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Abstract. Meta-learning, transfer learning and multi-task learning have
recently laid a path towards more generally applicable reinforcement
learning agents that are not limited to a single task. However, most exist-
ing approaches implicitly assume a uniform similarity between tasks. We
argue that this assumption is limiting in settings where the relationship
between tasks is unknown a-priori. In this work, we propose a general
approach to automatically cluster together similar tasks during train-
ing. Our method, inspired by the expectation-maximization algorithm,
succeeds at finding clusters of related tasks and uses these to improve
sample complexity. We achieve this by designing an agent with multiple
policies. In the expectation step, we evaluate the performance of the
policies on all tasks and assign each task to the best performing policy. In
the maximization step, each policy trains by sampling tasks from its as-
signed set. This method is intuitive, simple to implement and orthogonal
to other multi-task learning algorithms. We show the generality of our
approach by evaluating on simple discrete and continuous control tasks,
as well as complex bipedal walker tasks and Atari games. Results show
improvements in sample complexity as well as a more general applicability
when compared to other approaches.

1 Introduction

Imagine we are given an arbitrary set of tasks. We know that dissimilarities
and/or contradicting objectives can exist. However, in most settings we can
only guess these relationships and how they might affect joint training. Many
recent works rely on such human guesses and (implicitly or explicitly) limit the
generality of their approaches. This can lead to impressive results, either by
explicitly modeling the relationships between tasks as in transfer learning [42],
or by meta learning implicit relations [15]. However, in some cases an incorrect
similarity assumption can slow training [19]. With this paper we provide an easy,
straightforward approach to avoid human assumptions on task similarities.

An obvious solution is to train a separate policy for each task. However,
this might require a large amount of experience to learn the desired behaviors.
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Fig. 1: Left: An agent (smiley) should reach one of 12 goals (stars) in a grid
world. Learning to reach a goal in the top right corner helps it to learn about the
other goals in that corner. However, learning to reach the green stars (bottom left
corner) at the same time gives conflicting objectives, hindering training. Right:
When all tasks are very similar, treating them as independent is disadvantageous.
Task clustering allows us to perform well in both cases.

Therefore, it is desirable to have a single agent and share knowledge between tasks.
This is generally known as multi-task learning, a field which has received a large
amount of interest in both the supervised learning and reinforcement learning
(RL) community [41]. If tasks are sufficiently similar, a policy that is trained on
one task provides a good starting point for another task, and experience from each
task will help training in the other tasks. This is known as positive transfer [19].
However, if the tasks are sufficiently dissimilar, negative transfer occurs and
reusing a pre-trained policy is disadvantageous. Here using experience from the
other tasks might slow training or even prevent convergence to a good policy.
Most previous approaches to multi-task learning do not account for problems
caused by negative transfer directly and either accept its occurrence or limit their
experiments to sufficiently similar tasks. We present a hybrid approach that is
helpful in a setting where the task set contains clusters of related tasks, amongst
which transfer is helpful. To illustrate the intuition we provide a conceptualized
example in Figure 1 on the left. Note however that our approach goes beyond this
conceptual ideal and can be beneficial even if the clustering is not perceivable by
humans a-priori.

Our approach iteratively evaluates a set of policies on all tasks, assigns tasks
to policies based on their respective performance and trains policies on their
assigned tasks. This leads to policies naturally specializing to clusters of related
tasks, yielding an interpretable decomposition of the full task set. Moreover,
we show that our approach can improve the learning speed and final reward in
multi-task RL settings. To summarize our contributions:

– We propose a general approach inspired by Expectation-Maximization (EM)
that can find clusters of related tasks in an unsupervised manner.

– We provide an evaluation on a diverse set of multi-task RL problems that
shows the improved sample complexity and reduction in negative transfer.

– We show the importance of meaningful clustering and the sensitivity to the
assumed number of clusters in an ablation study.
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2 Related Work

Expectation-Maximization (EM) has previously been used in RL to directly learn
a policy. By reformulating RL as an inference problem with a latent variable, it
is possible to use EM to find the maximum likelihood solution, corresponding to
the optimal policy. We direct the reader to the survey on the topic by Deisenroth
et al. [9]. Our approach is different: We use an EM-inspired approach to cluster
tasks in a multi-task setting and rely on recent RL algorithms to learn the tasks.

In supervised learning, the idea of subdividing tasks into related clusters was
proposed by Thrun and O’Sullivan [34]. They use a distance metric based on
generalization accuracy to cluster tasks. Another popular idea related to our
approach that emerged from supervised learning is the use of a mixture of experts
[16]. Here, multiple sub-networks are trained together with an input dependent
gating network. Jordan and Jacobs [18] also proposed an EM algorithm to learn
the mixture of experts. While those approaches have been extended to the control
setting [17, 26, 4, 33], they rely on an explicit supervision signal. It is not clear
how such an approach would work in an RL setting. A variety of other methods
have been proposed in the supervised learning literature. For brevity we direct
the reader to the survey by Zhang et al. [41], which provides a good overview of
the topic. In contrast, we focus on RL, where no labeled data set exists.

