
DISS. ETH NO. 22905

Collaboration in Multi-Agent Systems: Adaptivity and
Active Learning

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

JARA UITTO

MSc, University of Helsinki, Finland

born on 4.11.1987

citizen of
Finland

accepted on the recommendation of

Prof. Dr. Roger Wattenhofer, examiner
Prof. Dr. Yuval Emek, co-examiner

Dr. Amos Korman, co-examiner

2015

Abstract

Communication is a powerful tool that enables the operation of a varie-
ty of old and new systems, such as mobile networks, trade, and human
relationships to name a few. Such systems consist of many actors that,
in one way or another, communicate with each other to reach a common
goal. In this dissertation, we study two rather different examples of such
multi-agent systems, namely, we explore the realm of recommendation
algorithms and networks of primitive models of computation.

In the case of recommendation algorithms, the agents are able to share
their preferences on some items via a centralized entity that keeps track
of the sharing history. The goal is to utilize the sharing history so that the
agents can learn which items they could potentially like. In the case that
the agents have many preferences in common, learning the preferences
can be helpful in finding good items for the agents. However, if the agents
do not have any preferences in common, it is hard to utilize the sharing
information. With this in mind, we propose a new scheme for competiti-
ve analysis of recommendation algorithms, where we compare our online
algorithms to offline algorithms, that have limited information about the
input. In addition, we propose an online algorithm that finds a good item
for every agent in the system that has, up to a polylogarithmic factor, an
optimal competitive ratio in terms of our new scheme.

In the second part of the dissertation, we focus on the Stone Age model
of computation, where the agents are modeled by finite state machines.
First, we study the computation of a maximal independent set (MIS)
motived by observations from biology, where cells are known to solve this
problem. We extend the study to arbitrary networks, where the nodes
are subject to crash failures. We propose a distributed algorithm that is,
on top of solving the MIS problem in the presence of failures, able to
contain the effects of the failures from the nodes of the network that are
not directly connected to the failed nodes.

Second, we study the Ants Nearby Treasure Search (ANTS) problem
in a similar model, where the agents are mobile. Our problem setting is
motivated by the foraging behavior of real world ants and the goal of our
agents is to locate a treasure hidden in an infinite grid. The agents are
faced by two different challenges in the environment. One of the challenges

is unexpected deaths (failures) of the agents, which require the agents to
replace the dead agents to ensure that the treasure is eventually discover-
ed. The other challenge considers obstructions, that is, the agents have to
adapt to arbitrary obstacles in the environment. We show that by means
of cooperation, the agents are able to deal with both challenges and only
require a small overhead in the time complexity or in the number of agents
required to solve the task.

Astratto

La communicazione è uno strumento molto potente che permette la
creazione di numerosi sistemi sia nuovi che vecchi, come per esempio reti di
communicazioni mobili, commercio e relazioni umane. Questi sistemi sono
composti da un numero di attori che, in un modo o l’altro, comunicano
tra di loro per compiere un’obiettivo comune. In questa dissertazione,
studiamo due esempi molto diversi di questi sistemi multi-agenti, cioè
esploriamo algoritmi di raccomandazione e reti di modelli primitivi di
compiutazione.

Nel caso degli algoritmi di raccomandazione, gli agenti hanno la pos-
sibilità di scambiare le loro preferenze a proposito di oggetti tramite
un’entità centralizzata che registra le condivisioni. Lo scopo è di utilizza-
re le preferenze condivise in modo tale che gli agenti imparano le proprie
preferenze basate su quelle condivise. Nel caso due entità hanno molte
preferenze in comune, imparare le preferenze può aiutare per trovare nuo-
vi oggetti. Se gli agenti non hanno alcuna preferenza in comune è difficile
dedurre le possibili preferenze da quelle condivise. Tenendo conto di que-
sto, proponiamo un nuovo schema per l’analisi competitiva per algoritmi
di raccomandazione, nel quale confrontiamo algoritmi online con algoritmi
offline, che hanno una vista incompleta delle preferenze nel sistema. Inol-
tre proponiamo un algoritmo online che trova raccomandazioni per ogni
entità nel sistema e che sono ottimi, aparte un fattore polilogaritmico,
secondo l’analisi competitiva presentata.

Nella seconda parte della dissertazione ci concentriamo sul modello di
computazione neolitico nel quale agenti sono modellati come automa a sta-
ti finiti. Inizialmente studiamo la computazione di insiemid’indipendenza
massimali (IIM) motivati da osservazioni dalla biologia che indicano che
cellule sono capaci di trovare una soluzione. Estendiamo lo studio a reti
generiche nel quale agenti possono fallire. Proponiamo un algoritmo distri-
buito che, oltre a trovare soluzioni del problema IIM, riesce anche a isolare
effetti provocati da fallimenti di agenti se non direttamente connessi con
agenti falliti.

Infine studiamo il problema FORMICHE in un modello simile nel quale
gli agenti sono mobili. Il problema è ispirato dal comportamento foraggero
di formiche reali, e lo scopo è di trovare una fonte di cibo su una grig-

lia infinita. Gli agenti incontrano due problemi nell’ambiente. Il primo
problema è quello della morte improvvisa (fallimento) degli agenti, che
necessita rimpiazzare l’agente fallito per assicurare che alla fine il cibo
viene trovato. L’altro problema si pone se ci sono ostacoli nell’ambiente
che bisogna circumnavigare, richiedendo un’adattamento della strategia
all’ambiente. Proviamo che grazie alla cooperazione gli agenti riescono a
risolvere entrambi i problemi, necessitando solo di un piccolo incremen-
to nella complessita temporale o nel numero degli agenti per trovare una
soluzione.

Acknowledgements

In the following, I would like to express my gratitude to the people
that helped me along my PhD studies. First, I would like to thank my
supervisor Roger Wattenhofer for granting me the opportunity to work
for his research group. In particular, I appreciate the enormous impact
that you had on my presentation skills and all the fruitful discussions we
had when I was stuck on my research problems. Let us also not forget to
mention that I am happy that you (and all the others in DISCO group)
were able to tolerate my weird sense of humor for four years.

Then, I would like to thank my co-referees Yuval Emek and Amos
Korman for all the effort they put into reviewing my thesis and attending
my defense. During my studies, Yuval also guided me through nasty
formal proofs and taught me plenty of things that should not be said in
the security check when entering the plane to/from Israel.

During my time at the Distributed Computing Group I met many
wonderful people that made my experience immemorial. I want to thank
Pascal Bissig for all the pleasant images, Philipp Brandes for helping me
to get to the Diamond league in Starcraft 2, Sebastian Brandt for teaching
the proper way to sit down on a sofa, Christian Decker for sharing my
forgetfulness, Raphael Eidenbenz for his turtle shot, Beat Futterknecht
for being truly super-efficient, Klaus-Tycho Förster for coming whenever
needed, Benny Gächter for keeping up the motivation to go to the Crossfit-
box, Michael König for showing how to make essentially anything into a
funny(?) joke, Tobias Langner for his big, black, and sturdy bottle-opener,
Laura(a) Peer for being a cat-expert, Jochen Seidel for letting me use his
bathroom rug, Jasmin Smula for her +1 intelligence hat, David Stolz for
his insights combined with the grin, Samuel Welten for involving me in his
weather balloon project and teaching me how to boulder around tables,
and Stephan Holzer for sharing an office with me during the start of my
PhD.

I am in debt to Panda Metaiel and Pandatar Matkustus for solving,
more or less, all the tough questions regarding my research topics and for
letting me participate in the talks they gave around the world. I would
also like to thank my previous supervisors Jukka Suomela and Petteri
Nurmi for showing me the way into research and giving me plenty of

advice on how to survive in the academic world.
Furthermore, I would like to thank my mother Pirjo Pernu for her

indomitable effort to keep me motivated during all my studies and my
siblings Miranna and Jyry for their support. I would also like to thank
my good friends Pekka Hiltunen and Niko Ahonen for their unwavering
love and making sure that I do not forget everything about Finnish culture
by inviting me and my colleagues to lake excursions and metal concerts.

Finally, I am very grateful to my girlfriend (and colleague) Barbara
Keller for discovering the connection between my name and the Indian
goddess of household and kitchen and letting me express my thereby
assumed “spiritual” side. I am looking forward to the transmission of
Epsilon.

Contents

1 Collaboration in Multi-Agent Systems 1

I Competitive Recommendations 5

2 Introduction 7
2.1 Related Work . 11

3 The Online Algorithm 15
3.1 Model . 15
3.2 The Quasi-offline Algorithm 17
3.3 Online Algorithms . 21

4 The Anonymous Algorithm 31
4.1 Model . 32
4.2 Anonymous Recommendations 33
4.3 Learning the Preferences 35
4.4 The Greedy mssc Algorithm 44

5 Conclusion 49

II Adaptivity in the Stone Age Model 51

6 Fault Tolerance 53
6.1 Related Work . 55
6.2 Model . 58
6.3 Maximal Independent Set 61
6.4 The Fixing Component 71
6.5 Lower Bound . 75
6.6 Pseudo-Locality . 76

7 Mobile Agents 79
7.1 Related Work . 81
7.2 Model . 82
7.3 An n-Robust Protocol . 84
7.4 Runtime . 96

8 Labyrinth Search 99
8.1 Model . 100
8.2 Basic Idea . 102
8.3 Basic Capabilities . 104
8.4 Advanced Procedures . 109
8.5 Searching the Plane . 116

9 Conclusion 121

1
Collaboration in Multi-Agent
Systems

Collective effort is the main building block of many fundamental systems
that exist in the world today and, for example, the modern society as such
could not exist without people working together. The need for collabo-
ration between the entities of a system becomes even more evident when
looking at examples like sports teams, traffic, ant colonies, or biological
cells. The common feature among all of the aforementioned examples is
that the system consists of many entities or agents that wish to reach a
certain global or selfish goal. These entities can communicate with each
other by various means, such as observing each other and sending mes-
sages. The communication can be local, like in the traffic example, where
the entities can only observe the actions of the other entities in the vis-
ibility range or global, like in the sports team example, where it may be

2 CHAPTER 1. COLLABORATION IN MULTI-AGENT SYSTEMS

possible to observe the whole configuration of the game. Furthermore,
the goal can only be reached if the entities work together, or at least the
entities not cooperating can be prevented from ruining the task for the
rest.

One of the intriguing questions related to such multi-agent systems
is how much cooperation is required between the agents. On one end of
the spectrum is the case where each agent acts alone and independent
from other agents, whereas on the other end, every agent reports every
step they take to every other agent before proceeding to the next step.
In the first part of this thesis, we study this question in the context of
recommendation algorithms. Our goal is to find an item for every agent
that the agent likes while minimizing the communication needed between
the agents.

Intuitively, one can guess which items the agents like by knowing the
preferences of other agents. Given that the preferences of people are not
independent of each other, which is quite commonly the case, agents can
indeed improve the quality of the recommendation algorithm by providing
the algorithm with accurate knowledge of their preferences. In the first
part of this thesis, we study the amount of knowledge each agent has
to contribute to the system until every user has found an item that he
or she likes. We show that the similarity between the preferences of the
agents directly affects the amount of information we have to learn from the
agents. Furthermore, we analyze our algorithms in a competitive manner
and show bounds on the runtime, i.e., the number of preferences that
have to be queried during the execution, that are tight up to logarithmic
factors.

Another interesting question is related to the capabilities of the agents,
i.e., what kind of model of computation/communication are the agents
employing. For example, it is clear that the communication model that a
colony of ants employ to find a new location for their nest is completely
different to the one that a sports team uses to communicate their strategy.

In the second part of the thesis, we focus on the individual capabilities
of the agents. Our models are based on the so called Stone Age model
introduced by Emek et al. [35], where the agents are only allowed to
communicate with messages that are of constant size with respect to the
number of agents and the agents are controlled by finite state automata.

3

The motivation behind this model is to bring the capabilities of the agents
closer to biological systems such as cellular networks, where the agents,
i.e., the cells, are likely not to be Turing complete.

This thesis brings this attempt further by extending the Stone Age
model to enable the agents to adapt to unpredictable environments and
to changes in their environment. First, we study a variant of the stone
age model which incorporates crash failures of nodes. We show that even
in the presence of crash failures, the agents are able to solve fundamental
problems efficiently.

Second, we study a variant that enables the agents to be mobile, which
brings the model closer to settings such as the foraging of ants. Since ants
are subject to various hazards in the environment, it is crucial for the
survival of the nest as a community to be able to tolerate the deaths of
many of their members. Our results show that even if a constant factor
of the foraging ants die in our model, the ants are still able to locate the
food. Furthermore, the runtime is asymptotically optimal in the case that
all the ants survive.

Finally, we include obstacles into our foraging model which brings us
closer to the field of graph exploration. We restrict our search domain to
labyrinths, i.e., an infinite grid where any subset of nodes/cells along with
their adjacent edges are removed. We show that it is possible for even a
small group of ants to locate the food within an arbitrary labyrinth.

Part I

Competitive Analysis of
Recommendation Algorithms

5

2
Introduction

Algorithmic research studies a variety of models that are beyond the tradi-
tional input-output paradigm, where the whole input is given to the algo-
rithm. Examples of such unconventional models are distributed, stream-
ing, and multiparty algorithms (where the input is distributed in space),
or regret, stopping, and online algorithms (where the input is distributed
in time). Not having all the input initially is a drawback, and one will gen-
erally not be able to produce the optimal result. Instead, the algorithm
designer often compares the result of the restricted online/distributed al-
gorithm with the result of the best offline/centralized algorithm by means
of competitive analysis.

However, it turns out, this is sometimes not possible. In particular, if
the hidden input contains more information than we can learn within the
execution of the algorithm, we might be in trouble. This is generally an
issue in the domain of recommendation and active learning algorithms.

7

8 CHAPTER 2. INTRODUCTION

In this chapter, we study a purely algorithmic learning process that
starts out with zero knowledge. Given an unknown arbitrary binary n×m
matrix, how many entries do we have to query (probe) until we find a 1-
entry in each row? Clearly the answer to this question depends on the
matrix. If all the entries of the matrix are 1, the task is trivial. On the
other hand, if there is only one 1-entry in each row at a random position,
the task is hard.

The unknown binary matrix can be seen as a preference matrix, which
represents the preferences of n users on m items. In particular, a 1-entry
at position (i, j) of the matrix indicates that user i likes item j, whereas
a 0-entry indicates that user i does not like item j. Thus, row i in the
matrix can be seen as the taste vector of user i. The goal is to satisfy each
user by finding a suitable item for her, i.e., to discover at least one 1-entry
in the taste vector of each user with as few queries as possible. We call
this problem the ignorant recommendation problem, since initially, the
algorithm is completely ignorant about the taste matrix, and only over
time (hopefully) learns about the taste of the users.

Naturally, satisfying a user who does not like any item is impossible
and therefore, we assume that the taste vector of any user u, i.e., the
row in the preference matrix that corresponds to the preferences of u,
contains at least one 1-entry. Furthermore, we observe that there are
instances of the ignorant recommendation problem, where any algorithm
performs badly. An example of such an input is a matrix with one 1-
entry in each row at a random position. In this example, the rows share
no mutual information and therefore, the best any algorithm can do is to
query random entries of unsatisfied users until all users are satisfied. This
indicates that the cost for any algorithm is Ω(n · m) in the worst case.
Therefore, instead of looking only at the worst case input, we analyze our
algorithm in a competitive manner.

In a competitive analysis, an offline algorithm that can see the whole
input is compared against an online algorithm that has no knowledge
of the input. In other words, the offline algorithm knows the taste of
each user in advance, while the taste vectors are hidden from the online
algorithm. Thus, the offline algorithm can simply recommend each user
an item she likes, resulting in a cost of n for any input. On the other
hand, if each user likes only one item chosen independently at random, any

9

(randomized) online algorithm will have to query a single user Ω(m) times
in expectation before finding the item she likes. Therefore, the competitive
ratio of any online algorithm against the optimal offline algorithm is Ω(m).
Note that an algorithm that simply reveals every entry of the input matrix
achieves this competitive ratio and in this sense, this competitive ratio is
trivial.

Since we do not want to change the ignorant recommendation prob-
lem, our only hope is to make the non-ignorant competition weaker. What
is the strongest model for the offline algorithm that allows reasonable (or
non-trivial) results? We study two different models for the offline algo-
rithm, namely the static model and the anonymous model. To emphasize
that we are not comparing our algorithm to the optimal offline algorithm
algorithm that sees the whole input matrix, we refer to the offline algo-
rithm in the weaker static and anonymized models as the quasi-offline
algorithm. Furthermore, we refer to the analysis against the quasi-offline
algorithm as quasi-competitive.

Definition 2.1 (Quasi-Competitiveness). Let A be an online algorithm.
Algorithm A is α-quasi-competitive if for all inputs I

c(A(I)) ≤ α · c(OPTq(I)) +O(1) .

where OPTq is the optimal quasi-offline algorithm and c(·) is the cost
function of A and OPTq, respectively.

In the static model, we hide the input matrix from the adversary and
instead, only show the quasi-offline algorithm a probability distribution
D over possible preference vectors and the number of users n. We refer to
this variant of the recommendation problem as the static recommendation
problem. For every execution of the quasi-offline algorithm, the preference
vectors of the n users are chosen independently at random from D. We
show that from the perspective of the static quasi-offline algorithm, solv-
ing our problem is equivalent to solving the Min Sum Set Cover (mssc)
problem.

The input of mssc is, similarly to the well-known Set Cover problem,
a collection of sets, but the output is an ordered list of the sets. This order
induces a cost for each element, where the cost is the ordinal of the first
set that covers the element. The optimal solution to mssc minimizes the

10 CHAPTER 2. INTRODUCTION

expected cost for a randomly chosen element. To connect our problem to
mssc, we identify each user with an element and each item with the set
of users that like it. Therefore, the problem becomes static in the sense
that it does not help the quasi-offline algorithm to adapt the strategy
according to the execution history.

In the anonymous model, the quasi-offline algorithm knows the whole
taste matrix, but the users are anonymous, i.e., the rows of the taste ma-
trix have been permuted arbitrarily. We call this variant the anonymous
recommendation problem. The anonymous setting allows the quasi-offline
algorithm to make use of an adaptive strategy, in which the ordering of
the items, according to which they are recommended to users, can be
different to different users and change after each recommendation. The
anonymous model is at least as strong as the static model in the sense
that any quasi-offline algorithm running in the anonymous model has at
most the same runtime as the same algorithm running in the static model
with the same input matrix.

Our aim is to first show in Chapter 3 that there exists an online ig-
norant recommendation algorithm that achieves a quasi-competitive ratio
of O(

√
n log2 n) when compared to an quasi-offline algorithm in the static

model. In addition, we show that the corresponding quasi-competitive
ratio for any algorithm is Ω(

√
n).

Then, in Chapter 4, we show that the anonymous and the static mod-
els are asymptotically equally strong, that is, given the same input, the
runtime of the optimal quasi-offline algorithm in the anonymous model
is asymptotically the same as the runtime of the optimal quasi-offline
algorithm in the static model.

Furthermore, for the mssc problem, it is known that the greedy al-
gorithm is a 4-approximation [17]. We make use of this result when ana-
lyzing our online algorithm in the static model by considering the greedy
algorithm instead of the optimal quasi-offline algorithm. The relations
between the aforementioned problems are illustrated in Figure 2.1.

Finally, consider a matrix where everyone likes item b and there are
m− 1 items that no one likes. The optimal static quasi-offline algorithm
simply proposes item b to every user, resulting in a cost of n in total. On
the other hand, an online algorithm that does not know which item is the
popular one can be forced to do Ω(m) queries to find a single 1-entry in the

2.1. RELATED WORK 11

[17]

O(1)O(1)O(
√
n log2 n)

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Static
Opt

Anonymous
Opt

Ignorant
Opt

Static
Greedy

Figure 2.1: We show that, from an asymptotic perspective, the static model
and the anonymous model for the offline algorithm are equally strong. Then, we
give an online algorithm that attains a quasi-competitive ratio of O(

√
n log2 n)

against the greedy algorithm for mssc, and thus also for the optimal static quasi-
offline algorithm as well as the optimal anonymous quasi-offline algorithm.

matrix. This indicates that the number of items dominates the running
time of any online algorithm while not affecting the cost of the quasi-
offline algorithm. To make the cost of the online algorithm comparable
to the quasi-offline algorithm, we assume that the number of items is not
much larger than the number of users, i.e., m ∈ O(n). We emphasize that
besides this restriction and assuming that the input is feasible, i.e., every
user likes at least one item, we do not assume anything from the input.

