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Algorithms for Wireless Capacity
Olga Goussevskaia, Magnús M. Halldórsson, and Roger Wattenhofer

Abstract—In this paper, we address two basic questions in wire-
less communication. First, how long does it take to schedule an ar-
bitrary set of communication requests? Second, given a set of com-
munication requests, how many of them can be scheduled concur-
rently? Our results are derived in the signal-to-interference-plus-
noise ratio (SINR) interference model with geometric path loss and
consist of efficient algorithms that find a constant approximation
for the second problem and a logarithmic approximation for the
first problem. In addition, we show that the interference model is
robust to various factors that can influence the signal attenuation.
More specifically, we prove that as long as influences on the signal
attenuation are constant, they affect the capacity only by a constant
factor.

Index Terms—Approximation algorithms, capacity, physical
model, scheduling, wireless networks.

I. INTRODUCTION

D ESPITE the omnipresence of wireless networks, surpris-
ingly little is known about their algorithmic complexity

and efficiency: Designing and tuning a wireless network is a
matter of experience, regardless whether it is a WLAN in an of-
fice building, a GSM phone network, or a sensor network on a
volcano.
We are interested in the fundamental communication limits

of wireless networks. In particular, we would like to know what
communication throughput can possibly be achieved. This ques-
tion essentially boils down to spatial reuse, i.e., which devices
can transmit concurrently, without interfering.
The answer to the question stated above depends, among

other factors, on the topology of the network. One could be
interested in networks where nodes are randomly distributed,
or are positioned on a regular grid, as examples of best-case
scenarios, i.e., where capacity is maximized. The problem
of determining the capacity of such networks has been ex-
tensively studied, starting with the seminal work of Gupta
and Kumar [24]. Another direction is to restrict attention to
link sets with special properties. In [43], a power-assignment
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algorithm that schedules a strongly connected set of links
in polylogarithmic time was presented. This is probably the
first algorithmic result in the physical model with guaranteed
performance in worst-case topologies; it cannot, however, be
extended to schedule arbitrary sets of links and relies strongly
on the connectivity requirement.
In this paper, we generalize this research to consider the ca-

pacity of any network: one with arbitrary topology and an arbi-
trary set of communication requests. The computational aspect
is fundamental: We need to be able to compute the capacity effi-
ciently. Since general instances defy simple laws, the algorithm
becomes the means to express capacity. Therefore, if one wants
to know the capacity of any network, this paper provides the
tool to do that, as it computes the capacity of any network up to
a logarithmic factor in the number of communication requests.
In the past, computational research has focused on graph-

based models, also known as protocol models. Unfortunately,
graph-based models, despite being a useful abstraction, are too
simplistic. They fail to capture some essential characteristics of
wireless communication, such as the many-to-many relation-
ships underlying wireless interference and the gradual signal at-
tenuation with distance.
Fading channel models, such as the physical model (formally

introduced in Section III), offer a more realistic representation
of wireless communication. A signal is received successfully if
the signal-to-interference-plus-noise ratio (SINR)—the ratio of
the received signal strength to the sum of the interference caused
by all other nodes sending simultaneously, plus noise—is above
a hardware-defined threshold. This definition of a successful
transmission, as opposed to the graph-based definition, accounts
also for interference generated by transmitters located far away.
Observe that since the SINR depends on combinations of the
transmissions scheduled concurrently, interference is no longer
a binary relation (or a graph). This makes the analysis of algo-
rithms more challenging than in graph-based models.
The capacity of wireless networks in fading channel models

has received a lot of attention from researchers in information,
communication, and network theory. In contrast to the results in
graph-based models, which are of algorithmic nature and con-
cerned with arbitrary instances, the results in the physical model
have been typically based on heuristics evaluated by simulation
of average scenarios. Analytical work in this context has been
done only for special cases, e.g., when the network has a grid
structure or when traffic is random. Therefore, these results give
little insight into the computational complexity of the problem
and cannot be translated into algorithms that can ultimately lead
to new protocols.
In this paper, we focus on a specific part of the problem of

determining the throughput capacity of a wireless network. We
study the problem of scheduling one-hop communication re-
quests without power control, i.e., we do not consider routing
nor power control problems. The specific questions we address
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are two classic issues in wireless communication: Given a set of
arbitrary communication requests: 1) how many of them can be
scheduled concurrently; and 2) how long does it take to schedule
all of them?
We can solve the first problem asymptotically optimally. The

