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Abstract

We study the following problem: given a labeled dataset and
a specific datapoint ~x, how did the i-th feature influence the
classification for ~x? We identify a family of numerical influ-
ence measures — functions that, given a datapoint ~x, assign a
numeric value φi(~x) to every feature i, corresponding to how
altering i’s value would influence the outcome for ~x. This
family, which we term monotone influence measures (MIM),
is uniquely derived from a set of desirable properties, or ax-
ioms. The MIM family constitutes a provably sound method-
ology for measuring feature influence in classification do-
mains; the values generated by MIM are based on the dataset
alone, and do not make any queries to the classifier. While
this requirement naturally limits the scope of our framework,
we demonstrate its effectiveness on data.

1 Introduction
Recent years have seen the widespread implementation
of data-driven decision making algorithms in increasingly
high-stakes domains, such as finance, healthcare, transporta-
tion and public safety. Using novel ML techniques, these al-
gorithms are able to process massive amounts of data and
make highly accurate predictions; however, their inherent
complexity makes it increasingly difficult for humans to un-
derstand why certain decisions were made. Indeed, these al-
gorithms are black-box decision makers: their inner work-
ings are either hidden from human scrutiny by proprietary
law, or (as is often the case) are so complicated that even
their own designers are hard-pressed to explain their behav-
ior. By obfuscating their reasoning, data-driven classifiers
expose human stakeholders to risks. These may include in-
correct decisions (e.g. a loan application that was wrongly
rejected due to system error), information leaks (e.g. an al-
gorithm inadvertently uses information it should not have
used), or discrimination (e.g. biased decisions against cer-
tain ethnic or gender groups). Government bodies and reg-
ulatory authorities have recently begun calling for algorith-
mic transparency: providing human-interpretable explana-
tions of the underlying reasoning behind large-scale decision
making algorithms. Several recent works propose making
algorithms more transparent by using numerical influence
measures: methods for measuring the importance of every
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feature in a dataset. However, these works, by and large, do
not justify why their particular methodology is sound. Our
work takes an axiomatic approach to influence measurement
in data-driven domains. Starting from a set of desiderata (or
axioms), we uniquely derive a class of measures satisfying
these axioms. Thus, our work provides a

...formal axiomatic analysis of automatically generated
numerical explanations for black-box classifiers.

1.1 Our Contribution
Numerical influence measures are functions that assign a
value φi to every feature i; φi corresponds to the pre-
dicted effect of this feature on the outcome. We identify
specific properties (axioms) that any reasonable influence
measure should satisfy (Section 3), and derive a class of
influence measures, dubbed monotone influence measures
(MIM), uniquely satisfying these axioms (Section 4). Next,
we show that MIM can be interpreted as the solution to a nat-
ural optimization problem, further grounding our method-
ology (Section 5). Unlike most existing influence measures
in the literature, we assume neither knowledge of the un-
derlying decision making algorithm, nor of its behavior on
points outside the dataset. Indeed, some methodologies (see
Section 6 in the supplementary material) are heavily reliant
on having access to counterfactual information: what would
the classifier have done if some features were changed? This
may be a strong assumption: it requires not only access to the
classifier, but also the potential ability to use it on nonsen-
sical data points1. By making no such assumptions, we pro-
vide a general methodology for measuring influence; indeed,
many of the methods described in Section 1.2 are unusable
in the absence of classifier access, or when the underlying
classification algorithm is not known. We show that despite
our rather limiting conceptual framework, MIM does sur-
prisingly well on a sparse image dataset, and provides an
interesting analysis of a recidivism dataset (see results in
the full version of this paper (Sliwinski, Strobel, and Zick
2018)). We compare the outputs of MIM to other measures,
and provide interpretable results. Additional results in the
full version of this work (Sliwinski, Strobel, and Zick 2018)

1For example, if the dataset consists of medical records of men
and women, the classifier might need to answer how it would han-
dle pregnant men.



relate MIM, new influence measures in a statistical cost shar-
ing domain (Balkanski, Syed, and Vassilvitskii 2017), and
classic game-theoretic measures (Banzhaf 1965).

1.2 Related Work
Algorithmic transparency has been debated and called for
by government bodies (Goodman and Flaxman 2017; Smith,
Patil, and C. 2016a; 2016b), the legal community (Suzor
2015; Charruault 2013), and the media (Hofman, Sharma,
and Watts 2017; Angwin 2016; Mittelstadt et al. 2016;
Winerip, Schwirtz, and Gebeloff 2016). The AI/ML research
community is paying attention: algorithmic fairness, ac-
countability and transparency is quickly gaining traction in
the CS community, with new conferences (e.g. FAT* and
AIES), numerous workshops and dozens of publications in
mainstream AI/ML conferences. Several ongoing research
efforts are informing the design of explainable AI systems
(e.g. Kroll et al. (2017), Zeng, Ustun, and Rudin (2017)), as
well as tools that explain the behavior of existing black-box
systems (see Weller (2017) for an overview); we focus on
the latter.

