
Multi-Agent Pathfinding with n Agents on Graphs with
n Vertices: Combinatorial Classification and Tight

Algorithmic Bounds

Klaus-Tycho Foerster†, Linus Groner‡, Torsten Hoefler‡,
Michael Koenig‡, Sascha Schmid‡, and Roger Wattenhofer‡

ktfoerster@cs.aau.dk, gronerl@ethz.ch, htor@inf.ethz.ch,
mikoenig@ethz.ch, saschmi@ethz.ch, and wattenhofer@ethz.ch

‡ETH Zurich, 8092 Zurich, Switzerland
†Aalborg University, 9220 Aalborg, Denmark

Abstract. We investigate the multi-agent pathfinding (MAPF) problem with n
agents on graphs with n vertices: Each agent has a unique start and goal vertex,
with the objective of moving all agents in parallel movements to their goal s.t. each
vertex and each edge may only be used by one agent at a time. We give a com-
binatorial classification of all graphs where this problem is solvable in general,
including cases where the solvability depends on the initial agent placement.
Furthermore, we present an algorithm solving the MAPF problem in our setting,
requiring (n2) rounds, or (n3) moves of individual agents. Complementing
these results, we show that there are graphs where Ω(n2) rounds and Ω(n3)moves
are required for any algorithm.

1 Introduction

Pathfinding for single agents on a graph is a well studied problem. Dijkstra’s algo-
rithm provided a solid foundation in 1959 [1] and since then, several more specialized
adaptations have been conceived, such as the A∗ algorithm [2] for grids and hierarchi-
cal pathfinding using the ability to pre-process maps. The applications for multi-agent
pathfinding have grown numerous in the recent decades:

Movies such as The Lord of the Rings want to display huge armies clashing, but
without paying an actor for each combatant [3]. Real-time strategy games incorporate
larger and larger amounts of units and players expect predictable and efficient unit move-
ment [4]. Building safety researchers can predict the movement and behaviour of human
crowds during an emergency evacuation through simulation [5]. Pathfinding on graphs
has also drawn attention in robotics, where it is applied to the problem of multi-robot
path planning [6]. Another related field is routing in networks, where deadlock-free for-
warding (pathfinding) of packets (agents) is of interest [7].

In this paper, we focus our attention on the most congested pathfinding case, where
n agents are to be routed on n-vertex graphs, advancing the work of [8,9]. Motivated by
real-world capacity constraints, but also following classical pathfinding research [10],
we allow each edge and vertex to be used by only one agent at a time. A precise problem

ktfoerster@cs.aau.dk
gronerl@ethz.ch
htor@inf.ethz.ch
mikoenig@ethz.ch
saschmi@ethz.ch
wattenhofer@ethz.ch

2

definition is given in Section 2, where we formalize the multi-agent pathfinding (MAPF)
problem in the form of a labeling problem. Notwithstanding, we invite the reader to first
study the background Section 1.1.

A main interest of this article is on classifying graphs where the MAPF problem
is generally solvable with combinatorial criteria: That is, for any two initial and de-
sired placements of agents, is there a valid sequence of moves solving the corresponding
MAPF problem?

In Section 3, we give a clear-cut combinatorial classification of all graphs where
this problem is solvable in general, including cases where the solvability depends on
the initial agent placement. In the subsequent Section 4, we then give an algorithm1
solving the MAPF problem in (n2) rounds and (n3) agent moves. Furthermore, we
provide a class of graphs where any algorithmwill requireΩ(n2) rounds andΩ(n3) agent
movements, matching our upper bounds. We conclude with a summary in Section 5.

1.1 Background

One of the earliest scientific works on multi-agent pathfinding on graphs is by Johnson
and Story [11]: They studied the famous 15-puzzle, where 15 agents 1, 2,… , 15 are
placed on a 4x4-grid, and only one agent may move at a time to a currently unoccupied
neighboring vertex. The authors showed that exactly half of the starting positions are not
solvable, if the goal is to order the agents in an increasing pattern from 1 to 15, with the
lower right vertex being unoccupied, and also studied larger grids –withWilson showing
the connection to alternating groups [12]. In more recent times, it was shown that finding
the fastest solution for feasible problems is NP-hard already on grids, cf. [13], [14].