2.1 Related Work

Our problems are variants of online recommendation problems. Learning
recommendation systems, where the goal is to get a good estimation of
the whole preference matrix, has been studied by Alon et al. [6]. They
showed that with high probability1, one can learn the matrix with little
error in polylogarithmic time in a distributed setting given that there are
similarities between the preferences of different users. The main connec-
tion between their work and ours is the model, i.e., the task is to learn
properties of the input matrix by probing the entries of the matrix and to
minimize the number of probes. The main difference is in the objective
and in the complexity measure. They are learning the matrix to distin-
guish between different users and to thereby provide good individual rec-

1We say that an event occurs with high probability, if the event occurs with prob-
ability at least 1− n−c, where c is an arbitrarily large constant.

12 CHAPTER 2. INTRODUCTION

ommendations, whereas we are not interested in all the items a user likes
and only aim to find some intersecting preferences to find a single item of
interest for everyone. Furthermore, we benchmark our algorithms against
mssc, which overcomes the trivial worst-case lower bound of Ω(n2) in the
case where there are no mutual information between the rows.

Our recommendation problems are special cases of learning a binary
relation. Goldman et al. studied a more general version of the problem,
where the task of the learner is to predict given entries in the matrix. They
showed that with an arbitrary input, the learner can be forced to make
Ω(n2) mistakes [48]. They studied the learning task with four different
kinds of input sequences: a helpful teacher, random, an adversary, and a
case where the learner can choose which entry to look at. Furthermore,
Kaplan et al. [56] gave more general bounds for similar learning tasks by
converting the input of mssc into a set of DNF clauses, where an element
belonging to a set corresponds to a term being true in the clause that
corresponds to the set.

Awerbuch, Patt-Shamir, Peleg, and Tuttle gave a centralized algorithm
that outputs a set of recommendations that satisfies all users with high
probability [13]. The idea is to select a committee and learn the preference
vectors of the committee members completely. The favorite product of
each committee member is then suggested to all remaining users. They
note that in the presence of malicious users, the committee based approach
has disadvantages. Thus, they also present a distributed algorithm for the
recommendation problem that does not use a committee, and show that it
is resilient to Byzantine behavior. The connection to our work is the model
they use with the basic idea of suggesting the most preferred product to
the rest of the users. The main contrast is in the complexity measures.
They use the similarities of preferences as a basis of the complexity of their
algorithms, whereas we compare the cost of our algorithms to the cost of
an (quasi-)offline algorithm. We also study worst-case performances and
show approximation guarantees.

In addition, Awerbuch et al. studied reputation systems, which are
closely related to recommendation systems [12]. They considered a model
where items are liked either by everyone or by no one. The goal is to
find for all users an item they like by querying random objects or by
asking other users for their preferences. They measure the cost of their

2.1. RELATED WORK 13

algorithm by the number of entries revealed during the execution. They
also considered Byzantine users and restricted access to items. The main
difference to our work is in the worst case input. They assume that there
is always a possibility of cooperation between users, whereas our analysis
always considers an arbitrary feasible input.

The classic result related to the Min Sum Set Cover problem is that
the greedy algorithm provides a constant approximation. It was shown by
Bar-Noy, Bellare, Halldórsson, Shachnai, and Tamir [17] that the greedy
solution is a 4-approximation. Feige, Lovász, and Tetali gave a simpler
proof for this result and showed that getting an approximation ratio of
4− ε for any ε > 0 is NP-hard [37]. Our work extends their results from
the static and offline setting into an adaptive and online setting, where
the algorithm is allowed to change its strategy during the execution but is
not given full information in the beginning. Online variants of the mssc
problem have been studied before for example by Munagala et al. [74],
who showed that even if the elements contained in the sets are hidden
from the algorithm, one can achieve an O(logn)-approximation.

Also other variations of mssc have been considered. As an exam-
ple, Azar and Gamzu studied ranking problems, where the goal is to
maintain an adaptive ranking while learning in an active manner [15].
They provided an O(log(1/ε))-approximation algorithm for ranking prob-
lems, where the cost functions have submodular valuations. Golovin and
Krause [49] studied problems with submodular cost functions further and
in particular, they considered them in an adaptive environment. Further-
more, mssc is not the only classic optimization problem studied in an
active or an adaptive environment. There exists work on adaptive and
active versions of, for example, the well-known Set Cover [47, 69], Knap-
sack [28], and Traveling Salesman [51] problems.

The anonymous task we are considering can also be seen as a relaxed
version of learning the identities of the users, that is, we wish to classify
the unknown users into groups according to their preferences. Since the
users are determined by their preferences, this can further be seen as
finding a matching between the users and the preferences. The matching
has to be perfect, i.e., in the end every user has to be matched to a unique
preference. A similar setting was studied in economics, where the basic
idea is that each buyer and seller has a hidden valuation on the goods they

14 CHAPTER 2. INTRODUCTION

are buying or selling and the valuations are learned during the execution.
Then the goal is to find a perfect matching between a set of buyers and a
set of sellers, where an edge in the matching indicates a purchase between
the corresponding agents [20,60].

In general, the problem of offline algorithms being too powerful is not
new. However, the usual approach is to provide the online algorithm with
additional power. For example, online algorithms with lookahead into
the future have been studied for the list update [3] and bin packing [50]
problems. In our case however, the cost of an offline solution is always
n regardless of the input and therefore, a competitive analysis does not
make sense even if the online algorithm was granted more power. The term
competitive in our context was introduced earlier by Drineas et al. [32].
In contrast to us, they measure their competitiveness against the number
of rows that the algorithm has to learn to be able to predict the rest.

3
The Online Algorithm

In this chapter, we design an online recommendation algorithm for the
ignorant recommendation problem. Given that we are considering only
the ignorant recommendation problem in this chapter, we take the liberty
to call the ignorant recommendation problem simply the recommendation
problem. To keep our analysis simple, we consider the static model for
the quasi-offline algorithm, i.e., we compare our solution to the optimal
algorithm for the mssc problem. In Chapter 4, we show that the same
asymptotic bound holds against the anonymous quasi-offline algorithm.

3.1 Model

We begin defining our model by giving a formal description of the recom-
mendation problem. The input for the recommendation problem consists
of a set of users {u1, . . . , un} = U , a set of items B, and a hidden proba-

15

16 CHAPTER 3. THE ONLINE ALGORITHM

bility distribution D, where initially |U | = n and |B| = m ∈ O(n). The
users are labeled by their indices, i.e., a recommendation algorithm can
distinguish users from each other. A preference vector of a user is a bi-
nary vector of length m with at least one 1-entry. Each user is assigned a
hidden preference vector chosen independently at random from D, where
D is a probability distribution over all possible preference vectors. For
simplicity, we assume that the probabilities of D are rational.

A recommendation algorithm works in rounds. In the beginning of
each round, the algorithm is given a user u uniformly at random from the
set U . Then the algorithm has to recommend an item b ∈ B to u, which is
equivalent to checking whether u likes b or not. The execution of a round
of a recommendation algorithm is divided into three steps:

1. Receive a user u ∈ U chosen uniformly at random.

2. Recommend an item b to the user u.

3. If u likes b, choose whether or not to remove u from U .

If the algorithm decides to remove user u from U in step 3, then u is
labeled as satisfied.

From here on, the set U is referred to as the set of unsatisfied users.
The goal of a recommendation algorithm A is to satisfy all users, i.e., the
execution terminates when the set of unsatisfied users U becomes empty.
The cost of A is the number of queries (rounds) A has to perform in
expectation until all users are satisfied. The algorithm is allowed to make
computations during all the steps, and all computations are considered
free.

The probability distribution D is chosen by an adversary and the
choice of the adversary is allowed to depend on the online algorithm. The
choice of D directly induces a cost to the optimal quasi-offline algorithm.
We emphasize that prior to the execution, an online recommendation al-
gorithm A has no knowledge of either D or the random assignment of the
preference vectors and A can only gain information about these parame-
ters by querying the users. We measure the quality of A with respect to
its quasi-competitive ratio, i.e., maximum ratio between the cost of the
online recommendation algorithm A and the cost of the optimal (static)
quasi-offline algorithm.

3.2. THE QUASI-OFFLINE ALGORITHM 17

An important concept throughout the paper is the popularity of an
item. The popularity of an item is the number of unsatisfied users that
like it.

Definition 3.1. Let b be an item. The popularity |b| of item b is the
number of unsatisfied users that like this item, i.e.,

|b| = |{u ∈ U | u likes b}| .

We note that as the input can be interpreted as a n×m binary matrix,
user u can be identified with the index of the corresponding row and item
b with the index of the corresponding column in the matrix. From here on
u ∈ U indicates both the element and the index, and similarly for b ∈ B.

3.2 The Quasi-offline Algorithm

As we mentioned before, it is possible to build an example where it will
take Ω(n ·m) queries in expectation to satisfy all users for any online algo-
rithm (diagonal matrix for example). We tackle this issue by performing
a quasi-competitive analysis on our algorithms, i.e., we compare our algo-
rithms to a quasi-offline algorithm that is provided with the probability
distribution D from where the preference vectors of the n users were cho-
sen. We begin this section by showing a connection between the optimal
quasi-offline algorithm and the optimal algorithm for the mssc problem
that allows us to benchmark our online algorithm directly against the
optimal algorithm for mssc.

We observe that since any preference vector v of user u in the input is
picked at random and independently from previous picks, gaining infor-
mation from other users than u does not help the quasi-offline algorithm
to identify u. Therefore, the quasi-offline algorithm does not gain any-
thing from using different recommendation strategies on different users
or from recommending more items to u after finding an item u likes. In
other words, the recommendation strategy for any user u is an ordered set
of items that are successively recommended to u. Therefore, to minimize
the total expected cost, it is enough for the quasi-offline algorithm to find
an ordered set of items that minimizes the expected cost for a single user.

18 CHAPTER 3. THE ONLINE ALGORITHM

v P (X = v)
1 0 1 0 1 1/3
0 0 0 1 1 1/2
0 1 1 1 0 1/6

1 0 1 0 1
1 0 1 0 1
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
0 1 1 1 0

f

Figure 3.1: An input I = (D, 6) for the quasi-offline algorithm (on the left) is
transformed into an instance of mssc. The preference vectors that are assigned
with non-zero probability are illustrated in the column denoted by v. The column
denoted by P (X = v) describes the probability of assigning the corresponding
vector to a user, where X is a random variable that obeys distribution D.

To identify an input I = (D,n) of the quasi-offline algorithm with
an input of mssc, let X be a random variable that obeys distribution
D. The idea is to construct a function f that maps I to an input f(I)
for mssc. Let N be the smallest integer such that P [X = v] · N is an
integer for every preference vector v and N ≥ n. Recall that we assumed
the probabilities in D to be rational and thus, N always exists. Now to
construct an instance for mssc, let us again consider the items as sets
and the users as elements. For every preference vector v, let there be
P [X = v] · N users that have preference vector v. The construction is
illustrated in Figure 3.1.

We denote the ordered set of items chosen by the optimal quasi-offline
algorithm by C(I) = b1, b2, . . . , bk. Consider now the set of users U given
by f(I) and let

Si(f(I)) = {u ∈ U | u likes bi ∧ u does not like bj for any j < i} .

We refer to the size of Si(f(I)) as the disjoint popularity of bi.
Recall that the number of occurrences of any preference vector in f(I)

is simply scaled up by a factor of N/n compared to the expected number
of occurrences of the same vector given by I. Thus, we get that, by using

3.2. THE QUASI-OFFLINE ALGORITHM 19

C(I), the average number of queries

1
N

k∑
i=1

i · |Si(f(I))|

required to satisfy a user in f(I) equals to the expected number of queries
E(I) required by the optimal quasi-offline algorithm to satisfy a user with
a preference vector chosen randomly according to D. To simplify notation,
we write E = E(I) whenever the exact input is either irrelevant or clear
from the context.
Observation 3.2. Let I = (D,n) be an input of the quasi-offline al-
gorithm. Then E(I) = c(f(I))/N , where c(·) is the cost function of the
optimal mssc algorithm.

It has been shown that a greedy algorithm, that successively selects
sets that cover as many uncovered elements as possible, yields a 4-approxi-
mation to the optimal solution for mssc [17]. Therefore, we lose only
an additional constant factor overhead by comparing our solution to the
greedy one instead of the optimal. For the rest of the chapter, we refer to
the greedy quasi-offline algorithm for mssc as the quasi-offline algorithm.

We use the rest of the section to present general bounds on the intro-
duced concepts, which we will later use in the analysis of our recommen-
dation algorithm. Given Observation 3.2, instead of considering a random
outcome of the choices of preference vectors by distribution D given by
input I, we will only consider a fixed set of users f(I). Furthermore, since
the number of users in f(I) does not affect the average cost, we simply
assume that n = N . Thus, we omit the input from the notation. First,
we give an upper bound for the number of items of a certain disjoint
popularity in C.
Lemma 3.3. Let r ∈ R. The maximum number of items with disjoint
popularity of at least nr in C is at most n(1−r)/2√2E.

Proof. Let ` be the number of items with disjoint popularity nr or larger.
Now ` ≤ k and therefore,

E ≥ 1
n

`∑
i=1

nr · i = 1
n
nr

`∑
i=1

i = nr−1 · `
2 + `

2

20 CHAPTER 3. THE ONLINE ALGORITHM

and thus, ` ≤
√
`2 + ` ≤

√
2E · n1/2−r/2.

Next, we give an upper bound for the size of U when given the popu-
larity of the most popular item. The most popular item b∗ in round i is
the item with maximum popularity, i.e., |b∗| ≥ |b| for all b ∈ B. Note that
since the popularities of the items can be reduced during the execution,
another item might be the most popular in round i+ 1.

Lemma 3.4. Let r ∈ R be such that nr is the popularity of the most pop-
ular item. Then the size of U is smaller than 4

√
E ·n1/2+r/2 in expectation

and with high probability.

Proof. To count the total number of unsatisfied users, we count the un-
satisfied users that like the items in C. As the popularity of the most
popular item is at most nr, we know that there are at most nr unsatisfied
users that like any single item in C. By Lemma 3.3, initially there are at
most

√
2En1/2−r/2 items of disjoint popularity nr or greater in C. There-

fore, the total number of unsatisfied users liking these items is at most√
2En1/2+r/2.

To bound the number of users that do not like any of the items with
disjoin popularity of at least nr, we define a random variable X that
denotes the number of items we have to suggest to a randomly chosen
user. We observe that E[X] = E and by Markov’s inequality

p = P(X >
√

2En1/2−r/2) ≤ E√
2En1/2−r/2

≤
√
E · nr/2−1/2 .

Let Xn =
∑n

i=1 Xi, where Xi obeys the same distribution as X and all
Xi are independent, denote the random variable that counts the number
of users that are not satisfied with the items of popularity nr or larger.
We have E[Xn] = pn ≤

√
E ·nr/2+1/2. By applying a Chernoff bound, we

get that with high probability

Xn ≤ 2E[Xn] = 2 ·
√
E · nr/2+1/2 .

Finally, the total number of unsatisfied users is at most

|U | ≤
√

2E · n1/2+r/2 + 2
√
E · n1/2+r/2 < 4

√
E · n1/2+r/2 ,

in expectation and with high probability.

3.3. ONLINE ALGORITHMS 21

3.3 Online Algorithms

In this section, we introduce two online algorithms for the recommenda-
tion problem. First, we present an algorithm that achieves an optimal
quasi-competitive ratio when restricting ourselves to a case where every
user likes exactly one item.

3.3.1 Users Like Exactly One Item
Let us assume that the number of items any user u likes is exactly 1. We
observe that the probability of a randomly picked user liking a random
item is at least 1/m. Therefore, by suggesting random items to random
users, we get a positive feedback after O(m) queries in expectation re-
gardless of the number of unsatisfied users. We refer to picking both a
user and an item to query at random as sampling.

Our algorithm for the easier environment with one item per user is the
following. Initially, we start with an empty set of good items G. After a
positive feedback on item b, we add it to G. Each user is recommended all
the items in the set G (once) before they are recommended more random
items. The cost of the algorithm is summarized in the following theorem.

Theorem 3.1. If each user likes exactly one item, there exists a rec-
ommendation algorithm that satisfies all users with O(n

√
nE) queries in

expectation.

Proof. By Lemma 3.3 the number of items of disjoint popularity of at
least one is O(

√
nE). Since every user likes at most one item and the

items in C satisfy every user, the maximum number of items that need
to be added to G is O(

√
nE). Furthermore, attempting to satisfy all the

future users with the items from G takes O(n
√
nE) queries in total. As

the expected number of queries to find a new item by randomly sampling
users and items is O(m), it takes O(m

√
nE) queries with random items

to discover the items that satisfy all users. Therefore, the cost of the
algorithm to satisfy all users is

O(n
√
nE) +O(m

√
nE) ∈ O(n

√
nE) .

22 CHAPTER 3. THE ONLINE ALGORITHM

A matching lower bound can be found by constructing an example,
where there are lots of users that like items of popularity one. These
users have to be satisfied by searching the preferred item in a brute force
fashion.
Theorem 3.2. Any online recommendation algorithm needs Ω(n

√
nE)

queries in expectation to satisfy all users in the worst case.

Proof. Let H = (D,n) be an input to the recommendation problem let
there be |B| = n items. In addition, let 1 ≤ F ≤ n. The distribution D
over the preference vectors is chosen in the following manner: There is one
distinguished item bp ∈ B and k =

√
nF items bi 6= bp, where 1 ≤ i ≤ k.

Item bp is liked with probability p = (n −
√
nF)/n and item bi is liked

with probability 1/n for all i. Any other item is liked with probability
0. One possible outcome of the preferences of the users in input H is
illustrated in Figure 3.2. By Observation 3.2, when n→∞, we can write
average cost to satisfy a single user by the quasi-offline algorithm as

E ≤ 1
n

n−√nF +

√
nF+1∑
i=2

i

 ∈ O(F) .

Let U ′ ⊆ U be the set of the users that do not like the popular item
bp. Consider now only the users in U ′ and let A be a deterministic online
algorithm that solves the recommendation problem. Let u ∈ U ′ be some
user and let H be the set of all possible outcomes of the random choices of
the preference vectors of users in U ′. When averaging over H, the average
number of queries needed to satisfy u is at least

1
|B| − 1 ·

(1
2 · (|B| − 1) · |B|

)
= |B|2 = n

2 ∈ Ω(n) ,

for any deterministic online recommendation algorithm.
Since the preference vector for u is chosen independently from other

users, the expected number of queries needed to satisfy u is also indepen-
dent from queries to other users. By Yao’s principle [86] and since the
expected size of |U ′| is in Ω(

√
n), any randomized online recommenda-

tion algorithm thus requires Ω(n
√
nE) queries in expectation to satisfy all

users in U ′.

3.3. ONLINE ALGORITHMS 23

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0 . . .
1 0 0
1 0 0

...
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

. . .

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

︸
︷︷

︸
︸

︷︷
︸

n−
√
nF

√
nF

Figure 3.2: An input matrix that is difficult for any algorithm that is initially
oblivious to the input. The first n−

√
nF rows have a single 1-entry in the first

column. Let r1, . . . , r√nF denote the remaining rows. Then row ri contains
a single 1-entry at position i + 1. For any online algorithm, it will take Ω(n)
queries in expectation to find a 1-entry from rows r1, . . . , r√nF since they have
no mutual information with any other rows.

24 CHAPTER 3. THE ONLINE ALGORITHM

3.3.2 Users with Multiple Preferences

Now we lift the assumption that each user likes exactly one item. The ba-
sic idea behind our algorithm for the more general version of the problem
is similar to the one preference case. However, by randomly sampling and
fixing the first item with a positive feedback, we might end up recommend-
ing a bad item to many users that do not like it. As an example, consider
an instance where everyone likes one item and there are n/2 unpopular
items that are liked by logn users. In this example, it is likely that we
find many 1-entries from the unpopular items before recommending the
most popular item to everyone.

Therefore, we search for items that are almost as popular as the most
popular item within the unsatisfied users. Specifically, we learn the pref-
erences of the users until we get at least c logn positive reviews on a single
item for some constant c. All the sampling information is stored in an
integer matrix M , where an entry M(u, b) corresponds to the number of
positive feedbacks by user u on item b. The total number of positive feed-
backs on a certain item b corresponds to the sum of positive feedbacks on
column b. Note that while sampling, users are not removed and thus, the
same user can give several positive feedbacks on the same item, i.e., even
a single user will eventually give c logn positive feedbacks on some item.