solution of the first problem then directly leads to an under-
standing of the second problem. In particular, it gives an ap-
proximation that is optimal up to a factor that is logarithmic in
the number of requests. Note that we compute any network’s
capacity up to a small insecurity, whereas the complete under-
standing is out of bound since the problem is NP-hard [19].
Our third contribution is a proof of robustness of the physical

model with geometric path loss. One may argue that, in reality,
path loss will not follow a perfect geometric pattern. Instead,
various factors can affect the transmission, e.g., antenna gain
may be higher in some directions, obstacles may influence at-
tenuation, and noise may be location-dependent. We show that
as long as influences are constant, results will only be affected
by a constant. As such, the physical model is robust. This re-
sult holds in a variety of settings, including power-controlled
transmissions.
In the remainder of the Introduction, let us quickly address

the two main limitations of our work: single-hop and uniform
power. Even though a large body of recent research in wire-
less communication is about multihop communication, in re-
ality, wireless relaying still is a rare exception, as most wireless
systems (e.g., GSM, WLAN) are single-hop. Moreover, under-
standing the single-hop case also helps understanding the mul-
tihop case, as multihop research papers often use a single-hop
scheduling algorithm as a basic building block. In Section II,
we will give a few examples of how our work was extended to
more general scenarios. More surprisingly, this is true also for
power control, as the best algorithms with power control [34]
can be seen as a generalization of the uniform power algorithm
presented in this paper.

II. RELATED AND CURRENT RESULTS

Most work in wireless scheduling in the physical (SINR)
model is of heuristic nature, e.g., [6] and [10]. Only after the
work of Gupta and Kumar [24] did analytical results become
en vogue, but only restricted to networks with a well-behaving
topology and traffic pattern. On the one hand, this restriction
keeps the math involved tractable; on the other hand, it allows
for presenting the results in a concise form, i.e., “the throughput
capacity of a wireless network with and is ,” where
and are some parameters defining the network, and is a
function of the network size. This area of research has been ex-
ceptionally popular, with a multidimensional parameter space
(e.g., node distribution, traffic pattern, transport layer, mobility,
etc. [23], [37], [39]). An intrinsic problem with this line of re-
search is that, in practice, networks often do not resemble the
models studied here, so one cannot learn much about the ca-
pacity of an arbitrary network. Moreover, it is difficult to deduce
protocols since the results are not algorithmic.
Mathematical programming techniques can be used to formu-

late the capacity problem and various extensions, typically in the
form of convex programming (see, e.g., [47]). The NP-hardness
of the problem [19] tells us, however, that one can only hope to
solve small instances using such formulations.

In contrast, there is a body of algorithmic work, but mostly
on graph-based models. Studying wireless communication in
graph-based models commonly implies studying some variants
of independent set, matching, or coloring, e.g., [38]. Although
these algorithms present extensive theoretical analysis, they are
constrained to the limitations of a model that ultimately ab-
stracts away the nature of wireless communication. The inef-
ficiency of graph-based protocols in the SINR model is well
documented and has been shown theoretically as well as exper-
imentally [22], [40], [44].
Algorithmic work in the SINR model is fairly new; to the

best of our knowledge, it was started just a few years ago [43].
In [43], Moscibroda and Wattenhofer present an algorithm
that successfully schedules a set of links (carefully chosen to
strongly connect an arbitrary set of nodes) in polylogarithmic
time, even in arbitrary worst-case networks. In contrast to
our work, the links themselves are not arbitrary, but have
structure that simplifies the problem. In a follow-up paper,
Moscibroda et al. [45] first define the link scheduling problem,
whose single-shot variant is the focus of this paper. These
concepts have been extended and applied to topology con-
trol [16], [45], sensor networks [41], combined scheduling
and routing [8], ultra-wideband [32], and analog network
coding [21], just to name a few. Apart from these papers,
algorithmic SINR results also started appearing here and there,
such as in a game-theoretic or distributed algorithms context,
e.g., [4], [5], [7], [18], [33], and [46].
Previous to our work, few papers appeared that tackle

the problem of scheduling arbitrary wireless links.
Goussevskaia et al. [19] showed that the problem is NP-com-
plete, and Moscibroda et al. [42] evaluated popular heuristics.
Both papers also present approximation algorithms, with
approximation ratios that depend on network parameters and
can become linear in the network size.
Since the original publication of our work [17], numerous

