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Abstract

While autonomous agents often surpass humans in their ability to handle vast and
complex data, their potential misalignment (i.e., lack of transparency regarding
their true objective) has thus far hindered their use in critical applications such as
social decision processes. More importantly, existing alignment methods provide
no formal guarantees on the safety of such models. Drawing from utility and social
choice theory, we provide a novel quantitative definition of alignment in the context
of social decision-making. Building on this definition, we introduce probably
approximately aligned (i.e., near-optimal) policies, and we derive a sufficient condi-
tion for their existence. Lastly, recognizing the practical difficulty of satisfying this
condition, we introduce the relaxed concept of safe (i.e., nondestructive) policies,
and we propose a simple yet robust method to safeguard the black-box policy of
any autonomous agent, ensuring all its actions are verifiably safe for the society.

1 Introduction

The deployment of AI systems in critical applications, such as social decision-making, is often stalled
by the following two shortcomings: 1) They are brittle and usually provide no guarantees on their
expected performance when deployed in the real world [8], and 2) there is no formal guarantee that
the objective they have been trained against, typically a scalar quantity such as a loss or a reward,
faithfully represents human interest at large [39]. Addressing these limitations is commonly referred
to as AI alignment, an umbrella term including a wide array of methods supposed to make AI systems
of different modalities behave as intended [17, 24].

Yet, to our knowledge, every metric for alignment is a posteriori, i.e., a system is deemed aligned as
long as it does not display misaligned behavior (e.g., through red teaming [14]). This stems from
the fact that most of these methods focus on aligning generative models of complex modalities (text,
images, video, audio, etc.) where the input and output domains are particularly vast, and where no
single metric can perfectly represent the intended behavior.

In the context of critical (e.g., social) decision processes, where an autonomous agent must repeatedly
take actions in a complex environment with many stakeholders, a posteriori alignment is not sufficient.
Indeed, for the same reasons that a society would not trust a human policymaker with hidden motives
and unknown track record, it would also distrust an autonomous policymaker whose objective is not,
a priori, perfectly clear and verifiably aligned, as the cost of a single bad action (due to their known
brittleness) could easily outweigh the benefits of leveraging such systems. This issue is accentuated
by the fact that, unlike humans, holding a deceptive AI agent accountable remains a challenge [25].

Conversely, recent breakthroughs in AI have significantly increased its potential for beneficial use
in these critical settings. For example, tax rates and public spending are typically set periodically
by a parliament. However, this small group of representatives is inevitably overwhelmed by the
vast amount of complex economic data as well as the pleas of millions of individuals. Due to this
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Figure 1: Democratic (left) vs autonomous (right) governments. Transparent elections must be
replaced with reliable alignment mechanisms.

information bottleneck, governments can only make educated guesses about what is best for the
society (assuming they can come to an agreement in the first place). On the other hand, provided
that it is verifiably aligned, an autonomous government could efficiently leverage this vast amount of
information in order to find the optimal tax rates and public spending (see Figure 1).

While it is clear that a priori alignment is essential for the safe delegation of such decision power,
it comes at the cost of two unavoidable prerequisites. Firstly, it requires a definition of alignment
that is both quantitative and measurable. Given our focus on social decision processes, where the
perception of each action may differ among individuals, we define and quantify alignment by drawing
from long-established theories of utility and social choice. For completeness, we also discuss all
the assumptions that allow such a metric to exist. Secondly, one can only ensure that an agent is a
priori aligned if one independently understands (at least reasonably well) how its available actions
may affect society, regardless of how those effects are perceived. Indeed, asserting the safety of
an autonomous agent would be impossible if it could take actions with unknown consequences.
Although we make no assumption of the exact nature of this knowledge (domain specific expertise,
heuristics, physical/data-driven modeling, or a mix thereof), we assume it is encapsulated in a world
model that estimates, given an action and a current state, the probability of moving to any other state.

A natural question then arises: Can we leverage this knowledge to construct a verifiably aligned
policy? Or, at the very least, can we use it to ensure the safety of a more complex (black-box)
policy? We address these questions by introducing probably approximately aligned (PAA) and safe
policies, and by studying their existence based on the quality of this knowledge. Akin to the probably
approximately correct (PAC) framework in the theory of learnability [36], we are also interested
in the sample complexity of finding PAA policies. In our setting, this complexity is two-faceted:
First, the number of calls to the world model (similar to the number of calls to a perfect generative
model in [18]), and second, the amount of feedback (think ballots) required to confidently rank
which state is socially preferred. While we are not yet concerned with efficient PAA policies, whose
sample complexity is at most polynomial with respect to the desired tolerances, we argue that these
complexities should, at least, be independent of the number of possible states (similarly to sparse
sampling algorithms [19]), as most natural state spaces are infinite. We refer to such policies as
computable. Conversely, as one can decide which decisions are delegated to autonomous agents, we
assume that the action space is finite. Concretely, our contribution is threefold:

• First, we define a new type of Social Markov Decision Processes, replacing the traditional
reward with aggregated utilities of individuals. Expanding on this definition, we present a
formal quantitative definition of alignment in the context of social choice, which naturally
leads to the concept of probably approximately aligned (PAA) policies.

• Next, given an approximate world model with sufficient statistical accuracy (which we
quantitatively derive), we prove the existence of PAA policies by amending a simple sparse
sampling algorithm.

• Finally, we propose a simple and intuitive method to safeguard any black-box (poten-
tially misaligned) policy in order to ensure that it does not take any destructive decisions,
i.e., actions that might lead to a state where even the optimal policy is unsatisfactory. We
refer to these adapted policies as safe policies.
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2 Background

2.1 Utility and social choice theory

We are interested in building autonomous agents whose objective is to maximizes social satisfaction
by taking actions that alter the state of the society. In this section, we define what is meant by social
satisfaction (often called social welfare), and we provide the conditions under which it is quantifiable.

2.1.1 Utility theory

It is commonly assumed that the agency of an individual is governed by its internal binary preference
relationship ⪯ over the set of outcomes S . When presented with two choices s and s′, the individual
will introspect its satisfaction (welfare) levels and either strictly prefer one outcome (s ≺ s′ or s′ ≺ s)
or be indifferent to both (s ∼ s′). We are interested in quantitatively measuring these welfare levels.
Debreu’s representation theorem [10] states that if this preference relationship is complete, continuous,
and transitive on the topological space S, then there exists infinitely many continuous, real-valued
functions u : S → R (called utility functions) such that u(s) ≤ u(s′) ⇔ s ⪯ s′, ∀s, s′ ∈ S (note
that any strictly monotonically increasing function can transform a valid utility function into another).
While these findings establish the existence of these utility functions, which are proxies for the
intrinsic welfare levels of individuals, they do not provide insights into their measurability and
interpersonal comparability. It is these two properties, however, that eventually determine what
measure of social welfare can be derived. In a nutshell, measurability and comparability impose how
much information can be extracted from the values |ui(s)− ui(s

′)| and ui(s)− uj(s), respectively,
for any i ̸= j and s ̸= s′. We detail the various measurability and comparability levels in Appendix
A.1.1, and we refer to these levels as the informational basis of utilities. Apart from that, we fix
0 < Umin ≤ ui(s) ≤ Umax < ∞ for any s and i (we will allow Umin = 0 in specific cases). That
is, we assume that individuals cannot be infinitely satisfied or dissatisfied, and that they must scale
their utilities when reporting (which does not imply measurability or comparability!). Lastly, we
define ∆U ≜ Umax − Umin and U ≜ {u : S → [Umin, Umax]}.

2.1.2 Social choice theory

Let I be a society composed of N members, each with its preference relationship ⪯i and a corre-
sponding utility function ui ∈ U over state space S , i ∈ I. Let RS be the set of complete orderings
on S and u ∈ UN be a vector gathering the utility functions of all individuals. A social welfare
functional f (SWFL) is a mapping Df → RS with Df ⊆ UN . In other words, it is an aggregator of
individuals’ utilities, indirectly preferences. A long line of work [9, 32, 29] has attempted to define
which conditions this SWFL should satisfy (sometimes called axioms of cardinal welfarism, see
Appendix A.1.2 for an extensive list of these properties and their respective implications). For the
remainder of this work, we will follow the common assumption that any reasonable SWFL should
satisfy the following: universality (U), informational basis invariance (XI), independence of irrelevant
alternatives (IIA), weak Pareto criterion (WP) and anonymity (A).

An important result [29] states that, for any informational basis (X) listed in Appendix A.1.1 and
any SWFL f satisfying (XI), (U), (IIA) and (WP), there exists a social welfare function (SWF)
W : RN → R such that, if W (u(s)) > W (u(s′)), then s ranks strictly higher than s′ in f(u). This
is important as it states that the best social state must maximize a certain function W , which can
therefore be used as a measure of social satisfaction. In other words, the non-welfare characteristics
(i.e., any information influencing f(u) beside u, such as the judgement of an AI agent) are of
secondary importance, as they can only break ties between s and s′ such that W (u(s)) = W (u(s′))
and cannot be detrimental to the society. Although we do not require it in this work, maximization of
W can be made sufficient if one imposes Welfarism (W), e.g., by replacing (WP) with Weak Pareto
Indifference (WPI) or more drastically by imposing Continuity (C) (see Appendix A.1.2 for more
details). We are left with the following question: Given a SWFL satisfying (XI), (U), (IIA), (WP)
and (A), what is the form of the corresponding SWF? It turns out that the choice is relatively limited
and depends mostly on the informational basis invariance (XI). It has been shown, with additional
small technical assumptions [7], that the power mean defined in Eq. (1) covers all possible SFWL.
See Appendix A.1.3 for a detailed mapping between informational bases, SWFLs and parameter q.

