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Abstract. The throughput capacity of arbitrary wireless networks un-
der the physical Signal to Interference Plus Noise Ratio (SINR) model
has received much attention in recent years. In this paper, we investi-
gate the question of how much the worst-case performance of uniform
and non-uniform power assignments differ under constraints such as a
bound on the area where nodes are distributed or restrictions on the
maximum power available. We determine the maximum factor by which
a non-uniform power assignment can outperform the uniform case in the
SINR model. More precisely, we prove that in one-dimensional settings
the capacity of a non-uniform assignment exceeds a uniform assignment
by at most a factor of O(log Lmax) when the length of the network is
Lmax. In two-dimensional settings, the uniform assignment is at most a
factor of O(log Pmax) worse than the non-uniform assignment if the max-
imum power is Pmax. We provide algorithms that reach this capacity in
both cases. Due to lower bound examples in previous work, these results
are tight in the sense that there are networks where the lack of power
control causes a performance loss in the order of these factors. As a con-
sequence, engineers and researchers may prefer the uniform model due
to its simplicity if this degree of performance deterioration is acceptable.

1 Introduction

The great success of wireless networks is mainly due to the fact that any device
can exchange information with any other device in its reception range. However,
this advantage is also the most problematic characteristic of wireless networks.
Since the communication medium is shared by all participants, it is necessary
to address the problem of interference. Simultaneous communication attempts
cause interference and might even prevent the correct reception of a signal. To
tap the full potential of a network, algorithms that coordinate the transmission
of messages are necessary. To reach the throughput capacity of a network, we
have to solve the problem of assigning time slots, frequencies and (depending on
hardware capabilities) transmitting power levels to a set of n pairs of wireless
transmitters (senders) and receivers distributed in a given area.

When attempting to solve this and related problems, we must first choose
the appropriate interference model. A standard interference model that captures



some of the key characteristics of wireless communication and is sufficiently con-
cise for rigorous reasoning is the physical SINR model [7]. It describes interfer-
ence as continuous property, decreasing polynomially with the distance from the
sender. In this model, a message is received successfully if the ratio between the
strength of the sender signal at the receiving location and the sum of interfer-
ences created by all other simultaneous senders plus ambient noise is larger than
some hardware-defined threshold. The fading speed depends on the value of the
so-called path-loss exponent α.

The analysis of problems in the SINR model is intricate, due to the non-
binary and accumulative features of interference. Only recently have some the-
oretical guarantees for SINR-based algorithms been provided. One of problems
under scrutiny is the scheduling problem. Given a set of n pairs of senders and
receivers along with the power level of the transmitters, the goal is to devise a
scheduling scheme that minimizes the total number of rounds that will satisfy all
the communication requests of every pair. In addition to the timing, the signal
strengths of the transmitting nodes greatly influence the performance of wire-
less networks, since the number of simultaneous transmissions can be increased
if the nodes are able to emit signals of different power levels. Thus, power control
constitutes an additional aspect of interest. Orthogonally to the scheduling prob-
lem, it is necessary to address the power assignment problem, i.e., determining a
power assignment for each sender of a given set of communication pairs in such
a way that the total number of communication requests in one round is maxi-
mized. The two problems are often combined, and many algorithms addressing
the problem of joint power control and scheduling of a set of links have been de-
vised (see related work section). Since power control, i.e., the possibility to assign
a different power level to each sender, may play a major role in the complexity
of the problems or the performance of the algorithms, we distinguish between
two settings: non-uniform power (i.e., power control), where each transmitter
can transmit with a different power, and uniform power, where there is only one
power level. It has been demonstrated [12, 13] that uniform power has significant
performance disadvantages compared to the non-uniform case. However, exam-
ples of situations in which power control algorithms outperform uniform energy
assignment schemes usually position the nodes in an area of exponential size in
the number of nodes and require transmission power levels that differ by a factor
exponential in the number of nodes.

