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Abstract. A Hashed Time Lock Contract (HTLC) is a central con-
cept in cryptocurrencies where some value can be spent either with the
preimage of a public hash by one party (Bob) or after a timelock expires
by another party (Alice). We present a bribery attack on HTLC’s where
Bob’s hash-protected transaction is censored by Alice’s timelocked trans-
action. Alice incentivizes miners to censor Bob’s transaction by leaving
almost all her value to miners in general. Miners follow (or refuse) this
bribe if their expected payoff is better (or worse). We explore conditions
under which this attack is possible, and how HTLC participants can pro-
tect themselves against the attack. Applications like Lightning Network
payment channels and Cross-Chain Atomic Swaps use HTLC’s as build-
ing blocks and are vulnerable to this attack. Our proposed solution uses
the hashpower share of the weakest known miner to derive parameters
that make these applications robust against this bribing attack.
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1 Introduction

Bitcoin started the modern cryptocurrency revolution by removing trusted in-
termediaries and replacing them with a dynamic set of miners. These miners
validate transactions and are paid by the system in the form of block rewards
and also by transaction participants in the form of fees. Rational miners will
always choose higher-fee transactions than lower-fee ones, and this behavior will
get reinforced over time as block rewards decrease to zero [1]. This setup has
often raised ([2] [3] [4]) the possibility of miners being bribed by transaction par-
ticipants to favor one participant over the other. Typical bribing attacks envision
the paying party (Alice) cheating the paid party (Bob) by Alice double-spending
the same value in a separate transaction paying back to Alice. Miners are bribed
by Alice to include the double-spending transaction in the blockchain by forking
it and orphaning the block with the first transaction, thereby cheating Bob of
the payment from the first transaction. These bribery attacks, however, operate
at a block level because, to be cheated, Bob needs to be convinced that the first
transaction is buried in the blockchain by k blocks (in Bitcoin, k = 6). Before
this happens, Bob should ideally not honor the first transaction, but monitor
the public Bitcoin blockchain. If a transaction where Alice double-spends the
same bitcoins back to herself is seen, and Bob’s transaction is abandoned in an
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orphaned block, Bob should not honor Alice’s first transaction by not giving
Alice the goods and services that were promised.

A more sophisticated concept of transactions exists where Bob does want
Alice to pay the transaction value back to herself, but only after some time has
elapsed. During this time, Bob reserves the option of getting paid himself from
the same payment source. This complex transaction structure is the building
block for financial contracts like escrows, payment channels, atomic swaps, etc.
The required time delay is implemented using a blockchain artefact called time-
locks. A rudimentary version of timelocks (nLocktime) was in the first Bitcoin
implementation by Satoshi Nakamoto in 2009 [5]. More sophisticated timelocks
that lock transactions, specific bitcoins, or specific script execution paths were
added later [6] [7] [8]. Bitcoin script allows for timelocks to be combined with
hashlocks in an OR condition to create a new kind of transaction called Hash
Timelocked Transactions (HTLC). As we will see later, HTLC’s open the possi-
bility of transaction level bribing of miners where miners do not have to orphan
mined blocks, but just have to ignore a currently valid transaction and wait for
the timelocked bribe to become valid. Additionally, in this attack, the bribe is
endogenous to the transactions and does not have to be implemented externally
through public bulletin boards or other third party smart contracts. Bribery
attacks that operate at a transaction level are far more insidious compared to
block orphaning bribery attacks. Block orphaning attacks undermine the native
cryptocurrency’s trust with the larger community and could be detrimental to
the briber’s financial position in general. Transaction level bribery, on the other
hand, targets specific contracts on the blockchain and could go unnoticed as the
larger cryptocurrency system hums along. This sort of an attack, where a miner
has visibility into the pool of transactions that are waiting for confirmation
(mempool) and can include or not include a transaction in their mined block
is discussed in a more general setting in [9] under the umbrella term “Miner
Extractable Value”.

1.1 HTLC

HTLC’s are a type of smart contract that use preimage resistance of crypto-
graphic hash functions, along with timelocks, to enable an escrow service. Say
we have a buyer who has some bitcoin and wants to buy some goods/services
from a seller. The buyer commits their bitcoin into a contract which is locked
by an OR condition of:

– Preimage to a cryptographic hash. This is the payment path. The buyer
creates a random secret preimage and cryptographically hashes it to get a
digest. This digest is used to lock the payment path. The buyer will reveal the
preimage to the seller once the buyer has possession of the goods/services.
The seller can use this preimage and their own signature to send the funds to
an address they control. The exchange of the preimage for the goods/services
can be implemented in a variety of ways, leading to different applications.
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– A timelock. This is the refund path. The buyer sets a timelock after which
the funds are refunded back. This path is to ensure that the funds do not
get locked in the contract if the seller aborts.

This transaction (HTLC TXN) is broadcast and is confirmed on the Bitcoin
blockchain to a sufficient depth to be considered finalized. The seller then ex-
changes their goods and services for the preimage of the hash from the buyer.
This exchange process is independent of the transaction itself. Each applica-
tion that uses HTLC’s has its own way of doing this exchange. For example,
Atomic Swaps rely on another public blockchain to reveal the secret preimage.
After the exchange is done, the seller will attempt to move the UTXO created
in HTLC TXN’s payment path to an address that the seller controls with a simpler
unencumbered transaction (SELLER TXN) that uses the seller’s signature and the
preimage received from the buyer. If the exchange is not done, the buyer waits
for the timelock to expire, and uses the REFUND TXN to send the funds back to
themselves.

1.2 Bribing Attack

The attack can begin after the HTLC TXN is confirmed and the buyer already has
the goods/services for which the buyer committed the funds for. If the buyer
acts in good faith and does nothing, there is no attack. If the buyer acts in bad
faith, the buyer will try to censor SELLER TXN from being included in any future
block. The buyer broadcasts the REFUND TXN (which sends the funds back to the
buyer) and chains it with a BRIBE TXN, which sends the funds from the buyer
to any miner who mines it by leaving the output field empty. Note that in the
BRIBE TXN, the buyer can send an ε amount to themselves. This makes the bribe
not just a griefing attack (where the attacker does not profit), but marginally
profitable. Also note that SELLER TXN and the pair [REFUND TXN, BRIBE TXN]
spend the same UTXO and are inherently incompatible. If one of them is con-
firmed on the blockchain, the other becomes invalid. In the rest of this paper,
we will use BRIBE TXN and the pair [REFUND TXN, BRIBE TXN] interchangeably.
Pseudo-code for these transactions are in Appendix A.