The work most closely related to ours is that of Datta et
al. (2015). Datta et al. (2015) axiomatically characterize an
influence measure for datasets; however, they interpret in-
fluence as a global measure (e.g., what is the overall impor-
tance of gender for decision making), whereas we measure
feature importance for individual datapoints. Moreover, as
Datta, Sen, and Zick (2016) show, the measure proposed by
Datta et al. (2015) outputs undesirable values (e.g. zero in-
fluence) on real data; this is due to the fact that the measure
requires the existence of counterfactual data: datapoints that
differ by only a single feature. As we show in Section 7,
MIM does not require such a dense dataset in order to reg-
ister influence. Baehrens et al. (2010) propose a data-driven
influence measure that relies on a potential-like approach;
as we demonstrate, their methodology fails to satisfy rea-
sonable properties even on simple datasets.

Other approaches in the literature rely on black-box ac-
cess to the classifier. Datta, Sen, and Zick (2016) use an
axiomatically justified influence measure based on an eco-
nomic fairness paradigm, called QII; briefly, QII perturbs
feature values and observes the effect this has on the clas-
sification outcome. Another line of work using black-box
access (Ribeiro, Singh, and Guestrin 2016b; 2016a) uses
queries to the classifier in a local region near the point of
interest in order to measure influence. Adler et al. (2016)
equate the influence of a given feature i with the ability to
infer i’s value from the rest of features, after it has been ob-
scured; this idea is the basis for a framework for auditing
black-box models. However, this approach assumes that one
can make predictions on a dataset with some features re-
moved. Koh and Liang (2017) have a different take on influ-
ence, identifying key datapoints — rather than features —
that explain classifier behavior.

Some works study explanations for specific domains,
such as neural networks (Ancona et al. 2017; Shrikumar,
Greenside, and Kundaje 2017; Sundararajan, Taly, and Yan
2017), or computer programs (Datta et al. 2017b); oth-
ers apply explanations for generating more accurate predic-

tions (Ross, Hughes, and Doshi-Velez 2017).

2 The Model
A dataset X = 〈~x1, . . . , ~xm〉 is given as a list of vectors
in Rn (each dimension i ∈ [n] is a feature), where every
~xj ∈ X has a unique label cj ∈ {−1, 1}; given a vector
~x ∈ X , we refer to the label of ~x as c(~x). An influence
measure is a function φ whose input is a dataset X , vector
labels denoted by c, and a specific point of interest ~x ∈ X ;
its output is a value φi(~x,X , c) ∈ R; we often omit the in-
puts X and c when they are clear from context. The value
φi(~x) should correspond to how altering the i-th feature is
predicted to affect the outcome c(~x) for ~x in the following
way: if φi(~x) is positive (negative), then for points similar
to ~x, increasing the value of the i-th feature increases (de-
creases) the likelihood of assigning the label c(~x), and the
value |φi(~x)| expresses the strength of that effect.

3 Axioms for Data-Driven Influence
We are now ready to define our axioms; these are simple
properties that we believe any reasonable influence measure
should satisfy.

1. Shift Invariance: let X +~b be the dataset resulting from
adding the vector~b ∈ Rn to every vector in X (not changing
the labels). An influence measure φ is said to be shift invari-
ant if for any vector~b ∈ Rn, any i ∈ [n] and any ~x ∈ X ,

φi(~x,X ) = φi(~x+~b,X +~b).

In other words, shifting the entire dataset by some vector ~b
should not affect feature importance.

2. Rotation and Reflection Faithfulness: letA be a rotation
(or reflection) matrix, i.e. an n×nmatrix with det(A) ∈ ±1;
let AX be the dataset resulting from taking every point ~x in
X and replacing it with A~x. An influence measure φ is said
to be rotation and reflection faithful if for any rotation matrix
A, and any point ~x ∈ X , we have

Aφ(~x,X ) = φ(A~x,AX ).

In other words, the influence measure φ is invariant under
rotation and reflection.

3. Continuity: an influence measure φ is said to be continu-
ous if it is a continuous function of X .

4. Flip Invariance: let −c be the labeling resulting from re-
placing every label c(~x) with −c(~x). An influence measure
is flip invariant if for every point ~x ∈ X and every i ∈ [n]
we have φi(~x,X , c) = φi(~x,X ,−c).