3



Wq(u(s); I) =



min
i∈I

ui(s) q = −∞

q

√
1
|I|
∑
i∈I

ui(s)q q ∈ R∗

|I|

√∏
i∈I

ui(s) q = 0

max
i∈I

ui(s) q = ∞

(1)

2.1.3 Future discounted social welfare

At deployment, a safe autonomous agent must provide assurances that its future actions will continue
to serve the best interests of society. This becomes ill-defined if these interests evolve with time. To
address this, we assume that both I and u are constant, i.e., ui(s; t) = ui(s; t

′) ≡ ui(s) for all s, i
and discrete times t ̸= t′ . In addition, we also assume that the meaning of these utilities does not
change with time, that is, if ui(s; t) ≥ ui(s

′; t′) for states s, s′ and times t ̸= t′, then i’s welfare is at
least as high in state s at time t than in state s′ at time t′ (or vice versa for ≤). Finally, we assume
that the SWFL f is such that its corresponding SWF remains the same. In other words, only the
method to break ties between states can evolve through time. This makes it possible to predict, at
time t, what will be the satisfaction levels at time t′ > t in any given state. However, to model the
fact that humans prefer immediate reward, we discount the utility of the state at time t′ with a factor
γ(t′−t) when comparing it with the utility of the state at time t, where γ ∈ [0, 1[ is a discount factor.
From these assumptions, it becomes possible, at time t = 0, to quantify the cumulative social welfare
of any future state trajectory s1s2s3s4... by computing the quantity

∑∞
t=0 γ

tWq(u(st+1)), which we
will refer to as the future discounted social welfare of that trajectory (see Section 2.2.2). Using this
quantity, we formally define alignment as follows:

An autonomous agent is aligned if and only if it always takes actions that maximize the expected
future discounted social welfare.

2.2 Social dynamics

The expectation in the above definition accounts for the inherent randomness of most natural systems.
In this section, we model the social dynamics as a particular type of Markov Decision Process (MDP),
where the probability of transitioning to any state depends solely on the current state and next action.

2.2.1 Markov decision process

Let M = (S,A, p, r, γ) be an infinite horizon, γ-discounted, discrete time MDP where S is the state
space (discrete or continuous), A is the action space (discrete or continuous), p : S × A → P(S)
is the transition dynamics of the environment (with P(S) the set of probability distributions over
S), r : S ×A → [Rmin, Rmax] is the reward of the environment, and γ ∈ [0, 1[ is a discount factor
(favoring immediate over distant rewards). Given s ∈ S and a ∈ A, p(s′|s, a) is the probability of
transitioning to state s′ after taking action a in state s, and r(s, a) is the expected immediate reward
after taking that action. In MDPs, actions are chosen according to a policy π : S → P(A), with π(a|s)
the probability of taking action a in state s. Given an initial state s0, the tuple (M, π, s0) fully defines
a distribution pτ over trajectories τ = s0a0s1a1s2a2..., where at ∼ π(·|st) and st+1 ∼ p(·|st, at).
If the environment dynamics or the policy are deterministic, we will use the slight abuse of notation
st+1 = p(st, at) and at = π(st), respectively. The efficacy of a given policy π is measured by the
state and state-action value functions, defined respectively as follows:

V π(s) = Eτ∼pτ (·|π,s0=s)

[ ∞∑
t=0

γtr(st, at)

]
, Qπ(s, a) = r(s, a) + γEs′∼p(·|a,s)[V

π(s′)].

For a given state s and action a, the optimal state and action-state value functions are defined by
V ∗(s) = supπ V

π(s) and Q∗(s, a) = supπ Q
π(s, a). Given ε ≥ 0, a policy is called ε-optimal

(or optimal) if it satisfies V π(s) ≥ V ∗(s)− ε (respectively V π(s) = V ∗(s)) for all s. Given small
technical assumptions, it can be shown that there always exists an optimal policy [35, 12].
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2.2.2 Social Markov decision process

Definition (Social Markov Decision Process). Let I be a society with utility profile u ∈ UN and
social welfare function Wq . In addition, let S and A be the corresponding state and action spaces, p
the social environment dynamics and γ a discount factor. The MDP (S,A, p, rI , γ) with reward rI
defined by

rI(s, a) = Es′∼p(·|s,a)[Wq(u(s′); I)] (2)
is a Social Markov Decision Process (SMDP), denoted MI = (S,A, p,Wq,u, γ).

In this setting, S contains all the possible states of the N individuals, as well as all those of the
environment in which they evolve, and A contains all the actions that are delegated to an autonomous
agent. Expanding on this definition, we can formally define the alignment metric proposed above:
Definition (Expected Future Discounted Social Welfare). Let MI = (S,A, p,Wq, u, γ) be a SMDP.
The expected future discounted social welfare of a policy π in state s is defined as

Wπ(s) = Eτ∼pτ (·|π,s0=s)

[ ∞∑
t=0

γtWq(u(st+1); I)

]
,

and takes value between Wmin ≜ Umin

1−γ and Wmax ≜ Umax

1−γ , with ∆W ≜ Wmax −Wmin.

As shown with the next lemma, the expected future discounted social welfare of a SMDP is equivalent
to the state value function of the corresponding MDP. This equivalence makes it a natural metric for
alignment, as it enables the use of a wide array of known results on MDPs.
Lemma 1. For any SMDP MI = (S,A, p,Wq, u, γ), the expected future discounted social welfare
of a policy π is the state value function of π in the MDP M = (S,A, p, rI , γ), with rI set in Eq. (2).

The proof follows directly from the tower property of conditional expectations (see Appendix A.2.1).

2.2.3 Approximate rewards

If p is unknown, the true reward of the SMDP in Eq. (2) can only be estimated a posteriori, i.e.,
after taking action a in state s multiple times and observing Wq(u(s′)). This would require a long
exploration phase if S is large, which can be costly and even impossible in critical decisions processes.
Instead, one must usually plan using an approximate dynamics model p̂ ∈ P(S) to anticipate the
effect of an action. Moreover, even if p is known, computing Wq(u(s′)) exactly for a given s′ ∼ p
would require full knowledge of u(s′), which is only possible by obtaining feedback from the entire
society about s′ without making additional assumptions on u. For these reasons, we consider a more
realistic scenario: Given a set of assessors In ⊆ I of size n ≤ N and an approximate dynamics
model p̂, the true reward can be approximated by asking the assessors about their utilities on the
anticipated future societal states:

r̂In(s, a;K) = ÊK
s′∼p̂(·|s,a)[Wq(u(s′); In)] ≜

1

K

K∑
k=1

Wq(u(sk)). (3)

where ÊK
s′∼p̂ is a “Monte Carlo” estimation of Es′∼p̂, with K ∈ N samples independently drawn

from p̂(·|s, a), denoted s1, s2..., sK . The core of our analysis is to understand how K, n and the
inaccuracies of p̂ affect the validity of alignment guarantees.

3 Results

3.1 Existence of aligned policies

Having formally derived a quantitative measure of alignment Wπ in the context of social decision
processes, we are now prepared to introduce and prove the existence of verifiably aligned policies:
Definition (Probably Approximately Aligned Policy). Given 0 ≤ δ < 1, ε > 0 and a SMDP
MI = (S,A, p,Wq,u, γ), a policy π is δ-ε-PAA (Probably Approximately Aligned) if, for any
given s ∈ S, the following inequality holds with probability at least 1− δ:

Wπ(s) ≥ max
π′

Wπ′
(s)− ε (4)
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Definition (Approximately Aligned Policy). Given ε > 0, a policy π is ε-AA (Approximately
Aligned) if and only if it is 0-ε-PAA.

We state below one of our main contribution, i.e., the existence of computable PAA and AA policies,
which follows directly from Theorem 3 (δ > 0) and Corollary 4 (δ = 0) in the next section.
Theorem 2 (Existence of PAA and AA policies). Given a SMDP MI = (S,A, p,Wq,u, γ) with
q ∈ R and any tolerances ε > 0 and 0 ≤ δ < 1, if there exists an approximate world model p̂ such
that

sup
(s,a)∈S×A

DKL(p(·|s, a)∥p̂(·|s, a)) <
ε2(1− γ)4

8∆W2
, (5)

then there exists a computable δ-ε-PAA policy. Consequently, there also exists a computable ε-AA
policy.

3.2 Near optimal planning

We prove Theorem 2 by providing a planning policy πPAA and by proving it satisfies Eq. (4) under
the given assumptions. To this end, we present a modified version of the sparse sampling algorithm
[19] (which originally assumes that p and r are known, which is not the case here). Given some
parameters K,C and n, we define the recursive functions:

Q̂h(s, a;K,C, In) =

{
0 h = 0

r̂In(s, a;K) + γÊC
s′∼p̂(·|s,a)

[
V̂ h−1(s′;K,C, In)

]
h ∈ N∗ (6)

V̂ h(s;K,C, In) = max
a∈A

Q̂h(s, a;K,C, In).

Intuitively, Q̂h and V̂ h are recursive approximations of Q∗ and V ∗, K and C controls the accuracy of
the empirical expectation operators in Q̂, h controls how far one looks into the future, and n controls
the accuracy of the social welfare function estimates. The proposed PAA policy is simply the greedy
policy acting on the state-action value estimates, i.e.,

πPAA(s) = max
a∈A

Q̂H(s, a;K,C, In). (7)

It is deterministic in the sense that, for a given Q̂H , it outputs a single action. However, Q̂H is
non-deterministic since In and s′ are sampled randomly. The next results clarifies under which
conditions πPAA is indeed δ-ε-PAA (Theorem 3) or ε-AA (Corollary 4).
Theorem 3 (πPAA is δ-ε-PAA). Let MI = (S,A, p,Wq,u, γ) be a SMDP with q ∈ R and p̂

an approximate dynamics model such that d ≜ sup(s,a) DKL(p(·|s, a)∥p̂(·|s, a)) < ε2(1−γ)6

8∆U2 for

any desired tolerances ε > 0 and 0 < δ < 1. For any k ≥ logγ

(
(1−γ)ε
∆U −

√
8d

(1−γ)2

)
, define

β ≜
(

(1−γ)2ε
8 −

√
d∆U√

8(1−γ)
− (1−γ)γk∆U

8

)
and let πPAA be the policy defined in Eq. (7) with param-

eters

• H ≥ max
{
1, logγ

(
β

∆U

)}
,

• K ≥ ∆U2

β2

(
(H − 1) ln

(
H−1
√
24k(H − 1)|A|∆U2

β2

)
+ ln

(
1
δ

))
,

• C ≥ γ2

(1−γ)2K,

• n ≥ N
(
1 + ∆U2N

2K Γ (β, Umin, Umax, q)
)−1

,

and where Γ (β, Umin, Umax, q) is a function defined in Eq. (9). Then πPAA is a δ-ε-PAA policy.