Bitcoin’s consensus rules govern what transactions can be included in a block
by miners, but does not say anything about what transactions miners can or can-
not ignore. It gives the benefit of the doubt to miners, allowing the possibility
that miners have not seen a specific transaction because of network delays/fail-
ures. Miners could be (or not be) interested in a transaction because its fees are
high (or low). In our attack scenario, miners see SELLER TXN and BRIBE TXN at
the same time. But as per the consensus rules, miners cannot include BRIBE TXN

immediately because it is timelocked. But crucially, there is no obligation to in-
clude the SELLER TXN immediately either. As blocks go by, BRIBE TXN becomes
valid and can be included in the blockchain and SELLER TXN is censored, with
the sale proceeds going to the miners and the buyer, but not to the seller. The
seller could increase their fees to compete with the timelocked bribe, but that
would come out of their own pocket, as they have already handed out the goods
and services to the buyer.
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In the following sections, we show how the two main applications of HTLC’s:
Lightning Payment Channels and Atomic Swaps, are both vulnerable to this
bribing attack.

1.3 Payment Channels

Payment channels [10], [11] are a promising solution to the scalability prob-
lem in cryptocurrencies like Bitcoin and Ethereum, which have low transaction
throughputs. Lightning Network’s [11] payment channels rely on HTLC’s to en-
force the revocation of older commitment transactions. In our attack scenario,
Alice and Bob have a payment channel that they have updated over time using
many commitment transactions. Both Alice and Bob keep their own copy of the
commitment transaction, where their copy can be broadcast by them, and will
lock their side of the channel balance with an HTLC and the counterparty’s
side with a regular payment. This means that in the case of a channel closure,
the broadcaster has to wait for his payment, but the counterparty can withdraw
funds immediately. Without loss of generality, we can assume that in one such
update (u1), the entire channel balance was in Bob’s favor, and Alice has zero
balance in her favor. In a subsequent update (u2), Alice delivers some goods/ser-
vices to Bob, and after u2, the entire channel balance is in Alice’s favor and Bob
has zero balance on his side of the channel. As a part of the Lightning Protocol,
during u2’s negotiation, Bob gives Alice the preimage (p1) of a hash that lets
her punish him if u1 ever makes it to the blockchain.

The briber (in our case, Bob) broadcasts an outdated commitment transac-
tion u1 (called Revoked Commitment Transaction in Lightning). This has one
output which is an HTLC. He then follows it up by broadcasting the bribing
transaction: BRIBE TXN. Note that the BRIBE TXN is timelocked and should be
invalid till the timelock expires. The victim (Alice in our case), sees u1 on the
blockchain, and using her knowledge of the revocation preimage, sends the cor-
responding SELLER TXN (called Breach Remedy Transaction in Lightning) to
the pool of transactions to be included in the blockchain, Note that SELLER TXN

should be valid immediately as it has no timelock on it. But if all miners wait for
the BRIBE TXN’s timelock to expire, and during that time ignore the SELLER TXN,
the bribing attack is successful. The amount that goes from the BRIBE TXN to
the miner does not matter to Bob because he already has the equivalent good-
s/services from Alice for that value. Therefore, he is bribing with what he has
already spent.

Lightning Network uses HTLC’s to also implement payment hops from, say,
Alice to Bob through Carol - where Alice and Bob do not have a direct payment
channel between each other, but both have a channel to Carol. HTLC’s are
used here to ensure that Carol can use her channels to send funds from Alice
to Bob without Carol’s own funds being put at risk. Either the entire payment
goes through from Alice to Bob through Carol (who gets the routing fees), or the
entire payment is aborted, and all parties retain their own pre-payment balances.
Using a series of messages [12], Alice, Bob, and Carol communicate using an off-
chain protocol and negotiate a series of commitment transactions that each have
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an additional HTLC that sends the new payment from Alice to Bob through
Carol. These HTLC’s have a different payment specific secret preimage and its
associated hash that locks the hashlock arm of the HTLC. They also have a
lower timeout value (compared to the channel’s timeout value) that refunds this
particular payment back to the source in case any other node along the payment
route aborts the payment. These hops do not affect the bribing attack model:
an outdated commitment transaction can still be broadcast by the briber and
the victim has to respond.

1.4 Atomic Swaps

Atomic Swaps are a way to exchange cryptocurrencies between two separate
public blockchain systems (say, between Bitcoin and Litecoin) without involv-
ing a trusted third party [13], [14]. TierNolan’s classic Atomic Swap construc-
tion [15] relies on two HTLC TXN’s to get around the trusted third party. Alice
and Bob have their own HTLC TXN’s in the blockchains whose assets they have.
These HTLC TXN’s will enable corresponding SELLER TXN’s to the other party and
REFUND TXN’s to themselves. Alice initiates her side of the swap by publishing an
HTLC on her blockchain which has a timelock of 2 · t and hash of a secret preim-
age that only she knows. Bob accepts the swap by publishing his own HTLC on
his blockchain with a timelock of 1 · t and the same hash whose preimage he does
not know. Alice then redeems Bob’s HTLC by revealing her secret through a
SELLER TXN on Bob’s blockchain. Bob’s knowledge of this secret (by monitoring
Bob’s public blockchain) enables Bob to publish his own SELLER TXN on Alice’s
blockchain, thereby completing the swap.

In the atomic swap described above, Alice can try to censor Bob’s SELLER TXN

with her own BRIBE TXN on her blockchain that lets her keep assets on Bob’s
blockchain, and leave most of her bribing profits on her own blockchain to miners.
This way, Alice only profits if her attack succeeds, and has no possibility of a
loss. Ideally, this should not be possible because Bob’s SELLER TXN is valid from
the moment he gets to know of Alice’s secret preimage, and Alice’s BRIBE TXN

is invalid at that time. But if all miners are made aware of Alice’s BRIBE TXN,
the bribing attack might succeed.