In RL, task clustering has in the past received attention in works on transfer
learning. Carroll and Seppi [5] proposed to cluster tasks based on a distance
function. They propose distances based on Q-values, reward functions, optimal
policies or transfer performance. They propose to use the clustering to guide
transfer. Similarly, Mahmud et al. [25] propose a method for clustering Markov
Decision Processes (MDPs) for source task selection. They design a cost function
for their chosen transfer method and derive an algorithm to find a clustering that
minimizes this cost function. Our approach differs from both in that we do not
assume knowledge of the underlying MDPs and corresponding optimal policies.
Furthermore, the general nature of our approach allows it to scale to complex
tasks, where comparing properties of the full underlying MDPs is not feasible.
Wilson et al. [38] developed a hierarchical Bayesian approach for multi-task RL.
Their approach uses a Dirichlet process to cluster the distributions from which
they sample full MDPs in the hope that the sampled MDP aligns with the task
at hand. They then solve the sampled MDP and use the resulting policy to
gather data from the environment and refine the posterior distributions for a
next iteration. While their method is therefore limited to simple MDPs, our
approach can be combined with function approximation and therefore has the
potential to scale to MDPs with large or infinite state spaces which cannot be
solved in closed form. Lazaric and Ghavamzadeh [20] use a hierarchical Bayesian
approach to infer the parameters of a linear value function and utilize EM to
infer a policy. However, as this approach requires the value function to be a
linear function of some state representation, this approach is also difficult to
scale to larger problems which we look at. Li et al. [22] note that believe states
in partially observable MDPs can be grouped according to the decision they
require. Their model infers the parameters of the corresponding decision state
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MDP. Their approach scales quadratically with the number of decision states
and at least linearly with the number of collected transitions, making it as well
difficult to apply to complex tasks.

More recent related research on multi-task RL can be split into two categories:
Works that focus on very similar tasks with small differences in dynamics and
reward, and works that focus on very dissimilar tasks. In the first setting,
approaches have been proposed that condition the policy on task characteristics
identified during execution. Lee et al. [21] use model-based RL and a learned
embedding over the local dynamics as additional input to their model. Yang et al.
[39] train two policies, one that behaves in a way that allows the easy identification
of the environment dynamics and another policy that uses an embedding over
the transitions generated by the first as additional input. Zintgraf et al. [43] train
an embedding over the dynamics that accounts for uncertainty over the current
task during execution and condition their policy on it. Our approach is more
general than these methods as our assumption on task similarity is weaker. In
the second group of papers, the set of tasks is more diverse. Most approaches
here are searching for a way to reuse representations from one task in the others.
Riemer et al. [30] present an approach to learn hierarchical options, and use it to
train an agent on 21 Atari tasks. They use the common NatureDQN network
[27] with separate final layers for option selection policies, as well as separate
output layers for each task to account for the different action spaces. Eramo et
al. [11] show how a shared representation can speed up training. They then use a
network strucuture with separate heads for each task, but shared hidden layers.
Our multi-head baseline is based on these works. Bräm et al. [2] propose a method
that addresses negative transfer between multiple tasks by learning an attention
mechanism over multiple sub-networks, similar to a mixture of experts. However,
as all tasks yield experience for one overarching network, their approach still
suffers from interference between tasks. We limit this interference by completely
separating policies. Wang et al. [36] address the problem of open-ended learning
in RL by iteratively generating new environments. Similar to us, they use policy
rankings as a measure of difference between tasks. However, they use this ranking
as a measure of novelty to find new tasks, addressing a very different problem.
Hessel et al. [14] present PopArt for multi-task deep RL. They address the issue
that different tasks may have significantly different reward scales. Sharma et
al. [31] look into active learning for multi-task RL on Atari tasks. They show
that uniformly sampling new tasks is suboptimal and propose different sampling
techniques. Yu et al. [40] propose Gradient Surgery, a way of projecting the
gradients from different tasks to avoid interference. These last three approaches
are orthogonal to our work and can be combined with EM-clustering. We see
this as an interesting direction for future work.

Quality-Diversity (QD) algorithms [7, 29] in genetic algorithms research aim
to find a diverse set of good solutions for a given problem. One proposed benefit
of QD is that it can overcome local optima by using the solutions as ”stepping
stones” towards a global optimum. Relatedly in RL, Eysenbach et al. [12] and
Achiam et al. [1] also first identify diverse skills and then use the learned skills to
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solve a given task. While we do not explicitly encourage diversity in our approach,
our approach is related in that our training leads to multiple good performing,
distinct policies trained on distinct tasks. This can lead to a policy trained on
one task becoming the best on a task that it was not trained on, similar to the
”stepping stones” in QD. However, in our work this is more a side-effect than the
proposed functionality.

3 Background and Notation

In RL [32] tasks are specified by a Markov Decision Process (MDP), defined
as tuple (S,A, P,R, γ), with state space S, action space A, transition function
P (·|s, a), reward function R(s, a) and decay factor γ. As we are interested in
reusing policies for different tasks, we require a shared state-space S and action-
space A across tasks. Note however that this requirement can be omitted by
allowing for task specific layers. Following prior work, we do allow for a task
specific final layer in our Atari experiments to account for the different action
spaces. In all other experiments however, tasks only differ in their transition
function and reward function. We therefore describe a task as τ = (Pτ , Rτ ) and
refer to the set of given tasks as T . For each task τ ∈ T we aim to maximize the
discounted return Gτ =

∑t=L
t=0 γ

trτt , where rτt ∼ Rτ (st, at) is the reward at time
step t and L is the episode length. Given a set of policies Π = {π1, ..., πn}, we
denote the return obtained by policy πi on task τ as Gτ (πi).

4 Clustered Multi-Task Learning

Before we introduce our proposed clustering approach, we first want to briefly
discuss the straight forward, yet often disregarded limitation that exists when
learning multiple task with a single policy.

Proposition 1. The optimal policy of a jointly learned task set T = {τ1, τ2}
can be arbitrarily far from the optimal policy on task τ1.