In addition, we might have lots of items with almost equal popularity
that are not liked by the same users, and doing the sampling for all of them
successively might be costly. Therefore, after c logn positive feedbacks on
a single item, we use the gained sampling information to select a set of
equally popular items to the set of good items instead of just one. To
avoid choosing items with overlap, i.e., items that are liked by the same
users, we re-estimate the popularities after each choice. A pseudo-code
representation of the algorithm is given in Algorithm 3.1. As the sampling
and the greedy choices are done successively, we present their pseudo-code
as subroutines of Algorithm 3.1. The pseudo-code for the sampling part
is given in Algorithm 3.2 and for the greedy part in Algorithm 3.3.

We divide the execution of our algorithm into phases. One phase
consists of two changes in the state, i.e., sampling until c logn positive
feedbacks are given and the greedy choices have been made. We begin
the analysis of the algorithm by showing that each greedy choice made

3.3. ONLINE ALGORITHMS 25

Algorithm 3.1 Phases(U, B)
M ← a zero matrix of size |U | × |B|.
STATE← sample.
V ← a vector of length n such that V (u) = 1 for all u ∈ U
b∗ ← an arbitrary item b ∈ B.
while there are unsatisfied users do

Receive a random user u ∈ U .
if STATE = sample then

Run Sampling(u, M, V, b∗, U, B).
else

Run Greedy(u, M, V, b∗, U, B).
end if

end while

Algorithm 3.2 Sampling(u, M, V, b∗, U, B)
Choose a random item b ∈ B.
if u likes b, i.e., u(b) = 1 then

M(u, b)←M(u, b) + 1.
end if
if
∑n−1

i=0
M(i, b) ≥ bc log nc then

b∗ ← b.
Set V (u′) = 0 for all u′ ∈ U .
STATE← greedy.

end if

Algorithm 3.3 Greedy(u, M, V, b∗, U, B)

if V (u′) = 1 for all u′ ∈ U then
Set V (u′) = 0 for all u′ ∈ U .
Set b∗ ← b, where

∑n−1
i=0

M(i, b) is largest, ties broken arbitrarily.
end if
V (u)← 1.
if u likes b∗, i.e., u(b∗) = 1 then

Remove u from U .
for 0 ≤ j < m do

M(u, j)← 0.
end for

end if
if
∑n−1

i=0
M(i, j) < (c log n)/4 for all j then

STATE← sample.
Reset M to a zero matrix.

end if

26 CHAPTER 3. THE ONLINE ALGORITHM

by Algorithm 3.3 during a single phase is either within a constant factor
from the best one or all the reasonable choices are already made. To do
this, we categorize the items by their popularities. An item b belongs to
category cati if 2i−1 ≤ |b| < 2i. We refer to the upper bound on the
popularities of the items in cati as the size of the corresponding category.

Lemma 3.5. Let b ∈ cati be the most popular item in the beginning of
phase j. Each item chosen greedily by Algorithm 3.3 during phase j is
liked by at least 2i−4 unsatisfied users with high probability.

Proof. Let Xb be a random variable that denotes the number of positive
feedbacks given on item b during phase j. First, we want to show that
the expected value E[Xb] is close to the amount of sampling required,
i.e., c logn, on one item before the greedy part of phase j begins. Let
us assume for contradiction that µ = E[Xb] > (3/2)c logn. The Chernoff
bound states that with high probability, the actual value of Xb is within a
constant multiplicative factor from its expected value after enough sam-
pling. More precisely the bound states that

Pr(Xb ≤ c logn) ≤ Pr(Xb < (1− 1/3)µ) <
(

e−1/3

(2/3)2/3

)µ
<
(
e−1/3)c logn

∈ O
(
n−c/3

)
.

This indicates that Xb > c logn with high probability, which is a con-
tradiction since the sampling stops when any item has more than c logn
positive feedbacks. Thus, E[Xb] ≤ (3/2)c logn with high probability.

The next step is to show that the number of positive feedbacks on any
item b′ ∈ cati−4 is smaller than (c logn)/4 with high probability. As the
popularity of b′ is less than |b|/8 by the definition of the categories, we
have

µ′ = E[Xb′] <
E[Xb]

8 ≤ 3c logn
16 .

Again using the Chernoff bound, we get that

Pr(Xb′ > (c logn)/4) < Pr(Xb′ > (1 + 1/3)µ′) ∈ O
(
n−3c/32) .

3.3. ONLINE ALGORITHMS 27

The next step of the analysis is to show that the size of U has decreased
by a significant amount after each phase. We do this by showing that
after each phase, the most popular item belongs to a smaller category
than before running the phase.

Lemma 3.6. Let i be the largest integer such that cati is non-empty.
After running one phase of Algorithm 3.2, there are no items left in cati
with high probability.

Proof. Let b be the most popular item. Similarly to Lemma 3.5 we can use
the Chernoff bound to show that with enough sampling, c logn is at most
within factor 3/2 from E[Xb], i.e., (3/2)E[Xb] ≥ c logn. By the definition
of categories we get that E[Xb′] > E[Xb]/2. Therefore, the Chernoff bound
can also be used to show that with high probability, the number of positive
feedbacks X ′b on any item b′ ∈ cati is more than E[Xb′] · (3/4).

Therefore, with high probability

X ′b >
3E[X ′b]

4 >
3E[Xb]

8 ≥ c logn
4 .

Since items are chosen greedily until there are no more items with at least
(c logn)/4 positive feedbacks, all items from cati will eventually be chosen
or their popularity will reduce to a lower category during the execution
of one phase with high probability.

3.3.3 The Cost
It follows from Lemma 3.6 that after O(logn) phases, the popularity of
the most popular item reduces to zero, i.e., all users are satisfied. Since
we now have derived the number of phases needed to satisfy all users, it
remains to analyze the cost of a single phase. We begin by tackling the
sampling part where the dominating factors for the cost are the number
of unsatisfied users and the popularity of the most popular item.

Lemma 3.7. During each phase, Algorithm 3.2 is called O(n
√
En logn)

times in expectation and with high probability.

Proof. Consider phase i and let b be the most popular item in the be-
ginning of this phase. The probability of receiving a random user that

28 CHAPTER 3. THE ONLINE ALGORITHM

likes item b is |b|/|U |. By Lemma 3.4, the size of |U | is at most 3
√
En|b|

in expectation and with high probability. Furthermore, the probabil-
ity of choosing any specific item randomly is 1/m. Therefore, the ex-
pected amount of times item b is recommended to users that like it after
4m
√
En · c logn queries is at least

m4
√
En · c logn · 1

m4
√
En

= c logn .

Let Xk be the random variable that counts the number of times b is
recommended to users that like b after k queries during phase i. By
applying a Chernoff bound, we get that

Pr (Xk < c logn) < O
(
n−c
)
,

for any k > 2 · (4m
√
En · c logn). Since

2 · (4m
√
En · c logn) ∈ O(n

√
En logn) ,

the claim follows.

The last item needed for the analysis is an upper bound for the cost
of the greedy part of the algorithm.

Lemma 3.8. Running one phase of Algorithm 3.1 costs O(n
√
En logn)

in expectation and with high probability.

Proof. By Lemma 3.7 the cost of the sampling part of any phase is
O(n
√
En logn) in expectation and with high probability after which the

greedy state is assumed.
By Lemma 3.5 all the greedily chosen items are liked by at least 2i−4

users with high probability, where i is the index of the largest category
with non-empty set of items. By Lemma 3.4 there are at most O(

√
En2i)

unsatisfied users left in the beginning of the phase. Therefore, after mak-
ing O(

√
En) greedy choices either all users have been satisfied or the

algorithm has restarted the sampling part of the algorithm. Furthermore,
it takes O(n logn) rounds in expectation and with high probability for the

3.3. ONLINE ALGORITHMS 29

greedy part to recommend some item to every user, therefore the number
of calls to the greedy subroutine is

O(n logn) · O(
√
En) ∈ O(n

√
En logn)

in expectation and with high probability.

Theorem 3.3. Algorithm 3.1 is O(
√
n log2 n)-quasi competitive.

Proof. In the beginning of the execution, the popularity of the most pop-
ular item is at most n = 2logn, i.e., the largest index of a non-empty
category is at most logn. By observing that the popularity of an item
never increases and by applying Lemma 3.6, we get that the largest index
of a non-empty category decreases by at least one in every phase with
high probability. Therefore, after O(logn) phases the largest index of a
non-empty category is 0 with high probability and thus, there cannot be
any more unsatisfied users.

As the cost of each phase is O(n
√
En logn) by Lemma 3.8, in expec-

tation the whole cost is

O(logn) · O(n
√
nE logn) ∈ O(n

√
nE log2 n) .

Since the cost of the quasi-offline algorithm is nE , the quasi competitive
ratio of Algorithm 3.1 is

O(n
√
nE log2 n)
nE ∈ O

(√
n log2 n√
E

)
.

Specifically, when E is a constant, Algorithm 3.1 is O(
√
n log2 n)-quasi

competitive.

4
The Anonymous Quasi-Offline
Algorithm

In the previous chapter, we established an online recommendation algo-
rithm that solves the ignorant recommendation problem. We analyzed the
performance of this algorithm against a quasi-offline algorithm that knows
the distribution according to which the preferences of the users are cho-
sen. We showed that the quasi-competitive ratio of the online algorithm
is optimal up to some polylogarithmic factors.

However, the quasi-offline algorithm we considered was rather weak
and in particular, it could not make any use of the fact that it is techni-
cally allowed to change its strategy during the execution. Our next goal
is to study a considerably stronger model, where the quasi-offline algo-
rithm is given more information about the input prior to its execution. In
other words, we consider the anonymous model, where the quasi-offline

31

32 CHAPTER 4. THE ANONYMOUS ALGORITHM

algorithm is shown the whole input, but the identities of the users are
hidden. We strengthen the model for the quasi-offline algorithm further
by allowing it to choose the input sequence according to which the users
are selected. Despite these seemingly strong improvements, we show that
asymptotically, the quasi-competitive ratio of our online algorithm stays
the same even when compared to the stronger quasi-offline algorithm.

4.1 Model

Now, we introduce the anonymous recommendation problem. The model
description is very similar to the ignorant case, but for the sake of com-
pleteness, we dedicate this section to formally and thoroughly describing
the model. The main differences are in the (anonymized) input and in
the complexity measure.

The input is a pair (U, V) consisting of a set of users U = {u1, . . . , un}
and a set of preference vectors V = {v1, . . . , vn} of length m, where each
preference vector v ∈ V corresponds to the (binary) preferences of some
user u ∈ U on m items. Each user ui is assigned exactly one preference
vector vj according to a hidden bijective mapping π : U → V . By iden-
tifying the users with the preference vectors, π is a permutation of the
users. The permutation π is chosen uniformly at random from the set of
all possible permutations.

The execution of an anonymous recommendation algorithm A can be
divided into discrete rounds. In each round, a recommendation algorithm
first picks a user u ∈ U and then recommends some item b to this user.
Recommending item b to user u is equivalent to checking whether user u
likes b or not, i.e., the corresponding entry is revealed to the algorithm
immediately after the recommendation. Algorithm A is allowed to pick
the user and the item at random.

We say that user u is satisfied after she has been recommended an
item that she likes. The goal is to satisfy all users which corresponds to
finding at least one 1-entry from each preference vector. The algorithm
terminates when all users are satisfied. The runtime of a recommenda-
tion algorithm is measured as the expected number of queries. In other
words, the runtime corresponds to the number of rounds until all users
are satisfied. Therefore, the trivial upper and lower bound for the runtime

4.2. ANONYMOUS RECOMMENDATIONS 33

are n ·m and n, respectively, since it takes n ·m queries to learn every
element of every preference vector and n queries to learn one entry from
each preference vector.

We assume that for any user u, there is always at least one item
that she likes but we do not make any further assumptions on the input.
Let OPT be the optimal recommendation algorithm for the anonymous
recommendation problem. We measure the quality of a recommendation
algorithm A by its approximation ratio, i.e., the maximum ratio between
the expected number of queries by A and by OPT for any input I.

4.2 Anonymous Recommendations

The main goal of this chapter is to show that from an asymptotic perspec-
tive, the anonymous and the static recommendation problems are equally
hard. Recall that in the static setting, the algorithm sees the probability
distribution according to which the preferences are chosen and fixes an
ordering O of the items before the first query. Then, each user is recom-
mended items according to O until she is satisfied. Otherwise, the static
model is similar to the anonymous model.

Note that to compare the static and anonymous model, we can consider
I an instance of preferences picked from D, where D is the probability
distribution given to the static algorithm. We first observe that solving the
static recommendation problem takes at least as much time as solving the
anonymous recommendation problem for any input I = (U, V). Clearly,
an anonymous algorithm that chooses the best fixed ordering of books is
at least as fast as any static algorithm for this instance.

We show that the greedy algorithm for the static recommendation
problem is a 24-approximation to the anonymous recommendation prob-
lem. We follow the general ideas of the analysis of the greedy algorithm
for mssc by Feige et al. [37], where they show that the greedy algo-
rithm provides a 4-approximation. The fundamental difference between
our analysis and theirs comes from bounding from below the number of
recommendations needed to satisfy a given set U ′ ⊆ U of users. In the
static setting, it is easy to get a lower bound on the number of recommen-
dations needed per user. Given the most popular item b∗ among users in
U ′, Ω(|U ′|2/|b∗|) recommendations are needed, since one item can satisfy

34 CHAPTER 4. THE ANONYMOUS ALGORITHM

at most |b∗| users, and each item is recommended to all unsatisfied users.
In the adaptive setting, this is not necessarily the case.

We first give a lower bound on the amount of queries that is needed to
satisfy any group of users as a function of the most popular item within
this group. In essence, we show that from an asymptotic perspective, any
adaptive algorithm also needs Ω(|U ′|2/|b∗|) rounds to satisfy all users in
U ′. Then, in Section 4.4, we show how to utilize our lower bound and
show that the greedy algorithm for mssc yields a constant approximation
to the anonymous recommendation problem.

4.2.1 The Consistency Graph

We identify the users with their preference vectors, which indicates that
each user u ∈ U corresponds to an (initially) unknown binary preference
vector of length m. Therefore, each user can be seen as a preference
vector that denotes the information we have gained about user u. We
also identify the items with their corresponding indices, i.e., for an item b
that has been recommended to u, u(b) denotes the entry in the preference
vector of user u that corresponds to whether u likes b or not. We call
u ∈ U and v ∈ V consistent, if u(i) = v(i) for every revealed entry u(i).

Let OPT be the optimal anonymous recommendation algorithm. We
model the state of an execution of OPT as an undirected bipartite graph
G = (U ∪ V,E), where (u, v) ∈ E iff u ∈ U and v ∈ V are consistent.
We refer to G as the consistency graph. The purpose of the consistency
graph is to model the uncertainty that OPT has on the preferences of
the users. To simplify our analysis, we provide OPT with the following
advantage. Whenever OPT recommends user u an item b that u likes,
we reveal the connection between u ∈ U and v ∈ V in permutation π,
i.e., that π(u) = v. We note that this advantage can only improve the
runtime of OPT, i.e., if we prove a lower bound for the performance of
this “stronger” version of OPT, the same bound immediately holds for
the optimal anonymous recommendation algorithm.

Now since the connection is revealed after finding a 1-entry and thus,
the complete preference vector of u is learned, nothing further can be
learned by recommending u more items. Therefore, we can simply ignore
u ∈ U and π(u) ∈ V for the rest of the execution. Thus, upon recom-

4.3. LEARNING THE PREFERENCES 35

v1 1 1 0 0 0
v2 0 1 1 0 0
v3 0 0 0 1 1
v4 1 1 1 1 0
v5 0 0 0 0 1

u1 0 0
u2

u3 0 0
u4 0
u5 0

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

Ur Vr

Gr

Figure 4.1: A matrix representation of the unknown and the known entries
of an input are given on the left and right, respectively. The consistency graph
constructed based on Vr and the state of Ur is denoted by Gr. Nodes ui and vj
are connected if and only if the corresponding rows are consistent.

mending user u an item that she likes, we simply remove u from U and
the corresponding preference vector π(u) from V . The modification also
implies that the termination condition, i.e., all users being satisfied, is
equivalent to the sets U and V becoming empty.

The construction of G is illustrated in Figure 4.1. We emphasize that
the graph G changes over time and we denote the state of G in round
r ≥ 0 by Gr = (Ur ∪ Vr, Er), where Ur and Vr are the users and their
preference vectors remaining in round r, respectively, and Er is the set of
edges between consistent nodes in round r. Notice that G0 = (U0∪V0, E0)
is a complete bipartite graph. We omit the index from the consistency
graph whenever the actual round number is irrelevant. In addition, we
note that even if the identity of a certain user u is clear (see user u3 in
Figure 4.1 for an example), the edges connected to u and π(u) are only
removed from G when the corresponding users and preference vectors
become inconsistent.

4.3 Learning the Preferences

The goal of this section is to quantify the amount of knowledge OPT can
gain per round. The intuition behind modeling the anonymous recom-

36 CHAPTER 4. THE ANONYMOUS ALGORITHM

mendation problem as a bipartite graph is that the number of remaining
edges correlates with the amount of uncertainty OPT has. In other words,
by querying the preferences of the users, OPT can exclude inconsistent
edges in G. When a 0-entry is discovered by recommending item b to
user u, at most |b| (recall Definition 3.1) preference vectors can become
inconsistent with u since there are |b| vectors v ∈ V such that v(b) = 1.
On the other hand, when discovering a 1-entry, up to 2|U | edges might get
removed due to removing u, π(u) and all edges adjacent to them from G.
Note that the consistency graph is simply a representation of the knowl-
edge OPT has about the preference vectors, i.e., excluding the edges from
the consistency graph only happens implicitly according to the revealed
entries.

We employ an amortized scheme, where we pay in advance for edges
that get removed by discovering 1-entries. Consider the case where a 0-
entry is revealed from u(b). Now all the edges (u, v) ∈ E, where u(b) 6=
v(b), are removed. For every edge (u, v) removed this way, we give both
node u and node v two units of money that can be used later when
their corresponding connections are revealed. Since at most |b| edges
are removed, we pay at most 2|b| + 2|b| = 4|b| units of money in total in
a round where OPT discovers a 0-entry.

As an example, consider the graph illustrated in Figure 4.1 and assume
that a 0 is revealed from u4(5). Now u4 becomes inconsistent with v3 and
v5, and the corresponding edges are removed. Upon removing these edges,
we pay two units of money to v3, two units of money to v5 and four units
of money to u4.

4.3.1 Finding a 1-entry

Now we look at the case of discovering a 1-entry. In the following, we
consider the consistency graph Gr for an arbitrary round r but omit the
index when it is irrelevant for the proofs. Consider user u ∈ U and
let π(u) = v. Upon discovering the 1-entry from user u, we reveal that
π(u) = v and all the edges adjacent to u and v are removed. We divide the
analysis into two cases. Consider first the case where the sum of degrees
d = |Γ(u)| + |Γ(v)| is at most 4|U |/3, where Γ(u) denotes the exclusive
neighborhood of u, i.e., Γ(u) = {v ∈ V | (u, v) ∈ E} and analogously for

4.3. LEARNING THE PREFERENCES 37

v ∈ V .
Note that since satisfied users are removed from U , G = (U∪V,E) is a

complete bipartite graph if there are no revealed 0-entries. Therefore, any
edge (u, v) 6∈ E, where u ∈ U = Ur, v ∈ V = Vr, was removed by revealing
a 0-entry. Given that d ≤ 4|U |/3, we know that at least 2|U | − 4|U |/3
of the edges adjacent to u or v have been removed by revealing 0-entries.
We pay two units of money to either u and v for every edge removed
from the set of edges adjacent to nodes in Γ(u) ∪ Γ(v) and therefore, the
combined money that the nodes have is at least 2(2|U |−4|U |/3) = 4|U |/3.
Therefore, the money “compensates” for all edges that are removed due
to revealing the connection between u and v.

We use the rest of this section to study the second case, that considers
the case where the sum of degrees of nodes u and v is high, i.e., larger
than 4|U |/3. The aim is to show that it is unlikely that v is the preference
vector of u, since there are many consistent nodes with u and v and
thus, there have to be considerably more valid permutations π′, where
π′(u) 6= v, than permutations, where π′(u) = v. This in turn implies that
a randomly chosen permutation is likely not to have u connected to v.

