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ABSTRACT
The Bitcoin system only provides eventual consistency. For
everyday life, the time to confirm a Bitcoin transaction is
prohibitively slow. In this paper we propose a new sys-
tem, built on the Bitcoin blockchain, which enables strong
consistency. Our system, PeerCensus, acts as a certifica-
tion authority, manages peer identities in a peer-to-peer
network, and ultimately enhances Bitcoin and similar sys-
tems with strong consistency. Our extensive analysis shows
that PeerCensus is in a secure state with high probability.
We also show how Discoin, a Bitcoin variant that decouples
block creation and transaction confirmation, can be built
on top of PeerCensus, enabling real-time payments. Unlike
Bitcoin, once transactions in Discoin are committed, they
stay committed.

CCS Concepts
•Networks → Peer-to-peer protocols;
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1. INTRODUCTION
Since its inception in 2008, the Bitcoin [25] cryptocurrency

has been steadily growing in popularity. Today, Bitcoin has
a market capitalization of about 5 billion USD. The Bitcoin
network processes transactions worth approximately 60 mil-
lion USD each day.

So, how usable are Bitcoins in everyday life? While one
certainly can buy a coffee with Bitcoins, a Bitcoin trans-
action is shockingly insecure when compared to a cash (or
credit card) transaction. Cash is exchanged on the spot with
the coffee, and credit card companies are liable for fraud at-
tempts. Bitcoins are different, as the Bitcoin system only
guarantees “eventual consistency”. The barista will serve a
coffee in exchange for a signed Bitcoin transaction by the
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customer. However, a signed Bitcoin transaction is no guar-
antee that the Bitcoin transfer really takes place.

In order to get a better understanding, let us follow the
path of our Bitcoin transaction. First, the barista will inject
the signed transaction into the Bitcoin network, which is a
random-topology peer-to-peer network. The correctness of
the signature will be immediately verified by the peers that
get the transaction. Next, the transaction will be flooded
within the Bitcoin network, such that all peers in the Bitcoin
network have seen the transaction. Eventually, the transac-
tion will be included in a block, and finally the block will
end up in the blockchain.

While the problem of fraudulent customers also exists
with cash or credit cards, Bitcoins allow fraud on a whole
different level. The main issue are so-called double-spend
attacks [5, 18]. Our coffee consumer may simply spend the
same money multiple times. In addition to signing the trans-
action for our barista, the customer may concurrently sign
another transactions spending the same Bitcoins but with
the customer himself as beneficiary. While the barista is
injecting her transaction into the Bitcoin network, the cus-
tomer is injecting his transaction into the Bitcoin network
as well, quickly and with as many peers as possible. Both
the original and the double transactions will spread in the
Bitcoin network, but the double-spend was injected at mul-
tiple vantage points, so it will spread more quickly. A pro-
fessional fraudulent customer will manage that the double-
spend transaction is orders of magnitude more present in
the Bitcoin network than the original transaction. As such
the double transaction will be much more likely to end up
in a block, and ultimately in the blockchain.

The problem is that the barista cannot verify the whole
process in real time. While injecting a transaction into the
Bitcoin network, and the verification of the signature by the
first peer is a matter of seconds, all the other steps in the
process take time. Flooding transactions in a network al-
ready is an operation which may take minutes, and a block
is only generated every 10 minutes [25]. However, with the
current backlog,1 it is unlikely that a transaction will be in
the next block. Rather, a few blocks might be generated be-
fore our transaction (the original or the double) managed to
be selected in a block, so for a low-value transaction like
the payment of a coffee we can expect a delay of about
30 minutes. In addition there is the problem of so-called
blockchain forks [12], i.e., two conflicting blocks may gener-
ated at roughly the same time, and only subsequent blocks
will determine which of the blocks is part of the blockchain

1https://blockchain.info/unconfirmed-transactions



and which one is discarded. Each subsequent block takes
another 10 minutes, so in order to know that a transaction
is confirmed, we may need to wait for several hours. The
Bitcoin system is a prime example of eventual consistency:
Eventually Bitcoin has a consistent view of the transactions,
but one can never be sure, and it may always happen that a
blockchain fork will destroy a substantial amount of trans-
actions, sometimes even multiple hours later [1].

Because of this we argue that the current version of Bit-
coin is fundamentally flawed when it comes to real time
transactions, where goods or services are instantly ex-
changed for Bitcoins. How long should our barista wait un-
til she is sure that the transaction will eventually be in the
blockchain? Waiting for more confirmations does reduce the
probability of the transaction being reverted, but how safe
is safe enough? When should the seller release the goods or
service to the buyer? Most vendors are probably unaware of
this tradeoff between safety and time. In order to use Bitcoin
for real time exchanges, we need to completely abandon the
weak concept of eventual consistency and instead embrace
strong consistency.

In this work we propose PeerCensus, a system upon which
strongly consistent applications can be built. The basic idea
is that Bitcoin’s blockchain can be used to introduce and
manage identities that participate in the system.

More precisely, PeerCensus uses the blockchain as a way
to limit and certify new identities joining the system. This
yields strong guarantees on the assignment of these identi-
ties to entities participating in it. We stress that PeerCensus
is application agnostic, i.e., it does not manage any applica-
tion specific information. A single PeerCensus instance may
be shared by an arbitrary number of applications. In partic-
ular PeerCensus can be used to introduce strong consistency
in Bitcoin. For easier readability, we call the strongly con-
sistent Bitcoin that uses PeerCensus Discoin.

Discoin does not rely on its own blockchain. Instead, it
can rely on a byzantine agreement protocol [8, 19, 20] to
commit transactions to the transaction history, effectively
decoupling block generation from transaction confirmation
and thus enabling safe and fast transactions. Once a trans-
action is committed it cannot be reverted at any future time,
a property we refer to as forward security. This is in con-
trast to Bitcoin, where confirmations are slow and can be
reverted by a sufficiently strong attacker.