2 Analysis

In this section, we analyze the parameters under which this bribing attack is
successful. As Alice and Bob both have to agree on the HTLC for it to be valid,
they can control these parameters to avoid the attack. The HTLC parameters
are:

– T : denotes the number of blocks needed until the BRIBE TXN becomes valid.
This is the HTLC’s timelock expressed in terms of number of blocks.

– f : fee offered by Alice to miners to confirm her SELLER TXN.
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– b: bribe offered by Bob to miners to confirm his BRIBE TXN. Note that b is
not explicitly called out in the transaction because all unclaimed outputs of
a transaction go to the miner who confirms it. Typically, b > f .

There are parameters of the network that Alice and Bob do not control. These are
the percentages of the total hashpower that identifiable miners control. Uniden-
tifiable miners are grouped in a catch-all group. Miners are identified based on
their coinbase transaction indicators (see section 3.1 for more details). Let there
be n miners Mj , 1 ≤ j ≤ n, each with a fraction pj of the total hashpower.

2.1 Assumptions

– Miners are rational and choose the most profitable strategy on what trans-
actions to include in their blocks while conforming to the consensus rules of
Bitcoin. Their goal is to maximize expected payoff, and not mine altruisti-
cally.

– Miners are also rational in the sense that they will not choose a dominated
strategy when they can choose one that is not. A strategy s is dominated
by strategy s′ if the payoff for playing strategy s is strictly greater than the
payoff for playing s′, independent of other players’ strategies.

– Miners do not create forks. If a transaction is included in a valid block,
miners build the blockchain on top of that block.

– Relative hashpowers of miners is common knowledge. Currently, almost all
Bitcoin blocks are mined by mining pools, and almost all of these blocks
have an identifiable signature in the coinbase transaction that allows them
to identify this relative share of hashpowers.

– Relative hashpowers of miners stay constant over the duration of the bribing
attack.

– The attacker and the victim of the bribery attack have no hashpower of their
own.

– Timelocks are expressed in number of blocks, and we are thus operating in
a setting where block generation is equivalent to clock ticks.

– Block rewards and fees generated by transactions external to our setting are
constant and have no bearing on the attack itself.

– All miners can see timelocked transactions that are valid in the future. Cur-
rently, the most popular Bitcoin implementation, Bitcoin Core, does not
allow timelocked transactions that are “valid in the future” to enter its pool.
Consequently, it does not forward such transactions through the peer to peer
network. This is not a consensus rule, but rather an efficiency gain whereby
allowing only valid transactions to enter the pool and propagate across the
peer to peer network reduces network and memory load. We assume that
SELLER TXN and BRIBE TXN are visible to all miners immediately after they
are broadcast by their respective parties. Also, some mining pools run “trans-
action accelerator” services where they cooperate with other mining pools to
get visibility to transactions that pay an extra fee (on top of the blockchain
fee). We assume that malicious buyers have access to such services.

6



2.2 Setting

We analyze this attack by modeling the sequence of blocks being mined as a
(Markov) game, called the bribing game. A bribing game has n miners, and runs
in T+1 sequential stages. Stages represent periods between two mined blocks. In
each stage, every miner has two possible actions: follow or refuse (corresponding
to a miner excluding the SELLER TXN from the miner’s block template or not).
After all miners play their action, a single miner is randomly selected as the
leader of the stage. In other words, after all the miners have decided on their
block template, a single miner wins the proof of work lottery and this miner’s
block extends the blockchain.

Let B1, B2, . . . , BT be all the blocks that can include SELLER TXN. Let BT+1

be the block that includes BRIBE TXN. Note that BRIBE TXN cannot be included
in B1, B2, . . . , BT as it’s not valid then. Let Ei,j denote the event that miner j
is selected as the leader of stage i. The events Ei,j are independent of each other
and the actions taken by miners. Ei,j represents block Bi being mined by miner
Mj . In addition, the selection probability of miner j for block i is given by:

∀i, j Pr(Ei,j) = pj ,

which corresponds to the hashpower of miner Mj . Each stage is in either of two
states: active or inactive. The game starts in an active stage (i.e., the first stage
is active). Stage i, i > 1, becomes inactive if the leader of stage i − 1 plays the
action refuse (corresponds to including SELLER TXN), or if stage i− 1 is already
inactive. Therefore, if one stage becomes inactive, all the following stages become
inactive. This intuitively makes sense because once SELLER TXN is confirmed, it
stays confirmed in subsequent blocks and more importantly, BRIBE TXN is invalid
after that. The payoffs for each stage i are determined by whether 1 ≤ i ≤ T or
if i = T + 1.

– 1 ≤ i ≤ T : If the leader plays refuse, the payoff is f > 0. If the leader plays
follow , the payoff is 0. Non-leaders’ payoff is always 0.

– i = T + 1: Leader’s payoff is b > 0. Non-Leaders’ payoff is 0.

Let us call a miner Mj strong if pj ≥ f
b ; otherwise we call Mj weak . Note that

the bribing attack is successful if all miners follow the bribe (i.e., they always
ignore SELLER TXN). This corresponds to the strategy profile in which all miners
play the action follow in all stages. Without loss of generality, there are two
possible distributions of hashpowers among miners:

– All miners are strong; i.e., pj ≥ f
b for 1 ≤ j ≤ n.

– At least one miner is weak; i.e, ∃pj s.t. pj <
f
b for 1 ≤ j ≤ n.

In the next sections, we analyze both of these distributions.

2.3 All miners are strong

Lemma 1. If all miners are strong (i.e., pj ≥ f
b for 1 ≤ j ≤ n), then the

strategy profile in which every miner plays follow in all stages is an equilibrium.
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Proof. Consider Miner j (Mj), and assume that all other miners follow the bribe
in all stages. We show that following the bribe in all stages is the best response
for Mj as well. If Mj follows the bribe in all stages, they will earn pj · b in
expectation. This is because, when all miners play follow in all stages, stage
T + 1 will be active, and its leader, which is Mj with probability pj , earns b.