Corollary 4. Let MI = (S,A, p,Wq, u, γ) be a SMDP with q ∈ R and p̂ an approximate dynamics

model such that d ≜ sup(s,a) DKL(p(·|s, a)∥p̂(·|s, a)) < ε2(1−γ)6

8∆U2 for any desired tolerance ε > 0.
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Define β ≜ (1−γ)2ε
10 −

√
2d∆U

5(1−γ) and let πPAA be the policy defined in Eq. (7) with parameters H,C

and n as in Theorem 3 and K ≥ ∆U2

β2

(
(H − 1) ln

(
H−1
√
12(H − 1)|A|∆U2

β2

)
+ ln

(
∆U
β

))
. Then

πPAA is an ε-AA policy.

See Appendix A.2.2 for the full derivation of these two results. We now outline a proof sketch.
The skeleton of the proof is similar to the one proposed by Kearns et al. [19] for their original
sparse sampling algorithm, although several additional tricks and intermediate results are necessary
to accommodate the approximate world model p̂ and reward r̂I . First, we derive a concentration
inequality for the power mean function in order to quantify the approximation error between Wq(·; In)
and Wq(·; I). Using a slightly modified (two-sided) version of the Hoeffding-Serfling inequality [4?
] (see Lemma 9 in Appendix A.2.1), we find the following bounds:
Lemma 5. Let Wq be the power-mean defined in Eq. (1), with q ∈ R. Given a, b ∈ R∗

+ (or R+

for q = 1) such that a < b , let X ∈ [a, b]N be a set of size N and let Xn be a subset of size
n < N sampled uniformly at random without replacement from X . Then, for 0 < ε < Wq(X ) and
m = min(n,N − n),

P [|Wq(Xn)−Wq(X )| ≥ ε] ≤ 2 exp

(
− 2nε2

(1− n
N )(1 + 1

m )
Γ(ε, a, b, q)

)
, (8)

where

Γ(ε, a, b, q) =



(1−2q)2b2q−2

(aq−bq)2 q < 0
1

(b+ε)2(log b−log a)2 q = 0
q2a2q

(b+(1−q)ε)2(bq−aq)2 0 < q < 1
1

(b−a)2 q = 1
q2a2q

(b+qε)2(bq−aq)2 q > 1

(9)

Similarly, for q ∈ {±∞}:

P [|Wq(Xn)−Wq(X )| ≥ ε] ≤ 1− n

N
.

See Appendix A.2.1 for the full proof. Note that, for q = 1 (utilitarian rule), it is sufficient to have
n = N

(
1 + N

2K

)−1
in Theorem 3. However, for q ̸= 1, Γ depends highly on a and b (respectively

Umin and Umax in our setting). Worse, for q = ±∞, the bound depends linearly on n. Indeed,
q = −∞ corresponds to the egalitarian rule, which defines social welfare as the lowest welfare
among individuals. As this individual might be unique, the probability of not selecting it in In can
be as high as 1− n

N . The same argument can be made for q = +∞, which is why we purposefully
avoid these scenarios in Theorems 2, 3 and 8. Regarding the error induced by the approximate model
p̂, we bound it using the following lemma:
Lemma 6. Let f : S → [fmin, fmax] be a bounded function with 0 ≤ fmin ≤ fmax < ∞, and
p, p̂ ∈ P(S) be two distributions such that DKL(p∥p̂) ≤ d ∈ R and . Then∣∣Es∼p[f(s)]− Es∼p̂[f(s)]

∣∣ ≤ 2(fmax − fmin)

√
min{d

2
, 1− e−d}.

See Appendix A.2.1 for the full proof. Combining Lemmas 5 and 6 along with other classical
concentration inequalities, we can bound the error |Q∗(s, a)− Q̂h(s, a)| with high probability. The
last step of the proof is to quantify how this error affects the state value function V πPAA (consequently
WπPAA from Lemma 1), which can be done using the following results:

Lemma 7. Let Q̂ be a (randomized) approximation of Q∗ such that |Q∗(s, a)− Q̂(s, a)| ≤ ε with
probability at least 1− δ for any state-action pair (s, a), with ε > 0 and 0 ≤ δ < 1. Let πQ̂ be the

greedy policy defined by πQ̂(s) = argmaxa∈A Q̂(s, a). Then, for all states s:

1) V ∗(s)− V πQ̂(s) ≤ 2ε

1− γ
+ γk(Vmax − Vmin) with probability at least 1− 2kδ,∀k ∈ N∗,

2) V ∗(s)− V πQ̂(s) ≤ 2ε+ 2δ(Vmax − Vmin)

1− γ
almost surely.
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These are fairly general results as they do not depend on how Q̂ is derived. Statements closely related
to 2) have already been shown [19, 34]. We provide a proof in Appendix A.2.1 for completeness.

3.3 Safe policies

Although Theorem 2 may initially inspire optimism regarding the title of the paper, the policy πPAA

proposed in Eq. (7) is expensive for small ε, both in terms of sample complexity and in terms of
required accuracy of the world model. A more efficient PAA policy derived in future work might
partially solve the sample complexity issue, but the challenge of building predictive models of high
accuracy remains untouched. In most realistic settings, DKL(p∥p̂) is imposed by the state-of-the-art
knowledge upon which p̂ is built, which implicitly restricts the achievable tolerance ε. Therefore, it
seems unlikely that such policies could be used as a primary tool for social decisions, as their sole
objective would be to maximize a dubious approximation of social welfare. On the other hand, even
for large ε, we will show that we can use our PAA policy to adapt any black-box policy π (e.g., a
policy built on top of a LLM) into a safe policy, which we formally define as follows:

Definition (Safe Policy). Given ω ∈ [Wmin,Wmax] and 0 < δ < 1, a policy π is δ-ω-safe if, for
any current state s, the inequality Es′∼p(·|s,a)

[
supπ′ Wπ′

(s′)
]
≥ ω holds with probability at least

1− δ for any action a such that π(a|s) > 0.

Intuitively, a safe policy ensures (with high probability and in expectation over the environment
dynamics) that the society is not led in a destructive state, that is, a state which might generate high
immediate satisfaction but where no policy can generate an expected future discounted social welfare
of at least ω. This is considerably weaker than the PAA requirements, as we are no longer concerned
about social welfare optimality. The ability to adapt any black-box policy into a safe policy would
allow to leverage their strengths while fully removing their brittleness (by bounding the probability
of a destructive decision by any desired value δ > 0). To this end, we use another type of policy:

Definition (Restricted Version of a Black-Box Policy). Let π : S → A be any policy and Ā(s) ⊆ A
be restricted subsets of actions for all states s, with Π(s) ≜

∑
a∈Ā(s) π(a|s). The restricted version

π̄ of π is defined as

π̄(a|s) ≜


0 a ∈ A \ Ā(s) or Π(s) = 0,

π(a|s)
1−Π(s) a ∈ Ā(s) and 0 < Π(s) < 1,

π(a|s) a ∈ Ā(s) and Π(s) = 1,

(10)

This is similar to action masking presented in [20]. It might happen that π̄(a|s) = 0 for all actions
a, in which case it stops operating. However, if this happens, we have the guarantee that, with high
probability, the society is currently not in a destructive state. The challenge lies in finding what are
the subset of safe actions for every s. Our proposed method to safeguard any policy is the following:

Theorem 8 (Safeguarding a Black-Box Policy). Given a SMDP MI = (S,A, p,Wq,u, γ) with
q ∈ R, a predictive model p̂ and desired tolerances ω ∈ [Wmin,Wmax] and 0 < δ < 1,
define Q̂ω(s, a) ≜ Q̂H(s, a;K,C, In) with Q̂H given in Eq. (6) and any H,K,C, n ≥ 1.
For any policy π, let πsafe be the restricted version of π obtained with the restricted subsets
Asafe(s) ≜ {a ∈ A : Q̂ω(s, a) ≥ γω + Umax + α}, where

α ≜
2∆Ud′

(1− γ)2
+

√
ln
(

12(C|A|)H−1

δ

)
1− γ

(√
N − n

nNΓmax
+

√
∆U2

2K
+ γ

√
∆U2

2C(1− γ)2

)
+

γH∆U

1− γ
,

and with the shortened notation Γmax ≜ Γ(Umax, Umin, Umax, q), d′ ≜
√

min{d
2 , 1− e−d} and

d ≜ sup(s,a) DKL(p(·|s, a)∥p̂(·|s, a)). Then πsafe is δ-ω-safe.

See Appendix A.2.3 for the full proof. While we are, in theory, not restricted by the statistical
accuracy of the world model to find a safe version of any black-box policy, low statistical accuracy
will, in practice, drastically reduce the number of verifiably safe actions, which at some point will
render the safe policy obsolete (as it will refuse to take any action).
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4 Related work

MDP for social choice MDPs have already been used in the context of social decision processes.
For instance, Parkes and Procaccia [28] (and more recently [21]) use social choice MDPs in order to
tackle decision-making under dynamic preferences. However, their setting is significantly different
from ours: In their work, the state space S is the set of preference profiles UN , and p dictate how
these preferences evolve based on the outcome selected by the social choice functional (the policy).
Another relevant line of study is that of preference-based reinforcement learning (PbRL) [38], where
the traditional numerical reward of the underlying MDP is replaced with relative preferences between
state-action trajectories. While social decision processes can also be cast as a PbRL problem, no
previous work has attempted to formally and quantitatively define social alignment in that setting.