Our approach is also significant in light of the recent pro-
liferation of alternative digital currencies, the so-called alt-
coins, all reliant on their own blockchain. The creation of
altcoins has had the effect of splitting resources among many
blockchains, resulting in many smaller and consequently
more easily attackable blockchains. PeerCensus, with its
shared instance, allows the computational resources to be
concentrated to a single blockchain, strengthening it against
attacks.

Moreover, PeerCensus enables experimental versions of
Bitcoin to test protocol changes at a smaller scale before
merging them with the main network. This is an alterna-
tive to the approach of [4], which instead suggests to allow
transactions between otherwise separate blockchains.

The security guarantees of PeerCensus are extensively an-
alyzed in Section 5, where we show that with high proba-
bility the system does not fail. Furthermore, we outline
how the current Bitcoin system can be migrated to Discoin
running on top of PeerCensus, gaining strong consistency
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Figure 1: The layout of the components and infor-
mation flows.

and real-time payments as a result. Migrating resources
and blocks from Bitcoin allows us to maintain the momen-
tum and the public acceptance Bitcoin has gathered over
the years. Our proposed migration method results in an
instance of PeerCensus that in expectation fails fewer than
once every 7 million years.

2. OVERVIEW
Our main objective is to enable the creation of a cryp-

tocurrency that provides forward security and supports fast
confirmations. We accomplish this goal by leveraging tech-
niques from Bitcoin as well as byzantine agreement pro-
tocols, resulting in strong consistency guarantees. Known
agreement protocols are not applicable to a peer-to-peer
environment in which Bitcoin operates, for three reasons:
Openness, Sybil Attacks, and Churn.

• Openness: The set of peers eligible to participate in
the protocol changes over time, but previous protocols
rely on a fixed set of participants.

• Sybil attacks: Entities may participate in the proto-
col with an arbitrary number of identities, effectively
disrupting voting based agreement protocols.

• Churn: Peers may join or leave the system at arbitrary
times, therefore the quorum size required for agree-
ment cannot be constant.

Typical voting based agreement protocols, like PBFT [8]
and Zyzzyva [19], require knowledge of the membership: Be-
fore proceeding, the protocol must determine whether a suf-
ficient number of participants voted. This requirement is
in stark contrast to the openness of a peer-to-peer setting.
Moreover, allowing unrestricted entry of new peers to the
system creates the potential of Sybil attacks. In a Sybil at-
tack, a single entity poses as an arbitrary number of peers
(by generating fake identities) and joins the system as dis-
tinct participants in order to subvert the system. While the
issue of churn has been addressed by previous agreement
protocols (e.g., Secure Group Membership Protocol [28]), to
the best of our knowledge Sybil attacks are left unaddressed
by traditional agreement protocols.

Bitcoin introduced a novel use of Proof-of-Work systems,
namely a blockchain data structure, as a mechanism to deal
with the problems caused by openness. But in Bitcoin states
can temporarily diverge, since each peer applies incoming
operations to its local state without reaching any kind of



agreement beforehand. As a result, Bitcoin only guarantees
eventual consistency, a property that is questionable for a
protocol that is supposed to handle financial transactions.

In PeerCensus we combine those approaches to obtain the
best of both worlds: Resilience to sybil attacks and strong
consistency. Correspondingly, PeerCensus consists of two
components: the Blockchain (BC) and the Chain Agree-
ment (CA).

The Blockchain’s purpose is to mitigate sybil attacks.
This is achieved by regulating the rate at which identities
gain privileges within the system, and by ensuring that those
privileges are not obtained by a single entity. Peers are ei-
ther non-voting or voting peers. In particular, new peers
start as non-voting until promoted to voting by appending
a block to the collaboratively maintained blockchain. The
rate at which blocks can be found in the network can be
regulated so that new identities are promoted at a fixed
rate, currently every 10 minutes. Furthermore, the share
of identities an entity may control converges to the share of
computational resources it controls in the network.

The Chain Agreement on the other hand augments the
system with strong consistency. By virtue of the voting
rights issued from the Blockchain, a byzantine agreement
protocol can be used. The CA’s task is twofold. One task
is to track the system membership, i.e., which identities are
currently participating. This ensures that a voting based
agreement protocol such as PBFT can function correctly.

The other task is to resolve conflicts in case of a blockchain
fork, i.e., if multiple blocks are proposed for extending the
blockchain, then only one of them will be committed. Us-
ing standard agreement protocol techniques we immediately
obtain strong consistency. PeerCensus guarantees that with
high probability, an entity can only subvert the agreement
if it controls a sufficiently large share of all resources.

Applications built on top of PeerCensus may rely on the
guarantees about the identity distribution and the member-
ship. To demonstrate how simple it is to build strongly
consistent applications on top of PeerCensus, we intro-
duce a new cryptocurrency called Discoin. Because of the
PeerCensus foundation, Discoin itself can rely on classical
byzantine agreement protocols to atomically confirm trans-
actions. Transactions are proposed to the primary in Dis-
coin, which assigns sequence numbers to them and attempts
to commit them to the transaction history. Since trans-
actions are totally ordered, double-spends can be resolved
locally, and upon committing all peers agree on a common
transaction history.

Compared to the current Bitcoin system, Discoin and the
underlying PeerCensus system have several advantages:

• A small blockchain since blocks only contain a single
identity.

• Blockchain forks are resolved immediately when they
occur.

• Confirmations are decoupled from blocks, enabling
real-time confirmations.