If Mj plays refuse with non-zero probability in at least one stage. Let x > 0
be the probability that stage T+1 becomes inactive as the result of Mj ’s actions.
In other words, x is the probability that Mj plays refuse in a Stage 1 ≤ i ≤ T in
which they are selected as the leader. Note that other miners cannot make stage
T+1 inactive as they always play follow and only Mj is including SELLER TXN in
their block template. The expected payoff of Mj is, therefore, x ·f+(1−x) ·pj ·b,
which is not more than pj · b, because pj ≥ f

b and x > 0.

Note that when all miners are strong, the equilibrium shown in Lemma 1
(which favours bribery) exists no matter how large T is. As of this writing,
the average fees for Bitcoin transactions since the beginning of 2019 is around
0.00003 BTC (author’s own analysis of the Bitcoin blockchain). The average
balance held by a lightning channel is 0.026 BTC [16]. If we use these values, we
get the equilibrium stated in Lemma 1 exists if each miner has over 0.115% of
the total hash power of the entire Bitcoin network. Due to the permissionless and
anonymous nature of Bitcoin, however, we can never be sure that the weakest
miner has a hash power above 0.115% of the total hash power. However, we can
inspect the Bitcoin blockchain to guesstimate the distribution of hashpowers
among known mining pools, and recommend channel parameters based on that.
We treat this in more detail in section 3. Next, we consider the case where at
least one miner is weak. We show that, in this case, the value of T matters.

2.4 One miner is weak

Recall that when a stage becomes inactive, all its followup stages become inactive
as well. Moreover, all miners receive zero payoff in an inactive stage, irrespective
of what they play. Note that, for every miner (weak or strong), playing follow
at state T + 1 is the strictly dominant strategy if stage T + 1 is active. This is
because the expected payoff of a miner in an active stage T + 1 is pjb if they
play follow , and pjf (which is smaller than pjb) if they play refuse. In the next
lemma, we show that in active stages other than stage T + 1, playing refuse is
the strictly dominant strategy for weak miners.

Lemma 2. In any active stage i, 1 ≤ i ≤ T , playing refuse is the strictly
dominant strategy for any weak miner.

Proof. A miner earns b if stage T + 1 is active and this miner is selected as the
leader of stage T + 1. Therefore, the probability that a Miner j (Mj) earns b
is at most pj . From the definition of weakness, for Mj , we have pj · b < f . So,
if stage T + 1 is active, the weak miner gets an expected payoff less than f .
Additionally, in stages < T , the probability that a miner earns f is strictly less
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than one, because, no matter how large T is, there is always a non-zero chance
that the miner never gets selected as a leader. Therefore, across all stages up to
and including stage T + 1, the expected payoff of a weak miner is always strictly
less than f .

Assume Mj is weak (i.e., pj <
f
b ), and plays follow in an active stage i,

1 ≤ i ≤ T . We now show that playing refuse in stage i will improve her payoff.
Suppose Mj plays refuse instead of follow in the active stage i. If Mj is not
selected as the leader of stage i, then the game remains the same as the case
where Mj played follow . If Mj is selected as the leader, however, they will earn
f . This is an improvement over the expected payoff of Mj from the previous
paragraph, which is strictly less than f .

2.5 The elimination of dominated strategies

By Lemma 2, playing refuse is the strictly dominant strategy for every weak
miner; any other strategy is strictly dominated. Hence, we can simplify the anal-
ysis of the bribing game by eliminating strictly dominated strategies. Let us call
a bribing game safe if after eliminating strictly dominated strategies, the only
action left for each miner (strong or weak) in stage one is to play refuse. If ev-
ery miner plays refuse in stage one, the game is effectively over as other stages
become inactive immediately after, with SELLER TXN confirmed and BRIBE TXN

becoming invalid.
Recollect that, if all the miners are strong, the bribing game is not safe no

matter how large T is (Lemma 1). By the next theorem, however, the game is
safe if there is at least one weak miner, and T is large enough.

Theorem 1. Suppose there is at least one weak miner, and

T >
log f

b

log(1− pw)
(1)

where pw is the sum of the selection probabilities of weak miners. Then, the
bribing game is safe.

Proof. By Lemma 2, playing refuse is the strictly dominant strategy for every
weak miner in each stage i, 1 ≤ i ≤ T . By eliminating the dominated strategies
of weak miners, we get a smaller game in which weak miners play refuse in every
stage i, 1 ≤ i ≤ T .

Consider a strong miner M , who plays follow in stage 1. Their reward for
playing follow is only possible at stage T + 1. Let α be the probability that
stage T + 1 will be active. Since weak miners only play refuse in the first T
stages, we get

α ≤ (1− pw)T

≤ (1− pw)
log

f
b

log(1−pw)

≤ f

b(1− pw)
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where (1− pw)T is the probability that no weak miner is selected as a leader in
the first T stages. Thus, the expected payoff of M at stage T + 1 is less than

f

b(1− pw)
· (1− pw).b = f

where f
b(1−pw) is an upper bound on the probability that stage T + 1 is active,

and (1−pw) is an upper bound on the probability that M is selected as the leader
of stage T + 1. Note that the probability that M earns f prior to stage T + 1
is strictly less than one. Therefore, at the beginning of stage 1, the expected
payoff of M is strictly less than f . Now, if M plays refuse (instead of follow)
in the first stage, we will have two possibilities. First possibility is that M is
selected as the leader of stage 1, in which case M earns f , which is strictly more
than its expected payoff. In the second possibility where M is not selected as
the leader of stage 1, the game remains identical to the original case where M
plays follow . This implies that M is better off playing refuse in the first stage,
which concludes the proof. We remark that this result does not imply that M
is better off playing refuse in every stage. In fact, as the game proceeds to new
stages, the expected payoff of M can change, and M may choose to play follow .