We call a matching σ compatible with an edge e = (u, v) if (u, v) ∈ σ
and incompatible with e otherwise. In the following lemma, we bound the
number of perfect matchings that are compatible with a given edge e in G.
Note that every perfect matching in G corresponds to some permutation
of the users.

Lemma 4.1. Assume that the sum of degrees of nodes u ∈ U and v ∈ V
is larger than 4|U |/3 in G. Let h be the total number of perfect matchings
in G. Then there are at most 3h/|U | perfect matchings that are compatible
with (u, v).

Proof. Let σ be a perfect matching that is compatible with (u, v) in G.
Let

U ′ = {u′ ∈ Γ(v) | ∃v′ ∈ Γ(u) such that (u′, v′) ∈ σ} \ {u} ,

k = |Γ(u)| and let

Γσ(Γ(u)) = {u′ ∈ U | ∃v′ ∈ Γ(u) such that (u′, v′) ∈ σ}

38 CHAPTER 4. THE ANONYMOUS ALGORITHM

U

u v

Γ(u)Γ(v)

V

U ′

(a)

U

u v

V

u′

v′

︸
︷︷

︸

Γσ(Γ(u))

(b)

Figure 4.2: The consistency graph is illustrated on the left. On the right, we
show a perfect matching compatible with (u, v) with the solid lines. For every
node u′ ∈ U ′, we have a valid perfect matching that is incompatible with (u, v)
if we use edges (u, v′) and (u′, v) instead of (u, v) and (u′, v′).

4.3. LEARNING THE PREFERENCES 39

be the set of nodes matched to Γ(u) by σ. See Figure 4.2 for an illustration.
Since σ is a matching, we get that k = |Γ(u)| = |Γσ(Γ(u))|. Also, we know
that |Γ(v)|+ |Γ(u)| > 4|U |/3 and therefore |Γ(v)| ≥ 4|U |/3− k + 1.

By taking a closer look at the definition of U ′, we see that U ′ =
Γ(v) ∩ Γσ(Γ(u)) \ {u} and by re-writing, we get that U ′ = Γ(v) \ (U \
Γσ(Γ(u))) \ {u}. From the equations above, it follows that

|U ′| = |Γ(v) \ (U \ Γσ(Γ(u)))| − 1

≥ |Γ(v)| − (|U | − k)− 1 ≥ 4|U |
3 − k + 1− (|U | − k)− 1 = |U |3 .

For each node u′ ∈ U ′, we have a perfect matching σu′ that is in-
compatible with (u, v) in G, where (u, v) and (u′, v′) ∈ σ are replaced by
(u, v′) and (u′, v). In addition, the incompatible perfect matching σu′ is
different for every u′ ∈ U ′, since (u′, v) 6∈ σz for any u′ 6= z ∈ U ′. There-
fore, we have at least |U |/3 perfect matchings incompatible with (u, v)
for every perfect matching that is compatible with (u, v). Note that no
matchings are counted twice. The claim follows.

In the beginning of the execution, the probability of user u ∈ U to
be matched to vector v ∈ V is simply 1/n. When revealing the unknown
entries, these probabilities change. The next step is to bound the prob-
ability of user u ∈ U to be matched to vector v ∈ V given the state of
the consistency graph G. We identify the randomly chosen permutation π
with a perfect matching σπ where (u, v) ∈ σπ iff π(u) = v. Since the per-
mutation π was chosen uniformly at random, any valid permutation, i.e., a
permutation that does not contradict the revealed entries, is equally likely
to be σπ. Therefore, the probability that an edge (u, v) is in matching σπ
corresponds to the ratio of perfect matchings in G that are compatible
with (u, v) and the number of all perfect matchings in G. We denote the
event that edge (u, v) is in σπ by A(u, v) and the probability of A(u, v)
given G by Pr[A(u, v) | G].

Lemma 4.2. Let G = (U ∪V,E) be the consistency graph. For any nodes
u ∈ U and v ∈ Γ(u), such that |Γ(u)|+ |Γ(v)| > 4|U |/3, Pr[A(u, v) | G] ≤

6
|Γ(u)|+|Γ(v)| .

40 CHAPTER 4. THE ANONYMOUS ALGORITHM

Proof. Since the permutation π is chosen uniformly at random, σπ is
equally likely to be any of the possible perfect matchings in G. There-
fore, the likelihood of u being matched to v ∈ V is the number of perfect
matchings that are compatible with (u, v) divided by the number of all
possible perfect matchings. By Lemma 4.1, the number of perfect match-
ings that are compatible with (u, v) is at most 3h/|U |, where h is the total
number of perfect matchings in G. Therefore,

Pr[A(u, v) | G] ≤ 3h
|U | ·

1
h

= 3
|U | ≤

3
1
2 (|Γ(u)|+ |Γ(v)|)

= 6
|Γ(u)|+ |Γ(v)| .

4.3.2 Progress

Now, we define the progress c(u, b, r) for recommending item b to user u
in round r ≥ 0. Informally, the idea of the progress value is to employ the
money paid during the execution to bound the expected number of edges
removed per round.

Consider any round r and let wr(z) denote the wealth of node z ∈
Ur ∪ Vr, where wealth refers to the amount of money z has in round
r. In the case of revealing a 0-entry, the progress indicates the number
of removed edges and the money that is paid to the nodes adjacent to
the removed edges. When finding a 1-entry and revealing the connection
between u and π(u), the progress indicates the number of removed edges
minus the money already paid to u and π(u). Let

Γr(u) = {v ∈ Vr | (u, v) ∈ Er}

and let Γbr(u) denote the neighbors of u that like item b, i.e.,

Γbr(u) = {v ∈ Vr | (u, v) ∈ Er ∧ v(b) = 1} .

Then, for entry u(b) revealed in round r, the progress is given by

c(u, b, r) =

{∑
v∈Γbr(u) 5 if u(b) = 0

|Γr(u)|+ |Γr(π(u))| − (wr(u) + wr(π(u))) if u(b) = 1 .

4.3. LEARNING THE PREFERENCES 41

v1 1 1 0 0 0
v2 0 1 1 0 0
v3 0 0 0 1 1
v4 1 1 1 1 0
v5 0 0 0 0 1

u1 0 0
u2 x
u3 0 0
u4 0 y
u5 0

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

G = (V,E)
w(v1) = 4

w(v2) = 6

w(v3) = 4

w(v4) = 6

w(v5) = 2

w(u1) = 6

w(u2) = 0

w(u3) = 8

w(u4) = 4

w(u5) = 4

G′ = (V,E0 \ E)

Figure 4.3: In graph G′ the dashed lines indicate the edges removed from the
consistency graph during the execution of an algorithm. The wealth of each
node is illustrated next to the corresponding node. The bold lines denote the
underlying permutation π that connects users in U with their preference vectors
in V .

An illustration of the wealth and progress concepts is given in Figure 4.3.
In the example given in Figure 4.3, revealing entry u2(1) = 1, denoted by
x, has a progress value of |Γ(u2)| + |Γ(v4)| − (w(u2) + w(v4)) = 5 + 2 −
0 − 6 = 1 and revealing entry u4(5) = 0, denoted by y, yields a progress
of
∑
{v3,v5}

5 = 10.
Next, we show that the total progress value counted from the first

round up to any round r is never smaller than the number of edges re-
moved from G within the first r rounds. We denote an execution of an
algorithm until round r by Xr = (u1, b1), (u2, b2), . . . , (ur−1, br−1), where
ui corresponds to the user selected in round i < r and similarly for item
bi.
Lemma 4.3. For any round r and execution Xr, it holds that

r−1∑
i=1

c(ui, bi, i) ≥ |E0| − |Er| .

Proof. Let I0 denote the set of indices i < r such that ui(bi) = 0 and I1
analogously for indices such that ui(bi) = 1. Let Wr denote the amount
of money paid until round r, i.e.,

Wr =
∑
i∈I0

∑
v∈Γbi

i
(ui)

4 .

42 CHAPTER 4. THE ANONYMOUS ALGORITHM

Now, we can write∑
i∈I0

c(ui, bi, i) = Wr +
∑
i∈I0

∑
v∈Γbi

i
(ui)

1 = Wr +
∑
i∈I0

|Γb
i

i (ui)| ,

where |Γb
i

i (ui)| equals to the number of edges removed from the consis-
tency graph in round i, i.e., |Γb

i

i (ui)| = |Ei| − |Ei+1|.
Furthermore, we can bound the progress in rounds in I1 by∑
i∈I1

c(ui, bi, i) =
∑
i∈I1

|Γi(ui)|+ |Γi(π(ui))| − (wi(ui) + wi(π(ui)))

≥

(∑
i∈I1

|Γi(ui)|+ |Γi(π(ui)|

)
−Wr ,

where |Γi(ui)| + |Γi(π(ui))| = |Ei| − |Ei+1|. Combining the sums from
above we get that∑

i∈I0∪I1

c(ui, bi, i) ≥Wr +
∑
i∈I0

|Γb
i

i (u)|

+

(∑
i∈I1

|Γi
(
ui
)
|+ |Γi(π

(
ui
)
|

)
−Wr

=
∑
i∈I0

|Γb
i

i (u)|+

(∑
i∈I1

|Γi
(
ui
)
|+ |Γi(π

(
ui
)
|

)

=
r−1∑
i=0

|Ei| − |Ei+1| = |E0| − |Er| .

The last thing we need to show is an upper bound on the expected
progress per round for any round r. For ease of notation, we omit the
round index for the rest of the section. In addition, we identify c(u, b)
with a random variable that equals to the progress gained by revealing
entry (u, b).

4.3. LEARNING THE PREFERENCES 43

Lemma 4.4. Let b∗ be the most popular item among the set U of un-
satisfied users. Then for any user u ∈ U and item b, E[c(u, b)] ≤ 6|b∗|.

Proof. Consider any user u ∈ U and any item b. We partition the event
space into three disjoint parts according to the outcome of querying user
u for item b and show that for each part, E[c(u, b)] ≤ 6|b∗|. First, consider
the case where a 0-entry is revealed. By definition, we get E[c(u, b) | u(b) =
0] ≤ 5|b∗|. Furthermore,

E
[
c(u, b) | (u(b) = 1) ∧

(
|Γ(u)|+ |Γ(π(u))| ≤ 4|U |/3

)]
≤ 0 ,

since w(u) + w(π(u)) ≥ 4|U |/3 given that |Γ(u)|+ |Γ(π(u))| ≤ 4|U |/3.
Let us then consider the third part of the event space, where u(b) = 1

and |Γ(u)|+ |Γ(π(u))| > 4|U |/3 and let us denote this event by B. Let

E′ = {(u, v) ∈ E | |Γ(u)|+ |Γ(π(u))| > 4|U |/3)]}

and Γ̂(u) = {v ∈ Γ(u) | (u, v) ∈ E′ ∧ v(b) = u(b) = 1}. Then, by
Lemma 4.2,

E[c(u, b) | B] ≤
∑
v∈Γ̂(u)

(|Γ(u)|+ |Γ(v)|) · Pr[A(u, v) | G]

≤
∑
v∈Γ̂(u)

(|Γ(u)|+ |Γ(v)|) 6
|Γ(u)|+ |Γ(v)| =

∑
v∈Γ̂(u)

6 ≤ 6|b∗| ,

where |b∗| ≥ |b| ≥ |Γ̂(u)|, since b∗ is the most popular item. Since the
three aforementioned parts span the whole probability space, E[c(u, b)] is
bounded by the maximum of the three cases and thus, the claim follows.

By combining Lemma 4.4 and Lemma 4.3, we get the following theo-
rem.

Theorem 4.1. Let R ⊆ U0 be a set of users and b∗ the most popular item
among these users. Any algorithm requires at least |R|2/(6|b∗|) queries to
users in R in expectation to satisfy all users in R.

44 CHAPTER 4. THE ANONYMOUS ALGORITHM

Proof. Consider only users in R and let v1, . . . , v|R| = VR ⊆ V be the
corresponding preference vectors. Since each user u ∈ R initially has |R|
edges connected to users in R, there are |R|2 edges in total.

Recall that satisfied users are removed from the consistency graph.
Thus, when all users in R are satisfied, the set of edges in the consistency
graph is empty. By Lemma 4.4 and by linearity of expectation at least
|R|2/6|b∗| queries are needed before the progress value is greater than |R|2
in expectation. By Lemma 4.3, the progress value gives an upper bound
on the number of edges removed. Therefore, the number of queries needed
before all users are satisfied is at least |R|

2

6|b∗| .

4.4 The Greedy mssc Algorithm

The goal of this section is to show that the greedy algorithm for the mssc
problem provides an O(1)-approximation for the anonymous recommen-
dation problem. In particular, the goal is to establish the following theo-
rem.

Theorem 4.2. The greedy mssc algorithm provides a 24-approximation
for the anonymous recommendation problem.

while |U | > 0 do
Choose the most popular item b among users in U .
for all u ∈ U do

Recommend b to u.
end for

end while
Algorithm 4.1: Greedy mssc algorithm

Our proof follows the steps of the 4-approximation proof by Feige et
al. [37] The crucial difference between their proof and ours is that in the
static case of mssc, where each user is recommended items according to
the same fixed order, it is clear that every algorithm requires Ω(|R|2/|b|)
rounds to to satisfy all users in R ⊆ U0 given that b is the most popular
item among users in U . In our case, we use Theorem 4.1 to provide a

4.4. THE GREEDY MSSC ALGORITHM 45

similar observation in terms of expectation. For the sake of completeness,
we dedicate this section to give a detailed proof that the existing tools
used to prove the 4-approximation of the greedy mssc algorithm can be
used for our purposes with a few modifications. The pseudo-code for the
greedy algorithm is given in Algorithm 4.1.

We refer to the iterations of the while loop of the greedy algorithm
as steps and label them by the positive integers. Note that each step of
Algorithm 4.1 consists of |U | many rounds according to our model, where
U is the set of unsatisfied users in the beginning of the step. Let Xi be the
set of users satisfied in step i and let Ri be the set of unsatisfied users prior
to step i. The cost of the greedy algorithm is given by

∑
i
i|Xi| =

∑
i
|Ri|.

We define the price of user u ∈ Xi to be pu = |Ri|/|Xi|. Then we set

price =
∑
u∈U

pu =
∑
i

∑
u∈Xi

pu =
∑
i

|Xi|
|Ri|
|Xi|

=
∑
i

|Ri| ,

which shows that price is equal to the cost of the greedy algorithm.
We model the solutions for both greedy algorithm and an optimal algo-

rithm OPT for the anonymous recommendation problem by the following
diagrams. Consider first the greedy algorithm. There are |U0| columns,
one for each user in the input. The users are ordered from left to right by
the order in which they are satisfied by the greedy algorithm. The height
of each column is the price pu for the corresponding user u. The area
under the histogram equals therefore to price.

Similarly, we have a diagram for OPT. Again, there is a column for
every user. In the case of OPT however, the height of each column cor-
responds to the expected number of queries made to the corresponding
user. Again, the area of the diagram of the optimal algorithm is equal to
the expected cost of OPT. The columns are ordered in an ascending order
by the height of each column. The diagrams are illustrated in Figure 4.4.

As the next step, we show that the area of the greedy diagram is at
most 24 times the size of the optimal diagram. To show this, we shrink the
diagram of the greedy algorithm by shrinking the height of each column
by a factor of 12 and the width by 2. Then, we align the shrunk version
of the diagram to the right of the other diagram corresponding to the
solution of OPT. In other words, the diagram of the greedy algorithm

46 CHAPTER 4. THE ANONYMOUS ALGORITHM

1

2

3

4

5

E
x
p
ec
te
d
q
u
er
ie
s

Users

1 2 3 4 5 6 7

optimal

(a)

1 2 3 4 5 6 7

pu

Users

greedy

(b)

Shrunk version of greedy

(c)

Figure 4.4: The diagram corresponding to the solution of the optimal algorithm
is given on the left. The height of each column in the diagram of the optimal
solution corresponds to the expected number of queries to the corresponding
user. The diagram of the greedy algorithm is shown on the right. In this
diagram, the height of each column is the price of the corresponding user. The
shrinking and aligning of the diagram of the greedy algorithm into the diagram
of the optimal algorithm is illustrated in Figure 4.4(c).

4.4. THE GREEDY MSSC ALGORITHM 47

now occupies the space of columns of OPT from |U0|/2 + 1 up to |U0|
(where |U0| is assumed w.l.o.g. to be even).

Consider any point q′ in the diagram of the greedy algorithm. Let u be
the user that corresponds to this column and let i be the step when this
user is satisfied. Thus, the height of point q′ is at most |Ri|/|Xi| and the
distance to the right-hand boundary is at most |Ri|. The shrinking maps
q′ to another point q, where the height h of q satisfies h ≤ |Ri|/(12|Xi|)
and the distance to the right boundary r satisfies r ≤ |Ri|/2.

We now show that q lies within the histogram of OPT. To prove this,
we need to show that there is at least one user in the first |Ri|/2 users
who is queried at least |Ri|/(12|Xi|) times. Consider now only the first
|Ri|/2 users in Ri and denote these users by Rfi . By Theorem 4.1, it takes
at least

|Rfi |
2

6|Xi|
=
(|Ri|

2

)2
6|Xi|

= |Ri|2

24|Xi|
rounds in expectation to satisfy all of these users. Therefore, there is at
least one user u ∈ Rfi that is queried at least

|Ri|2
24|Xi|

|Rfi |
=
|Ri|2
24|Xi|
|Ri|

2

= |Ri|
12|Xi|

times in expectation. Since the users are ordered according to the number
of queries, every user v ∈ Ri \ Rfi is queried at least |Ri|/(12|Xi|) times.
Thus, q indeed lies within the histogram of the optimal algorithm, yielding
Theorem 4.2.

5
Conclusion

In the first part of this thesis, we studied three different kind of recommen-
dation problems. First, we studied an ignorant recommendation problem,
where the input is an unknown binary preference matrix and the task is to
find at least one 1-entry in each row by querying the entries in the matrix.
We observed that there are inputs for the ignorant recommendation prob-
lem where any algorithm performs badly and therefore, we analyzed it in
a competitive manner. However, it turns out that an offline algorithm
that has access to the whole input matrix always has a cost of exactly
n regardless of the input, which results in a trivial competitive ratio of
Ω(m) for any algorithm. Therefore, we introduced the concept of quasi-
competitiveness, where the online algorithm is compared to a quasi-offline
algorithm that has a restricted access to the input matrix.

To find an appropriate quasi-offline algorithm, we turned our atten-
tion to the second variant of the recommendation problem, i.e., the static

49

50 CHAPTER 5. CONCLUSION

recommendation problem. In the static recommendation problem the al-
gorithm solving the problem is given access to the probability distribution
of the preference vectors of the users. We observed that in this model,
the best that the quasi-offline algorithm can do is to compute an ordered
list of items that minimizes the expected number of items the algorithm
has to recommend per user, given that each user is recommended books
according to this list. Computing this list of items is equivalent to solving
the mssc problem. It is well known that a greedy algorithm for mssc is
a 4-approximation and therefore, we compared our solution to the greedy
algorithm instead of the optimal.

We introduced an algorithm that achieves a cost of O(n
√
nE log2 n),

where E is the expected cost for the greedy mssc algorithm to cover a
single element. Since the total cost of the greedy mssc algorithm is nE ,
the quasi competitive ratio of our algorithm is

O
(√

n log2 n√
E

)
.

Therefore, the worst case is obtained when E is a constant and it follows
that our algorithm is O(

√
n log2 n)-quasi-competitive.

Finally, we extended this result by studying a third recommendation
model, i.e., the anonymous recommendation model. In the anonymous
model, we reveal the input matrix to the algorithm, but we hide the
identities of the users. This is performed by shuffling the labels that
identify the users according to an arbitrary permutation. Furthermore, in
the anonymous model, we allowed the algorithm to decide the sequence
in which the users are presented.

We showed that the quasi-competitive ratio of our online algorithm
stays asymptotically the same even when we compare our ignorant algo-
rithm to the stronger quasi-offline algorithm. We achieved this by showing
that the greedy algorithm for the mssc problem is a O(1)-approximation
algorithm for the anonymous recommendation problem.

