of (xv, Γx(v)) in the t-coloring of N1(m,∆) as its
new color. If |Γx(v)| < ∆, v first adds ∆− |Γx(v)| arbitrary
additional colors to Γx(v) and then select the new color in
the described fashion. If u and v are neighbors in G, we
must have xv ∈ Γx(u) and xu ∈ Γx(v). By the definition of
N1(m,∆) and because t is a valid coloring of N1(m, ∆), the
new colors selected by u and v are different.

It remains to show that q is also a lower bound on the
number of colors which a one-round algorithm can achieve.
Every deterministic one-round t-coloring algorithm can be
seen as a function from the possible one-hop views (xv, Γx(v))
of a node v to a number in {1, . . . , t}. This implies a function
γ from the nodes of N1(m,∆) to {1, . . . , t}. If t < q, there
must be two adjacent nodes (x,Γx) and (y, Γy) of N1(m, ∆)
to which γ assigns the same value. However, by the defini-
tion of N1(m,∆) we can construct a graph G where (x, Γx)



and (y, Γy) occur as the one-hop views of two adjacent nodes
u and v of G. As a consequence, the algorithm correspond-
ing to the function γ assigns the same color to u and v.

Lemma 3.1 shows that in order to study the potential of
one-round coloring algorithms and coloring algorithms based
on iterative one-round color reduction steps, it suffices to an-
alyze the chromatic number of N1(m, ∆) for general m and
∆. Before starting a more detailed discussion, let us look at
a few simple properties of χ

�
N1(m, ∆)�. From the definition

of N1(m,∆), it is immediate that χ
�
N1(m, ∆)� ≥ χ

�
N1(m−

1, ∆)� and χ
�
N1(m, ∆)� ≥ χ

�
N1(m, ∆ − 1)�. Further, if

m > ∆ + 1, it can be shown that χ
�
N1(m,∆)� ≤ m − 1,

that is, as long as there are more than ∆ + 1 colors, we can
always make progress by applying a one-round algorithm.

4. DETERMINISTIC ONE-ROUND
ALGORITHMS

The best known upper and lower bounds for one-round
coloring algorithms come from [17] where it is proved that
χ

�
N1(m, ∆)� ∈ O(∆2 log m) and χ

�
N1(m, 2)� ∈ Ω(log log m).

The upper bound is based on the existence of the following
set system. For some t ∈ O(∆2 log m), there are m subsets
S1, . . . , Sm of {1, . . . , t} such that for every (∆ + 1)-tuple of
sets Si0 , . . . , Si∆ for ij ∈ {1, . . . , m}, we have

Si0 \
∆�

j=1

Sij
6= ∅.

A node v of color i0 with neighbors of colors i1, . . . , i∆
then chooses a value which is in Si0 but not in Sij

for
j ∈ {1, . . . , ∆} as its new color. Based on a result in [8], it is
also proved in [17] that with such a set system, we cannot ob-
tain a coloring with less than Ω(∆2) colors. In this section,
we extend this result to general one-round algorithms prov-
ing that for large enough m, χ

�
N1(m, ∆)� ∈ Ω(∆2/ log2 ∆).

We start our analysis of the chromatic number of the
neighborhood graph N1(m, ∆) by looking at the structure
of independent sets of the N1(m, ∆). Because in a proper
coloring of a graph, the nodes of each individual color form
an independent set, finding a minimum coloring can equiv-
alently be formulated as finding a minimum number of in-
dependent sets such that each node is contained in at least
one independent set.

The above observations allow us to define a relation CS

among the colors 1, . . . , m for each independent set S of
N1(m,∆). For an independent set S and two colors x, y ∈
{1, . . . , m}, we define x CS y if and only if there is a node
(x, Γx) ∈ S for which y ∈ Γx. By the definition of N1(m, ∆)
and because S is an independent set, CS is antisymmetric:
x CS y =⇒ ¬(y CS x). Note that CS does not have to be
a partial order. In particular, CS can contain cycles. For
convenience, we also define the complementary relation of
CS as x 6CS y := ¬(x CS y). In the described manner, it
is not only possible to define an antisymmetric relation CS

for each independent set S, we can also find an independent
set SC for each antisymmetric relation C. The independent
set SC consists of all nodes (x, Γx) for which x C y for all
y ∈ Γx. The following lemma shows that if C is a total
order, SC is a maximum independent set.