5. Monotonicity: a point ~y ∈ Rn is said to strengthen the
influence of feature i with respect to ~x ∈ X if c(~x) = c(~y)
and yi > xi; similarly, a point ~y ∈ Rn is said to weaken the
influence of i with respect to ~x ∈ X if yi > xi and c(~x) 6=
c(~y). An influence measure φ is said to be monotonic, if for
any data set X , any feature i and any data point ~x ∈ X we
have φi(~x,X ) ≤ φi(~x,X ∪ {~y}) if ~y strengthens i w.r.t. ~x,
and φi(~x,X ) ≥ φi(~x,X ∪ {~y}) if ~y weakens i w.r.t. ~x.



6. Non-Bias: suppose that all labels for points in X are
assigned i.i.d. uniformly at random (i.e. for all ~y ∈ X ,
Pr[c(~y) = 1] = Pr[c(~y) = −1]). We call this label distribu-
tion U ; an influence measure φ satisfies the non-bias axiom
if for all ~x ∈ X and all i ∈ [n] we have

Ec∼U [φi(~x,X , c) | c(~x)] = 0

In other words, when we fix the label of ~x and randomize all
other labels, the expected influence of all features is 0.

The first four axioms are rather fundamental: indeed, most
influence measures in the literature trivially satisfy some
variants of these properties. The last two axioms are more
interesting. While we strongly believe that there is no one
“universally correct” set of axioms that all influence mea-
sures should satisfy, we believe that our proposed properties
make intuitive sense in many application domains.

3.1 The Case for Monotonicity
Monotonicity is a key defining property for characterizing
our family of influence measures. Intuitively, it is a consis-
tency requirement: if one is to argue that a person’s old age
caused their bank loan to be rejected, then finding older per-
sons whose loans were similarly rejected should strengthen
this argument; however, finding older persons whose loans
were not rejected should weaken the argument. We men-
tion that monotonicity coupled with flip invariance implies
the converse argument as well: adding younger persons
whose loans were accepted should increase the influence of
age, and adding younger persons whose loans were rejected
would decrease it. Of course, in order for the monotonic-
ity property to make any sense, feature states must satisfy
some natural order: they should be numerical quantities (e.g.
income, age, scores in a test, or shades of a color), states
with a natural progression (e.g. education level, or disease
severity), or binary states (e.g. gender). Monotonicity does
not easily apply to features whose states cannot be natu-
rally ordered (e.g. profession, ethnicity, species). That said,
our characterization result holds whenever the dataset has at
least one feature whose states can be naturally ordered.

3.2 Non-Bias: Measuring Influence vs. Measuring
Noise

The Non-Bias axiom states that when labels are randomly
generated, no feature should have any influence in expecta-
tion. We argue that this requirement is absolutely necessary:
any influence measure that fails this test exhibits an inherent
bias towards some features, even when labels are completely
unrelated to the data. As we show in Section 6 in the supple-
mentary material, some measures in the literature fail the
non-bias test.

4 Characterizing Monotone Influence
Measures

In what follows, we show that influence measures satisfy-
ing the axioms in Section 3 must follow a specific formula,
described in Theorem 4.2. Below, 1(p) is a {1,−1}-valued
indicator (i.e. 1 if p is true and−1 otherwise), and ‖~x‖ is the

Euclidean length of ~x; our analysis admits other distances
over Rn, but we stick with ‖·‖ for concreteness. We begin
by showing a simple technical lemma.
Lemma 4.1. If an influence measure φ satisfies both mono-
tonicity and rotation faithfulness, then for any dataset X ,
any datapoint ~x ∈ X , and any ~y where ~y and ~x differ in
some feature, there exists some a ∈ R such that

φ(~x,X ∪ {~y})− φ(~x,X ) = a(~y − ~x); (1)

furthermore, a ≥ 0 if c(x) = c(y), and a ≤ 0 otherwise.

Proof. Suppose for contradiction that there are X , ~x ∈ X ,
and ~y ∈ Rn with c(~x) = c(~y) such that

∀a ∈ R+ : φ(~x,X )− φ(~x,X ∪ {~y})︸ ︷︷ ︸
:=~l

6= a(~x− ~y)

Let A be rotation matrix such that (A~l)1 < 0 and A(~x −
~y)1 > 0; such a matrix exists since either the two vectors are
linearly independent, or ~l = −b(~x − ~y) for some b ∈ R+.
Since φ satisfies Axiom 2 (Rotation), we get

φ1( ~Ax,AX )− φ1(A~x,AX ∪ {A~y}) < 0,

which contradicts the first case of Axiom 5 (Monotonicity).
The case where c(~x) 6= c(~y) can be derived symmetrically.