Part II

Adaptivity in the Stone Age
Model

51

6
Fault Tolerance

The biological form of close-range (juxtacrine) message passing relies on
designated messenger molecules that bind to crossmembrane receptors in
neighboring cells and trigger a signaling cascade that eventually affects
gene expression, thus modifying the neighboring cells’ states. This mech-
anism should feel familiar as it resembles the message passing schemes
of distributed digital systems. In contrast to nodes in distributed digital
systems, however, biological cells are not believed to be Turing complete,
rather each biological cell is pretty limited in computation as well as com-
munication. In attempt to cope with these differences, Emek and Wat-
tenhofer [36] introduced the Stone Age model of distributed computing
(a.k.a. networked finite state machines), where each node in the network
is a very weak computational unit with limited communication capabili-
ties and showed that several fundamental distributed computing problems
can be solved efficiently under this model.

53

54 CHAPTER 6. FAULT TOLERANCE

An important topic left outside the scope of [36] is that of node failures.
Just like distributed digital systems, biological systems may suffer from
local failures and the ability of the system to recover from these failures
is crucial to its survival. However, the desired failure recovery features in
biological cellular networks typically differ from those traditionally studied
in the distributed computing literature. In particular, a major issue in
the context of biological cellular networks, that is rarely addressed in
the study of distributed digital systems, is that of confining the failures:
while nodes in the vicinity of the failures are doomed to be affected by
them (hopefully, to a bounded extent), isolating the nodes sufficiently far
away from any failure so that their operation remains unaffected is often
a critical matter.

An example for the essential role that this confinement plays in bio-
logical systems is found in the transition of tumors from a benign state to
a malignant one. Cancerous tumors require an extensive creation of new
blood vessels to obtain nutrients and oxygen and to evacuate metabolic
wastes and carbon dioxide. These blood vessels are created through an
angiogenesis process from healthy endothelial cells by signaling a normally
quiescent vasculature to continually sprout new vessels [52]. Indeed, many
forms of cancer treatment are based on blocking these signals, thus isolat-
ing the cancerous (faulty) cells from the healthy (correct) ones, eventually
causing the tumor to suffocate and die.

The goal of this chapter is to take a step towards bringing the mod-
els from computer science closer to biology by extending the Stone Age
model to accommodate node failures and introducing a new method for
measuring the failure recovery performance of networks that takes into
account the aforementioned confinement property. This new method first
measures the number of “computationally-meaningful” steps made by the
individual nodes, which are essentially all steps in which the node partici-
pates (in the weakest possible sense) in the global computational process.
Then, an algorithm is said to be effectively confining if (1) the runtime of
the nodes that are not adjacent to any failed node is O(logO(1) n); and (2)
the global runtime (including all correct nodes) is O((C + 1) logO(1) n),
where C is the number of crash failures. In other words, the total runtime
is O(logO(1) n) when amortized over the number of failures.

Following that, we turn our attention to the extensively studied max-

6.1. RELATED WORK 55

imal independent set (MIS) problem and design a randomized effectively
confining algorithm for it under the Stone Age model, extended to ac-
commodate failures. This is achieved by carefully augmenting the MIS
algorithm introduced in [36] with a new ’failure handling’ component. Be-
ing a first step in the study of failure recovery under the Stone Age model,
our algorithm assumes a synchronous environment, where the network is
subject to crash failures only.1 Nevertheless, the former assumption is
justified by the findings of Fisher et al. [40] that model cellular networks
as being subject to a bounded asynchrony scheduler, which is equivalent
to a synchronous environment from an algorithmic perspective.

The chapter is organized as follows. An extension of the Stone Age
model of [36] to node failures is presented in Section 6.2 together with
our new method for evaluating the failure recovery performance of dis-
tributed algorithms. In Section 6.3, we analyze the runtime of the MIS
protocol introduced in [36] under our crash failure model and show that
each node not affected by a crash failure will reach an output state in
O(log2 n) rounds and the corresponding output configuration is correct
given that there are no failures. Then, in Section 6.4, we show how to
extend this protocol to fix any incorrect output configurations induced by
the crash failures. We contrast the runtime of O((C + 1) log2 n) of the
fault-tolerant MIS protocol by showing that the global runtime is Ω(C)
for any algorithm.

6.1 Related Work

Recently, scientists in biology and computing have been flirting with each
other. Distributed computing in particular seems to be a valuable tool
towards understanding biological phenomena, as both often deal with net-
works of simple nodes, collaborating by means of minimal communication.
Please see the recent survey from Navlahka and Bar-Joseph for more de-
tails [75].

1 Notice that the analogy between cancerous cells and faulty nodes in the afore-
mentioned example requires Byzantine rather than crash failures. In that sense, it
falls outside the direct scope of this paper and serves only as an example for the
importance of confining failures in biological systems.

56 CHAPTER 6. FAULT TOLERANCE

In distributed computing, the standard model for a network of commu-
nicating devices is the message passing model [68, 78]. There are several
variants of this model, where the power of the network has been weak-
ened. Perhaps the best-known variant of the message passing model is the
congest model, where the message size is limited to logarithmic size with
respect to the size of the input graph [78]. A step to weaken the model
further is to consider interference of messages, i.e., a node only hears a
message if it receives a single message per round. An example of such
a model is the radio network model [24]. In the beeping model [26, 41],
the communication capabilities are reduced even further by only allowing
to send beeps that do not carry any information, where a listening node
cannot distinguish between a single beep and multiple beeps transmitted
by its neighbors.

The models mentioned above focus on limiting the communication
but not the computation, i.e., the nodes are assumed to be sufficiently
strong to perform unlimited (local) Turing computations in each round.
Networks of nodes weaker than Turing machines have been considered for
example in the context of cellular automata [44, 83, 85]. The drawback
of the usual approach to the networks of cellular automata is that they
only consider highly regular graph structures, such as the grid. Motivated
by this drawback, the Stone Age model of [36] accommodates arbitrary
network topologies.

There also exists a lot of work on dynamic network models. A classic
result from Awerbuch and Sipser states that under the message passing
model, any algorithm designed to run in a static network can be trans-
formed into an algorithm that runs in dynamic networks with only a
constant multiplicative runtime overhead [14]. However, the transforma-
tion of Awerbuch and Sipser requires storing the whole execution history
and sending it around the network, which is not possible under the Stone
Age model.

In the context of the dynamic networks literature, it is often assumed
that the dynamic changes are somehow restricted and behave “nicely”. A
typical assumption is that the changes only occur up to some point in
time [11, 84]. Another common assumption is that the dynamic updates
are spaced in time so that the system has an opportunity to recover before
another change appears [58,59,72].

6.1. RELATED WORK 57

We consider adversarial network updates that can occur at any point
in time, however, we restrict ourselves to only node removals. Protocols
that work with such continuous dynamic updates have been considered,
for example, in the context of peer-to-peer overlay networks [54,62,66].

Our work focuses on the MIS problem under the Stone Age model with
crash failures. The MIS problem has a long history in the context of dis-
tributed algorithms [7,18,25,68,71,77,82]. Arguably the most significant
breakthrough in the study of message passing MIS algorithms was the
O(logn) algorithm of Luby [71] (developed independently also by Alon et
al. [7]).

For growth bounded graphs, it was shown by Schneider et. al. [79] that
MIS can be computed in O(log∗ n) time. In the radio networks realm, it is
known that with F channels, an MIS can be computed in Θ(log2 n/F) +
Õ(logn) time [27]. The MIS problem was extensively studied also under
the beeping model [1, 2, 80]. Afek et al. [1] proved that if the nodes are
provided with an upper bound on n or if they are given a common sense
of time, then the MIS problem can be solved in O(logO(1) n) time. This
was improved to O(logn) by Scott et al. [80] assuming that the nodes are
equipped with sender collision detectors.

On the lower bound side, the seminal work of Linial [68] provides a
lower bound of Ω(log∗ n) for computing an MIS in the message passing
model [68]. Kuhn et al. [61] established a stronger lower bound stating
that it takes Ω

(√
logn

log logn

)
+ Ω

(log ∆
log log ∆

)
rounds to compute an MIS,

where ∆ is the maximum degree of the input graph. For uniform algo-
rithms in radio networks and therefore, also for the beeping model, there
exists a lower bound of ∆(

√
n/ logn) communication rounds [1].

Containing faults within a small radius of the faulty node has been
previously studied for example in the context of self-stabilization [46]. It
is known that the MIS problem can be solved with an elegant algorithm
if the wake-up times of the nodes are controlled by a so-called centralized
daemon [67, 81], who wakes up the nodes one at a time. In our model,
the nodes are controlled by a distributed daemon that wakes up every
node simultaneously. In the field of self-stabilization, the performance of
a protocol is typically measured as a function of some network parameter,
such as the cardinality of the network or the maximum degree, whereas

58 CHAPTER 6. FAULT TOLERANCE

we allow the performance to depend on the number of failures.
The works perhaps closest to ours are by Kutten and Peleg, where they

introduce the concepts of mending algorithms and tight fault locality [63,
64]. The idea behind a tight fault local mending algorithm is to be able
to recover a legal state of the network after a fault occurs and, similarly
to us, they measure the performance in terms of number of faults C. The
term tight fault locality reflects the property that an algorithm running
in time O(T (n)) without failures is able to mend the network in time
O(T (C)). Their algorithm recovers an MIS in time O(logC), but they
use techniques that require the nodes to count beyond constant numbers,
which is not possible in the Stone Age model. Furthermore, they consider
transient faults, whereas we consider changes in the network topology.

The optimization version of MIS, i.e., MaxIS, is a classic combinatorial
optimization problem that is known to be NP-hard [45, 57] and hard to
approximate [53].

6.2 Model

We describe the network as an undirected graph G = (V,E), where V is
the ground set of nodes and E the ground set of edges. The execution is
synchronous, i.e., it can be divided into discrete rounds. In each round
r, node v first receives messages sent in round r − 1, then performs local
computations and finally, broadcasts a message to all neighbors.

The nodes {v1, . . . , vn} correspond to the computational units in the
network and the edges represent bidirectional communication channels.
Adopting the (static) model of [36], each node v ∈ V runs a protocol
depicted by the 7-tuple

Π = 〈Q,QI , QO,Σ, σ0, b, δ〉 ,

where Q is a fixed set of states and QI ⊆ Q is the set of input states.
The input states are bijectively mapped to the possible input values of
the given problem. In the beginning of the execution, each node resides in
one of the input states. Furthermore, QO ⊆ Q is the set of output states.
The output states are bijectively mapped to the possible output values of
the given problem. The system is said to be in an output configuration

6.2. MODEL 59

if all non-crashed nodes reside in an output state. In addition, Σ is a
fixed communication alphabet, σ0 ∈ Σ is the initial letter and b ∈ Z>0 is
a bounding parameter, where

B = {0, 1, . . . , b− 1,≥b}

is a set of b+ 1 distinguishable symbols. Finally,

δ : Q×B|Σ| → 2Q×(Σ∪{ε})

is the transition function.
The nodes communicate by transmitting messages that consist of a

single letter σ ∈ Σ. Each neighbor v of node u has a port φu(v) in which
v stores the last message received from u. Transmitting the designated
empty symbol ε corresponds to the case where u does not transmit any
message. In the beginning of the execution, all ports contain the initial
letter σ0.

The execution of any protocol proceeds in discrete rounds indexed by
the positive integers. In each round r, node v is in some state q ∈ Q.
Let](σ) be the number of appearances of σ ∈ Σ in v’s ports in round r.
Furthermore, let (βb(](σ)))σ∈Σ be a vector that indicates the multiplicities
of the query letters, where

βb(x) =
{
x if 0 ≤ x ≤ b− 1
≥b otherwise.

Then the message σ′ that v sends in round r and the state q′ in which v
resides in round r+ 1 are chosen uniformly at random among the pairs in

δ(q, (βb(](σ)))σ∈Σ) ⊆ Q× (Σ ∪ {ε}) .

We say that a state transition is deterministic if

|δ(q, (βb(](σ)))σ∈Σ)| = 1 .

To make sure that our state transitions are well-defined, we require that

|δ(q, (βb(](σ)))σ∈Σ)| ≥ 1

for all q and (βb(](σ)))σ∈Σ.

60 CHAPTER 6. FAULT TOLERANCE

Crash Failures. In our network model, the nodes may crash arbitrarily.
We assume that the schedule of these crash failures is controlled by an
oblivious adversary. Formally, the strategy of the adversary is a mapping
from the round indices (natural numbers) to node subsets, where this
mapping may depend on the protocol Π, but not on the random choices
made during the execution. A crash failure of node u in round r indicates
that all nodes including u execute round r and after round r and before
round r+ 1, node u (along with all of its adjacent edges) is removed from
G. Throughout the paper, we denote the number of crash failures by C.
We point out that if an edge e = (u, v) is removed due to a crash failure
of u or v, then the corresponding ports φu(v) and φv(u) of the adjacent
nodes u and v are removed as well and the messages stored there cannot
be read anymore.

Correctness. A protocol Π for problem P is said to be correct if the fol-
lowing holds for every instance of P and for any strategy of the adversary.
With probability 1, Π eventually reaches an output configuration where
the output of the correct nodes is a valid solution to P . In other words,
if a valid output configuration becomes invalid due to crash failures, then
the protocol must eventually change the output configuration into a valid
one.

Runtime. We call a round r silent, if all the non-crashed nodes are
in an output state and the output configuration corresponds to a valid
solution to P in round r. The global runtime of a correct protocol Π for
problem P is the number of non-silent rounds in an execution. In other
words, we count the number of rounds in an infinite execution ignoring
the silent rounds, where the configuration of the nodes corresponds to a
valid solution to P .

In addition, we measure a runtime of each individual node. We say
that node u is active whenever it is in state q ∈ Q \QO. The runtime of
node u is defined to be the number of rounds in which u is active.

We say that node u is affected if a crash failure occurs in the immediate
neighborhood of u. Futhermore, we say that a protocol Π is effectively
confining, if the following properties hold. For all non-affected nodes, the
runtime of Π is O(logO(1) n) and the global runtime of Π is O(logO(1) n),

6.3. MAXIMAL INDEPENDENT SET 61

when amortized over the number of crash failures, i.e., O((C+1)·logO(1) n)
in total. Note that a bound on the global runtime directly implies the same
bound for the runtime of any affected node.

Restrictions on the Output States. In [36], the nodes are not al-
lowed to change their output once they have entered an output state.
However, they do allow for many output states that correspond to one
output o. In other words, it is required that the output states Po ⊆ QO
that correspond to each problem output o form a sink, i.e., there does not
exist any state transition from Po to Q \ Po. Since our model accommo-
dates crash failures, which might change a correct output state into an
incorrect one, we lift this restriction, allowing transitions from an output
state to any other state, thus providing the protocol designer with the
possibility to escape output configurations that become invalid. We in-
troduce the following new restrictions whose role is to prevent nodes in an
output state from taking any meaningful part in the computation process:

1. each possible problem output is represented by a single output state;

2. all transitions originating from an output state must be determinis-
tic; and

3. a transition from an output state to itself always transmits ε (the
empty letter).

Notice that these additional restrictions are necessary for the soundness
of our runtime definition.

6.3 Maximal Independent Set

The main goal of this paper is to design a protocol under the Stone Age
model for the Maximal Independent Set (MIS) problem that is able to
tolerate crash failures. A set of nodes I ⊆ V is independent if for all
u, v ∈ I, (u, v) /∈ E. An independent set I is maximal if there is no other
set I ′ ⊆ V such that I ⊂ I ′ and I ′ is independent.

Following the terminology introduced in the model section, we show
that our protocol is effectively confining. In Section 6.5, we provide a

62 CHAPTER 6. FAULT TOLERANCE

straightforward lower bound example that shows that under our model,
our solution is within a polylogarithmic factor from optimal. In other
words, the linear dependency on the number of failures is inevitable.

The basic idea behind our protocol is that we first use techniques
from [36] to come up with an MIS quickly and then we fix any errors that
the crash failures might induce. In addition, we want to minimize the
potential damage that a crash failure might induce, i.e., the number of
nodes that decided not to be in the MIS and do not have an MIS neighbor
after a failure.

In other words, our goal is to first come up with a proportional MIS,
where the likelihood of a node to join the MIS is inversely proportional
to the number of neighbors the node has that have not yet decided their
output. We partition the state set of our protocol into two components.
One of the components contains the input state and is responsible for
computing the proportional MIS. Once a node has reached an output
state, it transitions into the second component, which is responsible for
fixing the errors, and never enters an active state of the first component.
As the next step, we explain the logic behind the first component. The
logic of the fixing component is explained in Section 6.4.

6.3.1 The Proportional Component

The component used to compute the proportional MIS follows the design
from [36] and next, we show that the runtime of their protocol does not
(asymptotically) suffer from failures.

The state set of the proportional component consists of states
{D1, D2, U0, U1, U2,W,L}, where Qa = Q\{W,L} are referred to as active
states and QO = {W,L} as passive states. We set D1 as the initial state.
The communication alphabet is identical to the set of states, i.e., node u
transmits letter q in round r whenever it resides in state q in round r+ 1.
The transition function of the proportional component is depicted in
Figure 6.1.

In the proportional component, each state q ∈ Q is delayed by a
set D(q) of delaying states of q. For state q ∈ Q the set of delaying states
corresponds to the states S ⊆ Q \ q from which there is a state transition
to q. State q being delayed by state q′ indicates that a node u stays in

6.3. MAXIMAL INDEPENDENT SET 63

U1

U2

U0D1 D2

w = 0

u0 + u1 = 0

u1
+
u2

=
0

u
0 +

u
2 =

0
u0

+
u2
≥ 1

u
1 + u

2 ≥
1

W L
w ≥ 1

u0
+ u1

≥ 1

u0 + u1 ≥ 1

u0 + u2 ≥ 1

u
1
+
u
2 ≥

1

Figure 6.1: The transition function of the proportional component. Each
edge describes a possible transition and is labeled by the condition that is as-
sociated with the corresponding state transition. In addition, each state q is
delayed by state q′ if there exists a transition q′ → q (the rules associated with
the delays are omitted from the figure for clarity).

state q as long as there is at least one letter in its ports that corresponds
to q′.

The main idea of the proportional component is that each node
goes into state U0 along with its active neighbors and then competes
against them. During each round every node u in state Uj , j ∈ {0, 1, 2}, as-
suming that it is not delayed, tosses a fair coin and proceeds to Uj+1 mod 3
if the coin heads and to D2 otherwise. If a node observes that it is the
only node in its neighborhood in a U -state, it enters state W , which cor-
responds to joining the MIS. In the case where, due to unfortunate coin
tosses, u moves to state D2 along with all of its neighbors, node u restarts
the process by entering state D1.

We call a maximal contiguous sequence of rounds u spends in state
q ∈ Qa a q-turn and a maximal contiguous sequence of turns starting from
a D1-turn and not including another D1-turn a tournament. We index
the tournaments and the turns within the tournament by positive integers.
For a more detailed description of the protocol in a static environment,
and especially for the following observation, we refer to [36].

Observation 6.1. [36] Consider some active node v ∈ V in turn j ∈ Z>0
of tournament i ∈ Z>0 and some active node u ∈ N(v).

64 CHAPTER 6. FAULT TOLERANCE

• If j is a D1-turn of v, then u is in either (1) the last D2-turn of
tournament i − 1; (2) turn 1 of tournament i; or (3) turn 2 of
tournament i.

• If j is an U-turn of v, then u is in either (1) turn j−1 of tournament
i; (2) turn j of tournament i; (3) turn j+ 1 of tournament i; or (4)
the last D2-turn j′ ≤ j + 1 of tournament i.

• If j is a D2 turn of v, then u is in either (1) an U-turn j′ ≥ j − 1
of tournament i; (2) the last D2-turn of tournament i; or (3) turn
1 of tournament i+ 1.

6.3.2 An Auxiliary Execution of the Proportional Compo-
nent

In this section we present an auxiliary execution E of the proportional
component that we use to bound the maximum number of tournaments
any node u participates in. As a by-product, we get an upper bound for
the number of rounds u spends executing the proportional component.
We note that E is coupled with an execution η of the proportional
component with the same sequences of coin tosses, i.e., when we compare
η and E(η), where E(η) is the auxiliary execution coupled with η, we
assume that the (infinite) sequence of coin tosses by any node u is the
same in η and in E(η).

We begin by observing that the adversarial strategy combined with
the sequences of coin tosses made by all nodes uniquely determine the
tournament index i and the turn of this tournament in which u is crashed
(if at all). The crux of E(η) is that we weaken the execution η by crashing
node u in the very end of the tournament in which it would have been
crashed according to η.

Let t+1 be the first round when node u resides in either state D2 or W
of tournament i. In other words u resides in state Uj for some j ∈ {0, 1, 2}
in round t, is not delayed and either throws tails in round t or t is the first
round in which there are no neighbors of u in an U -state. Then crashing
node u in the end of tournament i indicates that u is crashed after round
t but before round t+1, which ensures that all neighbors of u will observe
all U -turns of u and no node will observe u transitioning into D2 or W .