Lemma 4.1. Let N be the number of nodes of N1(m, ∆)
and let ≺ be a total order on {1, . . . , m}. The resulting
independent set S≺ is a maximum independent set of size
N/(∆ + 1) of N1(m,∆).

Proof. Let D be a (∆+1)-subset of {1, . . . , m}. For each
x ∈ D, there is a node (x, D \{x}) in N1(m, ∆). For a given
total order ≺ on {1, . . . , m}, exactly one of the ∆ + 1 colors
is the smallest w.r.t. ≺. Hence, exactly one of the ∆ + 1
nodes with colors in D is in S≺. Consequently, a 1/(∆+1)-
fraction of all nodes of N1(m,∆) is in S≺. Because the
nodes of N1(m, ∆) corresponding to the one-round views of
the ∆ + 1 nodes of a complete graph K∆+1 form a clique
of size ∆ + 1 in N1(m,∆), every node of N1(m,∆) is in a
(∆ + 1)-clique. Therefore S≺ is a maximum independent
set.

In fact, it can even be shown that the maximum indepen-
dent sets defined by total orders in the described way are
the only maximum independent sets of N1(m,∆). A direct
implication of the structure of maximum independent sets
of N1(m, ∆) is given by the following Corollary 4.2. The
fractional chromatic number of a graph G is defined as the
size of the smallest fractional covering of the nodes of G with
independent sets of G. That is, we have to assign a weight
xS to every independent set such that for every node v, the
sum of the weights of independent sets containing v is at
least 1 and such that the total sum of xS is minimized.

Corollary 4.2. For m > ∆, the fractional chromatic
number of N1(m, ∆) is χf

�
N1(m, ∆)� = ∆ + 1.

Proof. By Lemma 4.1 and by symmetry, every node of
N1(m,∆) is in m!/(∆+1) independent sets of size N/(∆+1)
defined by the m! possible total orders on {1, . . . , m}. To
obtain a fractional covering of the nodes with independent
sets, we have to assign a weight xS to each independent set S
of G such that for each node v of G, the sum of the weights of
all independent sets containing v is at least 1. By assigning
xS = (∆ + 1)/m! to each of the m! maximum independent
sets of N1(m,∆), we obtain a fractional covering of size
∆ + 1.

As a consequence of Corollary 4.2, we obtain the following
upper bound on χ

�
N (m,∆)�.

Theorem 4.3. For all m > ∆, the chromatic number of
N1(m,∆) is χ

�
N1(m, ∆)� ≤ (∆ + 1)2(ln m + 1).

Proof. The chromatic number χ(G) of a graph G equals
the number of independent sets needed to cover all nodes of
G. Hence, χ(G) is the solution of a minimum set cover
instance. The integrality gap (maximal ratio between an
optimal integer solution and an optimal fractional solution)
of minimum set cover is at most ln s+1, where s is the size of
the largest set. We thus have χ(G) ≤

�
ln(α(G)) + 1�χf (G)

where α(G) is the size of a maximum independent set of G.
The theorem follows because

α
�
N1(m, ∆)� =

�
m

∆ + 1� < m∆+1.



Remark: In [17], it has also been shown that the chro-
matic number χ

�
N1(m, ∆)� ∈ O(∆2 log m). Theorem 4.3 is

a small constant improvement over the result of [17]. Up to
lower-order terms, it is better by a factor of 4.

In [17], it is shown that even for degree 2 graphs, every
one-round coloring algorithm needs at least Ω(log log m) col-
ors. Together with Corollary 4.2, we obtain Ω(∆+log log m)
as a lower bound on χ

�
N1(m, ∆)�. In the following, we

will significantly improve this lower bound showing that the
Ω(∆2) lower bound for algorithms based on the technique
described in [17] is almost tight for general one-round algo-
rithms.