• Since PeerCensus tracks the participating identities,
Discoin can distribute rewards and transaction fees to
all participants instead of just the block finder.

Ultimately, PeerCensus not only enables the creation of
strongly consistent, but also simpler applications, by ab-
stracting the dynamic membership.

3. SYSTEM MODEL
The setting in which PeerCensus operates consists of the

following three components: a) a peer-to-peer system, b) the
notion of controlling entities, and c) the notion of compu-
tational resources at an entity’s disposal. The role of the
peer-to-peer system is to execute the PeerCensus protocol,
whereas a controlling entity models an individual, possibly
having control over several peers. A Proof-of-Work (PoW)
mechanism (see Section 4.1) controls the entry rate of peers
to the system to mitigate Sybil attacks. In particular, the
amount of PoWs a controlling entity e can generate, and
thus the number of peers controlled by e entering the sys-
tem, is dictated by the amount of (computational) resources
at e’s disposal.

Peers and Identities.
We denote by P the set of peers that may join the net-

work. The identities (IDs) of peers are established using
public-key cryptography as follows: When a peer p ∈ P
joins the network for the first time, p generates a public-
/private-keypair. The identity of peer p is its public key (or
a derivative thereof). We assume that there is no collision
among the IDs chosen by the peers—in practice this is en-
sured by the assumption that obtaining the private key from
the public key is computationally infeasible. We do not re-
quire that IDs are ordered, and the outcome of PeerCensus
does not depend on the IDs chosen by the peers.

The system evolves in discrete unit time steps. At any
given time, a peer p ∈ P may either be online or offline,
and we refer to the set of online peers at time t by P (t) ⊆
P . Offline peers may join the network at arbitrary times,
whereas online peers may leave the network by either halting
(voluntarily) or crashing (involuntarily) at any time.

Peers communicate via message passing in a point-to-
point network. This could either be viewed as having a
completely connected communication graph, or by relaying
messages among participants. We simply assume that be-
tween any two online peers there is a channel which eventu-
ally delivers all messages. The authenticity of every message
is ensured by signing it with the sender’s private key.

Controlling Entities.
The notion of collusion and control sharing among mul-

tiple peers is formalized by introducing controlling entities.
Each peer p is assigned to exactly one entity e which controls
its behavior. The goal of e is to steer p, hoping to maximize
the entity’s utility, i.e., entities are selfish.

Resources.
In order to model computational limitations of entities,

we introduce the notion of a computational unit-resource, or
resource for short. The set of unit-resources that will ever
participate in the system is denoted by R, and R(t) ⊆ R is
the set of active resources at time t. Every resource in R
is associated to exactly one entity which owns it. All unit-
resources are thought to possess the same computational
power, and the more resources are active for an entity, the
more computational tasks can be solved by that entity.

Similarly to peers, resources may exit the system volun-
tarily or because of failure. We assume that the failure and
recovery probabilities of unit-resources are independent from
their assignment to an entity.



4. DYNAMIC MEMBERSHIP PROTOCOL
In this section we present the PeerCensus protocol which

provides a trustless decentralized certification authority for
identities. The PeerCensus protocol consists of three layers,
namely

• the Blockchain (BC) layer,

• the Chain Agreement (CA) layer, and

• the Application (APP) layer.

We now turn to describing each layer separately, start-
ing with the Blockchain, which is based on a Proof-of-Work
mechanism.

4.1 Blockchain (BC)

Proof-of-Work Mechanisms. An integral tool used in the
Blockchain protocol is a so called Proof-of-Work (PoW)
mechanism. This concept was introduced by Dwork and
Naor in [15]—we only give a brief overview in this subsec-
tion. The key insight behind PoW mechanisms is that that
the resources needed to solve computational puzzles are not
easily acquired and may not be scaled at will.

A function F(d, c, x)→ {true, false}, where d is a positive
number, and c and x are bit-strings, is called a PoW function
if it has following properties:

1. F(d, c, x) is fast to compute if d, c, and x are given,
and

2. for fixed parameters d and c, finding x so that
F(d, c, x) = true using a unit-resource is distributed
with exp(1/d), i.e., computationally difficult but feasi-
ble.

We refer to the parameters d, c, and x as difficulty, chal-
lenge, and nonce, respectively. For example, F might return
true if and only if the output of a cryptographic hash func-
tion to the concatenation x|c starts with at least d zeroes.

The PoW mechanism issues a difficulty and a challenge
pair (d, c). A nonce x for which F(d, c, x) = true is called
a Proof-of-Work for (d, c). In our model, computational re-
sources are required to find such an x. We assume that
no entity has an unfair advantage in finding a PoW. Fur-
thermore, we expect the PoW mechanism to automatically
adjust the difficulty2 between consecutive (d, c) pairs so that
the expected time for any resource to find a PoW for (d, c)
is some constant τ .

The Blockchain Protocol. The blockchain is a collabo-
ratively maintained list whose function is to throttle joins
of new identities to the CA protocol by employing a PoW
mechanism. A single block in the blockchain has the form

b = 〈h, d, p, x〉,

where h is a hash value, d is a difficulty, p ∈ P is a peer,
and x is a bit-string. We denote by H the hash function
used to calculate h. A blockchain consists of a sequence
C = (b1, . . . , bl) of blocks, and a genesis block b0 that is

2The PoW mechanism used by Bitcoin accomplishes this
(cf. [25]).

Protocol: Blockchain, from the perspective of peer p
Initialization:

C ← the current Blockchain, obtained from CA
trigger Start event

On Event Start:
b← the newest block in C
mine(b)

On Event mine (b) returns block b∗:
propose_block(b∗) using CA

On Event CA commits a block a:
stop mining
C ← the new blockchain from CA
if a 6= b∗ then

trigger Start event

Figure 2: The Blockchain Protocol.

fixed in advance. From here on, we assume the system im-
plementation provides an agreed-upon genesis block.