2.6 The elimination of dominated strategies of strong miners

A bribing game with parameters f and b may be safe for a significantly smaller
T than what is given in Theorem 1. In its proof, we eliminated only strictly
dominated strategies of weak miners. In principle, we can continue the process
by eliminating strictly dominated strategies of strong miners as well. To do so,
we can first sort the strong miners according to their selection probabilities.
Starting with the strong miner with the smallest selection probability, and an
upper bound of T from Theorem 1, we can calculate the minimum number of
initial stages in which the miner is strictly better off playing refuse. We then
eliminate the strictly dominated strategies of that miner, and move to the next
strong miner. At the end of this iterated elimination process, if all miners play
refuse in the first stage, then the game is proven to be safe. As we iterate from
time period 0 to time period T , the value of t where all miners play refuse for the
last time shows us that if we had begun the game at this point, the game would
have been safe in the first stage itself. This new starting point of the game results
in the new ending point being at Tnew = Told − t. In this new setting, the game
is safe in the first stage. The actual algorithm to find t and an accompanying
worked example are presented in Appendix 1. Tnew is lower than T , and now,
with just one weak miner, and elimination of dominated strategies of all miners,
the game is safe for lower values of T . This lower value of T makes the usage of
HTLC’s more practical and convenient.

3 Solutions

In the introduction, we pointed out that the two main applications of HTLC’s:
Lightning Channels and Atomic Swaps, are both vulnerable to this bribing at-
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tack. In this section, we first analyze the Bitcoin blockchain to get an estimate
of the hashpower share of known mining pools. This lets us find parameters that
can harden the HTLC constructions in each of these applications such that they
are not vulnerable to the bribing attack. In the case of Atomic Swaps, to use
these parameters, we propose a modification to the classic atomic swap protocol.

3.1 Mining Pools and their Hashpower Shares

We try to find the weakest known miners in the Bitcoin ecosystem by analyzing
the miners of the 16000 blocks from Block #625000. We know the coinbase
transaction indicators of larger mining pools. Using these, we can attribute mined
blocks to known mining pools. Looking at these blocks, we can estimate each of
these mining pools’ share of the total hashpower based on how many blocks they
have mined. Mining pools and their hashpower shares are shown in Table 1. We
see that the weakest known pools are under 1% of the total hashpower, and this
leads to our proposed fixes for both Lightning Channels and Atomic Swaps.

Table 1. Hashpower of 16000 blocks from block #625000

Mining Pool Hashpower Mining Pool Hashpower

F2Pool 15.7937% BTCTOP 2.6313%
PoolIn 15.5563% NovaBlock 0.9500%
BTC.com 12.2688% SpiderPool 0.6125%
AntPool 12.1625% Bitcoin.com 0.1938%
Huobi 6.5875% UkrPool 0.0938%
58COIN 6.3000% SigmaPool 0.0750%
ViaBTC 5.7875% OkKong 0.0688%
OKEX 5.6437% NCKPool 0.0625%
Unknown 4.0687% MiningCity 0.0500%
SlushPool 3.8188% KanoPool 0.0250%
Lubian.com 3.6938% MiningDutch 0.0187%
Binance 3.5375%

3.2 Lightning

In the Lightning Network specifications (specifically, from Bolt 2 [17]), we have
the following parameters:

– channel reserve satoshis: Each side of a channel maintains this reserve so it
always has something to lose if it were to try to broadcast an old, revoked
commitment transaction. Currently, this is recommended to be 1% of the
total value of the channel. This is the amount that the cheated party can
utilize as extra fees without dipping into their own side of the channel.
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– to self delay : This is the number of blocks that the counterparty’s self out-
puts must be delayed in case a channel closes unilaterally from the counter-
party’s side. In one popular Lightning client: c-lightning [18], this is set by
default to 144 blocks (approximately 1 day). In another popular Lightning
client: LND [19], it is scaled in a range from 1 day to 14 days based on the
channel value.

We do not find any documented reasons on why these important parameters
are set the way they are. Based on the analysis from Sections 2.4 and 2.5, and
the distribution of hashpowers, we can formulate what these values ought to be.
First, we note that channel reserve satoshis on the victim’s side of this bribing
attack can be used by the victim to increase their fees to thwart the attack. We
posit that channel reserve satoshis being at 1% is reasonable, given that there
are many known miners whose hashpower is less than 1% of the total hashpower
of all miners. If it were lower than, say, 0.03%, as per Section 2.3, the channel
would be always vulnerable to this bribing attack.

We then set f
b to be 0.01, and calculate the total weak hashpower to be 0.0215

(from Table 1). Based on Theorem 1, we get T > 212 blocks. This is larger than
the suggested default of to self delay at 144 blocks. So, if the channel operator
is paranoid, they can set to self delay to this higher value of 212. We can plug in
the hashpowers from Table 1 into Algorithm 1, with f = 1 and b = 100 and we
get a value of T = 54 blocks. If the channel operator is #reckless and believes
that miners eliminate strictly dominated strategies of other miners (a stronger
assumption than just assuming that weak miners exist), they can open channels
with this much lower timelock value. Note that these values do not actually
impact the usage of the Lightning Network, but are merely security parameters
that ensure that both parties are adequately protected in case the other party
decides to bribe miners.

3.3 Atomic Swaps

Atomic Swaps that have Bitcoin on one side need to take Bitcoin’s block time of
10 minutes into account. Even if the other blockchain in question (say Litecoin)
has faster block generation, till Bitcoin’s transactions are not confirmed, the
atomic swap in question cannot be considered executed. Commercial platforms
like Komodo [20] use 15,600 seconds (26 blocks) as the HTLC’s timelock value
when they setup swaps between Bitcoin-like currencies or ERC-20 style tokens.
Other works [14], [21], [22] have suggested that a timelock period of 1 day (144
blocks) is a good default.

Based on Theorem 1, we get f
b = 0.68 at T = 26 blocks and f

b = 0.122 at
T = 144 blocks. A fee to bribe ratio of 0.68 (for T = 26 blocks) is quite high.
This suggests that T = 26 blocks does not provide enough security for reasonable
values of fee to bribe ratios. At 144 blocks, we have a reasonable fee to bribe
ratio of 0.122.