On the other hand, a uniform power assignment has several important ad-
vantages due to its simplicity. Most importantly, the production cost of wireless
devices that always transmit at the same power is lower. Therefore, the uniform
power assignment has been widely adopted in practical systems. The lack of
power control implies that a device only has to decide whether or not it should
send a message at the certain point of time, and not at which power level. As
a consequence, there are fewer possibilities to consider which makes reaching
a decision much simpler. Moreover, recently a study of SINR diagrams1 [1]

1 The SINR diagram of a set of transmitters divides the plane into n + 1 regions or
reception zones, one region for each transmitter that indicates the set of locations
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Fig. 1. Impact of the choice of the interference model and power assignment. Given
two communication pairs, l1 = (s1, r1) and l2 = (s2, r2), the shaded areas indicate
where the signal of a sender can be received (the area in the lighter gray belongs to
sender s2). White areas imply that the received signal power is too weak for reception.
a) Uniform power: only node r2 receives a message from its sender, the interference is
to high at r1. b) Non-uniform power: both transmissions are successful. c) Unit Disk
Graph model: neither r1 nor r2 receive a message from their corresponding senders.

showed that the reception zones of all senders are convex for a uniform scheme
but not necessarily for non-uniform power assignments. This finding suggests
that designing algorithms may be much simpler for uniform networks than for
non-uniform networks.

In this paper, we compare the uniform and non-uniform cases and study the
trade-off involved between the two, i.e., simplicity vs. performance. As mentioned
above, in the absence of restrictions, the performance of the non-uniform model
clearly exceeds the uniform model. However, by taking a closer look, we notice
that this conclusion is based on examples that involve unbounded resources. Of
course, resources are restricted in reality, e.g., the maximum available power for
a transmitter or the space where nodes are distributed may be limited. This
observation has motivated us to ask the following question:

In a resource-constrained setting (i.e., bounded area, bounded power),
what is the worst-case performance difference between the uniform and
non-uniform case?

In a nutshell, we show that with bounded resources the two cases are not
significantly different; therefore, engineers and researchers may actually prefer
the uniform model due to its simplicity.

1.1 Problem Statement and Overview of Our Results

In order to quantify the gap induced by the ability to adjust the transmission
power when the available resources are bounded, we consider the following game
between two players, a non-uniform (power control) player and a uniform player.

in which it can be heard successfully, and one more region that indicates the set of
locations in which no sender can be heard. This concept is perhaps analogous to the
role played by Voronoi diagrams in computational geometry.



The non-uniform player begins by setting up a configuration by selecting n com-
munication pairs where each pair consists of a sender and a receiver and their
locations. For these pairs the following two conditions must be met:

1. The distance between a sender and its intended receiver is at least one.
2. There exists a power assignment such that the receivers are able to decode

the messages of their senders when all senders transmit simultaneously with
the same frequency, i.e., the non-uniform configuration is feasible.

After the first player has reached its decision, the uniform player can, choose
a subset of these pairs that can transmit simultaneously with uniform power,
i.e., a feasible uniform configuration. The non-uniform player tries to position
the sender/receivers in such a way that the uniform player can pick only a small
subset of the available pairs, without causing too much interference. On the other
hand, the uniform player tries to select as many pairs as possible.2

Let the size of a configuration be the number of pairs in the configuration.
Our first result concerns the one-dimensional case. If the non-uniform player can
place its configuration on a interval of length at most Lmax, then we can state
the following:

Theorem 1. For any feasible non-uniform configuration of size n, there is a
feasible uniform configuration of a size of at least Ω(n/ logLmax) if α = 2.

This result is tight in the sense that from previously known examples [11] there
are feasible non-uniform configurations of size n for which the size of any feasi-
ble uniform configuration is at most O(n/ logLmax). Our proof is constructive
and we present an algorithm that achieves our bound. This algorithm, combined
with previous algorithms, can be used as an approximation scheme for the uni-
form scheduling problem and the uniform power assignment problem. In both
cases, one can take the output a non-uniform scheduling and/or power assign-
ment algorithm produces, which is basically a non-uniform configuration, and
obtain a uniform configuration by “paying” an additional approximation price
of logLmax.

In the two-dimensional case, we consider power assignments rendering the
non-uniform player’s configuration feasible with transmission power levels in the
range of [1, Pmax]. In this case we prove:

Theorem 2. For any feasible non-uniform configuration of size n, there is a
feasible uniform configuration of a size of at least Ω(n/ logPmax) if 0 < α.