To see this, consider task τ2 given as τ2 = (Pτ1 ,−2 ·Rτ1). Optimizing a policy
π to maximizing the joint objective Gτ1(π) +Gτ2(π) is equivalent to optimizing
π to minimize Gτ1(π) as for any policy π we have Gτ1(π) +Gτ2(π) = −Gτ1(π).

On the other hand, as the growing body of literature on meta-, transfer- and
multi-task learning suggests, we can expect a gain through positive transfer if we
train a single policy πi on a subset of related tasks Tk ⊂ T .

We incorporate these insights into our algorithm by modeling the task set T as
a union of K disjoint task clusters T1, . . . , TK , i.e., T =

⋃K
k=1 Tk with Ti ∩Tj = ∅

for i 6= j. Tasks within a cluster allow for positive transfer while we do not assume
any relationship between tasks of different clusters. Tasks in different clusters
may therefore even have conflicting objectives. Note that the assignment of tasks
to clusters is not given to us and therefore needs to be inferred by the algorithm.
Note also that this formulation only relies on minimalistic assumptions. That
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is, we do not assume a shared transition function or a shared reward structure.
Neither do we assume the underlying MDP to be finite and/or solvable in closed
form. Our approach is therefore applicable to a much broader range of settings
than many sophisticated models with stronger assumptions. As generality is one
of our main objectives, we see the minimalistic nature of the model as a strength
rather than a weakness.

Algorithm 1: Task-Clustering

Initialize N policies (π1, . . . , πN )
Initialize N buffers (D1, . . . ,DN )
while not converged do

. E-Step

T̃i ← ∅ for i ∈ {1, . . . , n}
for τ ∈ T do

k ← arg maxiGτ (πi)

T̃k ← T̃k ∪ τ
T̃i ← T where T̃i = ∅
. M-Step

for πi ∈ {π1, ..., πn} do
t← 0
while t < TM do

τ ∼ T̃i
Run πi on τ for L steps,
store transitions in Di

Update πi from Di

t← t+ L

Given this problem formulation,
we note that it reflects a clustering
problem, in which we have to assign
each task τ ∈ T to one of the clus-
ters Tk, k ∈ {1, . . . ,K}. At the same
time, we want to train a set of poli-
cies Π = {π1, ..., πn} to solve the
given tasks. Put differently, we wish
to infer a latent variable (cluster
assignment of the tasks) while op-
timizing our model parameters (set
of policies).

An EM [10] inspired algorithm
allows us to do just that. On a high
level, in the expectation step (E-
step) we assign each of the tasks
τ ∈ T to a policy πi, representing
an estimated cluster T̃i. We then
train the policies in the maximiza-
tion step (M-step) on the tasks they
got assigned, specializing the poli-
cies to their clusters. These steps are
alternatingly repeated — one bene-
fiting from the improvement of the
other in the preceding step — un-
til convergence. Given this general
framework we are left with filling in the details. Specifically, how to assign tasks
to which policies (E-step) and how to allocate training time from policies to
assigned tasks (M-step).

For the assignment in the E-step we want the resulting clusters to represent
clusters with positive transfer. Given that policy πi is trained on a set of tasks T̃i in
a preceding M-step, we can base our assignment of tasks to πi on the performance
of πi: Tasks on which πi performs well likely benefited from the preceding training
and therefore should be assigned to the cluster of πi. Specifically, we can evaluate
each policy πi ∈ {π1, . . . , πn} on all tasks τ ∈ T to get an estimate of Gτ (πi) and
base the assignment on this performance evaluation. To get to an implementable
algorithm we state two additional desiderata for our assignment: (1) We do
not want to constrain cluster sizes in any way as clusters can be of unknown,
non-uniform sizes. (2) We do not want to constrain the diversity of the tasks. This
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implies that the assignment has to be independent of the reward scales of the
tasks, which in turn limits us to assignments based on the relative performances
of the policies π1, ..., πn. We found a greedy assignment — assigning each task to
the policy that performs best — to work well. That is, a task τk is assigned to
the policy π = arg maxπi Gτk(πi). A soft assignment based on the full ranking of
policies might be worth exploring in future work. Given the greedy assignment,
our method can also be seen as related to k-means [24], a special case of EM.

In the M-step, we take advantage of the fact that clusters reflect positive
transfer, i.e., training on some of the assigned tasks should improve performance
on the whole cluster. We can therefore randomly sample a task from the assigned
tasks and train on it for one episode before sampling the next task. Overall we
train each policy for a fixed number of updates TM in each M-step with TM
independent of the cluster size. This independence allows us to save environment
interactions as larger clusters benefit from positive transfer and do not need
training time proportional to the number of assigned tasks.

Note that the greedy assignment (and more generally any assignment fulfilling
desiderata 1 above) comes with a caveat: Some policies might not be assigned
any tasks. In this case we sample the tasks to train these policies from all tasks
τ ∈ T , which can be seen as a random exploration of possible task clusters. This
also ensures that, early on in training, every policy gets a similar amount of
initial experience. For reference, we provide a pseudo code of our approach in
Algorithm 1. Note that we start by performing an E-Step, i.e., the first assignment
is based on the performance of the randomly initialized policies.

4.1 Convergence Analysis

We now show that both, the E- and M-step yield a monotonic improvement.
Thereby, our algorithm improves the objective monotonically in every iteration.