We start with an outline of the lower bound proof. Let
S1, . . . , Sq be q independent sets of N1(m, ∆) for some given
m and ∆. If every node of N1(m, ∆) is in at least one of
the q independent sets, the chromatic number of N1(m, ∆)
is at most q. To prove a lower bound, the goal therefore
is to show that if q is small enough, we can find at least
one node which is not in any of the independent sets. To
argue about the role of a color x in independent set S, we
define ΦS(x) := �y |x 6CS y� and ϕS(x) := ��ΦS(x) ��. Hence,
ΦS(x) denotes the set of colors y for which y 6∈ Γx for all
nodes (x, Γx) ∈ S. Consequently ϕS(x) is the number of
colors which do not occur in Γx for (x,Γx) ∈ S. Our goal is
to show that for small enough q, we can find ∆ + 1 colors
x, y1, . . . , y∆ ∈ {1, . . . , m} such that

∀i ∈ {1, . . . , q}, ∃j ∈ {1, . . . , ∆} : yj ∈ ΦSi
(x) (1)

for any possible choice of independent sets S1, . . . , Sq. If we
can find such colors, it follows that the node (x, {y1, . . . , y∆})
is not in any of the q independent sets S1, . . . , Sq and does
therefore not get one of the q colors. Hence, these q inde-
pendent sets do not define a valid coloring of N1(m, ∆). For
a given color x, the problem to find yj for which Condition
(1) is satisfied can be interpreted as an instance of minimum
set cover. The colors {1, . . . , m}\{x} define the sets and the
independent sets Si define the elements. An independent set
Si is covered by a color yj if yj ∈ ΦSi

(x). To prove that a
one-round coloring algorithm needs more than q colors, we
show that there is an x ∈ {1, . . . , m} for which the optimal
solution of the described set cover problem is at most ∆. In
order to find such an x, we need the following lemma.

Lemma 4.4. Let A ⊆ {1, . . . , m} be a set of colors. For
every independent set S of N1(m, ∆), we have

�
x∈A

ϕS(x) ≥

�
|A|

2 � .

Proof. Because CS is an antisymmetric relation, for any
two colors x1, x2 ∈ A, we have

(x1 6CS x2) ∨ (x2 6CS x1). (2)

By definition, ϕS(x) is the number of colors y for which
x 6CS y. Hence, Equation (2) implies that for any two col-
ors x1, x2 ∈ A, either ϕS(x1) or ϕS(x2) is increased by 1.

Because the number of pairs in A is
�|A|

2
�, the claim follows.

Lemma 4.4 implies that for each independent set S and
each set A of colors, for at least half of the |A| colors,
ϕS(x) ∈ Ω(|A|). Hence, for each independent set S, many
colors x are bad center colors because there are many col-
ors which cannot occur as peripheral colors. In the fol-
lowing, we show that for small enough q, there must be

a color x for which ϕSi
(x) is large for almost all indepen-

dent sets Si, i ∈ {1, . . . , q}. To do so, for every x, we sort
the values ϕSi

(x) (i = 1, . . . , q) in increasing order. For all
j ∈ {1, . . . , q}, we denote the jth value ϕSi

(x) in this sorted
order by hj(x). Ties are broken arbitrarily. The next lemma
shows that there is an x for which hj(x) grows linearly with
j.

Lemma 4.5. Let t be an integer. If t
�
(m − q)t − q� >

2q(m − 1), there is an x ∈ {1, . . . , m} for which

t�
i=1

hi(x) ≥ m and h1(x) > 0.

Proof. Let Q ⊂ {1, . . . , m} be the set of colors x for
which there is an i ∈ {1, . . . , q} such that ϕSi

(x) = 0, that is,
Q = {x ∈ {1, . . . , m} ��h1(x) = 0}. For each independent set
S, ϕS(x) = 0 for at most one color x. If ϕS(x) = ϕS(y) = 0
for two different colors x 6= y, this would imply that x CS y∧
y CS x which is not possible because CS is antisymmetric.
We therefore have |Q| ≤ q. Let P be the complementary
color set of Q, that is, P = {1, . . . , m} \ Q. We want to
show that if t

�
(m − q)t − q� > 2q(m − 1), there is an x ∈ P

for which � t
i=1 hi(x) ≥ m. For the sake of contradiction,

assume that this is not the case and thus

∀x ∈ P :

t�
i=1

hi(x) ≤ m − 1

=⇒
�
x∈P

t�
i=1

hi(x) ≤ |P |(m − 1). (3)