For i ≥ 1, block bi = 〈h, d, p, x〉 is said to be legal if

h = H(bi−1), and
F(d, 〈h, p〉, x) = true,

that is, if the hash in bi is obtained from bi−1, and bi is a
Proof-of-Work. For a legal block bi, the block bi−1 is called
the parent of bi, and bi is a child of bi−1. A blockchain is
legal if every non-genesis block is legal.

Since the blockhain is based on a PoW mechanism it is
ensured that new blocks cannot be appended to C at will.
Attempting to find a legal block that extends the current
blockchain is called mining. We encapsulate this process in
the procedure mine(b), which for peer p attempts to find a
block with parent b that includes p’s identity.

Note that legal blocks together with b0 form a tree rooted
at b0 due to the parent/child relation, and a legal blockchain
corresponds to a path in the tree starting at the root. In or-
der to provide forward security, it is necessary that once
the peers agree on a blockchain C, they will never accept a
blockchain that does not have C as a prefix. To tackle this
issue, whenever the blockchain is extended the CA protocol
is used to ensure that all peers agree on the same extended
blockchain. In particular, the BC protocol relies on the pro-
pose_block operation provided by the Chain Agreement.

If the Chain Agreement protocol accepts the block pro-
posed by peer p, then the identity of p becomes voting. In
that case the resources allocated to p’s mining process by
the controlling entity of p may be assigned to a new iden-
tity. If on the other hand a block containing a different peer
is accepted, then p continues mining and proposes the next
block it finds. Refer to Fig. 2 for a pseudo-code description
of the BC protocol.

4.2 Chain Agreement (CA)
While the blockchain introduces new identities into the

system, the Chain Agreement tracks the membership of cur-
rently participating identities in the system. For our CA
protocol we adapt SGMP [28] and the PBFT [8] agreement
protocols. In particular, the goal is to keep track of some
shared state that can be modified by certain predetermined



operations. In our case, the shared state encompasses an
operation log O, a set of online voters I, and blockchain C.

As in SGMP and PBFT, the life cycle of an operation op
begins with op’s proposal. The proposal is sent to the pri-
mary, i.e., to a specific peer determined by an agreed-upon
scheme. Given that op is valid and the peers decide to com-
mit it, op is applied to the shared state. Both agreement
protocols rely on the notion of totally ordered logical time
stamps, and in each such time step exactly one operation is
committed. A logical time stamp is a triple (`, v, s), where `
is the current length of C (i.e., the blockchain contained in
the shared state), and v and s are positive integers referred
to as the view primary number and sequence number, re-
spectively. Logical time stamps are ordered in lexicographic
order.

To determine the primary we introduce the notion of a
peer’s rank. For a fixed blockchain C = (b1, . . . , b`) and a
voting peer p let i denote the index of the block in which
p appears. The rank of p, denoted by rank(C, p), is ` − i,
i.e., peers are ranked by how recently the right to vote was
obtained. Note that the rank is well defined since a peer can
acquire the right to vote only once.

Consider a time stamp (`, v, s) and the associated blockchain
C of length `. The peer p with rank(C, p) = v (mod `) is
chosen as the primary, i.e., the peer who accepts operation
proposals for the next time step. We use the failover mecha-
nism of PBFT to ensure that v is increased without the help
of a primary in case the current primary fails.

Using the logical time stamps and the rank as fixed above,
the underlying SGMP/PBFT agreement protocols can be
used to implement Chain Agreement. Note however that
due to churn, just like SGMP, CA cannot support a snapshot
mechanism. This is in contrast to PBFT where the set of
participating peers is fixed in advance and snapshots are
supported.

Operations. The Chain Agreement uses a standard byzan-
tine agreement technique, in which each operation has to go
through the stages propose, pre-prepare, prepare, and com-
mit before it is applied. More specifically, operations are
initially proposed to the current primary q. The task of q is
to assign consecutive time stamps to proposed operations.
For each proposal, q then sends out pre-prepare messages,
receives prepare messages, and commits the operation once q
received a sufficient amount of prepare messages from peers
in I. Recall that in each step, authenticity of messages is
guaranteed due to signatures offered by the public key cryp-
tography system.

What is left in the Chain Agreement specification are the
operations mutating the shared state. The Chain Agreement
protocol relies on the following three operations:

• block(b) is used to append a new block b to the
Blockchain, thus promoting the peer contained in b
to be promoted to voting.

• join(p) is used by a previously offline voting peer p to
re-join the set I of online voters.

• leave(p) is used to remove offline peers from I.

We need to explicate two aspects of each operation,
namely how the operation validated, and how committing
it affects the shared state. Validation occurs at the primary

Specification: Operations for Chain Agreement

Shared State:
O . The operation log
I . The set of online voters
C . The blockchain
t = (`, v, s)
. The logical time stamp

Validate block(b):
b′ ← the newest block in C
if b is a child of b′ and b is legal then

return valid
else

return invalid

On Commit block(b):
Append block(b) to O
Append b to C
〈h, d, p, x〉 ← b
I ← I ∪ {p} . Promote p to voting
`← the length of C . Update logical time

stamp
v ← 0
s← 0

Validate join(p):
Send a ping message to p
V ← the set of peers appearing in the blocks of C
if p ∈ V , p 6∈ I, and p replies to the ping then

return valid
else

return invalid

On Commit join(p):
Append join(p) to O
I ← I ∪ {p}

Validate leave(p):
Send a ping message to p
if p ∈ I and p does not reply then

return valid
else

return invalid

On Commit leave(p):
Append leave(p) to O
I ← I \ {p}

Figure 3: Operations of the Chain Agreement Pro-
tocol

when an operation is proposed, and at other nodes upon
receiving a pre-prepare message for that operation. This is
to ensure that a faulty/malicious user cannot modify the
shared state in an undesired manner. Whenever an opera-
tion is committed, peers append the operation together with
its assigned time stamp and collected commit signatures to
the operation log and update their new time stamp accord-
ingly. Furthermore, committing an operation may modify
the shared state according to the operation’s purpose. We
now describe both aspects for each operation separately and
refer to Fig. 3 for a pseudo-code description.