We denote our overall objective function that we aim to maximize as o(Π, T̃ ) =∑
πi∈Π

∑
τj∈T̃i Gτ (πi), as a function of our policy set Π = {π1, . . . , πn} and their

corresponding task assignments T̃ = {T̃1, . . . , T̃n}. In the E-step, we evaluate all
policies on all tasks to determine the returns Gτ (πi). Using the greedy assignment
strategy, we assign each task to the policy that achieves the respective highest
return arg maxiGτ (πi) and obtain a new assignment set T̃ ′. It is easy to see that
this assignment step can only improve the objective, as

o(Π, T̃ ′) =
∑
τ∈T

max
πi∈Π

Gτ (πi) ≥
∑
τ∈T

∑
πi∈Π

1[τ∈T̃i]Gτ (πi) = o(Π, T̃ )

for any previous assignments T̃ , since the indicator function 1[τ∈T̃i] will only

indicate one cluster.1 Note that this derivation relies on a deterministic evaluation
of policies, i.e. deterministic task environments. For stochastic environments we
can take the average over multiple evaluations, trading off the computational

1 Note that assigning all tasks to a cluster that did not get any tasks assigned is only
done for exploration. In the evaluation of our objective these clusters remain empty.
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overhead with the accuracy of the evaluation. In our experiments we found that a
relatively small number of evaluations is sufficient for the algorithm to converge.

During the M-step the assignments are fixed, and every policy πi is trained
on its assigned tasks τ ∈ T̃i by sampling from them uniformly. We derive the
case for shared transition dynamics Pτ = P ∀τ ∈ T here and extend it to the
case of tasks with distinct transition dynamics in Appendix A.2

The value of policy πi on task τ can be defined recursively as

V πiτ (s) = Ea∼πi [Rτ (s, a) + γEs′∼P (·|s,a)[V
πi
τ (s′)]]

such that V πiτ (s0) = Gτ (πi) for the starting state s0. We further note that the
expected value V πiM (s) = Eτ∼T̃i [V

πi
τ (s)] is in itself a value function over an MDP

M defined by the expected reward with

V πiM (s) = Ea∼πi [Eτ∼T̃i [Rτ (s, a)] + γEs′∼P (·|s,a)[Eτ∼T̃i [V
πi
τ (s′)]]]

= Ea∼πi [Eτ∼T̃i [Rτ (s, a)] + γEs′∼P (·|s,a)[V
πi
M (s′)]]

Policy iteration onM will yield an improved policy π′i with V
π′i
M (s) ≥ V πiM (s) ∀s ∈

S. More generally, any off-policy RL algorithm that samples uniformly over
collected (s, r, a, s′) transition tuples will implicitly optimize M. Note that
V πiM(s0) = Eτ∼T̃i [Gτ (πi)] = 1

|T̃i|

∑
τ∈T̃i Gτ (πi) for uniformly sampled tasks. Any

improvement in V πiM therefore directly translates into an improvement in our
overall objective. While we focus on off-policy RL in this paper, we conjecture
that a similar optimisation can be done on-policy.

5 Experiments

As a proof of concept we start the evaluation of our approach on two discrete tasks.
The first environment consists of a chain of discrete states in which the agent can
either move to the left or to the right. The goal of the agent is placed either on the
left end or the right end of the chain. This gives rise to two task clusters, where
tasks within a cluster differ in the frequency with which the agent is rewarded on
its way to the goal. The second environment reflects the 2-dimensional grid-world
presented in Figure 1. Actions correspond to the cardinal directions in which the
agent can move and the 12 tasks in the task set T are defined by their respective
goal. We refer an interested reader to Appendix B.1 for a detailed description.2

We train policies with tabular Q-learning [37] and compare our approach to
two baselines: In the first we train a single policy on all tasks. We refer to this as
SP (Single Policy). In the other we train a separate policy per task and evaluate
each policy on the task it was trained on. This is referred to as PPT (Policy per
Task). Our approach is referred to as EM (Expectation-Maximization).

The results and task assignment over the course of training are shown in Fig-
ure 2 and Figure 3. Looking at the assignments, we see that in both environments

2 The Appendix and implementations of all our experiments can be found at
https://github.com/JohannesAck/EMTaskClustering
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Fig. 2: Left: Mean reward and 95% confidence interval (shaded area) from 10
trials when training on the chain environment. Right: Task assignment (dots)
and task specific reward (color) over the course of training the two policies in our
approach. Each plot shows one of the policies/estimated clusters. The assignments
converge to the natural clustering reflected by the goal location.
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Fig. 3: Left: Mean reward and 95% confidence interval (shaded area) from 10 trials
when training on the grid-world environment depicted in Figure 1. Right: Task
assignment (dots) and task specific reward (color) over the course of training for
the n = 4 policies (estimated clusters) in our approach. The assignment naturally
clusters the tasks of each corner together.

our approach converges to the natural clustering, leading to a higher reward
after finding these assignments. Both our EM-approach and PPT converge to
an optimal reward in the chain environment, and a close to optimal reward in
the corner-grid-world. However, PPT requires a significantly higher amount of
environment steps to reach this performance, as it does not share information
between tasks and therefore has to do exploration for each task separately. SP
fails to achieve a high reward due to the different tasks providing contradicting
objectives.
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Fig. 4: Left: Mean reward and 95% confidence interval (shaded area) from 10
trials when training on the pendulum environment. The curves are smoothed by
a rolling average to dampen the noise of the random starting positions. For [40]
we used 12 trials out of which 3 failed to converge and were excluded. Right:
Task assignment (dots) and task specific reward (color) from a sample run. Two
policies focus on long and short, while the others focus on medium lengths.