results have appeared on different aspects of scheduling in
the SINR model. The scheduling problem with linear power
assignment was treated by Fanghänel et al. [14], including
a nearly constant approximation. Online algorithms for the
dynamic scheduling problem, where communication requests
arrive dispersed over time, have been examined in [11], [12],
and [25]. Game theory was treated in [1], [2], and [9], and
auctioning of spectrum in [31]. Distributed algorithms have
been proposed in [2], [9], and [36]. The weighted version of the
scheduling problem was studied in [20] and [28].
Halldórsson and Mitra [27] have extended the results of this

paper in two ways: from the Euclidean plane to general metric
spaces, and to more general range of fixed power assignments.
For the case of arbitrary power assignments, Kesselheim [34]
gave a constant factor approximation algorithm. Also, if one
seeks to maximize capacity with a fixed power assignment, but
compare to the optimum that uses arbitrary power, this can be
obtained a price of a multiplicative factor of [26],
which is the best possible [13], [25].
The single-hop capacity problem also plays a central role in

more complex scenarios and higher-layer functions, including
multihop capacity and flow maximization [48], multirate com-
munication [35], spectrum auctions [26], [31], connectivity and
aggregation capacity [29], and the stability of networks under
stochastic packet injections [3].
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A. Our Results

In this paper, we present the first results that provide approx-
imation guarantees independent of the topology of the network.
Our main contributions are the following.
• Given an arbitrary set of requests, we present a simple
greedy algorithm that chooses a subset of the requests that
can be transmitted concurrently without violating the SINR
constraints. This subset is guaranteed to be within a con-
stant factor of the optimal subset.

• Furthermore, by applying the single-slot subroutine repeat-
edly, we realize an -approximation (where is the
number of communication links) for the problem of mini-
mizing the number of time slots needed to schedule a given
set of arbitrary requests. Simulation results indicate that
this approximation algorithm, besides having an exponen-
tially better approximation ratio in theory, is also practical.
It is easy to implement and achieves superior performance
in various network scenarios.

• We also present a nonapproximability result for the sched-
uling problem in the nongeometric SINR model. More
specifically, we show that in the SINR model where path
loss is set arbitrarily (i.e., not determined by the Euclidean
coordinates of the nodes), it is NP-hard to approximate the
scheduling problem to within factor (where is the
number of communication links), for any constant .

• Finally, we present a general robustness result for the phys-
ical model, showing that constant parameter changes, such
as path loss and minimum signal ratio, will modify the ca-
pacity of the network only by a constant factor.

• All our results rely on a new definition to understand
physical interference: affectance. This definition has
been proved to be of general utility for analyzing algo-
rithms in the SINR context, both for scheduling with
fixed-but-different power assignments [27], [36] and in
power-controlled scheduling [25], [27], [34].

One may argue that media access and scheduling are funda-
mental problems when it comes to wireless communication. Al-
though power-controlled cases are interesting from a theoretical
point of view, practically themost important cases are those with
constant power. Although there are many actual wireless net-
works where nodes can choose different transmission powers,
the selection is then either restricted to a small set of possible
power levels, or a bounded power range. The analytical results
of this paper hold for both extensions. Apart from constants, all
our findings are directly transferrable to bounded power set and
to bounded ratio of maximum and minimum power. As such,
we believe that our results are practically relevant.
The main features of the current paper, including the general

style of the algorithm, affectance analysis, and signal strength-
ening, factor in and influence nearly all recent work.
This paper fixes several minor plus one larger mistake (an

erroneous claim on the scheduling complexity in [30]) from the
preliminary conference versions [17] and [30].

III. NOTATION AND MODEL

Given is a set of links , where each
link represents a communication request from a sender to
a receiver . We assume the senders and receivers are points

in the Euclidean plane; this can be extended to other metric
spaces. The Euclidean distance between two points and is
denoted . The asymmetric distance from link to link
is the distance from ’s sender to ’s receiver, denoted

. The length of link is denoted .
We shall assume for simplicity of exposition that all links are
of different length; this does not affect the results. We assume
that each link has a unit-traffic demand, and model the case of
non-unit-traffic demands by replicating the links. We also as-
sume that all nodes transmit with the same power level . We
show later how to extend the results to variable power levels,
with a slight increase in the performance ratio.
We assume the path-loss radio propagationmodel for the re-

ception of signals, where the received signal from transmitter
at receiver is and denotes the path-loss
exponent. We adopt the physical interference model, in which a
node successfully receives a message from a sender if and
only if the following condition holds:

(1)

where is the ambient noise, denotes the minimum SINR
required for a message to be successfully received, and is the
set of concurrently scheduled links in the same channel or slot
as . We say that is SINR-feasible if (1) is satisfied for each
link in .
The problems we treat are the following. In all cases, we are

given a set of links of arbitrary lengths. In the Scheduling
problem, we want to partition the set of input links into min-
imum number of SINR-feasible sets, each referred to as a slot.
In the Single-Shot Scheduling problem, we seek the
maximum cardinality subset of links that is SINR-feasible.
We make crucial use of the following new definitions.
Definition 3.1: The relative interference (RI) of link on

link is the increase caused by in the inverse of the SINR
at , namely . For convenience, define

. Let be a link-dependent
constant that indicates the extent to which the ambient noise
approaches the required signal at receiver . The affectance of
link , caused by a set of links, is the sum of the relative
interferences of the links in on , scaled by , or

For a single link , we use the shorthand .
We define a -signal set or schedule to be one where the af-
fectance of any link is at most .
The constant is monotone increasing with the length of the

link: implies that . Note that , with
equality holding only in the absence of noise.
Observation 3.2: The affectance function satisfies the fol-

lowing properties for a set of links.
1) (Range) is SINR-feasible if and only if, for all ,

.
2) (Additivity) , whenever is a par-
tition of .

3) (Distance bound) , for any pair
, in .
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Note that the concepts of affectance and relative interfer-
ence are equally useful in contexts of nonuniform power assign-
ments. If is the power of link , the affectance of link on
is given by .

IV. PROPERTIES OF SINR SCHEDULES

We present in Section IV-A properties of schedules in the
SINR model, which double as tools for the algorithm designer.
Then, in Section IV-B, we examine the desirable property of link
dispersion and how any schedule can be dispersed at a limited
cost.

A. Robustness of the SINR Model

We now explore how signal requirements (in the value of ),
or equivalently interference tolerance, affects schedule length.
It is not a priori obvious that minor discrepancies cause only
minor changes in schedule length, but by showing that it is so,
we can give our algorithms the advantage of being compared to
a stricter optimal schedule. This also has implications regarding
the robustness of SINR models with respect to perturbations in
signal transmissions.
The pure geometric version of SINR given in (1) is an ide-

alization of true physical characteristics. It assumes, e.g., per-
fectly isotropic radios, no obstructions, and a constant ambient
noise level. That begs the question, why move algorithm anal-
ysis from analytically amenable graph-based models to a more
realistic model if the latter is not all that realistic? Fortunately,
the fact that schedule lengths are relatively invariant to signal re-
quirements shows that these concerns are largely unnecessary.
The results of this section apply equally to scheduling links

of different powers. It also applies to throughput optimization.
Theorem 4.1: There is a polynomial-time algorithm that takes

a -signal schedule and refines it into a -signal schedule, for
, increasing the number of slots by a factor of at most
.

Proof: Consider a -signal schedule and a slot in
. We partition into a sequence of sets. Initially,
set each . Order the links in in decreasing order
of length. For each link , assign to the first set for
which , i.e., the accumulated affectance on
among the previous, longer links in is at most .

Since each link originally had affectance at most , then
by the additivity of affectance, the number of sets used is at most

.
We then repeat the same approach on each of the sets ,

processing the links this time in increasing order. The number of
sets is again for each , or in total. In each
final slot (set), the affectance on a link by shorter links in the
same slot is at most . In total, then, the affectance on each
link is at most .
This result applies in particular to optimal solutions. Let
denote the minimum number of slots in an SINR-feasible

schedule of a link set , and let denote the same quantity
for an optimal -signal schedule. It is not a priori clear that a
smooth relationship exists between and , for .
Corollary 4.2: For any link set and any ,

.