AI safety A long line of work has attempted to address the challenge of building verifiably safe
autonomous systems [2, 30]. In the context of MDPs, safe reinforcement learning (RL) tackles this
challenge by introducing safety constraints [1]. See [15, 20] for comprehensive surveys on the topic.
However, RL relies on exploration, which is not allowed in our setting. On the other hand, existing
planning methods (where exploration is not needed if a world model p̂ is available) do not relate the
accuracy of p̂ to the validity of the desired safety guarantees, as they mostly assume that p is known.

Alignment The goal of alignment can be entirely different based on the context [13]. Recent
research on this topic has primarily focused on aligning large language models (LLMs) [17] using
human feedback [6, 26] and derivatives [11, 37, 5]. While some work has attempted to tackle LLM
alignment from a social choice perspective [22], the issue of aligning the meaning of generated text
is, by nature, both qualitative and subjective, and therefore separate from ours. A setting closer to our
work is the value alignment problem [33, 23], based on the theory of basic human values [31], where
the preferences of individuals (over social states) are assumed to be guided by a predefined set of
common values, and where the goal is to find “norms” (i.e., hard-coded logical constraints on actions)
that guide society towards states that maximize these values. The alignment of these norm can be
quantified by measuring the level of these values in the subsequent states, and the alignment of an
autonomous system is simply given by the alignment of the norms it follows. However, this measure
is intractable in most realistic settings, as it must be computed over all possible state trajectories [33].

5 Limitations and future work

From a practical standpoint, the main challenge lies in building a reliable world model p̂, since PAA
guarantees depend on its statistical accuracy, which can only be measured exactly if the true world
model p is known. In practice, a conservative estimate of this accuracy could be used instead. Another
limitation arises from the dependence on the informational basis of utilities, a philosophical question
that falls outside the scope of this paper but that is common to all systems involving human feedback.
A third practical limitation is the assumptions that individuals can observe and evaluate the entire
social states when reporting their utilities. Future work could extend our analysis to the setting of
partially observable MDP (POMDP) [40], for instance. Finally, the assumption that individuals have
static preferences can also be challenged, but it is not clear how evolving preferences can be modeled,
let alone factored in our analysis. From a theoretical perspective, the complexity results presented in
the various theorems are poor for q ̸= 1 and γ ≈ 1. These dependencies are hard to improve, as they
relate to a known property of the power mean [7] and the ability to foresee the future, respectively.
Lastly, while we make no assumption about the distribution of utilities u, one could investigate how
such assumptions might improve these complexities (e.g., using Bernstein-Serfling inequality [4]).

6 Conclusion

We present a formal and quantitative definition of alignment in the context of social choice, leading
to the concept of probably approximately aligned policies. Using an approximate world model, we
derive sufficient conditions for such policies to exist (and be computable). In addition, we introduce
the relaxed concept of safe policies, and we present a method to make any policy safe by restricting
its action space. Overall, this work provides a first attempt at rigorously defining the alignment of
governing autonomous agents, and at quantifying the resources (n, K, C, H) and knowledge (p̂)
needed to enforce the desired level of alignment (ε) or safety (ω) with high confidence (δ).
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A Appendix

A.1 Utility and Social Choice Theory

A.1.1 Measuring and comparing utilities

Measurability of u ∈ U can either be cardinal, where one can numerically measure absolute levels
of satisfaction for a given state up to positive affine transformations, or ordinal, where one can only
hope to rank states, meaning one can numerically measure utilities only up to increasing monotone
transformations [16? , 27]. Additional dichotomization becomes possible when comparability is
taken into account [29, 9, 32]. In a nutshell, utilities are either ordinal non-comparable (ONC), where
individuals transform their intrinsic utilities differently when reporting; cardinal non-comparable
(CNC), which is similar to ONC but with cardinal measurability), ordinal level comparable (OLC),
where individuals transform their intrinsic utilities similarly when reporting; cardinal unit comparable
(CUC), in which the affine transforms of the individuals have identical scaling factor but different
bias; cardinal fully comparable (CFC), where individuals have the same affine transform; or cardinal
ratio-scale comparable (CRS), in which all transforms are unbiased with the same scaling factor.
Note that CRS is stronger than CFC in the sense that one can have statements such has “Bob is x times
more satisfied than Alice” under the CRS assumption. In this paper, we refer to this classification as
the informational basis of utilities.

A.1.2 SWFL properties and implications

Here is a list of the most common properties imposed on a given SWFL f : Df → RS , along with
their definitions. We denote ⪯f(u) the binary preference relationship corresponding to f(u), that is,
s ⪯f(u) s

′ if and only if s′ ranks equally or higher than s in f(u).

(U) Universality or unrestricted domain: Df = UN .

(IIA) Independence of Irrelevant Alternatives: For every u,u′ ∈ UN and S ′ ⊆ S , if u(s) = u′(s)
for all s ∈ S ′, then fS′(u) = fS′(u′), where fS′(u) is the partial ranking obtained after
excluding S \ S ′ from f(u).

(WP) Weak Pareto criterion or unanimity: For all pairs s, s′ ∈ S, if u(s) > u(s′), then s ranks
strictly higher than s′ in f(u).

(WPI) Weak Pareto with Indifference criterion: For all pairs s, s′ ∈ S, if u(s) ≥ u(s′), then s
ranks equally or higher than s′ in f(u).

(SP) Strong Pareto criterion: For all pairs s, s′ ∈ S , if there exists i ∈ I such that ui(s) > ui(s
′)

and uj(s) ≥ uj(s
′), ∀j ∈ I \ {i}, then s ranks strictly higher than s′ in f(u).

(NI) Non-Imposition: For all R ∈ R, there exists u ∈ Df such that f(u) = R.

(C) Continuity: For any v ∈ RN and s, s′ ∈ S, the sets

{v′ ∈ RN : u(s′) = v′,u(s) = v and s ⪯f(u) s
′ for some u ∈ UN},

and
{v′ ∈ RN : u(s′) = v′,u(s) = v and s′ ⪯f(u) s for some u ∈ UN}

are closed.

(WC) Weak Continuity: For any u ∈ UN and ε ∈ RN
+ , there exists u′ ∈ UN such that

f(u) = f(u′) and 0 < u(s)− u′(s) < ε for all s ∈ S (component-wise inequalities).

(N) Neutrality or welfarism: For all quadruples s, s′, t, t′ ∈ S, if u,u′ ∈ UN are such that
u(s) = u′(s′) and u(t) = u′(t′), then f(u) and f(u′) agree on the partial rankings of (s, t)
and (s′, t′) (i.e., either s and s′ are preferred, or either t and t′).

(A) Anonymity or symmetry: For all u ∈ UN , f(u) = f(u′) with u′ any permutation of u.

(ND) Non-Dictatorship: There is no single individual i such that ⪯i=⪯f(u) for any u.

(IC) Incentive compatibility: It is in the best interest of each individual to report their true
preferences (i.e., there is no tactical voting).
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(S) Separability or independence of unconcerned agents: For all u,u′ ∈ U , if there exists
I ′ ⊆ I such that ui = α ∈ R and u′

i = α′ ∈ R for i ∈ I ′, and ui = u′
i for i ∈ I \ I ′, then

f(u) = f(u′). I ′ is the set of unconcerned agents.
(PDT) Pigou-Dalton Transfer principle: Define ū(s) =

∑
i∈I ui(s). For all u ∈ UN and s, t ∈ S

such that ū(s) = ū(t), if |ui(s)− ū(s)| ≤ |ui(t)− ū(t)| for all i ∈ I , then s ranks equally
or higher than t in f(u).

(XI) Informational basis Invariance (XI): The SWFL is invariant under the given measurability
and comparability assumptions: (ONCI), (CNCI), (CUCI), (CFCI), (CRSI), (OLCI). That
is, f(u) = f(u′) for any two utility profile u,u′ that are undistinguishable under the given
informational basis.

We now provide a short, intuitive explanation for the properties (U), (XI), (IIA), (WP) and (A) that we
impose in this work. Enforcing unrestricted domains ensures that the SWFL always outputs a ranking.
Informational basis invariance ensures that the SWFL outputs the same ranking for two preference
profiles that are indistinguishable under the given measurability and comparability assumptions.
Independence of irrelevant alternatives ensures that the rankings are robust, in the sense that they are
not incoherently affected by removing or adding other options. The weak Pareto criterion ensures
that the SWFL represents reasonably well the preference of society (if an outcome is unanimously
preferred over another, then it must also be preferred at the social level). Anonymity ensures that
all individuals have equal influence on the social ranking. Lastly, we recall a few important results
(assuming |S| ≥ 3).

• (CRSI) ⇒ (CFCI) ⇒ (CUCI) ⇒ (CNCI) ⇒ (ONCI). Additionally (OLCI) ⇒ (ONCI).
• (XI) + (U) + (IIA) + (WP) ⇒ There exists W : RN → R such that W (u(s)) > W (u(s′))

implies that s ranks strictly higher than s′ in f(u). This is important as it states that the best
social state s must maximize W . In other words, even if f is not neutral, the non-welfarism
characteristics are of a secondary importance and can only break ties between s and t such
that W (u(s)) = W (u(t)). Maximization can be made sufficient if one imposes (W) on f
(e.g., by replacing (WP) by (WPI) or more drastically by imposing continuity on f ).

• Arrow’s impossibility theorem [3]: (ONCI) + (U) + (WP) + (I) ⇒¬(ND). While this theorem
seems to prevent any hope of finding good SWFLs, its statement is strongly dependent
on the (often hidden) ONCI assumptions. Indeed, it is challenging to find a good social
aggregator that only knows rankings of alternatives. Strengthening the measurability and
comparability assumptions (and thus narrowing the informational basis invariance property)
allows to find SWFLs that are non-dictatorial.