5.1 Pendulum

Next we consider a simple continuous control environment where tasks differ in
their dynamics. We use the pendulum gym task [3], in which a torque has to be
applied to a pendulum to keep it upright. Here the environment is the same in
all tasks, except for the length of the pendulum, which is varied in the range
{0.7, 0.8, ..., 1.3}, giving a total of 7 tasks. Note that there is no obvious cluster
structure here and the experiment therefore serves as an edge-case to test the
applicability of our approach.

We use Twin Delayed Deep Deterministic Policy Gradient (TD3) [13] with
hyperparameters optimized as discussed in Appendix B.2. By default, we use
n = 4 policies and did not tune this hyperparameter. This was done to give a
fair comparison to baseline approaches which do not have this extra degree of
freedom. For application purposes the number of clusters can be treated as a
hyperparameter and included in the hyperparameter optimization. We compare
against SP, PPT, gradient surgery [40] and a multi-head network structure similar
to the approach used by Eramo et al. [11]. Each policy in our approach uses a
separate replay buffer. The multi-head network has a separate replay-buffer and
a separate input and output layer per task. Surgery uses a separate replay-buffer
and output layer per task. We adjust the network size of the multi-head baseline,
surgery and SP to avoid an advantage of our method due to a higher parameter
count, see Appendix B.2 for details. The results are shown in Figure 4.

We observe that EM, PPT, multi-head and surgery all achieve a similar final
performance, with EM and surgery achieving a high reward earlier than PPT
or multi-head. The multi-head approach requires signficantly more experience
to converge than even PPT in this setup. We believe this is due to the inherent
interference of learning signals in the shared layers. Our approach manages to
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Fig. 5: Evaluation of the BipedalWalker experiments. The shaded areas show the
95% confidence interval on the mean task reward. Left: Track and field task set;
6 tasks with varying objectives. Results reflect 20 trials of each approach. Right:
Task set with varying leg lengths and obstacles; 9 tasks with the same reward
function. Results reflect 10 trials of each approach.

avoid this interference, as does surgery. SP is unable to achieve a high reward as
it cannot specialize to the tasks. In contrast to the surgery baseline, our approach
can give further insights by producing intuitive cluster assignments, see Figure 4.

5.2 Bipedal Walker

As a more complex continuous control environment we focus on BipedalWalker
from the OpenAI Gym [3], which has previously been used in multi-task and
generalization literature [28, 35, 36]. It consists of a bipedal robot in a two-
dimensional world, where the default task is to move to the right with a high
velocity. The action space consists of continuous torques for the hip and knee
joints of the legs and the state space consists of joint angles and velocities, as
well as hull angle and velocity and 10 lidar distance measurements. Examples
are shown in Figure 1 on the right.

To test our approach, we designed 6 tasks inspired by track and field sports:
Jumping up at the starting position, jumping forward as far as possible, a short,
medium and long run and a hurdle run. As a second experiment, we create a
set of 9 tasks by varying the leg length of the robot as well as the number of
obstacles in its way. This task set is inspired by task sets in previous work [28].
Note that we keep the objective — move forward as fast as possible — constant
here. We again use TD3 and tune the hyperparameters of the multi-head baseline
and our approach (with n = 4 fixed) with grid-search. Experiment details and
hyperparameters are given in Appendix B.3.

The results in Figure 5 (left) on the track and field tasks show a significant
advantage in using our approach over multi-head TD3, surgery or SP and a better
initial performance than PPT, with similar final performance. SP fails to learn a
successful policy altogether due to the conflicting reward functions. In contrast,
the results in Figure 5 (right) from the second task set show that SP can learn
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Fig. 6: The results of our experiments on a subset of the Atari Learning Environ-
ment games. The reward is averaged across 3 trials and the shaded region shows
the standard deviation of the mean.

a policy that is close to optimal on all tasks here. The multi-head, surgery and
PPT approaches suffer in this setup as each head/policy only gets the experience
from its task and therefore needs more time to converge. Our approach can
take advantage of the similarity of the tasks, converging significantly quicker.
We note that the experiments presented here reflect two distinct cases: One in
which it is advantageous to separate learning, reflected by PPT outperforming
SP, and one where it is better to share experience between tasks, reflected by SP
outperforming PPT. Our approach, unlike surgery or multi-head, demonstrates
general applicability as it is the only one performing competitively in both. We
provide an insight into the assignment of tasks to policies in Appendix C.1.

5.3 Atari

To test the performance of our approach on a more diverse set of tasks, we
evaluate on a subset of the Arcade Learning Environment (ALE) tasks [23]. Our
choice of tasks is similar to those used by [30], but we exclude tasks containing
significant partial-observability. This is done to reduce the computational burden
as those tasks usually require significantly more training data. We built our
approach on top of the Implicit Quantile Network (IQN) implementation in the
Dopamine framework [6, 8]. We chose IQN due to its sample efficiency and the
availability of an easily modifiable implementation. As the different ALE games
have different discrete action spaces, we use a separate final layer and a separate
replay buffer for each game in all approaches. We use the hyperparameters
recommended by [6], except for a smaller replay buffer size to reduce memory
requirements. As in the Bipedal Walker experiments we fix the number of policies
in our approach without tuning to n = 4. We choose the size of the network
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such that each approach has the same number of total tunable parameters. We
provide the details in Appendix B.4.