This has significant implications. One regards the validity
of studying the pure SINR model. As asked in [17], “what if
the signal is attenuated by a certain factor in one direction but
by another factor in another direction?” A generalized phys-
ical model was introduced in [45] to allow for such a deviation.
Theorem 4.1 implies that scheduling is relatively robust under
discrepancies in the SINRmodel. This validates analytic studies
of the pure SINR model, in spite of its simplifying assumptions.
Corollary 4.3: If a scheduling algorithm gives a -approxi-

mation in the SINR model, it provides an -approxima-
tion in variations in the SINR model with a discrepancy of up
to a factor of in signal attenuation or ambient noise levels.
This result can be contrasted with the result of Section VII,

which shows a strong -approximation hardness of sched-
uling in an abstract (nongeometric) SINR model that allows for
arbitrary distances between nodes. Alternatively, Theorem 4.1
allows us to analyze algorithms under more relaxed situations
than the optimal solutions to which we compare.
It is important to note that these results do not depend on the

power assignment and apply equally well in the power-control
setting. Also, they actually do not depend on the formula used
to compute affectance or relative interference, and apply also in
nongeometric and nonmetric settings.
Remark: Note that the converse of Theorem 4.1—that a

schedule can be shortened by a constant factor so that the
signal decreases only by a constant factor—does not hold. An
easy example is found by making copies of a feasible set
(possibly separating the nodes by a sufficiently small distance)
for any number . Any attempt to use fewer than slots results
in an arbitrarily bad signal.

B. Dispersion Properties

One desirable property of schedules is that links in the same
slot be spatially well separated. This blurs the difference in po-
sition between sender and receiver of a link since it affects dis-
tances only by a small constant. Intuitively, we want to mea-
sure nearness as a fraction of the lengths of the respective links.
Given the affectance measure, it proves to be useful to define
nearness somewhat less restrictively.
Definition 4.4: Link is said to be -near link if

. A set of links is -dispersed if no (ordered) pairs
of links in the set are -near.
Observation 3.2, item 3, states that link is -near a link

if and only if . This immediately gives the fol-
lowing strengthening of [17, Lemma 4.2].
Lemma 4.5: Fewer than senders in an SINR-feasible

set are -near to any given link .
For constant, any schedule can be made -dispersed at a

cost of a constant factor.
Lemma 4.6: There is a polynomial-time algorithm that takes

an SINR-feasible schedule and refines it into a -dispersed
schedule, increasing the number of slots by a factor of at most

.
Proof: Let be a slot in the schedule. We show how to

partition into sets that are -dispersed, where
.

Initially, all are empty. Process the links of in increasing
order of length, assigning each link “first-fit” to the first set
in which the receiver is at least away from
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the receiver of any other link. Let be a link previously in
, and note that is shorter than . By the selection rule,

. Also

Since this holds for every pair in the same set, the schedule is
-dispersed. Suppose is the last set used by the algorithm,
and let be a link in it. Then, each , for ,
contains a link whose sender is closer than

to , i.e., is -near to . By Lemma 4.5,
. Hence, .

Intuitively, there is a correlation between low affectance and
high dispersion in schedules. The following result makes this
connection clearer. The converse, however, is not true, since
high interference can be caused by shorter faraway links.
Lemma 4.7: A -signal schedule is also -dispersed.
Proof: Let and be an ordered pair of links in a slot

in a -signal schedule. By definition, .
By Observation 3.2, item 3, .
We remark that the results given in this section apply only to

uniform power assignments, unlike the Section IV-A.

V. APPROXIMATION ALGORITHMS

We now give a constant-factor approximation algorithm for
Single-Shot Scheduling. We aim for conceptual sim-
plicity, rather than optimizing the constants.
Let ,

, and .
It is rather surprising that an -approximation algorithm

can be obtained in a single sweep. This should help in applying
the ideas further, e.g., in distributed implementations. Note that
recent research shows that such a single sweep is also feasible
when using power control [34].
It is not immediate that Algorithm 1 produces a feasible

solution.

Algorithm 1: One-Slot Scheduling (Algorithm A)

1: input: Set of links ;
2: output: Feasible subset of links;
3: sort the links in nondecreasing order of
length;

4: ;
5: for to do
6: if then
7: add to ;
8: end if
9: end for
10: return ;

Lemma 5.1: Algorithm 1 produces a -dispersed
solution.

Proof: Let be a link in the set output by Algorithm 1.
Let be the set of links in that are shorter (longer)

Fig. 1. Illustrations to Lemmas 5.1 and 5.2. (a) ( )-dispersed link set.
(b) Concentric rings around the receiver .

than . Consider first a link . Since was added
by the algorithm after adding , , which
implies by Observation 3.2, item 3, that

. Consider next a link . Since was
added after , it holds that . Hence, by
Observation 3.2, . Recall that when-
ever . Then, using the triangular inequality

Since this holds for every ordered pair in , we have that is
-dispersed [see Fig. 1(a)].