Let us take a closer look at the double sum in the right
inequality of (3). The sum is over |P | · t different hi(x)
values and therefore also over |P | · t different ϕS(x) values.
Let us denote the number of ϕSj

(x) values for a particular
independent set Sj in the double sum of Inequality (3) by
a(Sj). By Lemma 4.4, we have

�
x∈|P |

t�
i=1

hi(x) ≥

q�
j=1

�
a(Sj)

2 � ,

where

q�
j=1

a(Sj) = |P | · t. (4)

For two integers A and B with A < B, we have
�
A
2
� +

�
B
2
� ≥�

A+1
2

� +
�
B−1

2
�. Combining with Inequality (4), we obtain

�
x∈|P |

t�
i=1

hi(x) ≥

q�
j=1

�
a(Sj)

2 �
≥ q ·

�
|P |t/q

2 � =
|P |t · (|P |t − q)

2q
.

Note that the above inequality also holds if |P |t/q is not
integral. Combined with Inequality (3), we therefore have
2q(m− 1) ≥ t(|P |t− q) ≥ t

�
(m− q)t− q� which is a contra-

diction because we assumed that t
�
(m−q)t−q� > 2q(m−1).

As described above, for each center color x, finding a node
of N1(m,∆) which is not covered by a given set of q in-
dependent sets of N1(m,∆) can be seen as a minimum set
cover problem where the colors {1, . . . , m} are the sets and



the q independent sets are the elements. Using Lemma 4.5,
we can now prove that there is a color for which the above
described set cover has a small fractional solution.

Lemma 4.6. If t
�
(m − q)t − q� > 2q(m − 1), there is a

color x ∈ {1, . . . , m} for which the above described minimum
set cover problem has a fractional solution of size at most t.

Proof. We have to assign a fractional value λy to each
color y ∈ {1, . . . , m} \ {x} such that

∀i ∈ {1, . . . , q} :
�

y∈ΦSi
(x)

λy ≥ 1. (5)

We define λy := 1/
�
min �ϕSi

(x) ��y ∈ ΦSi
(x)��. Clearly,

this definition satisfies Condition (5). The value of the given
fractional set cover solution is � y λy. By the definition of

h1(x), h1(x) colors y have a value λy = 1/h1(x). Further,
at most hi(x) colors y have a value λy = 1/hi(x). Because
of Lemma 4.5, there is a color x for which

�
y

λy ≤
t�

i=1

hi(x)
1

hi(x)
= t.

which concludes the proof. Note that we need that h1(x) > 0
because the independent set S for which ϕS(x) = 0 contains
all nodes (i.e., stars) with center color x.

Based on Lemma 4.6, we can now also find a color x for
which the described set cover problem has a small integer
solution. This allows to derive the next lemma.

Lemma 4.7. We have χ
�
N1(m,∆)� > q if the following

condition holds:

∆ �∆ −
q ln(eq)

m − q � >
2(m − 1)q ln2(eq)

m − q
. (6)

Proof. Let s be the size of the largest set of some given
minimum set cover problem. By the analysis of the set cover
greedy algorithm [4], the integrality gap of the minimum set
cover problem is at most H(s) ≤ ln s + 1 = ln(es). The
largest set of the set cover instance considered in Lemma 4.6
has size less than q. The integrality gap of the considered
set cover problem therefore is bounded by ln(eq). We have
seen that if there is some center color x for which there is a
solution of size ∆ for the problem of covering independent
sets with colors, at least one node of N1(m, ∆) is not covered
by any of the independent sets. It therefore follows from
Lemma 4.6 that χ

�
N1(m, ∆)� > q if

∆ ≥ t ln(eq) and t
�
(m − q)t − q� > 2q(m − 1). (7)

Plugging the first inequality of (7) into the second inequality
of (7), yields the desired inequality.

This allows us to compute a lower bound for one-round col-
oring algorithms as given by the following theorem.

Theorem 4.8. For m ∈ Ω(∆2/ log ∆), the chromatic num-
ber of the one-round neighborhood graph is

χ
�
N1(m, ∆)� ∈ Ω � ∆2

log2 ∆
+ log log m� .