We are now ready to prove our main result.
Theorem 4.2. An influence measure φ satisfies axioms 1 to
6 iff it is of the form

φ(~x,X , c) =
∑

~y∈X\~x

(~y−~x)α(‖~y−~x‖)1(c(~x) = c(~y)) (2)

where α is any non-negative-valued function.

Proof. Suppose φ satisfies Axioms 1 to 6. We prove the
statement by induction on k = |X |. First assume that k = 1.
When k = 1, X = 〈~x〉. By shift invariance, φ(~x,X ) =

φ(~0, 〈~0〉). The vector ~0 and 〈~0〉 are invariant under rotation;
hence, by rotation faithfulness, φ(~0, 〈~0〉) = ~0, the only vec-
tor invariant under rotation. In other words, whenever the
dataset has a single point, all features have zero influence.

When k = 2, we have X = 〈~x, ~y〉. If ~x = ~y all fea-
tures have zero influence (this is irrespective of whether
c(~x) = c(~y) or c(~x) 6= c(~y)). Further, note that any set
of two points can be translated by shift and rotation to any
other set of two points with the same labels and the same eu-
clidean distance between them. Hence, by shift invariance,
rotation faithfulness and Lemma 4.1,

φ(~x) =

{
(~y − ~x)α1(‖~y − ~x‖) if c(~x) = c(~y)

(~y − ~x)α2(‖~y − ~x‖) if c(~x) 6= c(~y),

where α1 (α2) is some non-negative (non-positive) valued
function that depends only on ‖~y−~x‖. By random labels and
flip faithfulness, α1 = −α2, thus φ(~x,X ) = (~y−~x)α(‖~y−
~x‖)1(c(~x) = c(~y)), where α depends only on ‖~y − ~x‖.

Suppose the hypothesis holds when |X | ≤ k. Consider
any dataset Y of size k + 1. The cases where the dataset Y



does not contain at least three different points are handled
in a manner similar to when k = 1, 2. Suppose Y contains
at least two distinct datapoints ~y, ~z 6= ~x. We prove the hy-
pothesis for the case where ~y − ~x and ~z − ~x are linearly
independent; the case where they are linearly dependent fol-
lows from continuity (we can ‘perturb’ the points slightly to
avoid linear dependency). By Lemma 4.1

φ(~x,Y) ∈ A ={φ(~x,Y \ {~y}) + a(~y − ~x) : a ∈ R}
and φ(~x,Y) ∈ B ={φ(~x,Y \ {~z}) + a(~z − ~x) : a ∈ R}.

Further by the inductive hypothesis, φ(~x,Y \ {~y}) equals

φ(~x,Y \ {~y, ~z}) + (~z − ~x)α(‖~z − ~x‖)1(c(~x) = c(~z))

and φ(~x, Y \ {~z}) equals

φ(~x, Y \ {~y, ~z}) + (~y − ~x)α(‖~y − ~x‖)1(c(~x) = c(~y)).

Since ~y − ~x and ~z − ~x are linearly independent we get,

φ(~x,Y) ∈ A ∩B = {φ(~x,Y \ {~y, ~z})
+ (~z − ~x)α(‖~z − ~x‖)1(c(~x) = c(~z))

+ (~y − ~x)α(‖~y − ~x‖)1(c(~x) = c(~y))}

concluding the inductive step.

We refer to measures satisfying Equation (2) as monotone
influence measures (MIM). We note that MIM is a family
of influence measures, parameterized by the choice of the
function α. It may be natural to assume that α is a monotone
decreasing function; that is, the further away the point ~y is
from ~x, the lower its effect on φ should be. However, this
assumption does not follow from our analysis. In what fol-
lows, we propose a method of selecting the α parameter, by
viewing MIM as a solution to an optimization problem, in a
similar manner to Ribeiro, Singh, and Guestrin (2016b).

5 Choosing Optimal MIM Parameters
Is MIM a ‘good’ way of measuring influence? If the reader is
convinced that the axioms proposed in Section 3 make sense,
then our work here is done. In this section we make an ad-
ditional case for MIM, showing that it is an optimal solution
to a natural optimization problem. The results in this section
serve an additional important purpose. Our characterization
result (Theorem 4.2) identifies a family of measures (MIM),
not a unique function, parameterized by the α function in
Equation (2). Theorem 4.2 only requires that α is a func-
tion of ‖~x − ~y‖, but does not indicate what choice of α is
appropriate. As we now show, MIM can be seen as a solu-
tion to an underlying optimization problem, the parameters
of which may indicate the appropriate choice of α.