• (A) ⇒ (ND).
• Gibbard–Satterthwaite theorem (single winner elections): (ONCI) + (IC) ⇒¬(ND).
• (SP) ⇒ (WP) but the converse is not true.
• (XI) ⇒ (WC)

A.1.3 Power mean and SWFL correspondence

Table 1: The different social welfare functions (SWF) corresponding to a SWFL that satisfies (U),
(IIA), (WP), (A) and (XI) for the different informational bases [29].

(XI) SWF (W ) Power mean

(ONCI) or (CNCI) Impossibility (Arrow [3]) -

(CUCI)
∑
i∈I

ui(s) q = 1

(OLCI) min
i∈I

ui(s) or max
i∈I

ui(s) q ∈ {±∞}

(CFCI) min
i∈I

ui(s), max
i∈I

ui(s) or
∑
i∈I

ui(s) q ∈ {±∞, 1}

(CRSI) min
i∈I

ui(s), max
i∈I

ui(s),
∑
i∈I

ui(s)
q or

∑
i∈I

log[ui(s)] q ∈ R ∪ {±∞}
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A.2 Proofs

A.2.1 Intermediate results

Lemma 1. For any SMDP MI = (S,A, p,Wq, u, γ), the expected future discounted social welfare
of a policy π is the state value function of π in the MDP M = (S,A, p, rI , γ), with rI set in Eq. (2).

Proof. Let τt = s0, a0, s1, a1, ..., st denote a truncated trajectory up to time t. From the definitions
of V π(s;M) and rI , we have

V π(s;M) = Eτ∼pτ (·|π,s0=s)

[ ∞∑
t=0

γtrI(st, at)

]

= Eτ∼pτ (·|π,s0=s)

[ ∞∑
t=0

γtEs′∼p(·|st,at)[Wq(u(s′))]

]

=

∞∑
t=0

γtEτ∼pτ (·|π,s0=s)

[
Es′∼p(·|st,at)[Wq(u(s′))]

]
=

∞∑
t=0

γtEτt∼pτt (·|π,s0=s),at∼π(·|st)
[
Es′∼p(·|st,at)[Wq(u(s′))]

]
=

∞∑
t=0

γtEτt+1∼pτt+1
(·|π,s0=s) [Wq(u(st+1))]

=

∞∑
t=0

γtEτ∼pτ (·|π,s0=s) [Wq(u(st+1))]

= Eτ∼pτ (·|π,s0=s)

[ ∞∑
t=0

γtWq(u(st+1))

]
= Wπ(s;MI).

Lemma 5. Let Wq be the power-mean defined in Eq. (1), with q ∈ R. Given a, b ∈ R∗
+ (or R+

for q = 1) such that a < b , let X ∈ [a, b]N be a set of size N and let Xn be a subset of size
n < N sampled uniformly at random without replacement from X . Then, for 0 < ε < Wq(X ) and
m = min(n,N − n),

P [|Wq(Xn)−Wq(X )| ≥ ε] ≤ 2 exp

(
− 2nε2

(1− n
N )(1 + 1

m )
Γ(ε, a, b, q)

)
, (8)

where

Γ(ε, a, b, q) =



(1−2q)2b2q−2

(aq−bq)2 q < 0
1

(b+ε)2(log b−log a)2 q = 0
q2a2q

(b+(1−q)ε)2(bq−aq)2 0 < q < 1
1

(b−a)2 q = 1
q2a2q

(b+qε)2(bq−aq)2 q > 1

(9)

Similarly, for q ∈ {±∞}:

P [|Wq(Xn)−Wq(X )| ≥ ε] ≤ 1− n

N
.

Proof. To simplify the notation, we write S = Wq(Xn) and µ = Wq(X ) such that

Sq =
1

n

∑
xi∈Xn

xq
i , µq =

1

N

∑
xi∈X

xq
i for q ∈ R∗

logS =
1

n

∑
xi∈Xn

log xq
i logµ =

1

N

∑
xi∈X

log xq
i for q = 0
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For q ∈ R, we have

P [|S − µ| ≥ ε] = 1− P [µ− ε < S < µ+ ε]

=

{
1− P [(µ+ ε)q < Sq < (µ− ε)q] q < 0
1− P [log(µ− ε) < logS < log(µ+ ε)] q = 0
1− P [(µ− ε)q < Sq < (µ+ ε)q] q > 0

(11)

Therefore:

• For q < 0:

P [(µ+ ε)q < Sq < (µ− ε)q] = P
[(

1 +
ε

µ

)q

µq < Sq <

(
1− ε

µ

)q

µq

]
≥ P

[(
1− (1− 2q)ε

µ

)
µq < Sq <

(
1 +

(1− 2q)ε

µ

)
µq

]
= P

[
µq − (1− 2q)µq−1ε < Sq < µq + (1− 2q)µq−1ε

]
≥ P

[
µq − (1− 2q)bq−1ε < Sq < µq + (1− 2q)bq−1ε

]
= P

[
|Sq − µq| < (1− 2q)bq−1ε

]
(12)

where we have used the following approximation (holding for 0 < x ≤ 1 and q < 0):

(1 + x)q ≤ 1− (1− 2q)x < 1 < 1 + (1− 2q)x ≤ (1− x)q.

Combining Eq. (11) and (12), and using the Hoeffding-Serfling inequality (Lemma 9) after
observing that bq ≤ xq

i ≤ aq for all i, we get

P [|S − µ| ≥ ε] ≤ P
[
|Sq − µq| ≥ (1− 2q)bq−1ε

]
≤ 2 exp

(
− 2n(1− 2q)2b2q−2ε2

(1− n
N )(1 + 1

m )(aq − bq)2

)
.

• For q = 0:

P [log(µ− ε) < logS < log(µ+ ε)] = P
[
log(1− ε

µ
) < logS − logµ < log(1 +

ε

µ
)

]
≥ P

[
− ε

µ+ ε
< logS − logµ <

ε

µ+ ε

]
≥ P

[
− ε

b+ ε
< logS − logµ <

ε

b+ ε

]
, (13)

where we have used the following approximation (holding for 0 < x < 1):

log(1− x) ≤ − x

1 + x
< 0 <

x

1 + x
≤ log(1 + x).

Combining Eq. (11) and (13) and using the Hoeffding-Serfling inequality (Lemma 9) after
observing that log a ≤ log xq

i ≤ log b for all i, we get

P [|S − µ| ≥ ε] ≤ P
[
| logS − logµ| ≥ ε

b+ ε

]
≤ 2 exp

(
− 2nε2

(1− n
N )(1 + 1

m )(b+ ε)2(log b− log a)2

)
.
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• For 0 < q < 1:

P [(µ− ε)q < Sq < (µ+ ε)q] = P
[(

1− ε

µ

)q

µq < Sq <

(
1 +

ε

µ

)q

µq

]
≥ P

[
− qεµq

µ+ (1− q)ε
< Sq − µq <

qεµq

µ+ (1− q)ε

]
≥ P

[
− qεµq

b+ (1− q)ε
< Sq − µq <

qεµq

b+ (1− q)ε

]
≥ P

[
− qaqε

b+ (1− q)ε
< Sq − µq <

qaqε

b+ (1− q)ε

]
= P

[
|Sq − µq| < qaqε

b+ (1− q)ε

]
(14)

where we have used the following approximation (holding for 0 < x ≤ 1 and 0 < q < 1):

(1− x)q ≤ 1− qx

1 + (1− q)x
< 1 < 1 +

qx

1 + (1− q)x
≤ (1 + x)q.

Combining Eq. (11) and (14), and using the Hoeffding-Serfling inequality (Lemma 9) after
observing that aq ≤ xq

i ≤ bq for all i, we get

P [|S − µ| ≥ ε] ≤ P
[
|Sq − µq| ≥ qaqε

b+ (1− q)ε

]
≤ 2 exp

(
− 2nq2a2qε2

(1− n
N )(1 + 1

m )(b+ (1− q)ε)2(bq − aq)2

)
.

• For q = 1: We directly apply the Hoeffding-Serfling inequality (Lemma 9) to obtain

P [|S − µ| ≥ ε] ≤ 2 exp

(
− 2nε2

(1− n
N )(1 + 1

m )(b− a)

)
.

• For q > 1:

P [(µ− ε)q < Sq < (µ+ ε)q] = P
[(

1− ε

µ

)q

µq < Sq <

(
1 +

ε

µ

)q

µq

]
≥ P

[(
1− qε

µ+ qε

)
µq < Sq <

(
1 +

qε

µ+ qε

)
µq

]
≥ P

[(
1− qε

b+ qε

)
µq < Sq <

(
1 +

qε

b+ qε

)
µq

]
≥ P

[
µq − qaqε

b+ qε
< Sq < µq +

qaqε

b+ qε

]
= P

[
|Sq − µq| < qaqε

b+ qε

]
(15)

where we have used the following approximation (holding for 0 < x ≤ 1 and q > 1):

(1− x)q ≤ 1− qx

1 + qx
< 1 < 1 +

qx

1 + qx
≤ (1 + x)q.

Combining Eq. (11) and (15), and using the Hoeffding-Serfling inequality (Lemma 9) after
observing that aq ≤ xq

i ≤ bq for all i, we get

P [|S − µ| ≥ ε] ≤ P
[
|Sq − µq| ≥ qaqε

b+ qε

]
≤ 2 exp

(
− 2nq2a2qε2

(1− n
N )(1 + 1

m )(b+ qε)2(bq − aq)2

)
.
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• For q = +∞: Since we make no assumptions on the distributions of xi other than a ≤ xi ≤
b, we can only guarantee that |maxxi∈Xn xi−maxxi∈X xi| < ε if xmax = argmaxxi∈X xi

is sampled in Xn. This happens with probability at least n
N (the maximum might not be

unique), and thus P [|maxxi∈Xn
xi −maxxi∈X xi| ≥ ε] ≤ 1− n

N .

• For q = −∞: Same analysis as for q = +∞.