Recall that proposals for a block b are sent to the Chain
Agreement only from the Blockchain layer. To validate a
block(b) operation, all peers check that b is indeed valid and



extends the current blockchain C. To commit this operation
b is appended to C, and the time stamp is set to (`, 0, 0),
where ` is the new blockchain length. This results in the
block finder becoming the new primary, with the previous
primary as backup.

A join operation consists of the joining peer p. To validate
a join, peers check whether p is indeed reachable over the
network. In that case, the operation will be committed and
p is included in the set I.

Peers rely on a failure detector to detect when identities
left the system, e.g., by sending ping messages in regular
intervals. Should one peer detect a failure of another peer p,
a leave operation on behalf of p will be emitted. A leave(p)
operation is validated by checking whether p indeed failed, to
keep malicious peers from removing online peers. When the
operation turns out to be valid, it is committed by removing
p from I.

4.3 Application
The application layer makes use of the membership infor-

mation from the CA in order to implement the application
logic. The CA provides a ranking among identities, the cur-
rent membership as well as its timestamp, which enables
the application to use the full capabilities of PBFT. This
includes the use of snapshots of the application state.

The application has some shared state and deterministic
operations that modify the state. Operations are totally or-
dered by assigning a timestamp (t, o) to them, where t is the
membership timestamp from the CA and o is an operation
sequence number assigned by the current primary.

The application logic and state is encapsulated in the ap-
plication layer and does not influence the decisions in the
CA. A single instance of the CA and the BC can therefore
be shared among any number of applications.

Applications may export functionality to clients that are
not participating in the application agreement. Clients syn-
chronize with the CA in order to get the membership in-
formation. The synchronization consists of downloading the
CA operation and incrementally applying it to the member-
ship. The clients then submit operations to the application,
which in turn processes them. Using the membership in-
formation, the clients then verify the confirmation that the
operation was processed correctly.

5. SAFETY & LIVENESS
We would like to lift the safety and liveness guarantees

provided by PBFT [7] and apply them to our Chain Agree-
ment. An agreement protocol provides safety if operations
on the shared state are committed atomically, i.e., as if they
were applied on a single sequential machine; An agreement
protocol provides liveness if all proposed valid operations
are eventually committed. The premise under which PBFT
provides both is that less than one third of the participants
are not faulty.

In our setting participants in the protocol are modeled
as peers, whereas participants in the system, i.e., a individ-
uals with an agenda to subvert the protocol, are modeled
as entities. In order to lift the guarantees from PBFT to
Chain Agreement, we need to ensure that at any time t, less
than one third of the online voters (the set I in the CA)
are controlled by a single entity. Since SGMP ensures that
I tracks the voters in P (t) (with some delay depending on
the message delays and failure detector speeds, cf. [28]), it

is sufficient to investigate how P (t), and in particular the
voters therein, evolves over time.

To state this formally, let A be a malicious entity referred
to as attacker. To simplify the analysis, we denote by D
a meta-entity that encompasses all entities that are not A.
For some fixed point in time, let I be the set of online voters.
We denote by IA, and ID the corresponding partition of I
into online peers controlled A, and D, respectively. We can
apply the classic positive results for byzantine agreement
due to Lamport [26] if it holds that |IA|/|I| < 1/3. This is
equivalent to ensuring that

φI :=
|IA|
|ID|

< 1/2 .

Therefore, as long as the inequality remains satisfied we
say that PeerCensus is in a secure state. On the other hand,
Lamport’s work also established that no guarantees can be
made should the inequality be exceeded. Correspondingly,
when the inequality is violated we say that PeerCensus is in
an insecure state.

What are the consequences of being in an insecure state?
First observe that A can cement its control by not commit-
ting block or join operations, thus hindering peers controlled
by other entities from being included the online voter set.
The effect for the application layer is that new operations are
only applied at A’s will. Note however, that past committed
operations cannot be modified or undone by any attack on
the protocol, i.e., strong consistency up to the time when A
took control is still guaranteed.

Our analysis relies on the system being in its steady state,
i.e., that the number of online peers and resources is gov-
erned by the respective expected value. This is the case if
PeerCensus was active for a sufficiently long time. Later in
Section 5.3 we show that this assumption is justified due to
a bootstrapping method. Before describing the procedure
in detail, we now turn to establishing our following main
theorem.

Theorem 1. Let φR denote the fraction of resources as-
sociated with A over resources not associated with A, and let
0 < ε < 1/2 be a constant. If PeerCensus reaches a steady
state and φR < 1/2− ε, then PeerCensus is in a secure state
with high probability.

To prove Theorem 1 we separately consider the three fac-
tors that influence the cardinalities of IA and ID, namely
membership churn, resource churn and miner’s luck.

• Resource churn: Resources fail and recover, thus limit-
ing or enhancing the attacker’s capability to introduce
new peers to the voter set.

• Membership churn: Voting peers fail and recover, di-
rectly affecting IA as well as ID.

• Miner’s luck : A stochastic block mining process deter-
mines who gets to introduce a new peer to the voter
set. With non-zero probability, an attacker’s resources
may mine more blocks than expected, thus increasing
PA disproportionately.