We are given a dataset X and a point of interest ~x. Con-
sider any potential influence vector φ; intuitively, φ should
be a direction, such that moving ~x along φ will ‘increase
the chance’ or ‘positively contribute’ to the label of ~x being
c(~x). For any point ~y ∈ X s.t. c(~y) = c(~x), it is desirable
that φ points towards ~y; if c(~y) 6= c(~x), φ should point away
from ~y.

Local points should be assigned more influence than fur-
ther ones. Assume a function α0 : R → R whose input is

‖(~y − ~x)‖; its output is a weightage representing the impor-
tance of ~y; intuitively, α0 should be monotone decreasing in
its input, assigning higher values to points in a local neigh-
borhood of ~x and lower importance to points further away.
Hence, φ(~x,X ) should maximize∑

~y∈X

α0(‖~y − ~x‖) cos(~y − ~x, φ)1(c(~x) = c(~y)) (3)

Equation (3) can be thought of as a weighted variant of the
total cosine similarity optimization target.
Theorem 5.1. MIM with the α parameter in (2) set to
α(‖~y − ~x‖) = α0(‖~y−~x‖)

‖~y−~x‖ , maximizes (3).

Proof. For ease of exposition we assume that X has been
shifted so that ~x = ~0; since MIM is shift invariant this is no
loss of generality. Note that (3) treats a point ~y with c(~y) 6=
c(~x) as it would the point ~z = −~y with c(~z) = c(~x). To
simplify further, we assume that all points with a different
label than ~x are swapped for their negatives with the same
label as ~x, resulting in a simplified formula

φ(~x,X ) := argmax
φ∈Rn

∑
~y∈X

cos(~y, φ)α0(‖~y‖). (4)

Equation (4) pertains to the direction of φ. Intuitively, the
length ‖φ‖ should correspond to how well the problem can
be optimized. If the dataset is random, no direction should
be particularly good, resulting in a short φ; that is, small
influence values for every feature. In the case of the opposite
extreme — all points with the same label as ~x are in a similar
region, and all points with a different label in another — φ
should be long, indicating high influence towards the points
with the same label. Hence, the most natural way to specify
the length of φ, again assuming ~x = ~0 for simplicity, is:

‖φ(~x,X )‖ := max
φ∈Rn

∑
~y∈X

cos(~y, φ)α0(‖~y‖). (5)

To show that MIM maximizes (3), we require the following
lemma (see the full version of this work (Sliwinski, Strobel,
and Zick 2018) for the proof).

Lemma 5.2. Let f : Rn → R. Given a dataset X ,∑
~y∈X

cos(~y, φ)f(~y) = ‖
∑
~y∈X

~y · f(~y)
‖~y‖

‖ cos
(
φ,
∑
~y∈X

~y · f(~y)
‖~y‖

)
.

Using Lemma 5.2 and substituting α0(~x) = ‖~x‖α(‖~x‖),
the right-hand side of Equation (5) becomes

max
φ∈Rn

(
‖
∑
~y∈X

~yα(‖~y‖)‖ · cos
(
φ,
∑
~y∈X

~yα(‖~y‖)
))
.

Hence, ‖φ(~x,X )‖ = ‖
∑
~y∈X ~yα(‖~y‖)‖. Combining that

with Equation (4) we get φ(~x,X ) :=
∑
~y∈X\{~x} ~yα(‖~y‖).

Accounting for the simplifications we assumed, we get the
general formula:

φ(~x,X ) :=
∑
~y∈X

(~y − ~x)α(‖~y − ~x‖)1(c(~x) = c(~y)).



Intuitively, given a point of interest ~x ∈ X , a monotone in-
fluence vector will point in the direction that has the ‘most’
points in X that share a label with ~x. The value ‖φ‖ can
be thought of as one’s confidence in the direction: if ‖φ‖ is
high, this means that one is fairly certain where other vectors
sharing a label with ~x are (and, correspondingly, this means
that there are at least some highly influential features identi-
fied by φ); in the case that ‖φ‖ is small, the direction of φ is
not a particularly strong indication of where other vectors of
the same type can be found. In terms of choosing the right
α parameter, Lemma 5.2 provides a few useful insights: if
we select α(‖~y − ~x‖) = 1, then the resulting MIM measure
maximizes the function

∑
~y∈X cos(~y−~x, φ)‖~y−~x‖; in other

words, we put more weight on vectors in X that are more
distant from ~x. Similarly, if we choose α(‖~y−~x‖) = 1

‖~y−~x‖
then we place equal importance on all points in the dataset,
whereas if we set α(‖~y−~x‖) = 1

‖~y−~x‖2 , vectors that are far-
ther away from the point of interest are weighted by 1

‖~y−~x‖ .
This choice of α informs our implementation in Section 7.