Lemma 6. Let f : S → [fmin, fmax] be a bounded function with 0 ≤ fmin ≤ fmax < ∞, and
p, p̂ ∈ P(S) be two distributions such that DKL(p∥p̂) ≤ d ∈ R and . Then

∣∣Es∼p[f(s)]− Es∼p̂[f(s)]
∣∣ ≤ 2(fmax − fmin)

√
min{d

2
, 1− e−d}.

Proof. ∣∣Es∼p[f(s)]− Es∼p̂[f(s)]
∣∣ = ∣∣∣∣∫

S
f(s)p(s) ds−

∫
S
f(s)p̂(s) ds

∣∣∣∣
=

∣∣∣∣∫
S
(f(s)− fmin)p(s) ds−

∫
S
(f(s)− fmin)p̂(s) ds

∣∣∣∣
=

∣∣∣∣∫
S
(f(s)− fmin)(p(s)− p̂(s)) ds

∣∣∣∣
≤
∫
S
|f(s)− fmin||p(s)− p̂(s)|ds

≤ (fmax − fmin)

∫
S
|p(s)− p̂(s)|ds

= 2(fmax − fmin)δ(p, p̂)

where we have used the definition of the total variation distance: δ(p, p̂) = 1
2

∫
S |p(s)− p̂(s)|ds. By

Pinsker’s inequality, we have

δ(p, p̂) ≤
√

1

2
DKL(p∥p̂).

Additionally, by Bretagnolle and Huber’s inequality:

δ(p, p̂) ≤
√
1− e−DKL(p∥p̂).

The result follows from the assumption DKL(p∥p̂) ≤ d.

Lemma 7. Let Q̂ be a (randomized) approximation of Q∗ such that |Q∗(s, a)− Q̂(s, a)| ≤ ε with
probability at least 1− δ for any state-action pair (s, a), with ε > 0 and 0 ≤ δ < 1. Let πQ̂ be the

greedy policy defined by πQ̂(s) = argmaxa∈A Q̂(s, a). Then, for all states s:

1) V ∗(s)− V πQ̂(s) ≤ 2ε

1− γ
+ γk(Vmax − Vmin) with probability at least 1− 2kδ,∀k ∈ N∗,

2) V ∗(s)− V πQ̂(s) ≤ 2ε+ 2δ(Vmax − Vmin)

1− γ
almost surely.

Proof. First, note that if |Q∗(s, a)− Q̂(s, a)| ≤ ε with probability at least 1− δ for all state-action
pairs (s, a), then Q∗(s, π∗(s))−Q∗(s, πQ̂(s)) ≤ 2ε with probability at least 1− 2δ since

Q∗(s, π∗(s)) ≤ Q̂(s, π∗(s)) + ε ≤ Q̂(s, πQ̂(s)) + ε ≤ [Q∗(s, πQ̂(s)) + ε] + ε.

The factor 2 in the probability comes from the fact that we need the Q̂ estimates to be accurate for
both actions π∗(s) and πQ̂(s). For the first inequality, note that, with probability at least 1− 2kδ, the
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first k estimates of Q̂ are 2ε-accurate for actions π∗(st) and πQ̂(st), t = 0, ..., k − 1. If this happens,
then we have

V ∗(s)− V πQ̂(s) = Q∗(s, π∗(s))−QπQ̂(s, πQ̂(s))

≤ 2ε+Q∗(s, πQ̂(s))−QπQ̂(s, πQ̂(s))

= 2ε+ γEs′∼p(·|s,πQ̂(s)) [V
∗(s′)− V πQ̂(s′)]

≤ 2ε

k−1∑
t=0

γt + γk(Vmax − Vmin)

≤ 2ε

1− γ
+ γk(Vmax − Vmin),

which concludes the first part of the proof. Concerning the second inequality, since Vmin ≤
Q∗(s, a) ≤ Vmax, we have

EQ̂

[
Q∗(s, πQ̂(s))

]
≥ (1−2δ)[Q∗(s, π∗(s))−2ε]+2δVmin ≥ Q∗(s, π∗(s)−(2ε+2δ(Vmax−Vmin)).

Let πj be a policy that replicates πQ̂ for the first j actions and that is optimal from action j + 1

onward. We now show by induction that V πj (s) ≥ V ∗(s) − λj for all s, where λ = λ1 =
2ε+ 2δ(Vmax − Vmin) and λj = λ+ γλj−1 for j > 1. This clearly holds for j = 1:

V π1(s) = EQ̂

[
r(s, πQ̂(s)) + γEs′∼p(·|s,πQ̂(s))[V

∗(s′)]
]

= EQ̂

[
Q∗(s, πQ̂(s))

]
≥ Q∗(s, π∗(s))− λ

= V ∗(s)− λ1.

For j > 1, assuming that the statement holds for j − 1, we have

V πj (s) = EQ̂

[
r(s, πQ̂(s)) + γEs′∼p(·|s,πQ̂(s))[V

πj−1(s′)]
]

≥ EQ̂

[
r(s, πQ̂(s)) + γEs′∼p(·|s,πQ̂(s))[V

∗(s′)− λj−1]
]

= EQ̂

[
r(s, πQ̂(s)) + γEs′∼p(·|s,πQ̂(s))[V

∗(s′)]
]
− γλj−1

= EQ̂

[
Q∗(s, πQ̂(s)

]
− γλj−1

≥ Q∗(s, π∗(s))− λ− γλj−1

= V ∗(s)− λj .

We now show that limj→∞ V πj (s) = V πQ̂(s) for all s. Noting that V πj (s) ≥ V πQ̂(s) (due to the
optimality of πj after j steps), we have

0 ≤ V πj (s)− V πQ̂(s) = Eτ∼pτ (·|πj ,s0=s)

[ ∞∑
i=0

γir(si, ai)

]
− Eτ∼pτ (·|πQ̂,s0=s)

[ ∞∑
i=0

γir(si, ai)

]

= Eτ∼pτ (·|πj ,s0=s)

 ∞∑
i=j

γir(si, ai)

− Eτ∼pτ (·|πQ̂,s0=s)

 ∞∑
i=j

γir(si, ai)


≤

∞∑
i=j

γi(Rmax −Rmin)

= γjRmax −Rmin

1− γ
→

j→∞
0.

Therefore, by the squeeze theorem, we have limj→∞ V πj (s)− V πQ̂(s) = 0. Finally, noting that

lim
j→∞

λj =

∞∑
j=0

γjλ =
λ

1− γ
,
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we have for all s:

V πQ̂(s) = lim
j→∞

V πj (s) ≥ V ∗(s)− lim
j→∞

λj = V ∗(s)− 2ε+ 2δ(Vmax − Vmin)

1− γ
.

Lemma 9 (Hoeffding-Serfling Inequalities [4? ]). Let X = {xi}Ni=1 be a finite set of N > 1
real points and Xn = {Xj}nj=1 a subset of size n < N sampled uniformly at random without
replacement from X . Additionally, denote µ = 1

N

∑N
i=1 xi, a = mini xi and b = maxi xi. Then, for

m = min(n,N − n) and any ε > 0:

P

∣∣∣∣∣∣ 1n
n∑

j=1

Xj − µ

∣∣∣∣∣∣ ≥ ε

 ≤ 2 exp

{
− 2ε2n

(1− n
N )(1 + 1

m )(b− a)2

}
.

Proof. First, we show the slightly more general result:

1) P

 1

n

n∑
j=1

Xj − µ ≥ ε

 ≤ exp

{
− 2ε2n

(1− n
N )(1 + 1

n )(b− a)2

}
,

2) P

 1

n

n∑
j=1

Xj − µ ≤ −ε

 ≤ exp

{
− 2ε2n

(1− n
N )(1 + 1

N−n )(b− a)2

}
.

The proof of 1) is similar to the one proposed in [4]: Let Zn = 1
n

∑n
j=1 Xj − µ. We have for any

λ > 0:

P [Zn ≥ ε] = P
[
eλnZn ≥ eλnε

]
≤ E[eλnZn ]

eλnε
≤ exp

{
1

8
(b− a)2λ2(n+ 1)

(
1− n

N

)
− λnε

}
,

where we have used Markov’s inequality along with Proposition 2.3 from [4] (slightly improving
the original result proposed by Serfling [? ]). The result 1) follows by finding λ that minimizes this
upper-bound, i.e.,

λ =
4nε

(n+ 1)(1− n
N )(b− a)2

.

For 2), we note that sampling Xn is equivalent to sampling X ′
N−n = X \Xn. Therefore:

P

 1

n

n∑
j=1

Xj − µ ≤ −ε

 = P

 1

n

 n∑
j=1

Xj − nµ

 ≤ −ε


= P

 1

n

Nµ−
N−n∑
j=1

X ′
j − nµ

 ≤ −ε


= P

N − n

n

µ− 1

N − n

N−n∑
j=1

X ′
j

 ≤ −ε


= P

 1

N − n

N−n∑
j=1

X ′
j − µ ≥ nε

N − n


≤ exp

{
− 2ε2n

(1− n
N )(1 + 1

N−n )(b− a)2

}
,

where we have used 1) in the last step. Lastly, the final result follows from Boole’s inequality (union
bound) between 1) and 2).
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A.2.2 Existence of PAA and AA policies

Theorem 3 (πPAA is δ-ε-PAA). Let MI = (S,A, p,Wq,u, γ) be a SMDP with q ∈ R and p̂

an approximate dynamics model such that d ≜ sup(s,a) DKL(p(·|s, a)∥p̂(·|s, a)) < ε2(1−γ)6

8∆U2 for

any desired tolerances ε > 0 and 0 < δ < 1. For any k ≥ logγ

(
(1−γ)ε
∆U −

√
8d

(1−γ)2

)
, define

β ≜
(

(1−γ)2ε
8 −

√
d∆U√

8(1−γ)
− (1−γ)γk∆U

8

)
and let πPAA be the policy defined in Eq. (7) with param-

eters

• H ≥ max
{
1, logγ

(
β

∆U

)}
,

• K ≥ ∆U2

β2

(
(H − 1) ln

(
H−1
√
24k(H − 1)|A|∆U2

β2

)
+ ln

(
1
δ

))
,

• C ≥ γ2

(1−γ)2K,

• n ≥ N
(
1 + ∆U2N

2K Γ (β, Umin, Umax, q)
)−1

,

and where Γ (β, Umin, Umax, q) is a function defined in Eq. (9). Then πPAA is a δ-ε-PAA policy.