The model of the 15-puzzle, where one agent moves at a time to an unoccupied
neighboring vertex, has been studied by numerous people in various communities. One
such piece of work that this article draws foundations and techniques from, in particular
for lower bounds, isCoordinating PebbleMotion OnGraphs, The Diameter Of Permuta-
tion Groups, And Applications by Kornhauser, Miller, and Spirakis. Two versions exist,
one is the Master’s Thesis of Kornhauser which is available as a technical report [15].
A more compact version was published at FOCS in 1984 [10], omitting some proofs.
Even though Kornhauser uses a different model where no rotations are allowed and en-
forcing one unoccupied node, we arrived at the same upper and lower bounds of (n3),
respectively Ω(n3) agent moves. Our proof of the Ω(n3) lower bound in our model is
very similar to that of Kornhauser, as noted in Section 4.4. While their results are from
the 1980’s, Röger and Helmert [16] pointed out in 2012 that these findings solve some
open problems in the robotics community and are still relevant in current research.

The same model as in this article was previously studied by Yu and Rus in Pebble
Motion on Graphs with Rotations: Efficient Feasibility Tests and Planning Algorithms
[8]. The authors provided an algorithm to check if a graph instance is solvable, but did
not give combinatorial criteria for feasibility as provided by us. Hence, they could also
not provide statements about when exactly half of the MAPF problems are solvable,
as we did in Section 3.3. Yu and Rus also give a MAPF algorithm, differing from our
1 Yu and Rus [8] also give a MAPF algorithm, cf. second to last paragraph of Section 1.1.

3

methods, for which they prove an upper bound that is equivalent to our (n2) upper
bound on the number of rotations. However, they did not show the lower bounds.

Lastly, Driscoll and Furst published a paper [9] in 1983 that gives a (n2) upper
bound on the diameter of a class of permutation groups. While Driscoll and Furst’s
paper does not relate permutations to multi-agent pathfinding, our problem is in said
class of permutation problems, and Driscoll and Furst’s upper bound directly applies
to the number of rotations in our problem. Driscoll and Furst also provide a generating
set that leads to a tight lower bound, however this generating set can not be related to
MAPF problems in the model discussed in this article, since it relies on two-cycles as
generators.

2 Model

In this section we will first formally introduce the problem of multi-agent pathfinding,
before providing some mathematical preliminaries for the concepts of permutations and
permutation groups. We then use these tools to reformulate the MAPF problem as a
labeling problem in Section 2.1. Multi-agent pathfinding (MAPF) on a graph describes
a problem where k agents are distributed on vertices of a graphG(V ,E)with n vertices.
Each agent has a destination, its goal vertex. Agents can move over edges to neighboring
vertices. The problem is to find a sequence of moves, such that eventually all agents are
on their goal vertex. In the problems studied here, there is always exactly one agent on
each vertex, i.e., k = n. The movement of the agents is constrained by the following
rules:
– At any given time, no more than one agent can be on any vertex.
– Any edge can only be used by one agent at a time, i.e., neighboring agents may not
swap places.

The only permitted moves are thus rotations on graph cycles.
Definition 1 (rotation). In a rotation on a graph cycle v1,… , vm, the agent on a vertex
vi moves to the vertex vi+1 if i ∈ {1,… , m − 1} or the vertex v1 if i = m.

To keep the terminology consistent with other works in Computer Science and Mathe-
matics, we will be dealing with labeled graphs instead of agents on graphs:
Definition 2 (labeling). Let L = {1, 2, 3,… , |V |} be the set of labels. A labeling of a
graph G(V ,E) is a bijective function l∶ V → L.

Problems where objects are reordered are typically associated with the mathematical
theory of permutations and permutation groups. In the following, we will give some of
the basic definitions and results from those fields.
Definition 3 (permutation). Let X = 1,… , n. A permutation is a bijective function
� ∶ X → X.

There are multiple established notations for permutations. In the two-line notation one
writes for each element x in the first row its image �(x) in the second row:

� =
(

l1 l2 l3 … ln−1 ln
�(l1) �(l2) �(l3) … �(ln−1) �(ln)

)

4

The second notation used here is the cycle notation: Starting from some element
x ∈ X, one writes the sequence (

x �(x) �(�(x)) …
) of successive images under �.