This result is tight since there is a non-uniform configuration of size n for
which the uniform player can at most select a configuration with a size of at
most O(n/ logPmax). As for Theorem 1, we devise an algorithm that achieves
this bound. Note that even if the ratio of the lowest and the highest power level

2 Observe that the players are assumed to have unlimited computational power, since
the problem of selecting the largest subset of nodes transmitting with fixed power
levels has been shown to be NP-hard [6].



is constant, it is not immediately obvious that in this case the capacity for the
uniform power assignment is in the same order as in setting with power control;
namely because there are infinitely many possible power assignments and nested
pairs of links are feasible.

It follows from Theorem 1 and Theorem 2 that if we bound either Pmax

or Lmax to n in the one-dimensional case, then a uniform power assignment is
at most log n worse than the best non-uniform power assignment. In the two-
dimensional case, this is true only if we bound Pmax.

The number of links able to transmit simultaneously crucially depends on
the path-loss exponent α. The faster the signal strength falls, the smaller an
amount of interference is caused. In [15], measurements of indoor and outdoor
path-loss exponents at various frequencies are reported, ranging from 1.6 to 6.
Most existing work relies on the assumption that α > 2, exploiting the fact
that in this case the interference of far away nodes can be bounded easily. For
α ≤ 2 the situation changes dramatically and different arguments are necessary.
In this paper, the results for two dimension hold for all α > 0, the results for
one dimension for α = 2.

2 Related Work

The study of the capacity of wireless metworks has been initiated by the seminal
work of Gupta and Kumar [7]. The authors bounded the throughput capacity
in the best-case (i.e., optimal configurations) for the physical models for α > 2.
More recently, a worst-case view point was adopted [10] by proving lower bounds.
We also use this approach in the current paper. The fact that interference is
continuous and accumulative as well as the geometric constraints render the
scheduling task difficult in the physical model, even if the transmission power
of the nodes is fixed. See [5, 6, 9] for the analysis of such scheduling algorithms.
The complexity of connectivity of a uniform power network is examined in [2].

Depending on the hardware, nodes are able to adjust their transmission
power. This capability can increase the number of links that are able to transmit
successfully at the same time. To exploit this fact, efficient power control algo-
rithms are necessary. For a given set of links, the highest achievable signal to
noise ratio can be computed in polynomial time [16], yet the complexity of the
problem of joint scheduling and power control in the physical model taking into
account the geometry of the problem is unknown. Nevertheless many algorithms
and heuristics have been suggested, see [11] for a classification and more detailed
discussion of these approaches. Very recent work, [3, 4, 8] gives upper and lower
bounds for power-controlled oblivious scheduling.

Non-uniform power assignment can clearly outperform a uniform assignment
[13, 12] and increase the capacity of the network, therefore the majority of the
work on capacity and scheduling addressed non-uniform power. As we discussed
earlier, the study of the uniform case is still worthwhile, due to its simplicity.
To the best of our knowledge, the gap between these two models has not been
investigated under restricted resources.



The proof of the scheduling algorithm for fixed power levels in [5] can be
adapted to conclude that the number of links that are able to communicate
concurrently with uniform power is bounded logarithmically in the ratio of the
highest and the lowest power, yet the analysis of their algorithm depends on the
fact that α > 2. In addition, the authors adopt a different viewpoint: Given a
set of links, they try to find an approximation of the shortest schedule without
power control. In contrast, we are concerned with the lower bound of the size
of the largest subset of links that are able to communicate simultaneously with
uniform power under the assumption that the original set was feasible with a
non-uniform assignment.

Very few papers have been devoted to the one-dimensional case, as the capac-
ity is more restricted than in two dimensions, especially for randomly distributed
nodes. Nevertheless, Moscibroda et al. [12, 11] showed that the capacity of one-
dimensional networks can be linear in the number of the links, at the expense of
exponentially long links and and exponentially high power. Hence, we are among
the first to study the capacity for uniform and non-uniform power assignments
in one dimension.