Proof. Similarly to [19], the core idea (and challenge) of the proof is to bound |Q∗(s, a)− Q̂H(s, a)|
for all state-action pairs so that Lemma 7. However, in contrast with [19], we must now deal with an
approximate dynamics model, as well as an approximate reward, which significantly complicates the
task. To do so, we write the following for h > 0 (omitting the dependency of K, C and In in the
notation):

Q∗(s, a)− Q̂h(s, a) = rI(s, a)− r̂In(s, a) + γ
(
Es′∼p(·|s,a)[V

∗(s′)]− ÊC
s′∼p̂(·|s,a)[V̂

h−1(s′)]
)

= Es′∼p(·|s,a)[Wq(u(s′); I)]− ÊK
s′∼p̂(·|s,a)[Wq(u(s′); In)]

+ γ(Es′∼p(·|s,a)[V
∗(s′)]− ÊC

s′∼p̂(·|s,a)[V̂
h−1(s′)])

= Es′∼p(·|s,a)[Wq(u(s′); I)]− Es′∼p(·|s,a)[Wq(u(s′); In)]
+ Es′∼p(·|s,a)[Wq(u(s′); In)]− Es′∼p̂(·|s,a)[Wq(u(s′); In)]

+ Es′∼p̂(·|s,a)[Wq(u(s′); In)]− ÊK
s′∼p̂(·|s,a)[Wq(u(s′); In)]

+ γ(Es′∼p(·|s,a)[V
∗(s′)]− Es′∼p̂(·|s,a)[V

∗(s′)])

+ γ(Es′∼p̂(·|s,a)[V
∗(s′)]− ÊC

s′∼p̂(·|s,a)[V
∗(s′)])

+ γ(ÊC
s′∼p̂(·|s,a)[V

∗(s′)]− ÊC
s′∼p̂(·|s,a)[V̂

h−1(s′)])

such that, for any state-action pair,

|Q∗(s, a)− Q̂h(s, a)| ≤ Es′∼p(·|s,a)[|Wq(u(s′); I)−Wq(u(s′); In)|︸ ︷︷ ︸
Z1

]

+ |Es′∼p(·|s,a)[Wq(u(s′); In)]− Es′∼p̂(·|s,a)[Wq(u(s′); In)]|︸ ︷︷ ︸
Z2

+ |Es′∼p̂(·|s,a)[Wq(u(s′); In)]− ÊK
s′∼p̂(·|s,a)[Wq(u(s′); In)]|︸ ︷︷ ︸

Z3

+ γ |Es′∼p(·|s,a)[V
∗(s′)]− Es′∼p̂(·|s,a)[V

∗(s′)]|︸ ︷︷ ︸
Z4

+ γ |Es′∼p̂(·|s,a)[V
∗(s′)]− ÊC

s′∼p̂(·|s,a)[V
∗(s′)]|︸ ︷︷ ︸

Z5

+ γ ÊC
s′∼p̂(·|s,a)[|V

∗(s′)− V̂ h−1(s′)|]︸ ︷︷ ︸
Z6
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where we have used the triangle inequality, the linearity of expectation and the fact that |E[X]| ≤
E[|X|] for any random variable X . From Lemma 5, we have that Z1 ≤ ε1 with probability at least
1− δ1 where

δ1 ≜ 2 exp

(
− 2nε21
(1− n

N )(1 + 1
m )

Γ(ε1, Umin, Umax, q)

)
≤ 2 exp

(
− nε21
1− n

N

Γ(ε1, Umin, Umax, q)

)
.

Recall that Umin ≤ Wq(u(s)) ≤ Umax and Vmin = Umin

1−γ ≤ V ∗(s) ≤ Umax

1−γ = Vmax for any state
s and utility profile u. Therefore, from Lemma 6, we have (with probability 1)

Z2 ≤ 2∆U

√
min{d

2
, 1− e−d} ≜ ε2 and Z4 ≤ 2

∆U

1− γ

√
min{d

2
, 1− e−d} ≜ ε4, (16)

where ∆U ≜ Umax−Umin and d ≜ sup(s,a) DKL(p(·|s, a)||p̂(·|s, a)). Furthermore, by the standard
Hoeffding’s inequality, we have Z3 ≤ ε3 with probability at least 1− δ3 where

δ3 ≜ 2 exp

(
−2Kε23

∆U2

)
,

and Z5 ≤ ε5 with probability at least 1− δ5 where

δ5 ≜ 2 exp

(
−2C(1− γ)2ε25

∆U2

)
.

Finally, we have

ÊC
s′∼p̂(·|s,a)[|V

∗(s′)− V̂ h−1(s′)|] = 1

C

C∑
i=1

|V ∗(si)− V̂ h−1(si)|

=
1

C

C∑
i=1

|max
a

Q∗(si, a)−max
a

Q̂h−1(si, a)|

≤ 1

C

C∑
i=1

|Q∗(si, ãi)− Q̂h−1(si, ãi)|

with

ãi ≜

{
argmaxa Q

∗(si, a) if maxa Q
∗(si, a) ≥ maxa Q̂

h−1(si, a)

argmaxa Q̂
h−1(si, a) if maxa Q

∗(si, a) < maxa Q̂
h−1(si, a)

,

and where the last inequality is obtained after a careful analysis of the absolute value operator. This
suggests that we can proceed by induction on h. Let α0 ≜ ∆U

1−γ and αh ≜ ε1 + ε2 + ε3 + γ(ε4 +

ε5 + αh−1) for h > 0, and let ϕ0 ≜ 0 and ϕh ≜ δ1 + δ3 + δ5 + C|A|ϕh−1 for h > 0. We start the
induction by noting that, for any state-action pair,

|Q∗(s, a)− Q̂0(s, a)| = |Q∗(s, a)| ≤ ∆U

1− γ
= α0 with probability 1 = 1− ϕ0

For h > 1, assuming that, for any state-action pair, |Q∗(s, a)− Q̂h−1(s, a)| ≤ αh−1 with probability
at least 1− ϕh−1, we have from above

|Q∗(s, a)− Q̂h(s, a)| ≤ ε1 + ε2 + ε3 + γ(ε4 + ε5 + αh−1) = αh (17)

with probability at least 1− δ1 − δ3 − δ5 − C|A|ϕh−1 = 1− ϕh, as we require that all C estimates
of Q̂h−1 are accurate for each action. Solving for αH , we get

αH =

H−1∑
i=0

γi(ε1 + ε2 + ε3 + γ(ε4 + ε5)) + γH ∆U

1− γ

= (ε1 + ε2 + ε3 + γ(ε4 + ε5))
1− γH

1− γ
+ γH ∆U

1− γ

≤ ε1 + ε2 + ε3 + γ(ε4 + ε5) + γH∆U

1− γ
. (18)
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Note that ε2 and ε4 in Eq. (16) are non-controllable and only depend on the accuracy of the en-
vironment model p̂. If we require |V ∗(s) − V πPAA(s)| ≤ ε, then we must have 2(ε2+γε4)

(1−γ)2 < ε

from Lemma 7. Using the definitions of ε2 and ε4 from Eq. (16), this condition becomes
min{d

2 , 1 − e−d} < (1−γ)6ε2

16∆U2 with d ≜ sup(s,a) DKL(p(·|s, a)∥p̂(·|s, a)). Since ε ≤ ∆U
(1−γ) (as

the bound would be trivial otherwise), the right-hand side of the inequality is less than 1, and thus it is
less restrictive (on p̂) to only bound d

2 (as x
2 ≤ 1− e−x for x ∈ [0, 1]), which concludes the proof on

the required accuracy of the dynamics model. Now that we have ensured that the environment model
is accurate enough, we must choose the algorithm’s parameters (namely K, C and n) to ensure that
the other inaccuracies do not exceed the remaining “approximation budget"

ε− 2(ε2 + γε4)

(1− γ)2
≥ ε−

√
8d∆U

(1− γ)3
> 0.

Solving for ϕH , we get

ϕH = (δ1 + δ3 + δ5)

H−1∑
i=0

(C|A|)i

= (δ1 + δ3 + δ5)
(C|A|)H − 1

C|A| − 1

≤ 2(δ1 + δ3 + δ5)(C|A|)H−1, (19)

where the last inequality follows from the fact that C|A| − 1 ≥ 1
2C|A| as C ≥ 1 and |A| ≥ 2.

Finally, using part 1) of Lemma 7, we get that for any state s, with probability at least 1 − 2kϕH ,
h ∈ N∗,

V ∗(s)− V πPAA(s) ≤ 2αH + γk∆U

1− γ
(20)

≤ 2

(1− γ)2

(
ε1 + ε2 + ε3 + γ(ε4 + ε5) + γH∆U +

1− γ

2
γk∆U

)
.

That is, using the definitions of ε2 and ε4, and imposing the tolerance ε, we require

ε1 + ε3 + γε5 + γH∆U +
1− γ

2
γk∆U ≤ (1− γ)2

2

(
ε−

√
8d∆U

(1− γ)3

)
.

We fix ε1 = ε3 = γε5 = γH∆U = (1−γ)2

8

(
ε−

√
8d∆U

(1−γ)3 − 1
1−γ γ

k∆U
)

≜ β. From that,

we directly obtain the required planning “depth” H = max
{
1,
⌈
logγ

(
β

∆U

)⌉}
, as well as the

lower bound k ≥ logγ

(
(1−γ)ε
∆U −

√
8d

(1−γ)2

)
. Additionally, we choose C = γ2

(1−γ)2K such that

δ3 = δ5 = 2 exp
(
− 2Kβ2

(∆U)2

)
, and we choose n such that δ1 ≤ δ3, or equivalently

nΓ(β, Umin, Umax, q)

(1− n
N )

≥ 2K

∆U2
.