6 Comparison to Existing Measures
In this section we provide an overview of some existing
influence measures in data domains, and compare them to
MIM. Measuring influence in data domains for algorithmic
transparency is a relatively new approach, and has seen a
veritable explosion of literature in recent years; we believe
it is important to keep abreast of known methodologies and
understand the domains where they are most appropriate.

6.1 Parzen
The main idea behind the approach followed by Baehrens
et al. (2010) is to approximate the labeled dataset with a po-
tential function and then use the derivative of this function to
locally assign influence to features. Given a locality measure
σ ∈ R+ and a kernel function

kσ(~x) =
1√
πσ2

exp

(
−
∑n
i=1 x

2
i

2σ2

)
(6)

The Parzen measure φParzenσ (~x,X ), is given by the deriva-
tive of the potential function below at ~x.

P(c(~x) = 1|~x) =
∑
~y∈Xc(~y)=1 kσ(~x− ~y)∑

~y∈X kσ(~x− ~y)
.

It is easy to check that φParzenσ satisfies Axioms 1 to 4. How-
ever, Parzen is neither monotonic, nor does it satisfy non-
bias. To understand why Parzen fails monotonicity it helps
to look at (6). In Figure 1, we have a single feature rang-
ing from 0 to 2; we are measuring influence for the point ~x0
(marked with a green circle). When we add two more pos-
itive labels slightly to its right, monotonicity requires that
the value of φParzenσ (~x0,X ) should not decrease; however,
this addition ‘flattens’ the potential function, decreasing the
influence of the feature. Non-bias is violated on any dataset
with at least two distinct points. The underlying problem is
the same: φParzenσ measures only change in labels, so data
points with the same label lead to zero influence. This leads
to φParzenσ assigning influence to random noise.

0 0.5 1 1.5 2

0

0.5

1

++−− −
0 0.5 1 1.5 2

++++−− −

Figure 1: Parzen violates monotonicity; the point of interest
~x0 is marked with a green circle. Its influence is the slope of
the blue arrow above it.

6.2 LIME
The approach followed by Ribeiro, Singh, and Guestrin
(2016b) is based on the idea of using an interpretable clas-
sifier approximating the original in a region around ~x; this
simpler classifier then can be thought of as an explanation.
This approach is termed Local Interpretable Model-agnostic
Explanation (LIME).

Ribeiro, Singh, and Guestrin provide a concrete applica-
ble framework, providing explanations in specific applica-
tion domains. Some parts of this framework, however, lead
to obvious violations of the axioms in Section 3. As an ex-
ample, LIME maps datapoints to a binary explanation space,
rather than considering them directly. This mapping aims
to ensure that the result is human-interpretable; however, it
clearly violates Axioms 1 to 4. On the other hand, one can
draw a close connection between the theoretical framework
underlying LIME, and the MIM formulation. In order to do
so, it is useful to think of an influence measure as a linear
classifier that approximates the data in a region close to the
point of interest ~x. We define the classifier based on an in-
fluence measure φ simply as cφ(~y) = 1(φ~y ≥ φ~x)

We rewrite the core optimization problem in Ribeiro,
Singh, and Guestrin (2016b), when a linear classifier is used
as an explanation:

φLIME(~x) = argmin
φ∈Rn

∑
~y∈X

α(||~y − ~x||)(c(~y)− cφ(~y))2 (7)

where α is some non-negative function and we assume for
simplicity c(~x) = 1.

Comparing this to Section 5 one can see that at its core,
LIME minimizes the mean-squared error, whereas MIM
maximizes cosine similarity (see Section 5). We note that
other implementations of LIME (appearing in its source
code), use cosine similarity rather than mean-squared error
as the target; our results (namely Theorem 4.2) indicate that
using cosine similarity offers certain theoretical guarantees
over other approaches.

6.3 Counterfactual Influence
Datta et al. (2015) initiate the axiomatic analysis of influ-
ence in data domains. Unlike other measures in this section,
their approach does not measure feature influence for a given
point of interest; rather, it measures the overall influence of



a feature for a given dataset. Following our notation, one can
formulate the measure they propose as follows:

ηi(X ) =
1

|X |
∑
~x∈X

∑
yi:(~x−i,yi)∈X

|c(~x)− c(~x−i, yi)| (8)

In other words, the measure proposed by Datta et al. (2015)
does the following: when measuring the influence of the i-
th feature; for every point ~x ∈ X , it counts the number of
points in X which differ from ~x by only the i-th feature,
and in their classification outcome. This follows the idea
of counterfactual influence: the importance of feature i is
equivalent to its aggregate ability to change the outcome for
points in X , assuming that one is only allowed to change
the i-th coordinate of ~x. The axioms satisfied by (8) turn
out to be too stringent: first, the counterfactual measure re-
quires a dataset that contains datapoints differing by only
one feature. Second, in many types of data, it is extremely
unlikely that changing the state of a single feature will result
in a change to the classification outcome (as noted by Datta,
Sen, and Zick (2016)); indeed, on the dataset we study (Sec-
tion 7), Equation (8) outputs zero influence for all features:
no two points differ by only one feature.