The results are given in Figure 6. The multi-head approach is unable to learn
any useful policy here due to negative transfer between tasks. This is in line
with experiments in other research [14] and is due to the large variety of the
tasks. On the other hand, both our EM-approach and PPT are able to achieve
significantly higher reward. However, our approach does not perform better than
PPT. Note that we can only expect a better performance than PPT if there
are clusters of tasks that benefit from positive transfer. The diverse set of Atari
games seems to violate this assumption. While we cannot benefit from positive
transfer, our approach avoids the negative interference impacting the multi-head
approach, even with just 4 clusters. Task assignments in our approach are given
in Appendix C.2.

5.4 Ablations

To gain additional insight into our approach, we perform two ablation studies on
the discrete corner-grid-world environment and the pendulum environment.

First, we investigate the performance of our approach for different numbers
of policies n. The results in Figure 7 show that using too few policies can lead
to a worse performance, as the clusters cannot distinguish the contradicting
objectives. On the other hand, using more policies than necessary increases the
number of environment interactions required to achieve a good performance in
the pendulum task, but does not significantly affect the final performance.

As a second ablation, we are interested in the effectiveness of the clustering.
It might be possible that simply having fewer tasks per policy is giving our
approach an advantage compared to SP or multi-head TD3. We therefore provide
an ablation in which task-policy assignments are determined randomly at the
start and kept constant during the training. Results from this experiment can
be seen in Figure 8, with additional results in Appendix D. The results show
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that using random clusters performs significantly worse than using the learned
clusters. This highlights the importance of clustering tasks meaningfully.

6 Conclusion

We present an approach for multi-task reinforcement learning (RL) inspired by
Expectation-Maximization (EM) that automatically clusters tasks into related
subsets. Our approach uses a set of policies and alternatingly evaluates the policies
on all tasks, assigning each task to the best performing policy and then trains the
policies on their assigned tasks. While the repeated evaluation of policies adds a
small computational overhead, it provides an effective way to mitigate negative
transfer. Our algorithm is straightforward and can easily be combined with a
variety of state-of-the-art RL algorithms. We evaluate the effectiveness of our
approach on a diverse set of environments. Specifically, we test its performance
on sets of simple discrete tasks, simple continuous control tasks, two complex
continuous control task sets and a set of Arcade Learning Environment tasks. We
show that our approach is able to identify clusters of related tasks and use this
structure to achieve a competitive or superior performance to evaluated baselines,
while additionally providing insights through the learned clusters. We further
provide an ablation over the number of policies in our approach and a second
ablation that highlights the need to cluster tasks meaningfully.

Our approach offers many possibilities for future extensions. An adaption to
on-policy learning and combination with orthogonal approaches could improve
the applicability further. Another interesting direction would be hierarchical
clustering. This could prove helpful for complicated tasks like the Atari games. It
would also be interesting to see how our approach can be applied to multi-task
learning in a supervised setting. Further, different assignment strategies with soft
assignments could be investigated. Overall, we see our work as a good stepping
stone for future work on structured multi-task learning.
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Appendix

A M-step for tasks with distinct transition functions Pτ

Here we extend the improvement in the M-step to the more general case, where we
do not require tasks to share transition dynamics Pτ (·|s, a). Specifically, we aim
to show how a policy π trained on multiple tasks τ ∈ T can improve the summed
performance

∑
τ∈T Gτ (π). Note that we omit the cluster identifiers here for

brevity, as clusters are treated independently in the M-step and a generalization
to the overall objective follows trivially. We first define for the current policy π
an auxiliary MDP M(π) as (S,A, PM, RM, γ) with S,A and γ as given by the
tasks T , RM(s, a) = Eτ∼T [Rτ (s, a)] and

PM(s′|s, a) =
Eτ∼T [Pτ (s′|s, a)V πτ (s′)]

Eτ∼T [V πτ (s′)]

where V πτ (s′) is given by the cumulative discounted return of policy π on task τ
starting in state s′. Note that this MDP has an evaluation V πM of π equivalent to
the expected value of π:

V πM(s) = Eτ∈T [V πτ (s)]

= Eτ∈T
[
Ea∼π

[
Rτ (s, a) + Es′∼Pτ (·|s,a) [V πτ (s′)]

]]
= Ea∼π

[
Eτ∈T [Rτ (s, a)] + Eτ∈T

[
Es′∼Pτ (·|s,a) [V πτ (s′)]

]]
= Ea∼π

[
Eτ∈T [Rτ (s, a)] +

∑
s′∈S

Eτ∈T [Pτ (s′|s, a)V πτ (s′)]

]
= Ea∼π

[
RM(s, a) + Es′∼PM(·|s,a) [V πM(s′)]

]
Therefore, a policy improvement based on V πM will improve the overall objec-

tive. In practice, one could re-weight sampled transitions based on an estimated

importance ratio PM(s′|s,a)
Eτ∈T [Pτ (s′|s,a)] . However, we empirically found that our ap-

proach also works without such a re-weighting, as our approach can also simply
assign tasks with distinct dynamics to different clusters.

B Experiment Details

In addition to the details provided here, the implementation of all experiments
can be found in the supplementary material.

B.1 Grid World Experiments

In the first discrete task set we use a one-dimensional state-chain with 51 states,
in which the agent starts in the middle and receives a reward for moving toward
either the left or right end. As a reward we use r = 1

|xag−xgoal| where xag is the

position of the agent and xgoal is the goal position (either the left or right end of
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the chain). We give a reward of r = 20 if the goal position is reached. Depending
on the task, the reward is given every 2, 4, 8 or 16 steps, or only at the goal
position, and otherwise replaced by r = 0.