The sequence is continued until x would appear again. Starting at a new element not
observed yet, we do the same, and write it in a new pair of parentheses. This is repeated
until every element is written down once.

Example 1.
(

1 2 3 4 5 6 7
1 5 7 2 4 3 6

)

could be written as (1) (2 5 4) (3 7 6)

Cycles of length one are omitted, the above permutation then reads as (2 5 4) (3 7 6).
Next, a pair of labels is called an inversion, if the order of said labels is changed by the
permutation.
Definition 4 (inversion). (li, lj) is an inversion of �, if li > lj and �(li) < �(lj).

Definition 5 (parity of a permutation). The parity of a permutation is the parity (odd
or even) of the number of inversions it contains.

Definition 6 (composition of permutations). Two (and, iteratively, any number of)
permutations can be composed: �1◦�2 = �1�2 = �2(�1(x)) ∀x ∈ X.

The set of all permutations on 1,… , nwith operation ◦ form the groupSn. An impor-
tant subgroup of Sn is the alternating group An. It is the subgroup of Sn which containsall even permutations. It contains exactly half of the n! elements of Sn. We need the
following lemma to see that closure is satisfied for An, which is proven in numerous
textbooks on the subject, such as [17]:
Lemma 1. The composition of even permutations is even.

We can conclude by recursion, that the composition of any number of even permutations
will again result in an even permutation. The set of even permutations is thus closed
under composition.

2.1 Reformulation of the MAPF problem

The permitted operations in our model are rotations. They can be interpreted as an ele-
ment of Sn. We refer to Figure 1 for an introductory case explained in Example 2.
Example 2. If we label the bow-tie graph with labels as in Figure 1, we can write the
permutations corresponding to the rotations in cycle notation, e.g.:
– clockwise rotation in the left cycle: �L− =

(

1 3 2
) (

4
) (

5
)

=
(

1 3 2
),

– counterclockwise rotation in the right cycle: �R+ =
(

1
) (

2
) (

3 4 5
)

=
(

3 4 5
),

In fact, rotations in our model always correspond to permutation cycles. (But not all
permutation cycles correspond to a valid move.) It is thus justified to reformulate the
MAPF problem:

5

3

1

2 4

5

Fig. 1: Labeled bow-
tie graph, consisting
of two odd cycles of
length three.

Main Idea. Let �goal be the permutation that represents the goal
labeling and let PG be the set of permutations that correspond
to a valid rotation.

Find a sequence �r1 ,… , �rm , wℎere�ri ∈ PG such that

�r1◦�r2◦… ◦�rm = �goal (1)
This problem has a solution if and only if �goal is an element of
the group generated by PG.
Lemma 2. Rotations on graph cycles with even length correspond to odd permutations.
Rotations on odd-length graph cycles correspond to even permutations.

Proof. Rotations on graph cycles with length i correspond to permutation cycles of the
same length i. It is known, cf. [17], that cyclic permutations of even length correspond
to odd permutations and vice-versa. Therefore odd i give rise to even permutations, even
i to odd ones. ⊓⊔

3 Necessary and Sufficient Combinatorial Criteria for Solvability

We will begin this section with Theorem 1, where we specify necessary and sufficient
combinatorial criteria for graphs on which the MAPF problem can be generally solved.
Definition 7. TheMAPF problem is generally solvable on a graphG, if theMAPF prob-
lem is solvable on G for any combination of an initial labeling with a goal labeling.

Theorem 1. TheMAPF-problem on a graphGwith n ≥ 2 vertices is generally solvable,
if and only if the following conditions hold:

1. G is 2-edge-connected,
2. G contains at least two cycles,
3. G contains a cycle of even length.

In the following Section 3.1, we address the necessity of these criteria. Then, in
Section 3.2, we point out that graphs fulfilling the criteria are indeed solvable, i.e., the
conditions are sufficient.

Lastly in this section, we address in Section 3.3 that half of the MAPF problems are
still solvable if the particular requirement that a graph must contain an even-length cycle
is not satisfied.