6.3. MAXIMAL INDEPENDENT SET 65

To ensure that E(η) never progresses more than η, we restrict the active
nodes in each tournament i to the nodes that are active in tournament i
according to η. That is, let Vi be the set of nodes for which tournament i
exists in η. Then, only the nodes in Vi will execute tournament i in E(η).

Let Xu(i) and Y u(i) denote the number of U -turns in tournament i
of node u according to η and E(η), respectively. Let Ni(u) denote the
(exclusive) neighborhood of u in tournament i. We say that node u wins
in tournament i in η if Xu(i) > Xw(i) for all w ∈ Ni(u) and if u is not
crashed in tournament i and analogously for E(η).

The following lemma plays a key role in showing that the number of
tournaments in E(η) is equal to the one in η.

Lemma 6.2. Let Vi be the set of nodes for which tournament i exist in
η. If u ∈ Vi wins in tournament i in E(η), then u wins in tournament i
in η.

Proof. First, we show that Xv(i) ≤ Y v(i) for any tournament i and any
node v. We observe that if v is not crashed in tournament i, the number
of U -turns is uniquely determined by the coin tosses in both executions,
i.e., Xv(i) = Y v(i). Then if v is crashed in tournament i, there are at
least as many U -turns in E(η) as in η. Thus Xv(i) ≤ Y v(i).

Assume that u wins in tournament i according to E(η). Since u can
only win in tournament i if it does not crash in this tournament, we get
that Xu(i) = Y u(i). In addition, u winning in tournament i implies

Xu(i) = Y u(i) > Y v(i) ≥ Xv(i)

for any v ∈ Ni(u) and therefore u also wins in η.

6.3.3 Runtime
Next, we analyze the number of tournaments in proportional compo-
nent. Once we have a bound on the number of tournaments executed
in E(η), it is fairly easy to obtain a similar bound for η. To bound the
runtime, we first introduce some notation. Similarly as before, the set of
nodes participating in tournament i is indicated by Vi. Furthermore, we
denote Ei = E ∩ (Vi × Vi) and the subgraph induced by nodes in Vi by
Gi = (Vi, Ei).

66 CHAPTER 6. FAULT TOLERANCE

According to the design of the proportional component, no node
that once enters a passive state can become active again. Since Vi is the
set of nodes participating in tournament i according to the proportional
component, we get that Vi+1 ⊆ Vi for any i. The following lemma plays
a crucial role in the runtime analysis of the proportional component.
In the case of no failures, the proof is (almost) the same as the one in [36].
By a delicate adjustment in the details of the proof, we show that the same
argument holds in the presence of failures and only affects the constant `
by a constant factor.

Lemma 6.3. There are two constant 0 < p, ` < 1 such that |Ei+1| ≤ `|Ei|
with probability p.

Proof. We say that a node v is good in Gi if

|{u ∈ Ni(v) | di(v) ≥ di(u)}| ≥ di(v)/3 .

It is known, that at least half of the edges of any graph are adjacent to
good nodes [7].

Let us now consider some good node v ∈ Gi. Our goal is to show
that at least 1/6 of the edges connected to v in tournament i do not
exist in Vi+1 with a constant probability. We split our analysis into two
cases, where the first case considers the option that in tournament i, the
adversary either crashes v or at least half of the edges connected to nodes
in {u ∈ Ni(v) | di(v) ≥ di(u)} by crashing the corresponding neighboring
node. It directly follows that at least 1/6 edges connected to v do not
exist in Vi+1 with probability 1.

Let us then assume for the second case that the adversary crashes at
most half of the edges connected to

{u ∈ Ni(v) | di(v) ≥ di(u)}

in tournament i. Let A(u, i) be the event that u does not crash in tour-
nament i and

N̂i(v) = {u ∈ Ni(v) | A(u, i) ∧ (di(u) ≥ di(v))} .

We say that node u ∈ N̂i(v) wins v in tournament i if

Xu(i) > max{Xw(i) | w ∈ Ni(u) ∪ N̂i(v)− {u}}

6.3. MAXIMAL INDEPENDENT SET 67

and denote this event by WINi(u, v). The idea is that if u wins v in
tournament i, then u enters the WIN state and v enters the LOSE state.
Furthermore, the events WINi(u, v) and WINi(w, v) are disjoint for every
u,w ∈ N̂i(v), u 6= w.

Let us now fix a node u ∈ N̂i(v). We denote the event that the
maximum of {Xw| w ∈ Ni(u)∪ N̂i(v)} is attained at a single w ∈ Ni(u)∪
N̂i(v) by Bi(u, v). Since

|Ni(u) ∪ N̂i(v)| ≤ 2di(v)

by the definition of a good node and Xw(i) are independent geometric
random variables for all w ∈ Ni(u) ∪ N̂i(v), we get that

Pr(WINi(u, v)) = Pr(WINi(u, v) | Bi(u, v)) · Pr(Bi(u, v)) ≥ 1
2di(v) ·

2
3 .

Since v is good in Gi and the events WINi(u, v) disjoint, we get that

Pr (v /∈ Vi+1) ≥ Pr

 ∨
u∈N̂i(v)

WINi(u, v)

=

∑
u∈N̂i(v)

Pr (WINi(u, v))

≥ di(v)
6 · 1

2di(v) ·
2
3 = 1

18 .

Recalling that half of the edges are connected to good nodes, we get that
E[|Ei+1|] < 35/36|Ei|. The claim now follows by Markov’s inequality.

Theorem 6.1. Any node u ∈ V participates in O(logn) tournaments
before becoming passive with high probability2 and in expectation.

Proof. Let Z = min{0 ≤ i ∈ Z | |Ei| = 0}. By Lemma 6.3, Z is dominated
by a random variable that follows distribution

O(logn) + NB(O(logn), 1− p) .
2Recall that an event occurs with high probability, if the event occurs with prob-

ability at least 1− n−c, where c is an arbitrarily large constant.

68 CHAPTER 6. FAULT TOLERANCE

Therefore, Z = O(logn) in expectation and with high probability.
According to the design of the protocol, a node that is not crashed

and does not have any active neighbors in tournament i goes into state
W with probability 1. Therefore, all active nodes in tournament with
index Z will either become passive or crash. To conclude the proof, we
recall that according to Lemma 6.2 and the construction of E any node
that becomes passive in tournament i according to E(η) also becomes
passive in tournament i according to η.

The last step of our runtime analysis is to bound the actual num-
ber of rounds that any node u might spend in an active state of the
proportional component. Consider the following modification of the
proportional component: before starting tournament i+1, every node
waits for every other node to finish tournament i or to become passive.
We emphasize that we do not claim that we know how to implement such
a modification, but clearly the modified process is not faster than the
original one.

The length of tournament i is determined by maxv{Xv(i)}. Given
that the random variables Xv(i) are independent and follow the geometric
distribution with parameter 1/2, we get that maxv{Xv(i)} ∈ O(logn)
with high probability and in expectation.

Corollary 6.4. There exists a time t such that no node is in an active
state q ∈ Qa of the proportional component and t ∈ O(log2 n) with high
probability and in expectation.

6.3.4 The Quality of an MIS
The proportional component provides us with an efficient MIS proto-
col that ensures that the nodes that are unaffected by the crash failures
form an MIS and that the competitions between these nodes are fair. In
Section 6.4, we extend this protocol to cope with the crash failures that
break the MIS, i.e., remove an MIS node u from the graph leaving at
least one of the neighbors of u without any other neighbors in the MIS.
Intuitively, the adversary should aim for failures that leave many nodes
without MIS neighbors, so that fixing the MIS takes as long as possible.
Before introducing the extension to the proportional component, we

6.3. MAXIMAL INDEPENDENT SET 69

first take a closer look at the properties of nodes in the passive states and
show that if a node has a high degree, it is either unlikely for this node
to be in the MIS or that the neighbors of this node have more than one
MIS node in their respective neighborhoods.

Let i be the index of the tournament in which node u enters state
W . We say that node u covers node v ∈ N(u) if v entered state L in
tournament i. In other words, u won and v lost in tournament i.

Definition 6.5. The quality q(u) of node u is given by

q(u) = |{v ∈ N(u) | u covers v}| .

The quality q(U) of a set of nodes U ⊆ V is defined as
∑

u∈U q(u).

The quality of a node u gives an upper bound on the number of nodes
in the neighborhood of u such that u is the only node that covers them.
As the next step, we bound the expected quality of any node u.

Lemma 6.6. For any node u, E[q(u)] ∈ O(logn).

Proof. Consider node u and tournament i. Let N̂i(u) ⊆ Ni(u) be the
neighbors of u that are not crashed in tournament i. We note that u can
only cover v ∈ Ni(u) if v is not crashed in tournament i. Let qi(u) denote
the random variable that counts the number of nodes that u covers in
tournament i. Since Xu(i) and Xv(i) for all v ∈ N̂i(u) are independent
random variables that obey the same distribution, and u can only win in
tournament i if Xu(i) > Xv(i) for all v ∈ N̂i(u), we get that

E[qi(u)] ≤ Pr
[
Xu(i) > max{Xv | v ∈ N̂i(u)}

]
· |N̂i(u)|

≤ 1
|N̂i(u)|+ 1

|N̂i(u)| ≤ 1 .

Consider the random variable

Z = min{j ∈ Z≥0 | |Ej | = 0} .

The total number of tournaments is at most Z and therefore

E[qi(u)] = E[qi(u) | Z ≥ i] · Pr[Z ≥ i] .

70 CHAPTER 6. FAULT TOLERANCE

Thus

E[q(u)] =
∞∑
i=0

E[qi(u) | Z ≥ i] · Pr[Z ≥ i]

∈ O(1) ·

(
∞∑
i=0

Pr[Z ≥ i]

)
⊆ O(logn) .

Let v be a node in state L. If t is the first round such that there are
no nodes in N(v) in state W , we say that v is released at time t. Each
node can only be released once, i.e., node v still counts as released even
if it eventually again has a neighboring node in state W .

The next step is to bound the number of released nodes. The idea is
that for any set U ⊆ V , the quality q(U) gives an upper bound to the
expected number of released nodes when the nodes in U crash.

Lemma 6.7. Let H be the set of nodes that are eventually released. Then
E[|H|] ∈ O(C logn).

Proof. For each node u ∈ V , the quality q(u) of u yields an upper bound
to the expected number of nodes released when this node is crashed. Let
Vc ⊆ V be the set of nodes are eventually crashed. By Lemma 6.6 the
quality of any node u is O(logn). Therefore

E[q(Vc)] =
∑
u∈Vc

E[q(u)] ∈ |Vc| · O(logn) .

Thus, the expected number of released nodes is at most

|Vc| · O(logn) ⊆ O(C logn) .

6.4. THE FIXING COMPONENT 71

6.4 The Fixing Component

Now we extend the proportional component to fix the MIS in the case
of nodes being released. To detect if all the neighbors in the MIS have
crashed, each node u in state L checks in every round that there is at least
one message w in its ports. If not, u tries to join the MIS in a similar
fashion as in the proportional component, but without waiting for its
neighbors in the L state.

The state set of the protocol is extended by Q2 = {U ′, D′}, where
nodes in either state U ′ or D′ are referred to as active. We refer to the
extension of the proportional component as the greedy component.
The state transition function of the protocol is illustrated in Figure 6.2.
Note that in the proportional component, the output states W and
L are sinks, i.e., the only state transitions are self-loops. To implement
the detection of crashed neighbors, the greedy component adds a state
transition from the L state into state D′ in the case that a node u resides
in state L and does not have any letters w in its ports. State W remains
a sink.

The logic of the new states U ′ and D′ is the following: upon wake up,
node u in state D′ goes into state U ′ if none of its neighbors is yet in state
U ′. Then u and its neighbors that transitioned from D′ to U ′ during the
same global round compete similarly to the proportional component.
In every round, u tosses a fair coin and goes back to state D′ if the coin
tails. We emphasize that nodes in state U ′ are not delayed by nodes in
the state D′. Then, if u is the only node in its neighborhood in the U ′
state, it declares itself as a winner and moves into the W state. Similarly,
if a neighbor of u wins, u goes into state L.

Similarly to the proportional component, we call a maximal con-
tiguous sequence of rounds in which node v resides in state U ′ a greedy
tournament. Unlike with the proportional component, we index these
greedy tournaments globally by the time this particular tournament starts.
In other words, if node v resides in state D′ in round t − 1 and in state
U ′ in round t, we index this tournament by t. We say that a greedy tour-
nament r is active if there is at least one node u in state U ′ of greedy
tournament r.

To bound the total number of non-silent rounds, we first bound the

72 CHAPTER 6. FAULT TOLERANCE

W U ′

D′L

u′ = 0

w = 0

w ≥ 1

u
′
=

0
fair

u′ ≥ 1

u
′
≥

1

Figure 6.2: The transition function of greedy component. The output states
W and L are shared among the components. Similarly as in the proportional
component, the conditions for the transitions are denoted by the labels on
the edges. Unlike in the proportional component part of the protocol, a
transition from q′ to q does not imply that q′ delays q.

6.4. THE FIXING COMPONENT 73

length of each greedy tournament. Then, we give a bound on the total
number of greedy tournaments as a function of n and C.

Observation 6.8. There are at most O(logn) rounds in which greedy
tournament t is active in expectation and with high probability.

Proof. Let Vt ⊆ V be the set of nodes that participate in greedy tour-
nament t. Let t′ > t be a round in which node u ∈ Vt is in state U ′ of
greedy tournament t. According to the design of the greedy protocol, u
performs a state transition to U ′ in round with probability at most 1/2.

We denote the number of transitions from U ′ to U ′ in greedy tour-
nament t by node u ∈ Vt by Xu(t). We note that the number of state
transitions in greedy tournament is exactly Xu(t). Furthermore, Xu(t)
follows distribution Geom(1/2). Since all Xv(t), v ∈ Vt are independent
and the maximum of Xu(t) for at most n variables is O(logn) with high
probability and in expectation, the claim follows.

Lemma 6.9. The expected number of greedy tournaments throughout the
execution is O(C logn).

Proof. To prove the claim, we bound from above the sum of state tran-
sitions into state W by the released nodes. Since state W is a sink, we
know that each node can enter W at most once. Therefore, after at most
|H| transitions into state W by the released nodes, all released nodes are
in state W .

We say that a crash occurs during greedy tournament t′ if any node
u is crashed while u is in an active state of greedy tournament t′. If
no crash failures occur during greedy tournament t′, we say that greedy
tournament t′ is clean.

Assuming that greedy tournament t′ is clean and recalling that the
random variables Xu(t′) are independent, the probability that the max-
imum of Xu(t′), u ∈ Vt is attained in a single node is at least 1/3. Let
Xk be the random variable that counts the number of clean greedy tour-
naments we need until the sum of state transitions to W by the released
nodes is k. It is easy to see that Xk is dominated by random variable Y
that obeys distribution k + NB(k, 2/3).

74 CHAPTER 6. FAULT TOLERANCE

Now we set k = |H| and get that E[Y] ∈ O(k) ⊆ O(|H|). Let T be a
random variable that counts the number of released nodes. By Lemma 6.7,
T ∈ O(C logn) expectation. Since variables T and Xk are independent,
we get that

E[XT] ∈ O(|H|) ⊆ O(C logn) .

Finally, we observe that there can be at most C greedy tournaments where
a crash occurs and thus, the total expected number of greedy tournaments
is

O(C logn) + C ⊆ O(C logn) .

Observation 6.10. Let k be the total number of greedy tournaments.
There can be at most 2k + 2C non-silent rounds without an active greedy
tournament.

Proof. Consider a non-silent round t, assume that no crash failures occur
and assume that no greedy tournament t′ < t is active during rounds t or
t + 1. Then the logic of the L state ensures, that at least one node will
be active in round t + 1. Assume then that greedy tournament t is not
active in round t+ 1. This indicates that there has to be a node in state
D′ and no nodes in state U ′. Now the logic of the D′ state ensures that
greedy tournament t+ 1 will become active.

Now we are ready to prove our main result, i.e., that our MIS protocol
is indeed effectively confining. In Section 6.6, we extend this result by
showing that the protocol is pseudo-local, i.e., the runtime of a node only
depends on its (logn)-hop neighborhood.

Theorem 6.2. The expected global runtime of our MIS protocol is O((C+
1) log2 n).

Proof. By Lemma 6.9, we have O(C logn) active greedy tournaments
in expectation and by Observation 6.8 each greedy tournament takes
O(logn) rounds with high probability and in expectation. Therefore,
we have at most O(C log2 n) non-silent rounds where some greedy tour-
nament is active in expectation.

6.5. LOWER BOUND 75

Combining with Corollary 6.4 and Observation 6.10 and by linearity
of expectation, the total expected runtime is

O(log2 n) +O(C logn) +O(C log2 n) ⊆ O((C + 1) log2 n) .

Corollary 6.11. The runtime of any non-affected node is O(log2 n) in
expectation and with high probability.

Proof. Consider any non-affected node u. According to Corollary 6.4, u
will enter a passive state in O(log2 n) rounds with high probability and
in expectation. The design of the proportional component guarantees
that u will only become passive if there is node v ∈ N(u)∪ {u} that is in
state W . Since u is non-affected, v will never exit state W and therefore,
u will never become active again.

6.5 Lower Bound

The runtime of our algorithm might seem rather slow at the first glance,
since it is linear with the number of crash failures. In this section, we show
that one cannot get rid of the linear dependency, i.e., there are graphs
where the runtime of any algorithm grows linearly with the number of
crash failures. In particular, we construct a graph where the runtime of
any algorithm is within a polylogarithmic factor from the O((C+1) log2 n)
upper bound given by Theorem 6.2.

The intuition behind the lower bound is that even for a graph with two
connected nodes, any algorithm has to perform some sort of symmetry
breaking. Furthermore, if the degrees of node u and its neighbors are
small, it is likely that crashing u releases some of its neighbors.

Let G` be a graph that consists of n nodes and n = 3`. The graph
consists of ` components Bi, where Bi is a 3-clique for each 0 ≤ i < `.
In addition, let u0, . . . , u` be a set of nodes such that ui ∈ Bi for every i.
For illustration, see Figure 6.3.

Theorem 6.3. Let k > 0 be a constant. There exists a graph G and an
schedule of crash failures such that the runtime of any algorithm on G is
Ω(C) in expectation and with high probability for C ≥ k logn.

76 CHAPTER 6. FAULT TOLERANCE

. . .

u1 u2 u`

B1 B2 B`

Figure 6.3: One node in each of the connected components has to be in the
MIS. Since the nodes in the components are indistinguishable and execute the
same protocol, the probability of ui being in the MIS for any i is 1/3.

Proof. Consider graph G` and the following adversarial strategy. In round
i, the adversary crashes node ui−1, i.e., one of the nodes in component
Bi−1. Our goal is to show that at least a constant fraction of the first C
rounds are non-silent for any C ≤ n/3. Consider round i and component
Bi−1. There are two possibilities for round i + 1 to be non-silent. First,
it can be that nodes in Bi−1 do not represent a valid MIS. Second, the
node in Bi−1 that would join the MIS in round i+ 1 is crashed.

Since the nodes in component Bi−1 form a clique, their views are
identical. Therefore, according to any algorithm that computes an MIS,
their probability to join the MIS is equal, i.e., 1/3. Thus, the probability
that the nodes in Bi−1 \ {ui−1} are not in the MIS in round is 1/3.

Let X then be the random variable that counts the number of non-
silent rounds. Since any round i is non-silent with at least probability
1/3, we get that E[X] ≥ (1/3)C. Now by applying a Chernoff bound, we
get that

Pr [X < 1/2E[X]] = Pr [X < (1/2) · (1/3)C] ≤ 2−C/12 .

Since C = n/3, we get that Pr [X < 1/2E[X]] ∈ O(n−k) for any constant
k and thus, the claim follows.

6.6 Pseudo-Locality

In this section, we show that the runtime of node u only depends on the
number of crash failures within 1 + logn distance from u. Let us denote

6.6. PSEUDO-LOCALITY 77

the number of crash failures in N1+logn(u) by Cu, where N i(u) denotes
the i-hop neighborhood of u. We start by using Lemma 6.6 to bound the
expected number of released nodes in N logn(u). A node in N logn(u) can
only be released when a node in

N1+logn(u) ∪ {u}

crashes. Therefore, the quality of the nodes crashed in N1+logn(u) give an
upper bound to the number of released nodes in N logn(u). The proof for
the following lemma is analogous to the proof of Lemma 6.7 and therefore
omitted.