6.4 Quantitative Input Influence
Datta, Sen, and Zick (2016) propose an influence mea-
sure generalizing counterfactual influence. Instead of mea-
suring the effect of changing a single feature, they exam-
ine the expected influence of changing a set of features.
More formally, given a set of features S, let v(S; ~x) =
E~y[c(~x−S , ~yS)] where (~x−S , ~yS) is the vector resulting from
replacing the values of features in S with those of features
in ~y (~y is sampled from the empirical distribution of X ).
In other words, v(S; ~x) measures the expected effect of ran-
domizing the values of features in S on the classification out-
come of ~x, with samples drawn according to the empirical
distribution of S values in the dataset. Given this notion of
‘value’ for a set of features, Datta, Sen, and Zick (2016) use
the Shapley value (Shapley 1953), a well-known economic
measure of influence from coalitional game theory. More
formally, given a subset of features S, and a feature i /∈ S,
let mi(S; ~x) = v(S ∪ {i}; ~x) − v(S; ~x); that is, mi(S; ~x)
is the marginal effect of randomizing i, given that we have
randomized S. Let N i

k = {S ⊆ N \ {i} : |S| = k}; the
influence measure defined by Datta, Sen, and Zick (2016) is
then

QII i(~x) =
1

n!

n−1∑
k=0

k!(n− k − 1)!

 ∑
S∈N ik

mi(S; ~x)

 (9)

QII i(~x) is simply the Shapley value of feature i under the
coalitional game defined by v(S; ~x). By using the Shapley
value, QII immediately guarantees several desirable proper-
ties ‘for free’ (as the Shapley value satisfies them); more-
over, the Shapley value (and thus, QII) is the only way of
measuring influence that can satisfy these properties. How-
ever, QII suffers from two major drawbacks. The first is that
when computing v(S; ~x), one assumes the ability to query

the classifier on points that are not in the dataset (in particu-
lar, when computing c(~x−S , ~yS)). Secondly, computing QII
is computationally intensive, both when deriving the value
of a set of features in v(S; ~x) and when aggregating marginal
effect in (9) (Chen et al. (2018) propose workarounds to
these issues).

6.5 Black-Box Access Vs. Data-Driven
Approaches

Influence measures in data domains seem to follow ei-
ther one of two paradigms. One class of methods relies on
black-box access to the underlying classifier; for example,
QII (Datta, Sen, and Zick 2016) requires classifier queries in
order to compute v(S; ~x); LIME makes such queries to sam-
ple a local region of ~x. Data-driven methods (e.g. Parzen,
MIM) do not require black-box access.

Is it valid to assume black-box access to a classifier? This
depends on the implementation domain one has in mind.
On the one hand, having more access, measures such as
QII and LIME offer better explanations in a sparse data
domain; however, they are essentially unusable when one
does not have access to the underlying classifier. Data-driven
approaches such as MIM, the counterfactual measure and
Parzen are more generic and will work on any given dataset;
however, they will naturally not be particularly informa-
tive in sparse regions of the dataset. That said, data-driven
models subsume ones assuming black-box access: any data-
driven method can be used after an initial black-box query
phase: in this way, we add more points to the dataset X as a
preprocessing step (for example, in order to obtain a dense
region around the point of interest), and then run the data-
driven method.

7 Experimental results
In what follows, we apply MIM, Parzen and a version of
LIME on a facial expression dataset. We ran our experi-
ments using a workstation with a quad core Intel i7 CPU,
and 16GB of RAM. We were able to compute each influ-
ence vector in 4 − 5 seconds. The dataset used for this ex-
periment is a part of the Facial Expression Recognition 2013
dataset (Goodfellow et al. 2013). The data consists of 12 156
48× 48 pixel grayscale images of faces, evenly divided be-
tween happy and sad facial expressions. Each pixel is a fea-
ture; its brightness level is its parametric value. A parametric
Parzen influence measure with σ = 4.7 and a monotone in-
fluence measure with α(d) = 1

d2 were run on some of the
images. Further, we used a black-box data version of LIME
as described in detail in the full version of this work (Sliwin-
ski, Strobel, and Zick 2018). For the α parameter in Equa-
tion 7, we choose αρ(d) =

√
exp(−d2/ρ2) with ρ = 3 as a

Kernel function.2

The first row of Table 1 shows an example picture of a
happy face from the dataset, along with a visualization of the
influence vectors as produced by MIM, Parzen and LIME.