For our corner grid-world task set we use a 2D-grid-world with edge length 7
and three goal positions per corner (as depicted in Figure 1). The agent always
starts in the center and receives a reward based on the distance to the target
r = 1

||xag−xgoal||2 , with || · ||2 being the Euclidean norm. A reward of r = 10 is

given when the agent reaches the goal position.
In both tasks we use tabular Q-Learning with ε-greedy exploration. We start

with ε0 = 0.2 and decay the value as εt = ε
γtε
0 with γε = 1− 1× 10−6. We use a

learning rate of α = 0.2 to update the value estimates, as from the perspective of
a single agent the environment can be regarded as stochastic. Further, we use a
discount factor of γ = 0.9 and TM = 500 training steps per policy in each M-step
and evaluate each policy on each task for three episodes during the E-step, using
the greedy policy without exploration.

B.2 Pendulum

In our pendulum tasks we use a modified version of the Pendulum environment
provided in OpenAI gym [3]. This environment consists of a single pendulum
and the goal is to balance it in an upright position. The observation consists of
the current angle θ, measured from the upright position, and current angular
velocity represented as (sin θ, cos θ, θ̇). The reward for each time step is rt =
−(θ2 + 0.1θ̇2 + 0.001a2), with a being the torque used as action. Every episode
starts with a random position and velocity. To provide a set of tasks we vary the
length of the pendulum in {0.7, 0.8, ..., 1.3}.

Hyperparameters Hyperparameters for our EM-TD3 and multi-head TD3
were tuned on the pendulum task set by grid search over learning rate α = {1×
10−2, 3× 10−3, 1× 10−3}, batch-size b = {64, 128} and update-rate u = {1, 3, 5},
specifying the number of collected time-steps after which the value-function is
updated. We increased the network size for multi-head TD3, so that it overall had
more parameters than EM-TD3. This is done to eliminate a potential advantage
of our approach stemming from a higher representational capacity. The tuned
hyperparameters are given in Table 1. To represent the value functions and
policies we use fully connected multi-layer perceptrons (MLPs) with two hidden
layers with 64 units each. As activations we use ReLU on all intermediate layers,
and tanh activations on the output. The values are then scaled to the torque
limits per dimension. In EM, SP and PPT we use a separate network for each
policy. For our multi-head baseline we share the hidden layers between tasks,
but use separate input and output layers per task. Additionally, we increase the
size of the first hidden layer to 96 in the multi-head approach, such that it has
a similar total number of parameters as our EM approach. For SP and PPT
we reuse the hyper-parameters from our EM approach. For Surgery we use a
network with a separate output layer per policy and similarly increase the size
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of the layers and reuse the other parameters from the Multi-Head approach, as
we found them to behave similarly. During the M-step, we train the agent for
5× 104 steps per policy and during the E-step we evaluate each agent on each
task by running 20 episodes without added exploration noise.

Table 1: Hyperparamters for pendulum experiments.

Hyperparameter EM-TD3 Multi-head TD3 Surgery

learning-rate α 3× 10−3 3× 10−3 3× 10−3

batch-size b 128 128 128
update-rate u 1 1 1
policy-update-frequency 3 3 3
n - EM 4 - -
network size 4 · (64, 64, 1) (9 · 96, 64, 9 · 1) (128, 128, 1)
exploration noise σ 0.05 0.05 0.05
exploration noise clipping [−0.5, 0.5] [−0.5, 0.5] [−0.5, 0.5]
target policy smoothing noise σ 0.1 0.1 0.1
buffer-size 2e6 per policy 2e6 per task 2e6 per task
decay γ 0.99 0.99 0.99
TM 5× 104 - -

B.3 BipedalWalker

For the BipedalWalker tasks we look at two different sets of tasks. The first set
of tasks consists of different reward functions with mostly similar environments,
inspired by track and field events. The tasks are jumping up, jumping a long
distance, runs for different distances and a run with obstacles. In all tasks a
reward of −ε||a||1 is given to minimize the used energy. The position of the hull
of the bipedal walker is denoted as (x, y). In the jump up task a reward of y− |x|
is given upon landing, and ε = 3.5× 10−4. For the long jump task a reward of
x − x0 is given upon landing, with x0 being the hull position during the last
ground contact, ε = 3.5× 10−4. The three runs consist of a sprint over a length
of 67 units, with ε = 3.5× 10−4, a run over 100 units, with ε = 3.5× 10−4, and a
long run over 200 units with ε = 6.5× 10−4. The hurdles task is identical to the
long run, but every 4 units there is an obstacle with a height of 1. Additionally,
a reward of 0.1ẋ — a reward proportional to the velocity of the agent in the
x-direction — is given during the run and hurdle tasks, to reward movement to
the right.

The second set of tasks consists of varying obstacles and robot parameters.
We vary the length of the legs in {25, 35, 45} and either use no obstacles, or
obstacles with a spacing of 2 or 4 units apart and height of 1. This results in a
total of 9 tasks. Here we use the standard reward for the BipedalWalker task
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r = 4.3ẋ− 5|θ| − ||a||1 with θ being the angle of the walker head. Additionally,
in all experiments r = −100 is given if the robot falls over or moves to far to the
left.

Hyperparameters Hyperparameters for our EM-TD3 and multi-head TD3
approaches were tuned on the track and field task set by grid search over
α = {1× 10−3, 3× 10−4, 1× 10−4}, batch-size b = {100, 1000} and update-rate
u = {1, 3, 5}, u specifying the number of collected time-steps after which the
value-function is updated. We reuse the optimal parameters found here on the
task set with varying leg lengths and obstacles. For the SP and PPT baselines
we reused the parameters from EM-TD3. We increased the network size for
multi-head TD3, so that it overall had more parameters than EM-TD3. All
hyperparameters are given in Table 2. For Surgery we reuse the parameters from
the Multi-Head approach, as we found them to behave similarly. During the
M-step, we train the EM agent with 2 × 105 steps per policy and during the
E-step we evaluate each agent on each task by running 20 episodes without added
exploration noise.