Lemma 5.2: Let be a -dispersed feasible set of links,
where . Then, for any link in , it holds that

where is the set of links in at least as long .
Proof: Let . Form a disc of radius

around each sender in . We claim that these
discs are disjoint. By the dispersion property, the distance from
any sender to any receiver , , is at
least , using that since . It
follows by the triangular inequality that the separation between
two senders in is at least
, and thus the discs are disjoint.
We next partition the sender set in into concentric

rings of width around the receiver [see Fig. 1(b)].
Each ring contains all senders satisfying

. We know that the



750 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 3, JUNE 2014

first ring contains no sender (since such links would
be incompatible with ). For each , the senders in

are contained in an annulus centered at of width
that has added both to the inside

and outside of . The area of is

Since discs of area around senders in
do not intersect, and the minimum distance between and

, is , we can use an area argument to
bound the number of senders inside each ring. The total relative
interference from senders in , on is bounded by

where the last inequality holds since and
and . Summing up the

interferences over all rings yields

where the last inequality holds since . This results in
affectance of

as claimed.
Theorem 5.3: Algorithm 1 produces an SINR-feasible

solution.
Proof: Let be a link in the set output by Algorithm 1.

Let be the set of links in that are shorter (longer)
than . The links in were processed before , so by the
if-condition in the algorithm, . Note that

. By Lemma 5.1, is -dispersed, so by
Lemma 5.2 and the definitions of and dispersion

Hence, the affectance of each link in is at most
.

A. Performance Analysis

Definition 5.4: Let and be disjoint pointsets in a metric
space , referred to as the red and blue points, respectively.
A point is blue-dominant if every ball

around contains more blue points than red
points. Formally, .
For a red point and a set of blue points,

we say that guards if for all , we have that
.

Lemma 5.5: (Blue-Dominant Centers Lemma): Let and
be disjoint sets of red and blue points in a two-dimensional

Euclidean space. If , then there exists at least one
blue-dominant point in .

Proof: Process the points in in an arbitrary order while
maintaining a subset of as follows (initially, ). For
each , we construct a guarding set (guarding
relative to the current ) and remove from .
We claim that it is possible to construct a guarding set

of size at most 5. The procedure to construct is as follows.
Consider a red point . Include a closest blue point
in . Draw five sectors originating at in the following
manner. The first sector has 120 and is centered at , the re-
maining four sectors have 60 each and evenly divide the re-
maining area around . For each of these four sectors , in-
clude the closest blue point in (if has no
blue points from , skip this sector). Now has size at most
5, and we claim that it is guarding . Suppose not. Then, there is
a point with . Suppose
is located in and we selected blue point from into

. This means that , which implies that
the sector angle is larger than 60 . (Note that if contains
no point from sector , then would have been picked to
guard in that sector, also establishing a contradiction.)
After going through all the points in , the set is still

nonempty by the assumption on the relative sizes of and .
We claim that every point in is now blue-dominant. This
holds since: 1) the guarding sets of points in are pairwise
disjoint; and 2) every ball , that contains a red
point contains also a blue point in . Hence, for every blue
node , every ball contains more blue points than
red points (“more” since the center is also blue).
Lemma 5.6: Let be a constant. Let

be the solution output by Algorithm 1 on the given instance
and be an optimal -signal solution. Then,

.
Proof: Let and

be the sets of senders in exactly one
of and ; we call them red and blue points, respec-
tively. Suppose the claim is false. It follows that .
By Lemma 5.5, there is a blue-dominant in . We shall argue
that the blue link would have been picked by our
algorithm, which is a contradiction.
Consider any red point . Let . Let

denote the guard for w.r.t. , i.e., the blue point that is closer
to than is, i.e., within distance from . Note that by
Lemma 4.7, is a -dispersed set, where

. Applying Definition 4.4, we know that
. Using , we get . The guarding

property and the triangular inequality ensure that

Thus

Let denote . This holds for any , so the total in-
terference that receives from the red senders (those in )
is at least times that from the blue senders. Since is in ,
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it is affected by at most by . Using that each node in
participates in at most one guardset, we get that

Furthermore, since is a -signal solution,
. Thus

which contradicts the assumption that was not selected by the
algorithm.
The following result is now immediate from Lemma 5.6 in

combination with the correctness result in Theorem 5.3 and the
signal-strengthening property of Corollary 4.2.
Theorem 5.7: Algorithm 1 approximates theSingle-Shot

Scheduling problem within a constant factor.