Unlike Lightning channel’s channel reserve satoshis, due to its inherently
asymmetric nature, there is no simple way to encode this extra fee in the atomic
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swap itself. Alice has to convince Bob upfront that she will not attempt the
bribing attack when it is Bob’s turn to redeem his side of the swap. One way of
achieving this is for Bob to offer a lower value than what Alice wants. This way,
if Alice attempts the bribery attack, Bob can increase his SELLER TXN fees to the
amount dictated by Theorem 1 or Algorithm 1. But if Alice does not attempt
to bribe, this atomic swap setup is unfair to her as she is getting a lower value
from Bob than what she is offering to Bob.

To solve this, we present an extension to the classic Atomic Swap protocol
that allows a way for Alice to include extra fees in the swap for Bob to use to
“counter-bribe” only if Alice attempts to bribe.

Risk Free Atomic Swap: Here, as with the classic protocol, Alice creates a
(random) secret preimage and hashes it to get her “locking string”. Alice creates
a transaction that commits her swap amount such that Bob can claim this
amount only if he knows the preimage. The “refund” part of this transaction,
instead of sending the amount back to Alice after a timelock, sends it to a multisig
controlled by both Alice and Bob. Alice also creates a second transaction that
uses this multisig controlled output as its first input, and another unrelated
input from Alice which adds the extra fees required to make the swap risk-free.
The total output of this second transaction is sent to Bob only if he has the
secret preimage, or to Alice after a timelock. This pair of transactions is created
by Alice; the second transaction is pre-signed by Bob and needs to be held by
Alice before she broadcasts the first transaction. These transactions, and the
accompanying flowchart are listed in detail in Appendix C. Based on whether
Alice or Bob abort the swap, or Alice bribes miners, or Alice and Bob complete a
normal swap, a combination of these transactions will be broadcast on the both
blockchains by Alice and/or Bob as depicted by the flow chart.

4 Related Work

There are two major strands of censorship attacks in blockchains. Ignore attacks
(that incentivize miners to ignore certain transactions) and fork attacks (that
incentivize miners to orphan blocks with certain transactions by forking the
blockchain).

4.1 Ignore Attacks

Ignore Attacks are presented in [23], [24], and [25]. In [23], smart contracts in a
“funding blockchain” are used to censor transactions in a “target blockchain”.
Funding blockchains need to support powerful smart contract primitives to be
able to program these attacks – typically Ethereum is used. Two such attack
smart contracts presented in [23] are Pay-per-Miner and Pay-per-Block. In Pay-
per-Miner, every miner gets a bribe at the end of the bribing period if the bribing
attack succeeds, even if the miner followed the bribe or not. A weak miner could
refuse the bribe, and attempt to mine with the SELLER TXN, but not succeed in
mining a block. This miner would still be eligible for the bribe at the end. This
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contract does not consider a weak miner’s lower probability of mining the final
block with the bribe and hence, overpays. In Pay-Per-Block, every miner is paid
incrementally per block during the bribing period. This attack also bribes weak
miners who go against the bribe, and thus have a higher expected reward at the
end of the bribing period. Both these attacks would get better if miners could
cryptographically prove to the smart contract that they are following the bribe.

Concurrent to our work, a similar timelocked bribing attack is presented
in [25]. They consider the situation where all miners are strong (i.e., pj ≥ f

b
for all miners 1 ≤ j ≤ n), and like us, they conclude that the bribing attack
will be successful and is independent of the bribing period T . To alleviate this
situation where all miners are strong and bribing attacks could happen, they
propose a modified construction of the HTLC called MAD-HTLC (Mutually
Assured Destruction HTLC). MAD-HTLC adds a second transaction chained to
the HTLC with a collateral from the bribing counterparty to ensure that they
have something to lose if they attempt to bribe. However, [25] does not consider
weak miners, or elimination of dominated strategies - which we show lead to
HTLC parameters that can be adjusted to safeguard against this bribing attack
with any distribution of miner hashpowers and values of f and b. Our approach
also doesn’t need a modification to the HTLC construction and the associated
collateral and extra transaction costs.

Transaction Pinning [26] tries to make a transaction inherently unprofitable
to mine, independent of any future bribe. The attacker, who can validly spend
one of the target transaction’s outputs broadcasts multiple low fee-rate trans-
actions that spends their path of the target transaction. This makes the entire
transaction package unprofitable to mine, thereby censoring the first transaction,
which the victim can spend through another path. To remedy this, the victim
can use CPFP carve-outs [27] to bump up the fee-rate of the censored transac-
tion and still get it confirmed by a miner. To enable this, Lightning Channels
will allow “anchor outputs” [28] to let either party bump up their fees without
being blocked by the counterparty.

These types of Ignore Attacks rely on being able to setup and communi-
cate incentives (in the present, or in the future) to miners such that the most
profitable strategy for each miner is to wait for the incentive. Whether these
incentives succeed or not, depends on the current value available to miners, the
future value promised to miners, and the ability of miners to be able to extract
these values. Unlike previous research, our work takes into account all these
parameters.

4.2 Fork Attacks

Fork Attacks go back a long way, with the earliest one discussed on bitcointalk.org
being feather forking [2]. In this attack, a miner wants to censor a specific trans-
action and announces on some public bulletin board that they will not add
blocks on top of any block that contains this specific transaction. If this miner
has a reasonable chance of getting a block, other rational miners will follow them
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instead of mining “normally” and hence forgo the fees of the censored transac-
tion. Feather forking is also analyzed under the Pay-per-Commit contract in
[23]. Feather forking relies on a miner committing to the attack, and this being
common knowledge among all miners. This attack relies on both a funding cryp-
tocurrency blockchain to set up the attack and a way to communicate with all
miners that the attack is going to happen.