3.1 The Combinatorial Conditions in Theorem 1 are Necessary

We defer the proof of conditions 1 and 2 to the full version of this article. Condition 3
is proven in the following lemma.
Lemma 3. TheMAPF-problem on a graphG is not generally solvable, if the graph does
not contain an even-length cycle.

6

Proof. Assume Graph G contains only odd-length cycles. Lemma 2 then implies that
all �ri of Equation 1 are even. Using Lemma 1, we see that the permutation problem can
not be solved for odd �goal and we will always stay in An. ⊓⊔

In fact, as we will see in Section 3.3, all problems corresponding to even �goal are solv-able, when this last constraint is not satisfied. That is, exactly half of all problems are
still solvable in that case.

3.2 The Combinatorial Conditions in Theorem 1 are Sufficient

In this section, we show that the MAPF problem on the graphs specified in Theorem
1 are indeed generally solvable. We will show that on such graphs it is possible to ex-
change any two labels while leaving all other labels unaffected. In terms of permutations
this amounts to being able to express 2-cycles as a sequence of the permutations cor-
responding to the permitted rotations. (cf. our main idea). Since the set of all 2-cycles
generates Sn (cf. [17]), this will conclude the proof of Theorem 1.

3.2.1 Swapping two Labels in a Generally Solvable Graph
Lemma 4. Let

�a×b(x) =

⎧

⎪

⎨

⎪

⎩

b if x = a
a if x = b
x otherwise

�(l1,l2)→(s1,s2)(x) =

⎧

⎪

⎨

⎪

⎩

s1 if x = l1
s2 if x = l2
x′ otherwise

where x′ in �(l1,l2)→(s1,s2) is arbitrary, with the constraint that �(l1,l2)→(s1,s2) is bijective.
Then,

�l1×l2 = �(l1,l2)→(s1,s2)�s1×s2�
−1
(l1,l2)→(s1,s2)

(2)
Proof. To make notation less cumbersome, we will denote �(l1,l2)→(s1,s2) by �. The righthand side of Equation 2 can be rewritten as ��s1×s2�−1 = �−1(�s1×s2 (�(x))). We dis-
tinguish cases:
Case x ≠ l1 ∧ x ≠ l2: Then, �(x) = x′. Since x′ ≠ s1 and x′ ≠ s2 we have �s1×s2 (x′) =

x′. We can then plug these values in as follows:
�−1(�s1×s2 (�(x))) = �

−1(�s1×s2 (x
′)) = �−1(x′) = x

Case x = l1: �(l1) = s1 and �s1×s2 (s1) = s2:
�−1(�s1×s2 (�(x))) = �

−1(�s1×s2 (s1)) = �
−1(s2) = l2

Case x = l2: analogously
In all cases, we have �−1(�s1×s2 (�(x))) = �l1×l2 (x), concluding the proof. ⊓⊔

In other words, if we can swap a specific pair of labels (s1 and s2) without affectingother labels, and we are able to move any pair of labels (l1 and l2) to the position of theaforementioned labels, we can effectively swap any two labels by means of Equation 2.
It remains to prove that we can express some �(l1,l2)→(s1,s2) and the suitable �s1×s2 forany l1 and l2 by means of the permitted rotations.

7

Lemma 5. For any cycle c1 in a graph that is 2-edge-connected with at least two cycles,
one of the following two options holds:

1. There is a cycle c2 with which it shares exactly one vertex or
2. There are 2 vertices in c1 with 3 vertex-disjoint paths between them.

The proof of this lemma is deferred to the full version of this article. According to this
lemma, finding �s1×s2 for all 2-edge-connected graphs can be done by finding �s1×s2 ineach of the stated cases. We will now demonstrate how swapping is possible in either
case.

3.2.2 Swapping Labels in Cycles Sharing Exactly One Vertex Let Cnl ,nr denotea graph consisting of two cycles, with sizes nl and nr, respectively, that share exactly
one vertex. As there are two cycles, four operations are permitted, namely rotations in
both directions on either cycle. �L− denotes the permutation associated with a clock-
wise rotation in the left cycle, �L+ the permutation associated with a counterclockwise
rotation in the left cycle. �R+ and �R− are the analogous counterparts in the right cycle.
Algorithm 1 describes a procedure to swap the labels l1 and m in Cnl ,nr .
Lemma 6. If nl is even, Algorithm 1 terminates.