B. Scheduling Approximation

Given the constant factor approximation for the Single-
Slot Scheduling problem, we get an -approxi-
mation for the Scheduling problem by repeatedly executing
the Single-Slot Scheduling algorithm, and as such al-
ways removing a large set of links that can be scheduled con-
currently, without interference. See Algorithm 2.

Algorithm 2:MultiSlot Scheduling (ApproxA)

1: input: Set of links ;
2: output: Schedule ;
3: ;
4: repeat
5: ; (Algorithm 1)
6: ;
7: ;
8: until
9: return ;

Theorem 5.8: Repeated application of Algorithm 1 yields an
-approximation for the Scheduling problem.

Proof: Recall that is the minimum number of slots in a
feasible solution, and let be the performance guar-
antee of Algorithm 1. Any subset of the input instance with
links contains a feasible set of size . Thus, Algorithm 1

applied to results in a feasible subset of size at least ,
with the number of remaining unscheduled links becoming at
most . Starting with links, the number of un-
scheduled links remaining after iterations is at most

. Thus, when , less than
one link remains unscheduled, that is, all the links have been
scheduled. Hence, slots suffice, for an approximation
factor of .

C. Handling Different Transmission Powers

We can treat the case when links transmit with different
powers in two different ways. Let be the max-
imum (minimum) power used by a link, respectively. By intro-
ducing a factor of into the affectance threshold ,
our algorithm still produces a feasible schedule, that is longer
by a factor of at most .
Alternatively, we can partition the instance into “power

regimes,” where each regime consists of links whose powers
are equal up to a factor of 2. We schedule each power regime
separately, obtaining an approximation factor of at most

, or at most the number of different power
values.
If cannot be bounded, and if more generally the

number of power levels cannot be bounded, we refer to recent
work of [27] and [34].

VI. SIMULATION RESULTS

In this section, we present some simulation results to better
illustrate the practical appeal of the scheduling approximation
algorithm (we use the multislot version (Algorithm 2) and refer
to it as ApproxA). We compare the performance of ApproxA
to the performance of three other scheduling algorithms:
ApproxLogN (first proposed by us in [17]), GreedyPhysical
(proposed in [6]), and ApproxDiversity (proposed in [19]).
All are polynomial-time algorithms, specifically designed for
the SINR model. ApproxLogN is very similar in nature to
ApproxA. The two algorithms are asymptotically equivalent,
but ApproxA yields a cleaner analysis, while ApproxLogN
might result in a constant-factor performance gain because it
uses an additional distance-based constraint to select links.
We generated two kinds of topologies: random and clustered

[see Fig. 2(a) and (b)]. In the random topology, receiver nodes
were distributed uniformly at random on a plane field of size
1000 1000 units, and senders were positioned uniformly at
random inside discs of radius around each of the receivers.
In the clustered topology, cluster center positions were se-
lected uniformly at random on the plane, and sender–re-
ceiver pairs were positioned uniformly at random inside discs
of radius around each of them. The clustered topology aims
to simulate a scenario of heterogeneous density distribution.
In all experiments, mean and standard deviation values were

plotted based on multiple simulation runs of random instances.
First, we analyze the lengths of the schedules as a function

of the number of nodes .
In Fig. 3(a) and (b), the results for the random topology are
shown. Since this scenario is not particularly challenging, all
four algorithms have good performance, computing schedules
of comparable sizes. The performance ratio between ApproxA
and ApproxLogN is, as expected, constant with the number of
nodes. ApproxLogN presents a slightly better performance on
average (25% shorter schedules). In very low-density scenarios
[see zoomed-in plots on Fig. 4(a) and (b)], GreedyPhysical
presents better performance among all algorithms. As the den-
sity increases, however, ApproxA and ApproxLogN present
increasingly better relative performance. ApproxDiversity
computes schedules that are, on average, twice as long as those
computed by ApproxA.
In Fig. 5(a) and (b), the results for the clustered topology are

shown. As could be expected, the greedy algorithm is not able to
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Fig. 2. Simulated topologies: 1000 1000 field, , , .
(a) Random. (b) Clustered.

Fig. 3. Random topology: . (a) Schedule length. (b) Gain.

deal with this more difficult scenario as efficiently. Even in very
sparse topologies [Fig. 6(a) and (b)], GreedyPhysical computes
three times longer schedules than ApproxA. As the density

Fig. 4. Random topology (zooming into small instances): .
(a) Schedule length. (b) Gain.