This is satisfied for

n ≥ N

(
1 +

∆U2Γ(β, Umin, Umax, q)N

2K

)−1

.

With this choice of C and n, we can write

δ1 + δ3 + δ5 ≤ 6 exp

(
−2Kβ2

∆U2

)
.

The last step is to choose K such that 2kϕH ≤ δ, that is

24k(K|A|)H−1 exp

(
−2Kβ2

∆U2

)
≤ δ. (21)
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If H = 1 (i.e., γ ≤ β
∆U ), we can simply choose

K ≥ ∆U2

2β2
ln

(
24k

δ

)
,

and if H > 1 (i.e., γ > β
∆U ), we can choose

K ≥ ∆U2

β2

(
(H − 1) ln

(
H−1
√
24k(H − 1)|A|∆U2

β2

)
+ ln

(
1

δ

))
.

Indeed, setting x ≜ H−1
√
24k(H − 1)|A| and y ≜ β

∆U and substituting the expression for K, the
left-hand term of inequality (21) can be rewritten as

(
x

y2

)H−1(
ln

(
x

y2

)
+

1

H − 1
ln

(
1

δ

))H−1(
y2

x

)2(H−1)

δ2 =

 ln

(
x

y2δ
1

H−1

)
x
y2


H−1

δ2

=

 ln

(
x

y2δ
1

H−1

)
xδ

1
H−1

y2δ
1

H−1


H−1

δ2

=

 ln

(
x

y2δ
1

H−1

)
x

y2δ
1

H−1


H−1

δ

≤ δ, (22)

where we have used the observation that x ≥ 1 and y ≤ 1 along with the fact that 0 ≤ ln(z)
z ≤ 1 for

all z ≥ 1 in the last step. Finally, assuming there exists an optimal policy in MI (see [12, 35] for the
necessary conditions), and knowing from Lemma 1 that V π(s) = Wπ(s) for any policy, we know
that V ∗(s)− V πPAA(s) ≤ ε implies WπPAA(s) ≥ supπ′ Wπ′

(s)− ε.

Corollary 4. Let MI = (S,A, p,Wq, u, γ) be a SMDP with q ∈ R and p̂ an approximate dynamics

model such that d ≜ sup(s,a) DKL(p(·|s, a)∥p̂(·|s, a)) < ε2(1−γ)6

8∆U2 for any desired tolerance ε > 0.

Define β ≜ (1−γ)2ε
10 −

√
2d∆U

5(1−γ) and let πPAA be the policy defined in Eq. (7) with parameters H,C

and n as in Theorem 3 and K ≥ ∆U2

β2

(
(H − 1) ln

(
H−1
√
12(H − 1)|A|∆U2

β2

)
+ ln

(
∆U
β

))
. Then

πPAA is an ε-AA policy.

Proof. The first part of the proof is identical to Theorem 3, but we use part 2) of Lemma 7 instead of
part 1) in Eq. (20). With that, we have for any state s:

V ∗(s)− V πPAA(s) ≤ 2(1− γ)αH + 2ϕH∆U

(1− γ)2

≤ 2

(1− γ)2
(
ε1 + ε2 + ε3 + γ(ε4 + ε5) + γH∆U + 2∆U(δ1 + δ3 + δ5)(C|A|)H−1

)
.

That is, using the definitions of ε2 and ε4, and imposing the tolerance ε, we require

ε1 + ε3 + γε5 + γH∆U + 2∆U(δ1 + δ3 + δ5)(C|A|)H−1 ≤ (1− γ)2

2

(
ε−

√
8d∆U

(1− γ)3

)
.

We fix ε1 = ε3 = γε5 = γH∆U = β ≜ (1−γ)2

10

(
ε−

√
8d∆U

(1−γ)3

)
. From that, we directly obtain

the required planning “depth” H = max
{
1,
⌈
logγ

(
β

∆U

)⌉}
. Similarly to Theorem 3, we choose

C = γ2

(1−γ)2K and

n ≥ N

(
1 +

∆U2Γ(β, Umin, Umax, q)N

2K

)−1

,
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such that

δ1 + δ3 + δ5 ≤ 6 exp

(
−2Kβ2

∆U2

)
.

The last step is to choose K such that

12(K|A|)H−1 exp

(
−2Kβ2

∆U2

)
≤ β

∆U
. (23)

If H = 1 (i.e., γ ≤ β
∆U ), we can simply choose

K ≥ ∆U2

2β2
ln

(
12∆U

β

)
,

and if H > 1 (i.e., γ > β
∆U ), we can choose

K ≥ ∆U2

β2

(
(H − 1) ln

(
H−1
√
12(H − 1)|A|∆U2

β2

)
+ ln

(
∆U

β

))
.

We show that this choice of K satisfies Eq. (23) by setting δ = β
∆U and k = 1

2 in Eq. (22). We also
conclude the proof using Lemma 1.

A.2.3 Safe policies

Theorem 8 (Safeguarding a Black-Box Policy). Given a SMDP MI = (S,A, p,Wq,u, γ) with
q ∈ R, a predictive model p̂ and desired tolerances ω ∈ [Wmin,Wmax] and 0 < δ < 1,
define Q̂ω(s, a) ≜ Q̂H(s, a;K,C, In) with Q̂H given in Eq. (6) and any H,K,C, n ≥ 1.
For any policy π, let πsafe be the restricted version of π obtained with the restricted subsets
Asafe(s) ≜ {a ∈ A : Q̂ω(s, a) ≥ γω + Umax + α}, where

α ≜
2∆Ud′

(1− γ)2
+

√
ln
(

12(C|A|)H−1

δ

)
1− γ

(√
N − n

nNΓmax
+

√
∆U2

2K
+ γ

√
∆U2

2C(1− γ)2

)
+

γH∆U

1− γ
,

and with the shortened notation Γmax ≜ Γ(Umax, Umin, Umax, q), d′ ≜
√

min{d
2 , 1− e−d} and

d ≜ sup(s,a) DKL(p(·|s, a)∥p̂(·|s, a)). Then πsafe is δ-ω-safe.

Proof. Assuming there exists an optimal policy in MI (see [12, 35] for the necessary conditions), and
knowing from Lemma 1 that V π(s) = Wπ(s) for any policy, we can write supπ′ Wπ′

(s) = V ∗(s).
Therefore, the condition for safe actions becomes Es′∼p(·|s,a)[V

∗(s′)] ≥ ω. Using the definition of
the optimal state-action value function Q∗:

Q∗(s, a) = rI(s, a) + γEs′∼p(·|s,a)[V
∗(s′)],

we can rewrite this condition once again as

Q∗(s, a) ≥ γω + rI(s, a).

We know from Eq. (17) in the proof of Theorem 3 that, for any state-action pair (s, a),
|Q∗(s, a)− Q̂H(s, a;K,C, In)| ≤ αH with probability at least 1 − ϕH , where αH and ϕH are
given in Eq. (18) and (19), respectively. That is, if Q̂H(s, a;K,C, In) ≥ γω + rI(s, a) + αH , then
the above condition is satisfied with probability at least 1− ϕH .

From Eq. (18), we have

αH ≤ ε2 + γε4
1− γ

+
ε1 + ε3 + γε5

1− γ
+

γH∆U

1− γ
, (24)
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where (using d ≜ sup(s,a) DKL(p(·|s, a)∥p̂(·|s, a))):

ε1 =

√
N − n

nNΓ(ε1, Umin, Umax, q)
ln

(
2

δ1

)
≤

√
N − n

nNΓ(Umax, Umin, Umax, q)
ln

(
2

δ1

)
,

ε2 = 2∆U

√
min{d

2
, 1− e−d},

ε3 =

√
∆U2

2K
ln

(
2

δ3

)
,

ε4 =
2∆U

1− γ

√
min{d

2
, 1− e−d},

ε5 =

√
∆U2

2C(1− γ)2
ln

(
2

δ5

)
.

Finally, in order to obtain a δ-ω-safe policy, we must have ϕH ≤ δ. From Eq. (19), this is satisfied if

2(δ1 + δ3 + δ5)(C|A|)H−1 ≤ δ,

or similarly if δ1 = δ3 = δ5 = δ
6(C|A|)H−1 .

Defining d′ =
√
min{d

2 , 1− e−d} and Γmax = Γ(Umax, Umin, Umax, q), and substituting
ε1, ε2, ε3, ε4, ε5, δ1, δ3, δ5 in Eq. (24), we obtain

αH ≤ 2∆Ud′

(1− γ)2
+

√
ln
(

12(C|A|)H−1

δ

)
1− γ

(√
N − n

nNΓmax
+

√
∆U2

2K
+ γ

√
∆U2

2C(1− γ)2

)
+

γH∆U

1− γ
.

Using the fact that rI(s, a) ≤ Umax for any state-action pair, we can conservatively define the
restricted subsets of safe actions as Asafe(s) = {a : Q̂H(s, a;K,C, In) ≥ γω+Umax +α} for any
state s, where α is the right-hand term of the above inequality. Therefore, restricting any policy π
with these subsets ensures that Es′∼p(·|s,a)[V

∗(s′)] ≥ ω with probability at least 1− δ for any action
a that has a non-zero probability of being selected.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Answer: [Yes]
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they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should
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the model (e.g., with an open-source dataset or instructions for how to construct
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Answer: [NA]

Justification: [NA]
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that is necessary to appreciate the results and make sense of them.
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material.
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• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
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Question: For each experiment, does the paper provide sufficient information on the com-
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the experiments?
Answer: [NA]
Justification: [NA]
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or cloud provider, including relevant memory and storage.
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experimental runs as well as estimate the total compute.
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eration due to laws or regulations in their jurisdiction).
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
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• The answer NA means that the paper poses no such risks.
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
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• For scraped data from a particular source (e.g., website), the copyright and terms of
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has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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