Proof. We have to show that Inequality (6) of Lemma
4.7 holds for q ∈ Ω(∆2/ log2 ∆) if m ∈ Ω(∆2/ log ∆). Hence,
we assume that m = d∆2/ ln ∆ for some d ∈ Ω(1) and show

how to find a c ∈ Ω(1) such that Inequality (6) holds for
q = c∆2/ ln2 ∆. For c < d, we have

m − q =
∆2

ln ∆
· �d −

c

ln ∆ � ≥
∆2

ln ∆
·
ln ∆ − 1

ln ∆
.

Hence, there is a small enough constant c for which the left-
hand side of Inequality (6) is bounded by

∆ �∆ −
q ln(eq)

m − q �
≥ ∆ �∆ −

c∆2(ln(ec) + 2 ln ∆ − 2 ln ln ∆) ln2 ∆

ln2 ∆ · ∆2(ln ∆ − 1) �
> ∆(∆ − 1).

There is a constant c′ such that

m

m − q
≤

d∆2 ln2 ∆

ln ∆ · ∆2(ln ∆ − 1)
≤ c′.

For the right-hand side of Inequality (6), we therefore obtain

2(m − 1)q ln2(eq)

m − q
≤

2c′c∆2(ln(ec) + 2 ln ∆ − 2 ln ln ∆)2

ln2 ∆

< ∆(∆ − 1)

if the constant c is chosen small enough. The Ω(log log m)
lower bound follows from the proof of Theorem 2.1 in [17].

5. ITERATIVE ONE-ROUND
COLOR REDUCTION

The bounds on χ
�
N1(m,∆)� given by Theorems 4.3 and

4.8 are strong if m is at least in the order of Θ(∆2). However,
if we want lower bound the number of one-round color reduc-
tion steps needed to for example achieve an O(∆)-coloring,
we have to bound χ(N1(m, ∆)) for small m. The following
theorem gives an upper bound on the chromatic number of
the neighborhood graph.

Theorem 5.1. For all m, the chromatic number of the
neighborhood graph is at most

χ
�
N1(m, ∆)� ≤ �m ·

∆ + 1

∆ + 2� = �m · �1 −
1

∆ + 2�� .

Proof. Let G be an m-colored graph of maximum degree
∆. We can construct a q-coloring for G for any q satisfying
q + q/(∆ + 1) = q · (∆ + 2)/(∆ + 1) ≥ m as follows. Every
node v with color xv ≤ q keeps its color. We now still have
to assign a color from {1, . . . , q} to all nodes having a color
greater than q. Let the number of such colors be t = m− q.
From the above condition, we have t ≤ bq/(∆ + 1)c. We
number those colors from x0 to xt−1, that is, we can for
example set xi = m − i. A node v with color xi chooses a
color from the set {i(∆ + 1) + 1, . . . , (i + 1)(∆ + 1)} which
is not equal to the original color of any of v’s neighbors.
Because v can choose among ∆+1 colors, such a color exists.
Because nodes having colors xi and xj for i 6= j choose their
colors from disjoint color ranges, the obtained q-coloring is
valid. The given upper bound on χ

�
N1(m, ∆)� satisfies the

condition for q because

�m ·
∆ + 1

∆ + 2� ·
∆ + 2

∆ + 1
≥ m ·

∆ + 1

∆ + 2
·
∆ + 2

∆ + 1
= m.



By Theorem 5.1, it is possible to transform an m col-
oring into a ∆ + 1-coloring by O(∆ log(m/∆)) consecutive
one-round color reduction steps. Additionally, the theorem
shows that χ

�
N1(m, ∆)� ≤ m − 1 as long as m ≥ ∆ + 2.

Combined with the O(log∗ m)-time, O(∆2)-coloring algo-
rithm of [17]—the algorithm of [17] is also based on iterative
one-round color reduction steps—, Theorem 5.1 implies the
following corollary.

Corollary 5.2. Starting with an arbitrary m-coloring,
it is possible to obtain a (∆+1)-coloring by at most O(∆ log ∆+
log∗ m) iterative one-round color reduction steps.

Note that by combining the algorithm of [17] with the
techniques from [2, 11, 23] used to (∆ + 1)-color a graph
in O(∆ log n) rounds, it would also possible to obtain an
O(∆ log ∆ + log∗)-time, (∆ + 1)-coloring algorithm. The
next theorem shows that one can also bound χ

�
N1(m, ∆)�

from below for arbitrary m.