Proof. The permutations associated with the basic rotations that we use can readily be
written down in cycle notation:
�L− =

(

l1 m lnl−1… l2
)

�R+ =
(

r1 r2 … rnr−1 m
)

�R− =
(

r1 m rnr−1… r2
)

Building on these, we can write down the composed permutations of the algorithm:
�init = �R−�L−�L−�R+�L−

=
(

l1 l2 l3 l4 l5 l6 l7… lnl−3 lnl−2 lnl−1 m r1 r2 r3 … rnr−2 rnr−1
lnl−2 r1 m l1 l2 l3 l4… lnl−6 lnl−5 lnl−4 lnl−1 lnl−3 r2 r3 … rnr−2 rnr−1

)

�step = �R−�L−�R+�L−

=
(

lnl−2 r1 m l1 l2 l3 l4 … lnl−6 lnl−5 lnl−4 lnl−1 lnl−3 r2 r3 … rnr−2 rnr−1
lnl−4 lnl−2 lnl−1 r1 m l1 l2 … lnl−8 lnl−7 lnl−6 lnl−3 lnl−5 r2 r3 … rnr−2 rnr−1

)

Assuming nl is even, �step reads in cycle notation:

�step =
(

l1 r1 lnl−2 lnl−4 … l2 m lnl−1 lnl−3… l3
)

We left out out nl2 − 4 labels with each “. . . ”, namely li’s with even i in the left case andwith odd i in the the right. Note that the labels l1,… , lnl−3 always take the place of thelabel with an index that is larger by 2. If nl was odd, nl − 1 would be even and lnl−1would be in the cycle much earlier, such that not all labels would be in the same cycle.

8

Applying a cyclic permutation k-fold has step the labels k steps forward in the order
of the cycle. For each label x in the permutation cycle we can count k positions to the
right in the cyclic representation of �step to find �kstep(x). In this way, we find �

nl
2 −1
step :

�
nl
2 −1
step =

(

lnl−2 r1 m l1 l2 l3 l4 … lnl−6 lnl−5 lnl−4 lnl−1 lnl−3 r2 r3 … rnr−2 rnr−1
m l2 l3 l4 l5 l6 l7 … lnl−3 lnl−2 lnl−1 l1 r1 r2 r3 … rnr−2 rnr−1

)

We’ve written down �
nl
2 −1
step such that it is easy to see that

�init�
nl
2 −1
step =

(

l1 l2 l3 l4 l5 l6 l7 … lnl−3 lnl−2 lnl−1 m r1 r2 r3 … rnr−2 rnr−1
m l2 l3 l4 l5 l6 l7 … lnl−3 lnl−2 lnl−1 l1 r1 r2 r3 … rnr−2 rnr−1

)

Which is our goal permutation.That is, after nl2 − 1 repetitions of the loop in Algorithm1, we are at the desired configuration, and the algorithm terminates. ⊓⊔

Algorithm 1: Swapping
Two Labels in Cnl ,nr
� ∶= �R−�L−�L−�R+�L−
�step ∶= �R−�L−�R+�L−
while � ≠ �goal do

� ∶= ��step

3.2.3 Swapping Labels in a Cycle Containing 2
Vertices with Three Paths Between Them In the
case when there are two vertices with three vertex-
disjoint paths between them, swapping two labels is
simpler, and possible with just 3 rotations. One possi-
bility of performing such a swap is illustrated in Fig-
ure 2.

3.2.4 Travelling to Swapspot It remains to express �(l1,l2)→(s1,s2) for any l1, l2, s1 and
s2, where the initial vertices of s1 and s2 are neighbors. We will do this in two phases.
First, we move l1 and l2 such that they are neighbors. Then, these neighbors are moved
to the place where they can be swapped. For details, we refer to the full version.

3.3 Solvable Problems on not Generally Solvable Graphs

We have now specified the class of graphs on which the MAPF problem is generally
solvable. On those that are not generally solvable, some problems are still solvable. In the
cases where a graph is not 2-edge connected, one can consider each 2-edge connected
component separately, as no label can cross bridges. The solvable problems are then
those where the labels only travel within subgraphs that fulfill the constraints of Theorem
1. Another case is when there is only one cycle present, where the solvable problems
are exactly those obtained by rotations on this cycle.