2For a discussion on the effect of the parametrization as well as
the analysis of a second dataset see (Sliwinski, Strobel, and Zick
2018).



MIM Parzen LIME

POI Influence Shifted Influence Shifted Influence Shifted

Table 1: Influence of two different points of interest (POI)

In the images of influence vectors, the color blue (red) in-
dicates positive (negative) influence; that is, for every pixel,
the measures indicate that the brighter (darker) the pixel in
the original image, the more ‘happy’ (‘sad’) the face. The
third, fifth and seventh column show the point of interest
shifted according to the respective influence vector, i.e. the
pixels with positive influence were brightened, and darkened
if their influence was negative. According to the MIM influ-
ence vector, the factors that contribute to this face looking
happy, are a bright mouth with darkened corners, bright eye-
brows, bright tone of the face, and a darkened background.
Shifting the picture along the influence vector seems to make
the person in the picture smile wider, and open their mouth
slightly. The Parzen vector differs from the MIM vector
mainly in that it suggests dark eyes as indicative of the la-
bel and does not indicate the eyebrows as strongly. LIME,
while generally agreeing with the other two, results in a
more ’shattered’ image. Seemingly it’s better for a classi-
fier to focus it’s weights on a smaller set of features, while
for MIM and Parzen you can see that neighbouring pixels
actually have similar influence.

The second row shows another example picture and its
corresponding influence vectors; however here, all measures
fail to offer a meaningful explanation. This is likely to be
since the face in the image is tilted, unlike the majority of
images in the dataset. This is due to the fact that the dataset
does not describe the locality of the image well enough;
one can expect this to be the case for many images if the
dataset is so small (12000) for such a complex feature space
(48 × 48 = 2304 features, with each potentially taking 256
different shades of gray). This exemplifies the dependency
of MIM on the dataset provided, and indicates it needs a rel-
atively dense locality in order to perform reasonably well, if
black-box access to the classifier or any domain knowledge
cannot be assumed.3

8 Conclusions and Future Work
We present a novel characterization of data-driven influence
measurement. Our measure is uniquely derived from a set
of reasonable properties; what’s more, it optimizes a natural

3Further examples in the full version (Sliwinski, Strobel, and
Zick 2018) support this hypothesis.

objective function.

Taking a broader perspective, axiomatic influence anal-
ysis in data domains is an important research direction: it
allows us to rigorously discuss the underlying norms that
govern our explanations. Different axioms result in alterna-
tive measures, and mathematically justifying one’s choice of
influence measures makes them more accountable: when ex-
plaining the behavior of classifiers in high-stakes domains,
having provably sound measures offers mathematical back-
ing to those using them. More importantly, an axiomatic ap-
proach allows one to justify the approach to non-academic
stakeholders: while the proofs in this paper might be rather
obscure to those without the requisite background, the ax-
ioms we use can be easily explained.

While MIM offers an interesting perspective on influence
measurement, it is but a first step. First, our analysis is cur-
rently limited to binary classification domains. It is possible
to naturally extend our results to regression domains, e.g. by
replacing the value 1(c(~x) = c(~y)) with c(~x) − c(~y); how-
ever, it is not entirely clear how one might define influence
measures for multiclass domains.

Current numerical influence measures limit their expla-
nations to individual features; they do not capture joint ef-
fect, let alone more complex feature interactions (the only
exception to this is LIME, which, at least in theory, allows
fitting non-linear classifiers in the local region of the point of
interest). Designing provably sound methods for measuring
the effect of pairwise (or k-wise) interactions amongst fea-
tures is a major challenge. Non-linear explanations naturally
trade-off accuracy and interpretability. A linear explanation
is easy to understand, but lacks the explanatory power of a
measure that captures k-wise interactions.

Finally, it is important to translate our numerical measure
to an actual human-readable report. Datta, Sen, and Zick
(2016) propose using linear explanations as transparency
reports; more advanced methods use subroutines from the
classifier’s source code to explain its behavior (Datta et al.
2017a; Singh, Ribeiro, and Guestrin 2016). Mapping numer-
ical measures to actual human-interpretable explanations is
an important open problem; we believe that analyses such
as ours form the fundamental basis for making black-box
systems transparent, and ultimately more accountable.
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