Table 2: Hyperparameters for BipedalWalker experiments.

Hyperparameter EM-TD3 Multi-head TD3 Surgery

learning-rate 1× 10−3 1× 10−3 1× 10−3

batch-size 1000 1000 1000
update-rate 3 5 5
policy-update-frequency 3 3 3
n - EM 4 - -
network size 4 · (400, 300, 1) (6 · 400, 400, 6 · 1) (800, 600, 1)
exploration noise σ 0.1 0.1 0.1
exploration noise clipping [−0.5, 0.5] [−0.5, 0.5] [−0.5, 0.5]
target policy smoothing noise σ 0.2 0.2 0.2
buffer-size 5e6 per policy 5e6 per task 5e6 per task
decay γ 0.99 0.99 0.99
TM 2× 105 - -

B.4 Atari

To test our approach on a more complex task, we evaluate it on a subset of
the Atari games. The set of chosen games consists of Alien, Assault, BankHeist,
ChopperCommand, DemonAttack, JamesBond, MsPacman, Phoenix, RiverRaid,
SpaceInvaders, WizardOfWor and Zaxxon. As stated above, this task set is similar
to the set of games used in [30], but without tasks requiring a large amount of
exploration to save computation time.
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Our implementation is based on the IQN implementation in the Dopamine
framework [8, 6]. As hyperparameters we use the default values recommended by
Dopamine for Atari games, except the changes listed below: Due to the different
action spaces, we use a separate replay buffer for each game, as well as a separate
output layer, both for our EM, multi-head and PPT approaches. We reduce the
size of the replay buffer to 3 × 105 compared to 1 × 106 in the original paper,
to reduce the memory demand. We use the normal NatureDQN network, but
scale the size of the layers to ensure that each approach has a similar number of
parameters. For our EM approach, we use TM = 2.5 × 105 trainings steps per
M-step, and evaluate all policies on all tasks for 27000 steps in the E-step, using
the greedy policy without random exploration. In both EM and the multi-head
approach, we record how many transitions were performed in each M-Step and
sample the task with the least transitions as next training task. This is done to
ensure a similar amount of transitions and training steps per game, as episode
lengths vary. This approach was proposed in [30].

C Additional Results

C.1 Bipedal Walker

In Figure 9 the assignments for 4 randomly chosen trials on the track and field
task set are shown. We can see that in all trials the runs over different distances
are grouped together with the long jump task. This is likely due to these tasks
aligning well, as they both favor movements to the right. It is possible to learn the
hurdles task with the same policy as the runs, due to the available LIDAR inputs.
The hurdle task therefore sometimes switches between policies, but usually is
learned by a separate policy. The jump up task is very different from the other
tasks, as it is the only one not to involve movement to the right, and is therefore
assigned to a separate policy.

In Figure 10 the assignments for 4 randomly chosen trials on the leg-length
and obstacle task set are shown. As illustrated by the good performance of the SP
approach shown in Figure 5, it is possible to learn a nearly optimal behavior with
a single policy here. This makes learning a meaningful clustering significantly
harder and sometimes leads to a single policy becoming close to optimal on all
tasks, as in Trial 2. In most other trials the task set is separated into two or three
different clusters based on the different leg lengths.

C.2 Atari

In Figure 11 the assignments of all three trials of our approach on the Atari task
set are shown. While we see a consistency in assignments, we cannot identify a
clearly repeated clustering across trial. We assume this is due to the high diversity
of tasks preventing the identification of clearly distinguishable clusters. This lack
of clearly distinguishable clusters might also be the reason for failing to exceed
the performance of PPT. Yet, the specialization of policies in our approach helps
to avoid negative transfer as seen in Figure 6.
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Fig. 9: Shown are the assignments from 4 randomly picked trials on the track
and field BipedalWalker task set.
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Fig. 10: Shown are the assignments from 4 randomly picked trials on the first
BipedalWalker task set. l refers to the lenghts of the legs, o refers to the frequency
of obstacles.
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Fig. 11: Shown are the assignments of all three trial that were run on the set of
Atari games. The color represents the human-normalized score per game.
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D Performance Gap to Random Clusters

In Figure 8 we investigated the importance of the E-Step in our approach, by
comparing to an ablation which randomly assigns tasks to policies at the start.
These results showed that using random assignments performs worse, highlighting
the importance of using related clusters of tasks. Here we will investigate how
the difference between the return when using our EM method GEM or random
assignments Grand changes depending on the number of tasks. When using a
single policy or a policy for each task our method becomes identical to the
baselines. We hypothesize that the difference should be maximal when using as
many policies as there are true underlying clusters in the task set.

To test this hypothesis we perform experiments on our grid-world task set
with 12 goals distributed to the four corners and show the return gap GEM−Grand

in Figure 12. The experiments confirm our hypothesis, showing that the return
gap increases with the number of policies before reaching a maximum when it
matches the true clusters at n = 4. Afterwards it starts to decrease.
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Fig. 12: Show is the difference between using random assignments or our EM
approach for different numbers of policies. On the left the development during
training is shown, on the right the average performance gap over the last 10% of
the training is visualised.