However, if a graph is still 2-edge connected and contains at least two cycles, but
only contains cycles of odd length, a more interesting observation can be made. In fact,
exactly half of the problems can still be solved. In Section 3.2 we presented a method to
express 2-cycles as a sequence of the permitted rotations. Without the presence of even
cycles, it is possible to express 3-cycles with a very similar method. Recall that 3-cycles
are a generating set of the alternating group An, which contains half of the elements of
Sn. The details of 3-cycling are deferred to the full version.

9

4 Algorithms, Lower and Upper Bounds

a b

X1 Xm

Y1 Yn

Z1 Zl

c

(a) Original setting

b Y1

a X1

Yn c

Z1 Zl

Xm

(b) After top rotation

a Y1

X1 Xm

Yn c

b Z1

Zl

(c) After outside rotation

b a

X1 Xm

Y1 Yn

Z1 Zl

c

(d) After bottom rotation
Fig. 2: Swapping in graphs with two vertices
with three vertex-disjoint paths between them.

In this section, we use the mech-
anisms studied so far to construct
an algorithm that solves the MAPF
problem in (n3) label movements
and (n2) rotations. We will also
present a class of graphs, on which
the MAPF problem cannot be solved
with less than Ω(n3) label move-
ments and Ω(n2) rotations, meaning
that our algorithm is optimal in terms
of the asymptotic number of opera-
tions in the worst case.

4.1 Complexity Measures

The complexity of a solution to the problem can be described in different ways. In this
chapter we will investigate the complexity with respect to three related measures. An
upper bound on the length of the sequence of permutations found by the algorithm is
given in all three measures, and and a class of graphs is given on which these upper
bounds for all three measures are tight in an asymptotic sense.

One way of describing the complexity of a solution is that of the total number of ro-
tations. In this case, every rotation increases the complexity by one. This is effectively
the length of the sequence found in our main idea. For some problem instances, rota-
tions can be performed in parallel. On these problems, measuring the complexity with
the number of rotations might not give a good representation of the running time. The
number of rounds thus can be used as a second measure. However, the algorithms used
in this paper never use the possibility of parallel rotations. Therefore here, the number
of rotations equals the number of rounds. As we will see, our lower bounds are tight
regardless. Lastly, the number of label movements is studied. That is, the number of
rotations a label was involved in, summed up over all labels.

4.2 The Algorithm

We have established the notions of swapping and 3-cycling labels. Using these mecha-
nisms we can directly build an algorithm:
1. As long as there are labels in the wrong place, pick one wrongly placed label, say
a. Then, pick the label b ∶= �goal(a).2. Set c to be an arbitrary incorrectly placed label such that a ≠ c and �goal(a) ≠ c.
If no such c can be found, a and b are the only wrongly placed labels left, and
we swap them. If swapping is not possible, the problem is not solvable. (Since the
solution is only one swap away, �goal is not in An.)3. If a c is found, 3-cycle a, b and c. Since this only moves wrongly placed labels, and
fixes the position of a, this decreases the overall number of wrongly placed labels
by at least one.

10

4. Repeat until all labels are at the right place.
Note that by better choices of a,b and c, we can fix at least two labels with every

3-cycle. However, this leads to a sequence of operations of the same asymptotic length.

4.3 Upper Bound on Number of Operations

Lemma 7. Swapping two labels and 3-cycling three labels without affecting any other
labels both take (n) rotations.

For a full proof, we refer to the full article. The gist is that there is a constant number of
steps involved, each with a complexity in (n) rotations. These complexities are mainly
determined by the lenght of paths and cycles in the graph.
Theorem 2. The Algorithm described in Section 4.2 terminates in(n2) rotations,(n2)
rounds and (n3) label movements.

Proof. Since on n labels and n vertices, there can be at most n wrongly placed labels,
and we fix at least one with every 3-cycle and every swap, we will need at most n such
operations. In other words, the added number of 3-cycles and swaps performed is in
(n).