5.1 Preliminaries
In the steady state, resource churn is characterized by a

parameter ρ in the following way. The state of an individual



resource is modeled as a two-state Markov-Chain with the
transition matrix (

1− p p
q 1− q

)
,

where p and q denote the probability of a resource to fail
or recover, respectively. The two states indicate whether
the resource is currently active, or inactive. For a single
resource, the stationary distribution is (ρ, 1− ρ), where ρ =
q/(p+q). We conclude that in the steady state the expected
number of online resources is ρ|R|, since resources fail or
recover independently from one another.

Lemma 1. Let φR be the random variable representing the
ratio of online resources for A to online resources for D. In
the steady state and for α ∈ (0, 1/2) it holds that

Pr

[
φR ≥

(
1 +

2α

1− α

)
r

]
<

(
exp(α)

(1 + α)1+α

)ρnr/(1+r)
+

(
exp(−α)

(1− α)1−α

)ρn/(1+r)
,

where n is the cardinality of R, and r is the ratio of A’s
resources to D’s resources in R.

Proof. Denote by RA∪̇RD = R the partition of R into
resources belonging to the attacker A and defender D. For
i ∈ RA, let Xi be the 0/1 random variable indicating
whether resource i is online. Correspondingly for j ∈ RD, let
Yj be the 0/1 random variable indicating whether resource
j is online. Let X and Y be the corresponding random
variables denoting the sum of Xi and Yj . Note that in the
stationary distribution, the expected value of X and Y are
ρ|RA| and ρ|RD|, respectively.

With these definitions φR = X/Y . Since X and Y are
independent it holds that E[φR] = E[X]/E[Y ] = r. Our
goal is to bound the probability that φR deviates from its
expected value by bounding the probability of X and Y
deviating from their expected values. Applying the Chernoff
bound (see, e.g., [24]) to X and Y yields that

Pr[X > (1 + β)ρ|RA|] <
(

exp(β)

(1 + β)1+β

)ρ|RA|

, and

Pr[Y < (1− γ)ρ|RD|] <
(

exp(−γ)

(1− γ)1−γ

)ρ|RD|

for any β > 0 and 0 < γ < 1. Let X(β) and Y(γ) denote the
two events from above, i.e., that X resp. Y deviates from
the corresponding expected value by (1 + β) and (1− γ).

Let Z denote the event that φR > (1+2α)r, i.e., the event
from the statement, and consider positive values β and γ
such that β + γ = 2α. If neither X(β) nor Y(γ) occurs,
then also Z does not occur. By applying the union bound
we obtain

Pr[Z] ≤ Pr[X(β) ∨Y(γ)] ≤ Pr[X(β)] + Pr[Y(γ)] .

We bound the above by applying the previously obtained
Chernoff bounds for X(β) and Y(γ). Doing so yields

Pr[Z] <

(
exp(β)

(1 + β)1+β

)ρ|RA|

+

(
exp(−γ)

(1− γ)1−γ

)ρ|RD|

.

This resulting sum is minimized if β = γ, i.e., α = 2β/(1−
β). By observing that |RA| = nr/(1+ r) and |RD| = n/(1+
r) the proof is completed.

Lemma 1 bounds the impact of resource churn. Our
next goal is to do the same for membership churn. To
that end, similar to the discussion above, we characterize
the membership churn in the steady state by the constant
σ = ppr/(ppr + ppf ).

Lemma 2. Let φI be the random variable representing the
ratio of online voters for A to online voters for D. In the
steady state and for α ∈ (0, 1/2) it holds that

Pr

[
φI ≥

(
1 +

2α

1− α

)
s

]
<

(
exp(α)

(1 + α)1+α

)σns/(1+s)
+

(
exp(−α)

(1− α)1−α

)σn/(1+s)
,

where n is the cardinality of I, and s is the ratio of A’s peers
to D’s peers in P .

The above lemma can be established using the same tech-
niques as in the proof of Lemma 1. We therefore omit the
proof here. Note that the parameter s in Lemma 2 is di-
rectly affected by the outcome of the block mining process.
Before establishing our main theorem we thus derive bounds
on the miner’s luck of the attacker in the following lemma.

Lemma 3. Let φB be the random variable representing
the ratio of A’s blocks to D’s blocks in the blockchain. In
the steady state and for α > 0 it holds that

Pr[φB ≥ (1 + α)t] ≤
(

exp(α)

(1 + α)1+α

)`t
where ` is the current length of the blockchain, and t is the
fraction of A’s resources in R.

Proof. Let Xi be the 0/1 random variable indicating
whether the attacker found block i, and letX denote its sum.
It holds that E[X] = `t, since the resource that found block
i is drawn uniformly at random from the online resources,
and in the steady state a t-fraction of those belongs to A.
By the Chernoff bound,

Pr[X ≥ (1 + α)`t] ≤
(

exp(α)

(1 + α)1+α

)`t
.

Since `φB ≥ X, the probability of the event `φB ≥ (1 +
α)`t is upper bounded by the same term. Dividing by `
concludes the proof.

Note that the expected value of φB is not t—it rather de-
pends on the resource distribution between A and D. Sup-
pose that E[φB ] = u, and set α = (uα′ − t + u)/t for some
α′ > 0. Since α′ > 0 implies α > 0, we may apply Lemma 3
to obtain the following technical corollary, which is the last
building block for our proof of Theorem 1.

Corollary 1. Let φB be the random variable represent-
ing the ratio of A’s blocks to D’s blocks in the blockchain.
In the steady state and for α′ > 0 it holds that

Pr[φB ≥ (1 + α′)E[φB ]] ≤
(

exp(α)

(1 + α)1+α

)`t
where ` is the current length of the blockchain, t is the frac-
tion of A’s resources in R, and α = (E[φB ]α′−t+E[φB ])/t.