Another paper published at ESA addresses power control and scheduling in
the SINR model. It proposes an oblivious O(log n log logΛ)-approximation algo-
rithm for the scheduling problem, where Λ is the ratio between the longest and
the shortest link length. Moreover it considers the approximation ratio uniform
power algorithms can achieve. Using a different tool set from ours, [8] shows
that if the Assouad dimension A of the underlying metric is strictly less than α,
uniform power assignments are at most a O(log(Λ))-factor worse than uncon-
strained power control. In other words, this more general result works well for
α > A, while our results for the two-dimensional case hold for any α > 0. We
believe that the techniques of [8] and the approaches of this paper are comple-
mentary and their combination might help to understand the remaining open
problems in the SINR interference model.

3 Model and Preliminaries

Let (M,d) be a metric space and V ⊆ M a finite set of |V | nodes. A node
vj successfully receives a message from node vi depending on the set of con-
currently transmitting nodes and the applied interference model. In this pa-
per, we adopt the physical SINR model [7], where the successful reception of
a transmission depends on the strength of the received signal, the interference
caused by nodes transmitting simultaneously, and the ambient noise level. The
received power Pri(si) of a signal transmitted by a sender si at an intended
receiver ri is Pri(si) = P (si) · g(si, ri), where P (si) is the transmission
power of si and g(si, ri) is the propagation attenuation (link gain) modeled
as g(si, ri) = d(si, ri)−α. The path-loss exponent α ≥ 1 is a constant typically
between 1.6 and 6. The exact value of α depends on external conditions of the
medium (humidity, obstacles, etc.) and on the exact sender-receiver distance.
Measurements for indoor and outdoor path-loss exponents can be found in [15].



Given a sender and a receiver pair li = (si, ri), we use the notation Iri(sj) =
Pri(sj) for any other sender sj concurrent to si in order to emphasize that
the signal power transmitted by sj is perceived at ri as interference. The total
interference Iri(L) experienced by a receiver ri is the sum of the interference
power values created by the set L of nodes transmitting simultaneously (except
the intending sender si), i.e., , Iri(L) :=

∑
lj∈L\{li} Iri(sj). Finally, let N denote

the ambient noise power level. Then, ri receives si’s transmission if and only if

SINR(li) = Pri (si)

N+Iri (L) = P (si)g(si,ri)
N+

P
j 6=i P (sj)g(sj ,ri)

=
P (si)

d(si,ri)
α

N+
P
j 6=i

P (sj)
d(sj,ri)

α

≥ β,

where β ≥ 1 is the minimum SINR required for a successful message recep-
tion. In the sequel we assume β = 1 we set N = 0 and ignore the influence of
noise in the calculation of the SINR, for the sake of simplicity. However, this
has no significant effect on the results: by scaling the power of all senders, the
influence of ambience noise can be made arbitrarily small. Observe that for real
scenarios with upper bounds on the maximum transmission power this is not
possible, however, for our asymptotic calculations we can neglect this term.

For a uniform power assignment, we say a set of links L = {l1, . . . , ln} is a
uniformly feasible configuration of size n if P (si) = 1 and SINR(li) ≥ β for all
links li ∈ L. If the power level of a device is adjustable, we denote a set L to
be a PC feasible configuration of size n if there exists a power assignment such
that SINR(li) ≥ β for all links li ∈ L.

Zander [16] showed that the maximum achievable SINR (denoted SINR∗) for
wireless networks can be computed efficiently. Solving the eigenvalue problem
for the matrix Z =

[
g(si,rj)
g(si,ri)

]
yields an eigenvalue λ∗ for which all elements of the

corresponding eigenvector have the same sign. Then, the maximum achievable
SINR, is given by SINR∗ = 1/(λ∗−1). Furthermore, the corresponding eigenvec-
tor P∗ is a power vector reaching this maximum for all links, i.e., they all have
the same SINR level. Since we defined β = 1, this means that the largest eigen-
value of Z has to be less than 2, otherwise the successful concurrent transmission
of all links is impossible.3

Theorem 3 (Zander [16]). A set of senders can transmit simultaneously if
the largest eigenvalue of the normalized link gain matrix is less than 2.

We use the following equations from linear algebra repeatedly.

Theorem 4 (Eigenvalue relationships). Given an n-by-n matrix with real
or complex entries where λ1, . . . , λn are the (complex and distinct) eigenvalues
of A, then it holds for k ∈ N that for the trace of Ak, tr(Ak) =

∑
λki . In contrast,

the determinant of A is the product of its eigenvalues; i.e., det(A) =
∏
λi.