Miners can be also incentivized to fork the Bitcoin blockchain with “Whale
Transactions” [3]. Here, the attacker waits for a target transaction to be con-
firmed to a sufficient depth to get the corresponding goods and services from
their victim. After that, the attacker tries to fork the blockchain by successively
broadcasting transactions that have high fees (whale transactions) and also re-
verse the target transaction. These whale transactions are then included in blocks
of the blockchain fork that rational miners might follow. The authors evaluate
the relationship between confirmation depth, the attacker’s secret mining lead,
the attacker’s hashpower, the whale transaction fees and whether these attacks
are profitable. External smart contracts on platforms like Ethereum can be used
[4], [24] to incentivize Bitcoin miners to abandon the honest blockchain suffix
and mine on top of a briber’s fork. In [24], the attacker chooses the set of trans-
actions to be mined for each block, and hands it out to miners through the smart
contract. This is similar to how mining pools operate. Miners get rewarded in
the “funding cryptocurrency” (Ether, in this case). Incentivizing every Bitcoin
miner with Ether given the relative size of the two systems seems far fetched to
us.

Fork Attacks rely on attackers being able to incentivize rational miners to
orphan a reasonable length suffix of the blockchain. The attack succeeds if it is
conducted after the primary transaction has been thought confirmed by the vic-
tim. Given that most proof-of-work cryptocurrencies have a probabilistic notion
of finality, these attacks are feasible. On the other hand, Bitcoin has seen fewer
and fewer orphan blocks over time [29], and the possibility of this kind of attack
is considerably lower now than they were in, say, 2015.

5 Conclusion

In this work, we observe that HTLC’s are vulnerable to an “in-band” bribing
attack where the HTLC initiator (buyer, in our case) can receive goods and
services offline and then prevent the seller from getting their due share by bribing
miners. This bribe can only work if the “time value” of waiting for the bribe is
worthwhile for all miners. A rather self-evident observation is that when the
timelock on the bribe expires and the bribe transaction is still valid, it will be
claimed in the immediate next block as the fee on it is considerably higher than
normal transaction fees. Additionally, stronger miners are likely to mine any
specific block - and therefore more likely to mine the block in which the bribe is
valid and available. Therefore, we posit that weaker miners will ignore the bribe
altogether and will attempt to mine the seller’s transaction while the timelock
holds and the fee on the seller’s transaction is good enough. This leads us to
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the relationship between the fee to bribe ratio and the distribution of miners’
hashpowers. Based on this analysis, we propose Lightning Channel parameters
that make them resistant to this kind of bribing attack. In Atomic Swaps, our
analysis also proposes a fee for the victim to safeguard themselves. To enable
that, we propose a modification to the classic Atomic Swap protocol that can
bring in this fee into the swap and still keep it fair for both parties.
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Appendix A Transactions in pseudo Bitcoin Script

HTLC Transaction:

HTLC_TXN: {

txid: HTLC_TXN_TXID

vin: [{

txid: SOURCE_TXN_ID that pays the buyer.

scriptSig: <buyer 's sig for SOURCE_TXN_ID >

}]

vout: [{

value: <value >

scriptPubKey: IF

OP_HASH160 <digest > OP_EQUALVERIFY

<seller_pubkey_1 >

OP_ELSE
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<delay > OP_CSV OP_DROP <buyer_pubkey_1 >

OP_ENDIF

OP_CHECKSIG

}]

}

Seller Transaction, spending from the hashlocked path:

SELLER_TXN: {

txid: SELLER_TXN_TXID

vin: [{

txid: HTLC_TXN_TXID

scriptSig: <seller_sig_1 > <preimage > OP_TRUE

}]

vout: [{

value: <value >

scriptPubKey: <seller_pubkey_2 > OP_CHECKSIG

}]

}

Refund Transaction, spending from the timelocked path: REFUND TXN:

REFUND_TXN: {

txid: REFUND_TXN_TXID

vin: [{

txid: HTLC_TXN_TXID

scriptSig: <buyer_sig_1 > OP_FALSE

sequence: <delay > }]

vout: [{

scriptPubKey: <buyer_pubkey_2 > OP_CHECKSIG

}]

}

Bribe Transaction, which leaves the output values to miners: BRIBE TXN:

BRIBE_TXN: {

txid: BRIBE_TXN_TXID

vin: [{

txid: REFUND_TXN_TXID

scriptSig: <buyer_sig_2 >

vout: [{

// Empty output. Entire amount goes to the miner

}]

}

Appendix B Iterated Removal of Dominated Strategies

The FIND T procedure receives as input a list of mining hashpowers (leader
selection probabilities), and the values of parameters f and b. As output, it
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returns the lowest value of T such that all miners refuse the bribe in the first
stage of the game. It uses the inner procedure CALCULATE BRIBERY MATRIX to
determine the behavior of more strong miners at each block when less strong
miners’ strategies get dominated.

1: procedure CALCULATE BRIBERY MATRIX(P, f, b, T )
2: B← [][] . Bribery Matrix where B[j][i] represents whether minerj follows the

bribe at blocki
3: for j ← 0 to length(P) do
4: if P[j] < f/b then
5: B[j]← [1, 1, ...1]︸ ︷︷ ︸

T

6: else
7: B[j]← [0, 0, ...0]︸ ︷︷ ︸

T

8: for tx ← 1 to T do
9: Ph ← 1

10: for ty ← 1 to tx do
11: sum← 0
12: for k ← 0 to j do
13: sum← sum + B[k][ty] · P[k]

14: Ph ← Ph ∗ (1− sum)

15: expected bribe = Ph ∗ P[j] ∗ b
16: if f > expected bribe then
17: B[j][tx] = 1

18: return B

19: procedure FIND T(P, f, b) . P is the array of miners’ hashpowers
20: assert(at least 1 value in P > f/b)
21: P = sorted(P) . Ascending

22: T = d log f
b

log(1−pw)
e . From Theorem 1

23: B = CALCULATE BRIBERY MATRIX(P, f, b, T )
24: for i← 1 to T do
25: for j ← 0 to length(P) do
26: if B[j][i] == 0 then
27: return T − (i− 1)

28: return T

Fig. 1: Iterated Removal of Dominated Strategies

Example (Table 2): Let’s take the case of 4 miners with hashpower shares
P = [0.1, 0.2, 0.3, 0.4], f = 11, b = 100. Applying Theorem 1, we get an upper
bound of T to be 21. Running the procedure CALCULATE BRIBERY MATRIX returns
the matrix shown in Table 2, with “1” standing for refuse and “0” standing for
follow . Note that this matrix shows the conservative scenario of T=21 blocks
(as given by Theorem 1. The aim of this algorithm is to find a more aggressive
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(lower) value of T which we get if we eliminate dominated strategies of strong
miners. We now go through the actions of each miner.