Lemma 6.12. Let Hu be the released nodes in N logn(u). Then E[|Hu|] ∈
O(Cu logn).

Similarly to the proof of the global runtime, we wish to bound the
number of greedy tournaments before either all released nodes in N logn(u)
become passive or are crashed. We say that a node participates in greedy
tournament t if it enters state U ′ from D′ at time t. We show that if at
least one node in N(u) participates in greedy tournament i and greedy
tournament i is clean, then with a constant probability, at least one node
v ∈ N logn(u) wins in greedy tournament i. Recall that winning indicates
that v enters state W .

Lemma 6.13. Consider a clean greedy tournament t where at least one
neighbor of u participates. Then there exists node v ∈ N logn(u) such that
v wins with probability at least 1/6.

Proof. To prove the claim, we first show that if |N i(u)| ≤ 2|N i−1(u)| for
any i, then there is a winning node in N i(u) with probability at least 1/6.
Let A(u, i) be the event that the maximum is attained in a single node in
N i(u). The probability of this event is 1/3. Since the coin tosses in N i(u)
obey the same distribution, the maximum is attained equally likely in all
the nodes. Therefore, a node from N i−1 wins with probability

1
3
|N i−1(u)|
|N i(u)| ≥

1
6 .

Assume now for contradiction that |N i(u)| > 2|N i−1(u)| for all 0 ≤ i ≤
logn. It follows that |N logn(u)| > 2logn = n, which is a contradiction.

78 CHAPTER 6. FAULT TOLERANCE

Now with an argument analogous to the one of Lemma 6.9, we get that
the expected number of greedy tournaments in which at least one neighbor
of u participates is O(Cu logn). Furthermore, by considering only the
greedy tournaments in which some node v ∈ N(u) is participating, by
Observation 6.10 the expected number of rounds in which u is active and
no node in N(u) is participating in a greedy tournament is bounded by
2(Cu logn)+2Cu. Finally, employing Observation 6.8, we get the following
theorem.

Theorem 6.4. The expected runtime is O((Cu + 1) log2 n) for any node
u.

7
Mobile Agents

In the previous chapter, we introduced the Stone Age model of distributed
computing and furthermore, extended this model to accommodate crash
failures. In this chapter, we study a different variant of this model, where
the nodes of the distributed system are mobile and thus increase the level
of dynamicity.

Ant colonies are a prime example of biological systems that are fault-
tolerant. Removing some or even a large fraction of ants should not
prevent the colony from functioning properly. We consider the so-called
Ants Nearby Treasure Search (ANTS) problem, a natural benchmark for
ant-based distributed algorithms where n mobile agents or ants try to
efficiently find a food source at distance D from the nest. We present a
distributed algorithm that can tolerate (up to) a constant fraction of ants
being killed in the process.

In distributed computing, most algorithms can survive f crash faults

79

80 CHAPTER 7. MOBILE AGENTS

by replication. Following this path, each ant can be made fault-tolerant
by using f + 1 ants with identical behavior, making sure that at least
one ant survives an orchestrated attack. However, our goal is to allow
up to f ∈ O(n) crash failures, we would be left with merely a constant
number of fault-tolerant “super-ants”, and a constant number of ants
cannot find the food efficiently. As such we have to explore a smarter
replication technique, where faulty ants have to be discovered and replaced
in a coordinated manner.

In more detail, we study a variation of the ANTS problem, where the n
agents are controlled by randomized finite state machines and are allowed
to communicate by constant-sized messages with agents that share the
same cell. The goal is to locate an adversarially hidden treasure. There
is a simple lower bound of Ω(D+D2/n) to locate the treasure [39]. This
bound is based on the observation that at least one agent has to move to
distance D, which takes time Ω(D), and that there are Ω(D2) cells with
distance at most D while a single agent can visit at most one new cell per
round, which yields the Ω(D2/n) term. In previous work, it was shown
that the treasure can be located with randomized finite-state machines
in optimal time in an asynchronous environment [35]. That approach,
however, is rather fragile and requires the agents to be absolutely reliable.
The failure of just a single agent can already result in not finding the
treasure.

In our model, we allow (in total) up to f of the agents to fail at
any point in time, where f is allowed to be at most some fixed constant
fraction of the number of agents n. This is, asymptotically, the best
we could hope for, since it is clearly impossible to solve the task if all
n of the agents fail. Despite the presence of failures, we show that the
treasure can be located efficiently, i.e., we find the treasure in time O(D+
D2/n+Df). In essence, we implement an error checking mechanism that
detects if an agent died. As we keep track of the progress of the search by
“remembering” which cells have been searched so far, we can then restart
the search while avoiding to search cells that have already been searched.

7.1. RELATED WORK 81

7.1 Related Work

Searching the plane with n agents was introduced by Feinerman et al. In
the original ANTS problem, the agents only communicate in the origin
and thus search independently for a treasure [38,39]. Moreover, the agents
are controlled by randomized Turing machines and assuming knowledge of
a constant approximation of n, the agents are able to locate the treasure
in time O(D + D2/n). This model was studied further by Lenzen et al.,
who investigated the effects of bounding the memory as well as the range
of available probabilities of the agents [65]. Protocols in their models are
robust by definition as the agents do not communicate outside of origin
and thus, the failure of an agent cannot affect any other agent.

The main differences between our model and theirs lie in the com-
munication and computation capabilities of the agents. First, we use a
significantly weaker computation model: our agents only use a constant
amount of memory and are governed by finite automata. Second, our
agents are allowed to communicate with each other during the execution.
However, the communication is limited to constant sized-messages and
only allowed between agents that share the same cell at the same time.
Thus, the communication and computation model corresponds to a mobile
version of the Stone Age model [35].

Searching the plane is a special case of graph exploration. In the
general graph exploration setting, the goal is to traverse all the edges of
a graph starting from any node. Graph exploration has been extensively
studied in the literature and the studies can be divided into two settings.
One of the settings is to assume that the graphs are directed, i.e., an edge
can only be traversed to one direction, not vice versa [4, 19, 29]. In the
other, the edges can be traversed to both directions [10,30,33].

Furthermore, there are two main types of performance measures re-
garding graph exploration. The first measure is the time complexity, i.e.,
how long does it take for the agent(s) to finish the exploration task [76].
The other one is to measure the bit complexity, i.e., how many bits of
memory does the agent(s) require to solve the exploration task [42]. Fur-
thermore, the aforementioned graph exploration tasks can be considered
with return, stop, or perpetual properties, i.e., whether the agent is re-
quired to return to the starting cell, stop the search after finishing, or if

82 CHAPTER 7. MOBILE AGENTS

the agent is not required to terminate [30,43].
In the case of finite graphs, it is known that a random walk visits all

nodes in expected polynomial time [5]. In the infinite case, a random walk
can take infinite time in expectation to reach a designated node.

Another closely related problem is the classic cow-path problem, where
the task is to find a treasure on a line. It is known that there is a deter-
ministic algorithm with a constant competitive ratio. Furthermore, the
spiral search is an optimal algorithm in the 2-dimensional variant [16].
The problem has also been studied in a multi-agent setting [70].

Searching graphs with finite state machines was studied earlier by
Fraigniaud et al. [43]. Other work considering distributed computing by
finite automata includes for example population protocols [8, 9].

7.2 Model

We investigate a variation of the Ants Nearby Treasure Search (ANTS)
problem, where a set of mobile agents explore the infinite integer grid
in order to locate a treasure positioned by an adversary. All agents are
operated by randomized finite automata with a constant number of states
and can communicate with each other through constant-size messages
when they are located in the same cell. In contrast to [35], where the
agents do not have to deal with robustness issues, our agents can fail at
any time during the execution, thus making it much harder to develop
correct algorithms for the ANTS problem. Furthermore, we consider a
synchronous environment, where all agents act simultaneously. In all other
aspects, our model is identical to the one of [35].

Consider a set A of n mobile agents that explore Z2. All agents start
the execution in a dedicated grid cell – the origin (say, the cell with coor-
dinates (0, 0) ∈ Z2). The agents are able to determine whether they are
located at the origin or not. The grid cells with either x or y-coordinate
being 0 are denoted as north/east/south/west-axis, depending on the re-
spective location.

We measure the distance dist(c, c′) between two grid cells c = (x, y)
and c′ = (x′, y′) in Z2 with respect to the `1 norm (a.k.a. Manhattan
distance), i.e., |x−x′|+ |y−y′|. Two cells are called neighbors or adjacent
if the distance between them is 1. In each execution step, an agent located

7.2. MODEL 83

in cell (x, y) ∈ Z2 can move to one of the four neighboring cells (x, y +
1), (x, y−1), (x+1, y), (x−1, y), or stay still. The four position transitions
are denoted by the respective cardinal directions N,E,S,W, and the latter
(stationary) position transition is denoted by P (“stay put”). We point
out that the agents have a common sense of orientation, i.e., the cardinal
directions are aligned with the corresponding grid axes for every agent in
every cell.

The agents operate in a synchronous environment, meaning that the
execution of all agents progresses in discrete rounds indexed by the non-
negative integers. The runtime of a protocol is measured in the number of
rounds that it takes the protocol to achieve its goal/terminate. We fix the
duration of one round to be one time unit and thus can take the liberty
to use the terms round and time interchangeably.

In comparison to the original ANTS problem, the communication and
computational capabilities of our agents are more limited. An agent can
only communicate with agents that are positioned in the same cell at the
same time. This communication is restricted though: agent a positioned
in cell c only senses for each state q whether there exists at least one agent
a′ 6= a in cell c whose current state is q.

All agents are controlled by the same finite automaton. Formally, the
agent’s protocol P is specified by the 3-tuple P = 〈Q, s0, δ〉, where Q is
the finite set of states, s0 ∈ Q is the initial state, and δ : Q × 2Q →
2Q×{N,S,E,W,P} is the transition function. At the beginning of the execu-
tion, each agent starts at the origin in the initial state s0. Suppose that
in round i, agent a is in state q ∈ Q and positioned in cell c ∈ Z2. Then,
the state q′ ∈ Q of agent a in round i + 1 and the corresponding move-
ment τ ∈ {N, S,E,W,P} are dictated based on the transition function
δ by picking the tuple (q′, τ) uniformly at random from δ(q,Qa), where
Qa ⊆ Q contains state p ∈ Q if and only if there exists at least one agent
a′ 6= a such that a′ is in state p and positioned in cell c in round i. We
assume that the application of the transition function and the correspond-
ing movement occur instantaneously and simultaneously for all agents at
the end of the round i.

Adversarial Failures. In contrast to previous work, the agents in our
model are not immune to foreign influences and thus can fail at any time

84 CHAPTER 7. MOBILE AGENTS

during the execution of their protocol. We consider an adaptive off-line
adversary (sometimes also called omniscient adversary) that has access to
all the parameters of the agents’ protocol as well as to their random bits.
Formally, the adversary specifies for each agent a the failure time tf (a)
as the round at the end of which agent a fails. If the adversary does not
fail a certain agent a at all, we set tf (a) =∞. If an agent a fails in round
r = tf (a), then it is removed from the grid as well as the set A; the agent
cannot be observed anymore by other agents in any round r′ > r (failed
agents do not leave a corpse behind).

Problem Statement. The goal of ANTS problem is to locate an ad-
versarially hidden treasure, i.e., to bring at least one agent to the cell in
which the treasure is positioned. The distance of the treasure from the
origin is denoted by D while the maximum number of failures that the ad-
versary may cause is denoted by f . We say that a protocol is g(n)-robust
if it locates the treasure with high probability for some f ∈ Θ(g(n)). A
protocol that finds the treasure if (up to) a constant fraction of the agents
fail is hence n-robust. The goal of this paper is to show that such an n-
robust protocol indeed does exist. Therefore, we consider a scenario where
f = α ·n for a constant α that will be determined later. The performance
of a protocol is measured in terms of its runtime, which corresponds to
the index of the round in which the treasure is found. Although we ex-
press the runtime complexity in terms of the parameters D, n, and f , we
point out that neither of these parameters are known to the agents (who
in general could not even store them in their constant memory).

7.3 An n-Robust Protocol

The goal of this section is to develop an n-robust protocol that solves the
ANTS problem. In other words, we want to find a protocol that finds
the treasure even if a constant fraction of the agents fails. We refer to
all cells in distance ` from the origin as level `. We say that a cell c is
explored in round r if it is visited by any agent in round r for the first
time. Furthermore, a configuration of the agents is a function C : A → Z2

that maps each agent a ∈ A to a certain cell c ∈ Z2.

7.3. AN N-ROBUST PROTOCOL 85

Giants. A key concept that will be used throughout this chapter is the
giant. A giant is a cluster of k agents that all perform exactly the same
operations and always stay together during the execution of a protocol.
If k > f , where we recall that f is the maximum number of agents that
can fail, we can consider the cluster as a single (giant) agent that cannot
be failed by the adversary.

As we design an n-robust protocol, all our giants will consist of α · n
agents for a constant 0 < α < 1. Observe that there can only be a constant
number of giants. Since our protocol only requires a constant amount of
giants, we proceed to explain how a protocol can create constantly many
giants. Consider a protocol that requires g giants, each of size Θ(n),
plus Θ(n) normal agents. At the beginning of the execution, each agent
uniformly at random transitions to one of g+2 distinct states, one state for
each of the g giants and two additional states for the normal agents. By
a simple Chernoff bound argument, it follows that the number of agents
per giant is at least n/(g+ 3) and the number of normal agents is at least
2n/(g + 3) with high probability1. Hence, a protocol that relies on the
survival of its g giants can tolerate n/(g+ 3)− 1 failures and still operate
correctly.

7.3.1 Overview

We describe a protocol that uses 10 giants, which can therefore tolerate
up to f = n/13−1 failures by the above argument. The remaining agents
(with high probability at least 2n/13) will be called Explorers as their
job is to explore cells in bulk. At any time during the execution, we are
guaranteed to have at least n/13 surviving Explorers and we will denote
this number by ne.

Our protocol works iteratively and in each iteration, the Explorers ex-
plore all cells in a ring around the origin: The Explorers line up along
the north axis on a segment with a length that depends on the iteration.
Then, all Explorers, together with the giants, perform a sweep around the
origin by moving along the sides of a rectangle. If the exploration of a
ring was not successful, meaning that at least one cell in the ring was not

1 Recall that an event occurs with high probability if the event occurs with prob-
ability at least 1− n−c, where c is an arbitrarily large constant.

86 CHAPTER 7. MOBILE AGENTS

O

Figure 7.1: This figures shows the ring of cells that is supposed to be explored
by the ExpoSweep protocol in iteration 1 (crossed boxes), 2 (filled boxes) and
3 (empty boxes). The width of the ring increases by factor of (roughly) two in
each iteration and the agents move further outwards.

explored, the agents regroup and re-explore the ring. If the exploration
was successful, the agents move further outwards to prepare for the ex-
ploration of the next ring. Then they approximately double the length of
the segment (as long as possible) and start a new iteration. Figure 7.1
gives an illustration of the execution.

7.3.2 Basis Configuration

All four procedures presented in the following require that at their begin-
ning, the agents form a special configuration, called a basis. All procedures
also ensure that at their end, the agents are again in a basis. A basis con-
sists of ten giants while all other (non-giant) agents serve as Explorers.
An InnerGiant and a CollectGiant are positioned on the east, south, and
west axis in the cell with distance d1 from the origin. On the north axis,
an InnerGiant, a StartGiant and a TriggerGiant reside in cell (0, d1) while
an OuterGiant is in cell (0, d2) with d2 > d1. All Explorers are located
somewhere along the cells between d1 and d2 on the north axis. If the pa-

7.3. AN N-ROBUST PROTOCOL 87

rameters are relevant in the context, we write (d1, d2)-basis or (d1)-basis
if the second parameter is not relevant (or not known explicitly). See
Figure 7.2 for an illustration.

7.3.3 Compacting a Segment
The goal of the Compact procedure is to ensure that the Explorers oc-
cupy a contiguous segment of cells on the north-axis between InnerGiant
and OuterGiant (unless failures occur). If this is not the case, they are
compacted towards the origin to form a contiguous, yet shorter, segment.

Let the agents be in a (d1, d2)-basis. The procedure Compact is
started by the StartGiant, which moves with speed 1/2 (it stays put every
second round) towards the OuterGiant and instructs each group of Ex-
plorers that it meets to start repeated compacting steps. A compacting
step consists of two rounds. First, the Explorer moves one cell closer to
the origin. If that cell is empty, it stays there and does nothing in the
second round, otherwise it moves back to its previous cell in the second
round. When an Explorer moves onto the cell containing the InnerGiant,
it moves back and stops compacting. The same happens if an Explorer
moves onto a cell with at least one stopped Explorer.

When the StartGiant has reached the OuterGiant, it instructs the Out-
erGiant to perform compacting steps as well. Then, the StartGiant waits
two rounds and then moves back towards the InnerGiant with speed 1/2
until it arrives there (without further instructing Explorers on the way).

Analysis. The duration of a Compact execution is defined as the time
between the StartGiant moving away from the InnerGiant and returning to
the InnerGiant again. Observe that if the agents start Compact from a
(d1, d2)-basis, they form a (d1, d

′
2)-basis at the end for some d′2 ≤ d2. Let

Eb = (nd)d1<d<d2 and Ee = (nd)d1<d<d′2
be the sequences of the counts of

Explorers on the cells (0, d) at the beginning and the end of the execution
of Compact, respectively. Further, we denote by S|0 the sub-sequence
of the sequence S where each 0-element is removed. Then the following
lemma establishes the correctness of Compact.
Lemma 7.1. If no failures occur during a Compact execution, then
Ee = Eb|0.

88 CHAPTER 7. MOBILE AGENTS

Proof. Let us call the set of Explorers that occupy the same cell at the
beginning of a Compact execution a team and let us index the teams
by 1, 2, . . . , k according to increasing distances from the origin. Observe
that during Compact, the Explorers of a fixed team behave (and move)
identically and thus, it suffices to examine the individual teams.

By design, team i never overtakes team i−1 and moreover only meets
team i−1 if the latter has already stopped. Team i only stops in a cell that
does not contain another stopped team and therefore, no two teams will
end up at the same cell at the end of the execution. As a team only stops in
the cell directly next to the cell that contains either a stopped team or the
InnerGiant, the teams will occupy a contiguous segment of cells outwards
from the InnerGiant. As the OuterGiant also performs compacting steps,
it will end up directly adjacent to the outermost team. Thus, all cells
between cell (0, d1) and (0, d′2) are occupied by the teams 1 to k in that
order and the claim follows.

As an agent moves one step towards the origin every two rounds unless it
has reached the cell in which it will stop, all agents have stopped in their
target position when the StartGiant arrives back at the InnerGiant.

7.3.4 Searching a Ring

In this section, we introduce the procedure SegSweep (segment sweep)
which aims to search all cells in a ring, i.e., a set of consecutive levels. As
all our procedures, SegSweep requires the agents to be in a basis. Let
the agents be in a (d1, d2)-basis.

A SegSweep consists of four QSweeps (quarter sweep), one for each
quarter-plane, that are executed subsequently. Figure 7.2 gives an illustra-
tion of the different steps of a single QSweep. The first QSweep (of the
north-east quarter-plane) is initiated by the StartGiant which starts mov-
ing north towards the OuterGiant along the north axis and while passing
the Explorers tells them to diagonally move towards the east-axis by alter-
natingly moving east and south. As soon as the StartGiant starts moving
north, the TriggerGiant moves diagonally towards the east-axis and will
meet the east-InnerGiant and east-CollectGiant in cell (d1, 0). When the

7.3. AN N-ROBUST PROTOCOL 89

d2

d1 S I T CI

O

S

I CI

O

T

S

I

C

I

O

T

S

I I

O

T

(1) (2) (3) (4)

C

Figure 7.2: This figure illustrates different stages of a QSweep. The two (per-
pendicular) axes between which the QSweep is performed are aligned parallel
to each other for the sake of clarity. (1) shows the (d1, d2)-basis while in (2)
the StartGiant (S) has already sent on their way several Explorers (2) and the
TriggerGiant (T). In (3), the TriggerGiant has reached the CollectGiant (C) on the
second axis which is now on the way to collect the incoming Explorers and in (4)
the StartGiant has reached the OuterGiant (O) on the first axis and is now en
route towards meeting the CollectGiant on the second axis.