4 One Dimension: Length Constraint

In this section, we aim at determining the advantage of power control in one-
dimensional settings. We prove that at most a factor of logLmax more links can
3 [16] ignores the influence of noise. See [14] for an approach that handles noise as

well.



be scheduled with power control than without, if the senders and receivers are
located on a line of length Lmax. Moreover, we present an algorithm that given a
configuration feasible with power control, selects a subset of these links that can
be scheduled with uniform power and contains at least a 1/ logLmax-fraction
of the links in the original configuration. As a first step, we show that, even
when power is adjustable, two links transmitting concurrently must not cross,
otherwise at least one of the receiver cannot decode the message.

Lemma 1 (Crossings). Two senders s1 and s2 cannot transmit successfully
at the same time if their respective receiver is closer to the other sender, i.e.,
if d(s1, r1) > d(s1, r2) and d(s2, r2) > d(s2, r1). [Proof in full version, applies
Theorem 3]

Nested pairs however are possible. But, as soon as there are more than two
nested pairs, they cannot be too close to each other, since the interference is
too high otherwise. More precisely, we can show that no matter how we position
three nested sender/receiver pairs in an interval of length three and regardless
of the power levels we assign to them, they cannot transmit simultaneously.

Lemma 2 (Nestings). Three nested communication pairs need at least an in-
terval of two times the shortest link distance, otherwise they cannot transmit
simultaneously if α = 2.

Proof. (Sketch) We compute the normalized gain matrix Z for three nested links
sending in the same direction. We show that for α = 2 the following holds

– tr(Z)) = 3
– tr(Z2) > 5
– det(Z) > 0

Applying Theorem 4 we can derive three conditions the eigenvalues of Z have to
satify and we can show that they conflict with the requirement that the largest
eigenvalue has be less than two (otherwise no feasible solution, Theorem 3). Thus
there is no configuration with three links transmitting in the same direction
simultaneously if the longest link is at most twice as long as the shortes. For
the other scenarios, where at least one link transmits in the other direction,
tr(Z)) = 3 and tr(Z2)) exceeds 9 and the arguments carry over.

We know from Lemma 2 that three nested links require an interval of more
than three times the shortest link distance. Let the shortest distance be one. If
we want to add three additional nested links that include the first three links
we need at least an interval of length 32, if we neglect the interference from the
three inner most links. We can repeat this procedure at most O(logLmax) times,
before we cover the entire interval length Lmax. Thus Corollary 1 follows.

Corollary 1 (Nestings). At most O(logLmax) links can be nested on a interval
of length Lmax, otherwise there exists no power assignment allowing them to
transmit simultaneously if α = 2.



Apart from crossing and nested links, we need to consider parallel links as
well. We can show the following lemma.

Lemma 3. Let ζ(x) =
∑∞
i i−x the Riemann zeta function. Out of m parallel

links (no crossings, no nestings) where the length of the longest link is at most
twice the length of the shortest link, there are at least k = d21/α−1ζ(α)(1/α)e
senders that can transmit successfully at the same time with a uniform power
assignment if α > 1.

Since ζ(x) konverges for all real x > 1, we have now all the ingredients neces-
sary to conclude how much the capacity in a uniform power setting suffers from
the lack of power control. We rephrase Theorem 1:

Theorem 1. Consider an interval of length Lmax. Given a PC-feasible
configuration of size n, there exists a uniformly feasible configuration of size at
least Ω(n/ logLmax) if α = 2.