Fig. 5. Clustered topology: , . (a) Schedule length.
(b) Gain.
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Fig. 6. Clustered topology (zooming into small instances): ,
. (a) Schedule length. (b) Gain.

Fig. 7. Clustered topology: , . (a) Schedule length.
(b) Gain.

Fig. 8. Random topology: , . (a) Schedule length.
(b) Gain.

increases, the relative performance of the greedy algorithm
deteriorates. ApproxA, ApproxLogN, and ApproxDiversity
compute even shorter schedules than in the random case, which
indicates that they are able to schedule many clusters in parallel.
The performance of ApproxA and ApproxLogN is still superior
to that of ApproxDiversity by a factor of 3.
In Fig. 7(a) and (b), we analyze the influence of the cluster

radius. In topologies with smaller clusters, i.e., in scenarios
with higher density heterogeneity, the difference in perfor-
mance becomes more accentuated. Whereas GreedyPhysical’s
performance slightly decreases with decreasing cluster radius,
ApproxA and ApproxLogN (and ApproxDiversity) are able to
compute ever shorter schedules. Smaller cluster radius means
more separate clusters, which makes it easier to schedule
clusters in parallel. GreedyPhysical, however, is not able to
take advantage of this possibility. Among all three algorithms,
ApproxLogN presents the best performance in all cases.
Next, we analyze the influence of the path-loss exponent in

both random [Fig. 8(a) and (b)] and clustered [Fig. 9(a) and (b)]
topologies. It can be seen that the performances of ApproxA,
ApproxLogN, and ApproxDiversity improve with increasing
, whereas GreedyPhysical is more or less invariant to the
path-loss exponent. For , in the random topology,
GreedyPhysical presents a better performance than the other
three algorithms. In the clustered topology, however, its perfor-
mance is very poor even for low and deteriorates relative to
the other approaches with increasing in both kinds of topolo-
gies. Among all four algorithms, ApproxLogN presents the
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Fig. 9. Clustered topology: , , . (a) Schedule
length. (b) Gain.

best performance for all values of in the clustered topology
and for in the random case.
To sum up, the simulations show that ApproxA and

ApproxLogN, besides having an exponentially better analytical
approximation ratio, present advantages in challenging prac-
tical scenarios, such as high-density and heterogeneous-density
networks.

VII. NONAPPROXIMABILITY IN ABSTRACT SINR

In this section, we show that scheduling is extremely hard if
the path-loss function can be nongeometric.
We distinguish “abstract SINR” from “geometric

SINR” model according to the freedom with which
the gain (or path-loss) matrix can be defined. In the
model, as opposed to the model, path loss between
nodes is not constrained by their Euclidean coordinates, but
can be set arbitrarily (i.e., triangular inequality need not be pre-
served when defining the path-loss matrix). Note that
is more general and, therefore, a “harder” model than ,
which we have been using to derive the results in the previous
sections. We also remark that these results do not depend on
complications due to noise.
Theorem 7.1: The scheduling problem in the model

is at least as hard to approximate as the graph coloring problem,
and the single-shot scheduling problem is as hard as the
maximum independent set problem in graphs. In particular,
the scheduling problem is NP-hard to approximate within

-factor, for any .
Proof: Let be a graph on vertices. We form

an instance to the scheduling problem, containing a link
for each node and a symmetric gain matrix . The

value of corresponds to the affectance of on (and, by
symmetry, the affectance of on ). We define

if
if

Consider an independent set in and let be the cor-
responding set of links in . Observe that for any ,

, and thus is feasible.
Similarly, in any feasible set of links there can be no pair that
correspond to adjacent vertices in . It follows that there is
one-to-one correspondence between independent sets in and
feasible link sets in . Hence, approximation algorithms for
single-slot scheduling (scheduling) yield equivalent perfor-
mance guarantees for the maximum independent set (minimum
coloring) problem in graphs, respectively.
The last claim follows from the approximation hardness of

graph coloring of [15] and [49].

VIII. CONCLUSION

The main open question is to obtain a constant factor ap-
proximation to the scheduling problem (as erroneously claimed
in [30]). Additionally, various parameter combinations are still
open and deserve more research, e.g., multihop traffic, sched-
uling and routing, analog network coding, and stochastic fading
models such as Rician fading.
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