We have seen in Lemma 7 that both swapping and cycling take (n) rotations. Hav-
ing (n) swaps or cycling operations costing (n) rotations each, we get the claimed
overall bounds of (n2) rotations. Clearly, each rotation moves at most n labels, which
directly implies the upper bound of (n3) label movements.

The worst case in terms of number of rounds, is when all rotations are done sequen-
tially. Therefore, an upper bound on the number of rotations is also an upper bound on
the number of rounds. I.e., the upper bound of (n2) rotations directly implies an upper
bound of (n2) rounds. ⊓⊔

4.4 Lower Bound on Number of Operations

1 2
⌊ n
2

⌋

⌊ n
2

⌋

+ 1

⌊ n
2

⌋

+ 2n − 1n

Fig. 3: Graph LBn for the proof of
the lower bound

We will now give a class of graphs and a MAPF
problem on which any algorithm takes at least
Ω(n2) rotations, Ω(n2) rounds and Ω(n3) la-
bel movements, providing lower bounds that are
asymptotically tight. The class of graphs is the
same as Kornhauser et al. [10] used for their
model.

Consider the graph of Figure 3, that is the
cyclic graph on n vertices with an added edge between the ⌊ n2⌋-th and the ⌊ n2 + 2⌋-thvertex. We denote this graph by LBn.

4.4.1 Rotations and Rounds

Lemma 8. There is a MAPF problem on LBn for which any solution requires Ω(n2)
rotations.

11

Proof. Assume n to be odd. We define di to be the semi-circular distance between label
i and label i + 1. The semi-circular distance is the shortest path between the labels on
the cyclic graph, that does not use the added edge. The di are maximal for di = ⌊

n
2⌋,and are at least 1.

Following Kornhauser [10], we define the notion of entropy as E =
∑⌊

n
2 ⌋

i=1 di. We
chose an initial labeling, for which E = ⌊

n
2⌋
2, with our goal configuration having E =

⌊

n
2⌋. There are six permitted operations on LBn: A rotation on the outer cycle, denoted

by A, a rotation on the cycle (⌊ n2⌋ ⌊

n
2⌋ + 1 ⌊

n
2⌋ + 2

), denoted by B and a rotation on
the cycle not including ⌊ n2⌋ + 1, denoted by C , as well as their respective inverses A−1,
B−1 and C−1. We can study the effect of the three operations on the entropy. Clearly, A
and A−1 do not change the entropy. Rotating B or C can only change the di that includethe labels on vertices ⌊ n2⌋, ⌊ n2⌋ + 1 and ⌊

n
2⌋ + 2, and by at most 2 each. Each rotation

thus decreases E by at most 12. Having E = ⌊

n
2⌋
2 at the beginning and E = ⌊

n
2⌋ at the

goal configuration, we can say that we need at least ⌊

n
2 ⌋
2−⌊ n2 ⌋
12 ∈ Ω(n2) operations. ⊓⊔

Lemma 9. There is a MAPF problem on LBn for which any solution requires Ω(n2)
rounds.

Proof. Since all three cycles in LBn pairwise share vertices, only one rotation can be
performed at a time. Therefore, the lower bound on the number of rotations from Lemma
8 is also a lower bound for the number of rounds. ⊓⊔

4.4.2 Label Movements We now look at the number of label movements.
Lemma 10. There is a MAPF problem onLBn where any solution requiresΩ(n3) label
movements.

Proof. We can assume that in an optimal solution, no more than one consecutive op-
eration is performed on cycle B. (Since, e.g., BB can be replaced by B−1, B−1B by
doing nothing at all, consecutive operations on B indicate non-optimal solutions.) We
thus know, that after each operation on B, there will be one on either A or C . Thus, if
there arem operations, at least ⌊m2 ⌋ operations are performed onA and C . Those require
at least n − 1 label movements. (Namely, if C is moved.) As any solution will use at
least Ω(n2) rotations, so will a solution that is optimal with respect to label movements.
Hence, (n−1)⌊Ω(n2)2 ⌋ ∈ Ω(n3) is a lower bound for the number of label movements. ⊓⊔

5 Conclusion

We studied combinatorial classifications and algorithms for the multi-agent pathfinding
(MAPF) problem on graphsG with n agents. We proved that the MAPF problem is only
generally solvable, if the graphsG are 2-edge-connected, contain at least two cycles, and
contain at least one cycle of even length. Should the last of these three combinatorial
conditions be violated, we showed that exactly half of the MAPF problems on these
graphs are solvable.