Proof. Given a set of links, we divide the links into logLmax length classes such
that the class k contains the links of length in the interval [2k−1, 2k]. We pick the
class containing the largest number of links. At least half of them transmit in the
same direction. If there are any nested links, we know thanks to Lemma 2 that
there are at most two nested links in the same length class. As a next step we
can apply Lemma 3 by picking the first and every d21/α−1ζ(α)(1/α)eth of these
links and let them transmit concurrently with a uniform power assignment. Due
to this procedure a power control algorithm can schedule at most O(log n) more
links simultaneously and the claim follows. ut

5 Power Restriction

Even if the transmission power of a device is adjustable, there is typically a
bounded range for the power or, even more restricted, a set of available power
levels. In these situations, a uniform assignment can achieve a substantial frac-
tion of the capacity a power control scheme can reach. In the following we exam-
ine the difference between the two strategies if the first player can place the nodes
in arbitrary positions and use transmission power levels in the range [1, Pmax].
We rephrase Theorem 2:

Theorem 2. Given a PC-feasible configuration of size n in the two-dimensional
Euclidean space, there exists a uniformly feasible configuration of size at least
Ω(n/ logPmax)

We construct an algorithm that given a PC-feasible set of n links placed
in the two-dimensional Euclidean plane returns a uniformly feasible set that
contains at least Ω(n/ logPmax) links. Before we start with the description of
the algorithm we elaborate on the problems that our algorithm faces. Since the
senders in the resulting set of links have to be able to transmit with the same



power and since there is typically background noise we are forced to increase
the power levels (of a selected subset of transmitters) to the same power level.
Consequently, the interference raises and we need to push the interference back
to the level it was. We can do this by further reducing the number of senders.
The main challenge is to keep the number of senders as large as possible. So
far we have only considered the senders. In order to ensure that the signal to
interference ratio is high enough at the receivers as well, we use the fact that
from far away the position of the sender and the receiver almost coincide.

Proof (Sketch). Our algorithm (cf. Algorithm 2 for a description in pseudo
code) starts by computing an optimal power assignment for the given set of
links. Then, we divide the links into classes of similar power levels, i.e. we build
subsets of links where the highest transmission power is at most twice the lowest
power. Among these sets, we choose the one of greatest cardinality, T1. The
intuition for this step is that we now have a fairly homogeneous set of links and
the difference between a uniform power assignment and arbitrary power levels is
negligible. We remove some links of this set T1 to guarantee that all remaining
senders can transmit concurrently. To this end, we start with the longest link l1
and we first clean an area around its receiver, i.e., we delete links with senders
too close to r1 from the set T1. We assign l1 to the candidate set T2 and repeat
this procedure with the remaining links until no links are left. These steps ensure
that the interference at sj and at rj is roughly the same. Next, we remove more
links to guarantee that the remaining set is uniformly feasible. We pick one
link lj of the candidate set T2 and we partition the plane into six sectors of
60◦ around sj . In each sector we remove the links whose senders are closest to
sj . Thereafter we add li to the set T3 and recursively repeat the partitioning
and removal with the remaining links. Before finally declaring the set of the
surviving links to be simultaneously schedulable, we repeat the procedure with
T3, this time considering the links in the opposite sequence. We show now that
the configuration S produced by this algorithm is uniformly feasible4 and at most
a factor of O(1/ logPmax) smaller than the original set L. Line 4 determines the
largest set of similar power levels. A set of links where the feasible power levels
differ by at most a factor of two is very similar to a uniformly feasible set. In
particular, the number of senders in close proximity to a receiver is limited. This
can be shown by adapting Lemma 4.2 from [5] to this case.

Lemma 4 (Extension of Lemma 4.2 from [5]). For any link li of a PC-
feasible set L the number of senders within distance c · d(si, ri) from the receiver
ri is at most 2cα/β if Pmax/Pmin < 2. [Proof in full version]

4 This algorithm can be generalized to higher dimensions at the expense of a higher
constant in its approximation guarantee. The only adjustments affect the lines 11-
12 and 16-17, where cones instead of sectors are considered. We omit the explicit
treatment of higher dimensional cases to increase the clarity of the arguments and
more than three dimension are unlikely to be of practical importance.