Theorem 5.3. Assume that m = ρ∆ for an arbitrary pa-
rameter ρ > 1. We have

χ
�
N1(m,∆)� ≥ �1 − O �ρ log2 ∆

∆ �� · m.

Proof. By Lemma 4.7, we have χ
�
N1(m,∆)� > q if

∆ �∆ −
q ln(eq)

m − q � >
2(m − 1)q ln2(eq)

m − q
.

By substituting ρ∆ for m and (1 − ε)m for q, we obtain

ε∆
�
∆ − (1 − ε) ln(e(1 − ε)ρ∆)� >

2(ρ∆ − 1)(1 − ε) ln2(e(1 − ε)ρ∆) (8)

W.l.o.g., we can assume that ρ ∈ O(∆/ log2 ∆). We thus
have ln2(e(1 − ε)ρ∆) ≤ c ln ∆ for some constant c. The
left-hand side and the right-hand side of Inequality 8 can be
bounded as follows:

ε∆
�
∆ − (1 − ε) ln(e(1− ε)ρ∆)� ≥ ε(∆2 − c∆ ln∆),

2(ρ∆ − 1)(1 − ε) ln2(e(1 − ε)ρ∆) ≤ 2cρ∆ ln2 ∆.

Inequality 8 therefore holds if

ε ≥
2cρ∆ ln2 ∆

∆2 − c∆ ln∆
∈ O �ρ log2 ∆

∆ �
which concludes the proof.

Theorem 5.3 shows that if we start with a ρ∆-coloring,
at least Ω

�
∆/(ρ log2 ∆)� rounds are needed to reduce the

number of colors by a constant factor. Combining with the
Ω(log∗ m)-lower bound of [17], we obtain the following corol-
lary.

Corollary 5.4. Assume that m ≥ cβ(∆ + 1) for some
constant c > 1 and some β > 1. The number of one-round
color reduction steps needed to obtain a β(∆+1)-coloring is
at least Ω

�
∆/(β log2 ∆)+log∗ m�. In particular, any O(∆)-

coloring algorithm which is based on iterative applications of
one-round color reduction steps, needs at least Ω(∆/ log2 ∆+
log∗ m) rounds.

Algorithm 1 Randomized coloring in one round (code for
node v)

1: choose color tv uniformly at random from
{1, . . . , d∆/ ln ne};

2: send ID(v) and tv to all neighbors;
3: let Gtv be the graph induced by all nodes u with tu = tv;
4: let ∆tv be the maximum degree of Gtv ;
5: compute O(∆2

tv
log m)-coloring of Gtv =⇒ color yv;

6: color xv := yvd∆/ ln ne + tv − 1

6. RANDOMIZED DISTRIBUTED
COLORING

Up to this point, we have focused on deterministic color-
ing algorithms. Let us now explore the potentials of ran-
domized coloring algorithms. In [17], it has been proved
that randomization does not help for distributed coloring
algorithms. However, in the proof of [17], it is implicitly
assumed that a k-round randomized coloring algorithm col-
ors a graph with s colors if the algorithm always stops with
a proper s-coloring after at most k rounds. The proof of
[17] does not hold if it suffices that the number of rounds is
k or the number of colors is s in expectation or with high
probability. If we allow this, depending on k, m, ∆, and the
number of nodes n, it might be possible that randomized
algorithms are strictly better than deterministic ones. Intu-
itively, randomization does not help if the number of rounds
k and the number of initial colors m are fixed and indepen-
dent of n. Assume that we are given an m-colored graph G
for which some algorithm A has some possibly very small
failure probability. We can construct a graph G′ consist-
ing of sufficiently many independent copies of G for which
the failure probability of A is arbitrarily close to 1. A for-
mal proof of this argument can be found in [20] where it is
shown that randomization does not help to locally (in con-
stant time) construct any labeling consisting of a constant
number of different labels.