12

Furthermore, we specified an algorithm that solves feasibleMAPF problems in(n2)
operations or (n3) agent-movements. We also specified a class of graphs, where at
least Ω(n2) operations or Ω(n3) agent-movements are required, meaning that on general
graphs, our algorithms are asymptotically optimal.
Acknowledgements We would like to thank the anonymous reviewers for their help-
ful comments. Klaus-Tycho Foerster is supported by the Danish Villum Foundation.

References
1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik

1(1) (1959) 269–271
2. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4(2) (1968)
100–107

3. Scott, R.: Sparking life: Notes on the performance capture sessions for the lord of the rings:
The two towers. SIGGRAPH Comput. Graph. 37(4) (2003) 17–21

4. Silver, D.: Cooperative pathfinding. In: Artificial Intelligence and Interactive Digital Enter-
tainment Conference. (2005)

5. Pelechano, N., Malkawi, A.: Evacuation simulation models: Challenges in modeling high rise
building evacuation with cellular automata approaches. Automation in Construction 17(4)
(2008) 377 – 385

6. Svestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Robotics and
Autonomous Systems 23(3) (1998) 125 – 152

7. Domke, J., Hoefler, T., Matsuoka, S.: Routing on the Dependency Graph: A New Approach
to Deadlock-Free High-Performance Routing. In: Symposium on High-Performance Parallel
and Distributed Computing. (2016)

8. Yu, J., Rus, D.: Pebble motion on graphs with rotations: Efficient feasibility tests and plan-
ning algorithms. In: Selected Contributions of the Eleventh International Workshop on the
Algorithmic Foundations of Robotics. (2015)

9. Driscoll, J.R., Furst, M.L.: On the diameter of permutation groups. In: Symposium on Theory
of Computing. (1983)

10. Kornhauser, D., Miller, G., Spirakis, P.: Coordinating pebble motion on graphs, the diam-
eter of permutation groups, and applications. In: Symposium on Foundations of Computer
Science. (1984)

11. Wm.Woolsey Johnson, W.E.S.: Notes on the "15" Puzzle. American Journal of Mathematics
2(4) (1879) 397–404

12. Wilson, R.M.: Graph puzzles, homotopy, and the alternating group. Journal of Combinatorial
Theory, Series B 16(1) (1974) 86 – 96

13. Ratner, D., Warmuth, M.: the n2 − 1 puzzle and related relocation problems. Journal of
Symbolic Computation 10(2) (1990) 111 – 137

14. Goldreich, O.: Finding the Shortest Move-sequence in the Graph-generalized 15-puzzle is
NP-hard. In: Studies in Complexity and Cryptography. Springer-Verlag, Berlin, Heidelberg
(2011) 1–5

15. Kornhauser, D.: Coordinating pebble motion on graphs, the diameter of permutation groups,
and applications. Master’s Thesis MIT/LCS/TR-320, Massachusetts Institute of Technology
(1984)

16. Röger, G., Helmert, M.: Non-optimal multi-agent pathfinding is solved (since 1984). In:
Symposium on Combinatorial Search. (2012)

17. Jacobson, N.: Basic algebra. San Francisco - Calif. : Freeman (1974)

	Multi-Agent Pathfinding with n Agents on Graphs with n Vertices: Combinatorial Classification and Tight Algorithmic Bounds
	1 Introduction
	1.1 Background

	2 Model
	2.1 Reformulation of the MAPF problem

	3 Necessary and Sufficient Combinatorial Criteria for Solvability
	3.1 The Combinatorial Conditions in Theorem 1 are Necessary
	3.2 The Combinatorial Conditions in Theorem 1 are Sufficient
	3.3 Solvable Problems on not Generally Solvable Graphs

	4 Algorithms, Lower and Upper Bounds
	4.1 Complexity Measures
	4.2 The Algorithm
	4.3 Upper Bound on Number of Operations
	4.4 Lower Bound on Number of Operations

	5 Conclusion