5.2 Establishing Theorem 1
Let ε < 1/2 be a positive constant. The goal is to show

that if φR < 1/2 − ε, then with high probabilitythe Chain
Agreement is in a secure state. To that end, consider the
complementary event T that the CA reaches an insecure
state. We establish the claim by showing that T occurs
with probability at most exp(−Ω(min(|R|, |I|, `))), where
R, I, and ` are as above.

Let α, β, γ be positive constants with α + β + γ = ε. We
would like to use Lemma 1, 2, and Corollary 1 to obtain the
result. To apply those three we perform a worst case anal-
ysis: Consider the event U that after reaching the steady
state, φR, φB , or φI deviate from their expected value by
more than α, β, or γ, respectively. Note that U occurring is
necessary, but not sufficient, for T to occur.

Event U corresponds to the occurrence of at least one of
the events bounded in Lemma 1, 2, and Corollary 1. Thus,
applying the union bound to U yields

Pr[T] ≤ Pr[U] ≤ Pr [φR ≥ (1 + α)E[φR]]

+ Pr [φB ≥ (1 + β)E[φB ]]

+ Pr [φI ≥ (1 + γ)E[φI ]] .

The statements of the two lemmas and the corollary can
now be used to bound the three corresponding terms. This
concludes our proof of Theorem 1.

5.3 Reaching the Steady State
The security of the system hinges on it starting in a steady

state, i.e., that there are a sufficient number of resources,
voting identities and online peers. For example should no
identity have been promoted yet, then the first block finder
controls all identities in the system, trivially subverting the
system. A bootstrapping period is used to ensure a large
enough initial number of resources and voting identities set,
resulting in good bounds on the failure probability. In or-
der to reach a steady state it is necessary to bootstrap the
system in a controlled way. Bootstrapping consists of deter-
mining a genesis block, an initial set of voting identities and
an initial set of online identities.

PeerCensus can be bootstrapped by retrofitting the Bit-
coin blockchain, providing the initial resources, blocks (vot-
ing identities) and peers. Every block in Bitcoin contains
a reward-transaction, transferring a fixed amount of newly
minted Bitcoins to the block finder. In order to receive the
Bitcoins, the block finder has to include a Bitcoin addresses
in the transaction. This enables us to derive the new voting
identity from the block by extracting the Bitcoin address
from the reward transaction.

To migrate from Bitcoin to PeerCensus a migration time
in the form of a blockchain length lm is determined in ad-
vance. Garay et al. [17] showed that with high probability
peers agree on a common prefix, with distance k from the
current blockchain head and that the blockchain of length
j is a representative sample of online peers with high prob-
ability. Upon receiving a valid block for blockchain length
lm, peers extract the identities from blocks [0, lm − k]. The
Bitcoin genesis block is also the PeerCensus genesis block.
The initial set of online identities is then assumed to con-
sist of the last j identities, i.e., the identities included in
blocks [lm − k − j, lm − k]. The parameter j should be cho-
sen small enough so that d2j/3e+ 1 identities are online to
guarantee liveness, but large enough to ensure diversity in
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Figure 4: Bitcoin block finder distribution as of
blockchain height 333,000 for the 25 most prominent
mining pools.

the entities. Once the set of voting and online voting iden-
tities are determined, peers start executing the PeerCensus
protocol. The peers then incrementally commit blocks at
heights [lm − k, lm].

The migration requires that in Bitcoin’s current blockchain
there is no entity that has mined a sufficient number of
blocks to take control of the system. Fortunately, many min-
ing pools include identifying hints in blocks, e.g., reusing the
same address or including a text banner, so that the blocks
can be attributed to the pool. This allows us to determine
the block finder of a large percentage of blocks found so far in
the blockchain. Figure 4 shows the current shares of blocks
found by mining pools and therefore their share of identities
in PeerCensus. Even if the largest 28 pools were to collabo-
rate they would not reach a sufficient share of blocks to take
control of the system. Furthermore, with j ≥ 10, 000 there
is no single entity that controls more than 25% of identities,
securing the migration itself.

So far we have not questioned the feasibility of large scale
deployments of byzantine agreements. To sustain a high
rate of operations, multiple operations should be batched
and proposed at once. In a system with 25,000 peers and
10 second batches, each peer receives 3 messages per peer
in the network every 10 seconds. Each message’s size is
dominated by the hash of the set of operations being voted
on and the sending peer’s signature, with 32 byte and 72
byte respectively. Each peer would have to send/receive
approximately 780 kilobyte per second, which is below the
average consumer bandwidth today.

5.4 Real World Guarantees
The previous subsections established that with high prob-

ability the system does not fail, for increasing number of
resources and identities. In this section we give an exam-
ple of the guarantees that are to be expected in real world
instances of the PeerCensus system. In order to gauge the
probability of a failure of the system we need to estimate
some parameters used in the analysis.

For the resources we need to determine a maximum ratio
of resources an attacker is allowed to control 25% which re-



Specification: Discoin Transaction processing

Shared State:
B . Account balances

Validate transaction(〈a, b, v〉σ):
if σ is valid signature by sa and B[a] ≥ v then

return valid
else

return invalid

On Commit transaction(〈a, b, v〉σ):
B[a]← B[a]− v
B[b]← B[b] + v

Figure 5: Discoin protocol

sults in a security margin of ε = 1/2−1/3. Notice that this is
equivalent to the 13 largest mining pools colluding to subvert
the system according to Figure 4. The number of resources
is estimated as 1, 000, 000, which at the current computa-
tional power in the Bitcoin network of 274, 000, 000GH/s
(Gigahashes) would mean that a unit resource has 274GH/s,
which matches the currently available ASIC mining hard-
ware. The number of blocks in the system is estimated
as 350, 000 blocks, matching the Bitcoin blockchain length.
The number of peers that are online in expectation is esti-
mated at 25, 000 peers. Furthermore we adopt a conserva-
tive mean time between failures of 99 days and a mean time
to recovery of 1 day for resources and peers, resulting in
ρ = σ = 0.99. Applying Theorem 1 using these parameters
yields the following upper bound on the failure probability
of

Pr[PeerCensus is in a secure state] ≥ 1− 4.26 · 10−15

in one time interval. Notice that this results from subdi-
viding the security margin ε as 2αR = 14%ε, αM = 11%ε
and 2αI = 75%ε. If the system proceeds in discrete time
intervals of 1 second, then the system therefore is expected
to fail fewer than once every 7 million years.