If we assume that m is a function of n, randomization
can help. We will now show that for certain ∆, m, and
n randomized one-round coloring algorithms can beat the
one-round lower bound for deterministic algorithms given
by Theorem 4.8. For deterministic algorithms, we assumed
that in one round, every node can learn the labels of all its
neighbors. In a randomized algorithm, it is additionally pos-
sible to collect all random decisions (i.e., all random bits)
of the neighbors. Algorithm 1 describes a randomized al-
gorithm which colors a given network graph in one round.
The following theorem shows that Algorithm 1 computes a
small, proper coloring. We assume that all nodes know m,
∆, and n.

Theorem 6.1. For any constant c and with probability
1 − 1/nc, Algorithm 1 computes a proper coloring of the
network graph G with O(∆ log n log m) colors in one round.
The choice of the constant c only influences the number of
colors by a constant factor.

Proof. Let ∆T be max �∆t|t ∈ {1, . . . , d∆/ ln ne}�. We
first show that Algorithm 1 computes a valid coloring with
O(∆∆2

T log m/ log n) colors in a single round. The only
places where something has to be computed are Lines 1,
5, and 6. The only problem occurs in Line 5. If v knew
∆tv , an O(∆2

tv
log m)-coloring could be computed by using



Theorem 4.3 or by applying the algorithm of [17]. If we
are willing to pay a small constant factor in the number of
colors, the described algorithms can be adapted to the case
where the maximum degree is not known. Let ∆i := 2i. As-
sume that we are given O(∆2

i log m)-colorings of N1(∆i, m)
for all i such that different colors are used for different ∆i.
A node v with degree δ(v) can choose its color according
to the respective color of the neighborhood graph for the
smallest ∆i ≥ δ(v).

In order to complete the proof, it therefore suffices to show
that ∆T ∈ O(log n) with probability 1 − 1/nc. To do so,
we compute a high probability upper bound for the degree
δtv (v) of v in Gtv using Chernoff. Let Q := d∆/ ln ne. The
probability that a neighbor u of v chooses the same color
in Line 1 (i.e., tu = tv) is 1/Q. The expected number of
neighbors u of v for which tu = tv is therefore at most
∆/Q ≤ ln n. By applying the Chernoff bound for upper
tails, we get

Pr[δtv (v) ≥ κe ln n] < � eκe−1

(κe)(κe) � ln n

=
1

n1+ln κ·κe
.

We then have Pr[∆T ≥ κe lnn] ≤ n · Pr[δtv (v) ≥ κe lnn] <
1/(nln κ·κe). Choosing κ such that c = ln κ · κe completes
the proof.

If log n � ∆, Theorem 6.1 together with the lower bound
of Theorem 4.8 shows that randomization can help in dis-
tributed coloring.

In Line 5, we apply a deterministic one-round algorithm
which colors an m-colored graph with maximum degree ∆
with O(∆2 log m) colors. If we replace Line 5 of Algorithm
1 by the O(log∗ m)-time, O(∆2)-coloring algorithm, we can
color any m-colored graph G with maximum degree ∆ with
O(∆ log n) colors in O(log∗ m) rounds with probability 1 −
1/nc. Combined with Theorem 5.1, we obtain the following
result.

Corollary 6.2. For an arbitrary constant c, it is possi-
ble to color any graph with ∆ + 1 colors in O(∆ log log n)
rounds with probability 1 − 1/nc.

7. CONCLUSIONS
We have proved new lower bounds and slightly improved

upper bounds for one-round coloring algorithms and color-
ing algorithms based on iterative one-round color reduction
steps. Beyond being the simplest non-trivial case for gen-
eral graphs, there are several reasons why it is interesting to
look at these types of coloring algorithms. In the context of
emerging dynamic and mobile distributed systems such as
peer-to-peer, ad hoc, or sensor networks, it is often desirable
to keep the time complexity as small as possible even at the
cost of globally not optimal global solutions. For such net-
works, constant-time algorithms are especially interesting.
Further, most known distributed coloring algorithms are it-
erative applications of one-round color reduction schemes
[5, 11, 17]. From a practical point of view, this technique is
especially interesting because it results in communication-
efficient algorithms. In every round, each node just sends its
current own color, a message of size O(log m) to all its neigh-
bors. Sending the same message to all neighbors is particu-
larly interesting for wireless networks where typically, every
message is automatically sent to all neighbors.
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