Table 2. Bribery Matrix, Worked Example

Blocks 0.1 0.2 0.3 0.4

Block #1 1 1 1 1

Block #2 1 1 1 1

Block #3 1 1 1 1

Block #4 1 1 1 1

Block #5 1 1 1 1

Block #6 1 1 1 1

Block #7 1 1 1 1

Block #8 1 1 1 1

Block #9 1 1 1 1

Block #10 1 1 1 1

Block #11 1 1 1 1

Block #12 1 1 1 1

Block #13 1 1 1 1

Block #14 1 1 1 1

Block #15 1 1 1 1

Block #16 1 1 0 0

Block #17 1 0 0 0

Block #18 1 0 0 0

Block #19 1 0 0 0

Block #20 1 0 0 0

Block #21 1 0 0 0

The miner with hashpower 0.1 (p0) will play refuse at every block because

we have T >
log f

b

log(1−pw) . The miner with hashpower 0.2 (p1) will play refuse as

long as the expected bribe (payable at T + 1) calculated at a particular block is
lower than the fees that they would earn if they mine that block. In this case,
(1 − pw)t · p1 · b < f till t = 6 for values of f = 11, b = 100, pw = 0.1. This
means that p1 will start playing follow as we get closer to t = T (specifically
when we are 5 blocks away from T ). The miner with hashpower 0.3 (p3) will play
refuse along similar lines, by looking at the actions of miners p0 and p1 over the
different blocks. One thing to notice is that at block #16, p2 will act assuming
that p0 and p1 will both play refuse. At block #17, p2 will act assuming that
p0 will play refuse and p1 will play follow . This is implemented in the algorithm
by using the 0’s and 1’s in the bribery matrix and using them as factors in line
#13 of the CALCULATE BRIBERY MATRIX procedure. This way, on line #13, we
only use miners who play refuse at each block to calculate the expected bribe.

In the main procedure FIND T, we then find the last block in which all miners
play refuse and return that as the result. In the real world, we can give a 5-6
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block cushion on top of this, and it will still be significantly lower than the upper
bound of T .

Appendix C Risk Free Atomic Swaps

The classic atomic swap of 4 transactions is changed to the Risk Free Atomic
Swap with 6 transactions: ALICE TX1 (sets up the swap), ALICE TX2 (brings
in the extra fee to enable risk-free-ness), ALICE REFUND TX, ALICE BRIBE TX,
BOB SWAP TX, BOB COUNTER BRIBE TX (uses fee from Alice, instead of losing his
own funds).

ALICE_TX1: {

txid: ALICE_TX1_TXID ,

vin: [{

txid: PREV_TX1_TXID // Pays amount X to Alice

scriptSig: <Alice 's sig >

}]

vout: [{

value: X

scriptPubKey:

IF

OP_HASH160 <digest > OP_EQUALVERIFY

<bob_pubkey_first_exit > OP_CHECKSIG

OP_ELSE

2 <alice_pubkey_1 > <bob_pubkey_1 > 2

OP_CHECKMULTISIG

OP_ENDIF

}]

}

ALICE_TX2: {

txid: ALICE_TX2_TXID ,

vin: [{

txid: ALICE_TX1_TXID

scriptSig: 0 <alice_sig_1 > <bob_sig_1 > OP_FALSE

}, {

txid: PREV_TX2_TXID // Pays F to Alice

scriptSig: <Alice 's sig >

}]

vout: [{

value: X + F

scriptPubKey:

IF

OP_HASH160 <digest > OP_EQUALVERIFY

<bob_pubkey_second_exit >

OP_ELSE

`to_alice_delay `
OP_CSV
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OP_DROP

<alice_pubkey_2 >

OP_ENDIF

OP_CHECKSIG

}]

}

ALICE_BRIBE_TX: {

txid: ALICE_BRIBE_TXID

vin: [{

txid: ALICE_TX2_TXID

scriptSig: <alice_sig_2 > OP_FALSE

sequence: `to_alice_delay `
}]

vout: [{

value: 0 // Leaves X + F as bribe to miners.

}]

}

ALICE_REFUND_TX: {

txid: ALICE_REFUND_TXID

vin: [{

txid: ALICE_TX2_TXID

scriptSig: <alice_sig_2 > OP_FALSE

sequence: `to_alice_delay `
}]

vout: [{

value: X + F // Refund to Alice

scriptPubKey: <alice_pubkey_refund > OP_CHECKSIG

}]

}

BOB_SWAP_TX: {

txid: BOB_SWAP_TXID

vin: [{

txid: ALICE_TX1_TXID

scriptSig: <bob_sig_first_exit > <preimage > OP_TRUE

}]

vout: [{

value: X // No extra fees for Bob

scriptPubKey: <bob_pubkey_swap > OP_CHECKSIG

}]

}

BOB_COUNTER_BRIBE_TX: {

txid: BOB_COUNTER_BRIBE_TXID

vin: [{

txid: ALICE_TX2_TXID
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scriptSig: <bob_sig_second_exit > <preimage > OP_TRUE

}]

vout: [{

value: X // Leaves F to the miners

scriptPubKey: <bob_pubkey_swap > OP_CHECKSIG

}]

}

Note that the second blockchain transactions are unchanged from the classic
Atomic Swap protocol. This is because, unlike Lightning channels, in an Atomic
Swap, only the swap initiator (in this case, Alice) can attempt to cheat by bribing
the first blockchain’s miners after she claims her side of the swap on the second
blockchain. So, the modification to the classic swap that brings in the “counter
bribe fees” is done only on Alice’s side of the swap as shown above with the
intermediate multisig.
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Alice prepares ALICE TX1 and ALICE TX2;
Alice gets ALICE TX2 presigned by Bob
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Fig. 2: Risk Free Atomic Swap; red = first blockchain; blue = second blockchain;
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