Algorithm 2 2D log(pmax)-approximation
Require: PC-feasible set L = {l1, . . . , ln}
Ensure: uniformly feasible set S ⊂ L
1: set µ := 1 + 2α and ν :=

⌈
(2 · µ

µ−1
)α

⌉
− 1

2: determine power assignment for L (Zander)
3: partition L into subsets Li := {lj |2i ≤ P (sj) < 2i+1},
i = 1, . . . , logPmax − 1

4: set T1 := arg max0≤i<log(pmax) |Li|, T2 := ∅, T3 := ∅
5: repeat
6: move longest link lj from T1 to T2

7: remove li from T1 if d(si, rj) < µd(sj , rj)
8: until T1 = ∅
9: repeat

10: move longest link lj from T2 to T3

11: partion plane into 6 sectors of 60◦ around sj
12: in each sector remove the ν links

with the closest senders to sj from T2

13: until T2 = ∅
14: repeat
15: move shortest link lj from T3 to S
16: partion plane into 6 sectors of 60◦ around sj
17: in each sector remove the ν links

with the closest senders to sj from T3

18: until T3 = ∅
19: return S;

where P (sk) denotes the transmission power of sender sk, d(sk, ri) is the distance
between sender sk and receiver ri, N denotes the ambient noise power level and
β is the minimum SINR required for a successful message reception.

While many algorithmic aspects of graph-based models are well understood,
the analysis of problems in the SINR models is more intricate, due to the non-
binary and accumulative features of these models. In the past decade, a number
of papers have dealt with comparisons of SINR and graph-based models, but only
recently have some theoretical guarantees for SINR-based algorithms been pro-
vided. One of problems under scrutiny is the scheduling problem. Given a set of n
pairs of senders and receivers along with the power level of the transmitters, the
goal is to devise a scheduling scheme that minimizes the total number of rounds
that will satisfy all the communication requests of every pair. In addition to the
timing, the signal strengths of the transmitting nodes greatly influence the per-
formance of wireless networks, since the number of simultaneous transmissions
can be increased if the nodes are able to emit signals of different power levels.
Thus, power control constitutes an additional aspect of interest. Orthogonally to
the scheduling problem, it is necessary to address the power assignment problem,
i.e., determining a power assignment for each sender of a given set of commu-
nication pairs in such a way that the total number of communication requests
in one round is maximized. The two problems are often combined, and many

Thus we can conclude that
this algorithm runs in poly-
nomial time and the original
set size is reduced by a fac-
tor of O(1/logPmax) in line 3,
by O( β

2µα ) in lines 4-7 (due to
Lemma 4), by O( 1

6ν ) in lines 8-
12 and by O( 1

6ν ) in lines 13-17.
Consequently, the ratio between
the input and the output set is
L
S ≤ O( nβ

72µαν2 logPmax
) ∈

O
(

n
logPmax

)
.

It remains to demonstrate
that the resulting set is indeed
uniformly feasible. By setting the
transmission power to two for ev-
ery sender, the strength of the in-
terference at the receivers is at
most doubled. As a consequence
we have to reduce the number of
simultaneous transmissions such that the interference is halved in order to obtain
a uniformly feasible set. Clearing a disk around each receiver and removing close
senders diminishes the interference by half. We prove this in two steps. First
we show how much the interference experienced at the senders is decreased and
then we derive the resulting amount of interference at their respective receivers.

Lemma 5. Isi(S) < 1
ν+1Isi(L) and Iri(S) < ( µ

µ−1 )αIsi(S) for all li ∈ S. [Proof
in full version]

As a consequence the algorithm has reduced the interference at the receivers
by at least Ω( 1

ν+1 ·
(

µ
µ−1

)α
) = 1

d2( µ
µ−1 )αe ·

(
µ
µ−1

)α
≥ 1

2 ·
(
µ−1
µ

)α
·
(

µ
µ−1

)α
= 1

2 .

Therefore all transmitters that survive can transmit at power 2, while their
receivers are guaranteed to be able to decode the message successfully. This
concludes the proof that there always exists a uniform power O(logPmax)-
approximation of a power control problem. ut

6 Conclusion

In this paper we show that for limited resources, e.g., an upper bound on the
maximum transmission power or the maximum distance between a sender and
a receiver, a uniform power assignment provides a log-approximation for the
achievable capacity by a non-uniform power assignment. These results can be
understood in two ways. We can design and solve algorithmic problems in the
uniform power model instead of the non-uniform power model and lose a log



factor in the solution. The result presented in this paper suggest the following
methodology for solving algorithmic problems in the non uniform power models.
First solve the same problem in the uniform power model (this task is usually
simpler and less general). Use this solution as a guide line for the general case
involving power control and try to eliminate the logarithmic factor.
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