6. DISCOIN
In the following we present Discoin, a cryptocurrency,

as an exemplary application built on PeerCensus. Dis-
coin tracks the balances of accounts, denominated in coins.
An account a is associated with a public-/private-keypair
(pa, sa). The public key pa is used to identify the account,
while the private key sa is used to authenticate messages.

The shared state in Discoin consists of account balances B.
In order to transfer coins between accounts we define a trans-
action tx = 〈a, b, v〉σ. A transactions describes a transfer of
v coins from source account a to destination account b and
includes signature σ by the private key of a to authorize the
transfer. A transaction is valid if the source account’s bal-
ance B[a] ≥ v, the signature σ correctly signs 〈a, b, v〉 and
matches the public key of a.

Discoin has a single operation transaction(tx) which,
if committed, applies the transaction to the account bal-
ances. Upon committing a transaction(〈a, b, v〉σ) opera-
tion the value is subtracted from the source account’s bal-
ance and added to the destination account. Finally, Discoin
distributes a reward of r newly generated coins each time a
block is found. The r coins are distributed in equal parts to

each identity i ∈ I. This reward is triggered by the times-
tamp change and does not necessitate a new transaction.
By using PBFT we are guaranteed to process the transac-
tions in the same order. The peers agree on the validity of
individual transactions and the balance of each account.

Compared to Bitcoin, Discoin features a much leaner and
simpler protocol. Unlike Bitcoin which tracks transaction
outputs, we explicitly track account balances which results
in a smaller shared state and a more intuitive concept of
account balances. Committing a transaction is indepen-
dent from the block generation and, more importantly, once
transactions are committed they stay committed. By dis-
tributing rewards among all participants instead of just the
block finder, Discoin continuously incentivizes peers to par-
ticipate in the network. This contrasts Bitcoin’s all-or-
nothing rewards, which incentivize the creation of mining
pools which pool resources and distribute the reward. Min-
ing pools are seen as single points of failure in the Bitcoin
ecosystem [16, 23, 29].

As with the bootstrapping of PeerCensus, the accounts
from Bitcoin can be migrated to Discoin. Once PeerCensus
is bootstrapped, Discoin can be bootstrapped by comput-
ing the account address balances up to Bitcoin’s blockchain
height lm. A snapshot of the balances is then committed be-
fore proceeding with the Discoin protocol and committing
new transactions.

7. RELATED WORK
The study of byzantine agreement protocols was initiated

by the seminal works by Lamport et al. [20, 26], establish-
ing tight feasibility results. PeerCensus and Discoin rely on
byzantine agreement protocols that later improved message
complexity, e.g., PBFT [8], Zyzzyva [19] and SGMP [28].

Bitcoin [25] is the latest, and most successful, in a long
series of attempts to create a decentralized digital currency
initiated by DigiCash [9] and ECash [10] by David Chaum.
Recent work by Garay et al. [17] and Miller et al. [22] has
shown that, with high probability, the peers participating
in the Bitcoin network eventually agree on a transaction
history. Reaching consistency however is a slow process as
blocks are counted as individual votes for the validity of a
transaction and confirmations are never final. Committing
blocks in the CA resolves blockchain forks [12] early, rather
than deferring the resolution to a later time, shown in [17]
to be inefficient.

Today, a multitude of altcoins, i.e., alternative cryptocur-
rencies [21, 30] and so called Bitcoin 2.0 projects [6, 11, 33],
are being used, each one using their own blockchain. This
splits available resources and mining efforts, weakening the
individual blockchains. Back et al. [4] proposed two-way
pegged sidechains as a way to allow altcoins to be pegged to
Bitcoin and to trade among altcoins, however each altcoin
still has the burden of securing their own blockchain.

Rosenfeld [29] analyzes the difficulty of distributing re-
wards among mining pool participants. Pools have become
powerful entities often acting selfishly [3]. Eyal and Sirer [16]
show that a mining pool may increase its share by not pub-
lishing blocks immediately. Miller [23] propose a proof of
work mechanism that would not allow pools to form.

Systems such as Karma [32] predate Bitcoin and also used
proof-of-work to limit the access to resources in the system
and quora to agree on a global state. Schwartz et al. [31]
describe how consensus in Ripple is achieved by unique node



lists assumed not to collude. Maintaining the node lists how-
ever requires manual configuration to avoid sybil attacks.

PeerCensus solves problems arising from inconsistent state
views, such as double-spendings [5, 18]. It does not address
problems like transaction malleability [13], scalability [14]
and privacy issues, e.g., [2, 27].

8. CONCLUSION
In this work we have presented a new system, PeerCensus,

which enables strong consistency, forward security and com-
mitment decoupled from the block rate for any number of
application. The analysis of the failure probability show that
with high probability the system does not fail. Discoin, a
digital cryptocurrency built on top of PeerCensus, is simpler
to analyse and implement than the current Bitcoin system,
provides stronger guarantees and faster confirmations.
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