TriggerGiant arrives at cell (d1, 0) in round r, it stops there and instructs
the CollectGiant to move outwards (east).

The CollectGiant moves to cell (d1 + 1, 0) to receive the Explorers that
are exploring distance d1 +1 and thus should arrive in cell (d1 +1, 0) soon.
Now we have to distinguish two cases. Either at least one Explorer arrives
in round r + 3 (the Explorer in distance d + 1 starts moving towards the
east-axis one round later than the Explorer in distance d and has to visit
two more cells before arriving there) which means that the search of the
north-east quarter-plane in distance d1 + 1 was successful or no Explorer
arrives in round r + 3, which means that the search was not successful
because the team of Explorers was failed. In both cases, the CollectGiant
moves one cell outwards in round r + 4 to receive the Explorers of level
d1 + 2 which are bound to arrive there in round r + 6. The CollectGiant
continues to move a cell outwards every three rounds and whenever a
group of Explorers meet the CollectGiant, they stop in the respective cell.

When the StartGiant arrives at the OuterGiant on the north-axis, the
OuterGiant moves inwards (south) and when it arrives at the InnerGiant,
it becomes a CollectGiant and stays put. The StartGiant then moves di-
agonally towards the east-axis and will meet the (moving) CollectGiant in

90 CHAPTER 7. MOBILE AGENTS

cell (d2, 0) to notify it that the QSweep is complete upon which the Col-
lectGiant becomes an OuterGiant and stays put. Now the StartGiant moves
inwards (west) until it meets the east-InnerGiant and the TriggerGiant. The
configuration of the agents is now identical (apart from a 90◦-rotation)
to the configuration before the first QSweep and thus QSweeps of the
south-east, south-west, and north-west quarter-plane can be performed in
an analogous fashion.

When the StartGiant arrives at the north-axis for the second time,
the last of the four QSweeps is finished. On its way back towards the
InnerGiant, the StartGiant now observes whether each cell between the
OuterGiant and the InnerGiant contains at least one Explorer. If this is
the case, the StartGiant enters a special complete state, which, as we will
later show, implies that all levels ` with d1 ≤ ` ≤ d2 have been explored.
Otherwise, the StartGiant enters a special incomplete state, meaning that
at least one level might not have been explored completely.

Analysis. We say that a SegSweep begins in the round in which the
StartGiant starts moving towards the OuterGiant from the cell containing
the InnerGiant and TriggerGiant. The SegSweep ends when the StartGiant
arrives back at the InnerGiant on the north-axis after the fourth QSweep.

Our agents operate in an adversarial environment and thus, we need
to show that the SegSweep procedure works correctly independent of
failures of the agents. Here, that means that all (surviving) agents end
up in a (d1)-basis after a SegSweep and that if the StartGiant enters
the complete state, a ring was completely explored. To see the former,
note that the design of the procedure ensures that, regardless of potential
failures, each Explorer is stopped by a CollectGiant when crossing an axis
and the StartGiant and CollectGiant will meet in the cell in distance d′2 on
every axis. All other giants are in their original position and thus, after
four QSweeps, the agents are again in a (d1)-basis. The following two
lemmas are essential for the correctness of the procedure.

Consider a single execution of SegSweep that starts from a (d1, d2)-
basis. We call the execution successful if at the end, all levels ` with
d1 ≤ ` ≤ d2 have been explored.

7.3. AN N-ROBUST PROTOCOL 91

Lemma 7.2. If the StartGiant is in the complete state at the end of a
SegSweep, then the SegSweep was successful.

Proof. Observe that the StartGiant can only enter the complete state if,
at the end of a SegSweep, each cell between InnerGiant and OuterGiant
contains at least one Explorer. The design of the procedure ensures that
an Explorer can only end up in cell (0, d) for d1 < d < d′2 at the end of a
SegSweep if it has started the SegSweep in cell (0, d) and in between
explored all cells of level d (and in passing almost all cells of level d+ 1).
As level d1 and d′2 are explored by TriggerGiant and StartGiant, the claim
follows.

Lemma 7.3. If no agent failed during a Compact execution and the
subsequent SegSweep, then the SegSweep was successful.

Proof. The execution of Compact ensures that before the first QSweep
all cells between InnerGiant and OuterGiant contain at least one Explorer.
If no agent fails, all these Explorers will end up in the same cell at the end
of the fourth QSweep by design of the procedure. Hence, the StartGiant
will observe at least one Explorer in each cell between InnerGiant and Out-
erGiant and thus enter the complete state. The claim then follows from
Lemma 7.2.

7.3.5 Shifting the Segment
In this section, we introduce the procedure Shift, an additional building
block that allows the agents to move further outwards from the origin.
Its concept is similar to the giant movement during a SegSweep. Shift
assumes that all agents form a (d1, d2)-basis for some d1 < d2 and trans-
forms it into a (d2 + 1, d3)-basis for some d3 > d2 + 1.

The StartGiant moves north towards the OuterGiant and sends the
TriggerGiant away to move diagonally to the cell (d1, 0) on the east-axis,
where an InnerGiant/CollectGiant reside. When the TriggerGiant arrives
there, it stays put and sends the two other giants to move outwards (east)
with speed 1/3. When the StartGiant arrives at the OuterGiant, it moves
one cell further outwards (to cell (0, d2+1)) and then also moves diagonally
towards the east-axis. As the speed of the two giants moving outwards

92 CHAPTER 7. MOBILE AGENTS

on the east-axis is 1/3, they will meet the diagonally moving StartGiant in
cell (0, d2 + 1) and stop there. The StartGiant moves inwards (west) until
meeting the TriggerGiant in cell (0, d1). This process is repeated three
times to move the InnerGiant/CollectGiant on the other axis outwards to
the cell in distance d2 + 1 from the origin.

When the StartGiant has returned to the north-axis and meets the
TriggerGiant in cell (0, d1), it first sends the TriggerGiant and InnerGiant
north in order to stop in cell (0, d2 + 1), which is one cell outwards of
the cell currently occupied by the OuterGiant. Then it moves north with
speed 1/2 and whenever it meets a group of Explorers, it instructs them
to move north until they find an empty cell. Whenever the OuterGiant
observes an Explorer in its cell, it moves one cell north to make sure that
it always marks the outermost cell. When the StartGiant arrives at the
cell containing the TriggerGiant/InnerGiant, it stops. Now the agents form
a (d2 + 1, d3)-basis for some d3 > d2 + 1.

7.3.6 Uniform Splitting

In this section, we introduce the procedure UniSplit (uniform splitting)
to line up the agents properly for the SegSweep procedure. Before we
go into the implementation details of UniSplit, we briefly explain a few
important aspects we have to take into account with the design. First,
we do not want the size of any segment, i.e., the distance between d1 and
d2 in a (d1, d2)-basis to be much larger than the distance to the treasure
D. Since it takes at least time linear in the size of the segment to line the
agents up, we might end up using a lot of time lining up unnecessarily
many Explorers.

Second, we want to explore the grid as fast as possible. Therefore, we
want to line up the Explorers as quickly as possible while maintaining the
first property mentioned above. Since we are interested in the asymptotic
runtime and the memory bounds are constant, we choose an exponential
approach. In other words, we double the segment size after every sweep,
as long as there are enough agents available.

Third, we observe that if some level in the SegSweep is explored
with a single Explorer, it only takes the adversary one failure to force our
protocol to repeat the whole segment. Therefore, as long as we are using

7.3. AN N-ROBUST PROTOCOL 93

segment sizes that are sub-linear to the number of agents, it makes sense
to use many agents per level. Thus, the aim of UniSplit is to split the
agents along the segment uniformly.

Doubling the Segment Size. Assume that the agents form a (d1, d2)-
basis. As before, we call all Explorers residing in the same cell a team.
To double the segment size, the agents perform the following. The Trig-
gerGiant moves north with speed 1/2 instructing all the cells containing
Explorers to perform a split. Each Explorer a tosses a fair coin and if the
coin shows head, a moves north with speed 1 until it finds the first cell
without an Explorer (if the coin shows tail, they stay put). To ensure that
the OuterGiant marks the end of the segment, it always moves north when-
ever it sees an Explorer. When the TriggerGiant reaches the OuterGiant,
it turns around and moves back to the InnerGiant. Once the TriggerGiant
reaches the InnerGiant, the agents again form a (d1)-basis.

We refer to the process of doubling the segment size to as a pass of
UniSplit. Notice that the segment size k does not necessarily double,
i.e., it might be that the new size is k′ ≤ 2k, if some cells contained less
than two Explorers. In addition, there might be empty cells along the
segment due to unfortunate coin tosses or failures. As the next step, we
show that the size of the segment grows by a constant factor in every
pass with high probability as long as the team size distribution is “good
enough”. The key to prove this property is to treat the splitting process
as a balls-into-bins experiment.

Consider the situation after the jth pass of UniSplit. The coin tosses
performed by the agents so far assign to each agent a bit-sequence of
length j. As there are 2j different possible bit-sequences, one can model
our setting as follows: Each of the n agents throws a single ball into the
bin corresponding to its bit-sequence while there are 2j bins altogether.
The following lemma establishes that only a constant fraction of the bins
is empty with high probability

Lemma 7.4. Consider a balls-into-bins experiment where m ≥ 4 balls
are thrown uniformly at random into 2j bins for an integer j with 0 < j <
logm. Let Zj be the number of empty bins at the end of the experiment.
We have Zj < 2/e · 2j with high probability.

94 CHAPTER 7. MOBILE AGENTS

Proof. Let us first consider the case where j ≤ κ log logm for some κ ≥
2 to be determined later. Then the number of bins is O(logκm) and
the expected number of balls per bin is Ω(m/ logκm). Observe that the
probability that a fixed bin is empty is (1 − 1/2j)m ≤ e−m/2

j

. By the
union bound, the probability that there exists an empty bin is at most∑2j

i=1 e
−m/2j ∈ e−Ω(m/ logκm). Thus, we get

Pr[Zj ≥ 2/e · 2j] ≤ Pr[Zj ≥ 0] ∈ e−Ω(m/ logκm) ⊂ o(m−β)

for any β > 0.
Now consider the case where j > κ log logm. Let Zji be the indica-

tor random variable for the event that bin i of 2j is empty and we have
Zj =

∑2j

i=1 Z
j
i . A well-known result from balls-into-bins is that instead

of dissecting the dependencies between the loads of different bins, one
can approximate the scenario well by modeling the load of each bin by
an independent Poisson random variable [73]. We will denote all ran-
dom variables derived from this approximation with a tilde and the ones
corresponding to the exact scenario without.

Let B̃ji be the random variable indicating the number of balls in bin
i and observe that Pr[B̃ji = r] = e−µµr/(r!) for µ = m/2j as B̃ji has a
Poisson distribution with parameter µ where we observe that µ > 1. Let
Z̃ji be the random indicator variable for the event that B̃ji = 0 and observe
that E[Z̃ji] = Pr[B̃ji = 0] = e−µ < 1/e. Let Z̃j =

∑2j

i=1 Z̃
j
i be the random

variable for the total number of empty bins and by linearity of expectation
we get E[Z̃j] < 2j/e. As the Z̃ji are independent by assumption, we can
use a Chernoff bound to get

Pr[Z̃j ≥ 2/e · 2j] ≤ Pr[Z̃j ≥ 2E[Z̃j]] ≤ e−2j/(3e) .

Observe that since m ≥ 4, κ ≥ 2, and j > κ log logm, it holds that
κ logm ≤ logκm and we get

Pr[Z̃j ≥ 2/e · 2j] = e− logκm/(3e) ≤ e−κ logm/(3e) < m−κ/(3e) .

We can now use a result from [73] stating that any event that takes place
with probability p in the Poisson approximation takes place with probabil-
ity at most pe

√
m in the exact case where m is the number of balls thrown.

7.3. AN N-ROBUST PROTOCOL 95

Hence, we get for the exact case Pr[Zj ≥ 2/e·2j] <
√
me·m−κ/(3e) ≤ m−β

for any β > 0 and a large enough value of κ.

Lemma 7.5. Let E be any subset of (surviving) Explorers of size ne.
After the jth iteration of UniSplit for 0 < j < log(ne), the Explorers in
E are members of Ω(2j) different teams with high probability.

Proof. Lemma 7.4 states that after the jth iteration there are at most
2/e · 2j empty bins with high probability. Thus, there are at least
(e− 2)/e · 2j ∈ Ω(2j) many non-empty bins with high probability, which
the Explorers in E must occupy. The claim follows.

Recall that ne, the minimum number of surviving Explorers, is guaranteed
to be Θ(n). Thus, Lemma 7.5 implies that no matter which subset of
Explorers the adversary lets survive, these Explorers will be members of
Ω(2j) different teams after the jth pass of UniSplit for 0 < j < log(ne)
with high probability

Corollary 7.6. The number of teams after the jth pass of UniSplit is
Ω(2j) for 0 < j < log(ne) with high probability.

7.3.7 Putting Everything Together

In this section we explain how we can connect the procedures presented in
the previous section in order to obtain the n-robust protocol ExpoSweep
(exponential sweep) for the ANTS-problem.

The protocol starts with all agents located at the origin. Then, the
agents create the 10 giants required by SegSweep as described ear-
lier. Now, the agents ensure that the StartGiant, InnerGiant, and Trigger-
Giant, are located in cell (0, 1), the OuterGiant in cell (0, 3), and an Inner-
Giant/CollectGiant-pair on the east-, south-, west-axis in the cell with dis-
tance 1 to the origin. Observe that this configuration is a (1,3)-basis. Then
the agents iteratively perform the protocol described in Algorithm 7.1.

It is easy to verify that all the aforementioned subroutines of our pro-
tocol only require a constant amount of states and therefore, the total
number of states required by our protocol is also a constant.

96 CHAPTER 7. MOBILE AGENTS

1. The StartGiant triggers the execution of Compact as described in
Section 7.3.3.

2. The StartGiant triggers the execution of SegSweep as described in
Section 7.3.4. When the SegSweep is finished, there are two cases:
If the StartGiant enters the incomplete state, go to step 2. Otherwise,
proceed to step 3.

3. The StartGiant triggers the execution of Shift as described in Sec-
tion 7.3.5.

4. The StartGiant triggers the execution of UniSplit as described in
Section 7.3.6.

Algorithm 7.1: ExpoSweep

7.4 Runtime

We begin the runtime analysis by bounding the time needed for any Seg-
Sweep in terms of distance to the treasure.

Lemma 7.7. If the treasure has not been found at the start of iteration
i of SegSweep and the agents form a (d1, d2)-basis, then d1 < D and
d2 ≤ 2D.

Proof. Observe that the agents only move to a (d1)-basis after SegSweep
has explored all levels ` < d1, and hence, d1 < D. Assume for contra-
diction that d2 > 2D. Since d2 can at most double in UniSplit, there
must have been a pass of UniSplit that started from a (d′1, d′2) basis,
where d′1 ≤ D ≤ d′2. Since UniSplit is only performed after a successful
execution of SegSweep, the treasure must have already been found.

Lemma 7.8. Any iteration i of ExpoSweep before the treasure was
found lasts at most O(D) rounds.

Proof. By Lemma 7.7, d2 ≤ 2D for any (d1, d2)-basis at the start of
iteration i. By looking at the details of the ExpoSweep protocol, we
first observe that the time complexity of Compact is clearly O(D) since

7.4. RUNTIME 97

the time needed is bounded simply by the time it takes the StartGiant to
move from InnerGiant to OuterGiant and back. Second, it is easy to see
that each QSweep takes at most O(D) rounds to finish. Since searching
a ring consists of four QSweeps, the second step of our protocol takes
O(D) rounds. A similar argument holds for the Shift procedure. The
time complexity of step 4 is again bounded by the time that it takes the
TriggerGiant to move back and forth a distance of at most d2 ≤ 2D and
thus, the claim follows.

Now we can combine the previous results to establish the total runtime
of the ExpoSweep protocol.

Theorem 7.1. The runtime of the ExpoSweep protocol is O(D+D2/n+
Df) for f = n/13 with high probability.

Proof. By Lemma 7.8, we know that the furthest level that is searched
by the ExpoSweep protocol is O(D). As the failure of a single agent can
cause at most one repetition of a ExpoSweep iteration, the maximum
time that it takes the ExpoSweep protocol to recover from the failure of
an agent is O(D). Thus, we can account for all failure-induced runtime
costs by an additional term of O(Df). In the remainder of the proof, we
will therefore only bound the runtime of ExpoSweep iterations without
any failures.

Let us first examine the case when D ∈ o(n), which means that the
Explorers are still performing splits when the treasure is in range. Consider
the ith iteration of ExpoSweep. Using Corollary 7.6, we can bound the
maximum distance explored by the preceding iterations from below by
d(i) =

∑i−1
j=0 Ω(2j) ⊆ Ω(2i). The treasure will be explored in the smallest

iteration i′ such that d(i′) ≥ D. Observe that i′ ∈ c logD for some
constant c > 0. As iteration i explores at most level d(i) + 2i ∈ O(2i), we
can bound the time required to complete iterations 1 to i′ by

c logD∑
i=0

O(2i) ⊆ O(D) .

Now let us consider the case when D ∈ Ω(n). By Corollary 7.6, we know
that after O(logn) iterations of ExpoSweep, there are Ω(n) teams of

98 CHAPTER 7. MOBILE AGENTS

Explorers. Hence, the treasure will be discovered after O(D/n) additional
iterations. By Lemma 7.8, any iteration takes at most O(D) rounds. The
total runtime is therefore

c logD∑
i=0

O(2i) +
O(D/n)∑

i=c logD+1

O(D) ⊆ O(D2/n) .

Including the O(Df) term for the runtime costs caused by agent failures
yields the theorem.

8
Labyrinth Search

In this chapter, we turn our attention away from the crash failures. In-
stead, we focus on a different type of challenge for the ants, that is, an
obstructed search environment. In other words, instead of an infinite grid,
we study a restricted version of the grid, where the ants are not allowed
to enter every cell.

Since we are restricting our underlying graph to Z2 and the obsta-
cles in our domain essentially block the ants from entering specific cells,
our graphs correspond to a concept widely studied in literature called
labyrinths [21, 31]. Exploration of a labyrinth corresponds to the task of
getting as far from the starting point as possible, for any starting point. It
was shown by Budach that a single automaton cannot explore every finite
labyrinth, where a finite labyrinth has only a finite amount of blocked
cells [23]. On the positive side, it is known that every finite labyrinth
can be explored by a finite automaton using 4 pebbles and that all co-

99

100 CHAPTER 8. LABYRINTH SEARCH

finite (number of non-blocked cells is finite) labyrinths can be explored
with a finite state machine using 2 pebbles [22]. Finally, Hoffman showed
that the problem cannot be solved in neither finite nor co-finite labyrinths
by using only 1 pebble [55]. Note that our goal differs from the one of
labyrinth exploration, i.e., our goal is to visit all non-blocked cells.

In the case of an infinite grid without obstacles, it was discovered by
Emek et al. that two deterministic finite state machines cannot discover
every cell [34]. In the same work, it was also shown a randomized finite
state machine requires infinite time in expectation and that 4 (determin-
istic) finite state machines are always enough to discover the treasure.
Since the unobstructed infinite grid is a special case of a labyrinth, the
same lower bounds hold for our problem. In this chapter, our goal is to
derive an upper bound for the number of ants required to discover the
treasure in the more difficult setting.

8.1 Model

The model description for this chapter follows closely to the one in Chap-
ter 7.4. There are three fundamental differences. First, we consider now
an asynchronous model, i.e., one ant can execute an unbounded amount
of steps before any other ant performs a single step. Furthermore, the
underlying graph is no longer a 4-regular infinite graph and the ants are
no longer prone to crash failures.

The set of cells B ⊂ Z2 represents the blocked cells, which cannot be
entered by an ant. All other cells are called free. For simplicity, we assume
that B neither contains the origin nor any of the cells within distance at
most 3 from the origin. We note that assuming the origin free is necessary
and that our protocols can easily be modified to work in an environment
where we do not assume that the nearby cells around the origin are free.
This assumption merely allows for a cleaner and more reader friendly
initialization of our protocols.

To make the exploration of the grid feasible, we require that the cells in
B do not fully enclose any free cell, i.e., that any free cell is reachable from
any other free cell by a path of neighboring free cells. The set B induces
a set O of obstacles. An obstacle O ∈ O is a maximal set of connected
cells, where two cells are connected if both their x- and y-coordinates

8.1. MODEL 101

each differ by at most one (diagonally adjacent cells are connected!). We
require each obstacle to be of finite size.

Similarly to before, all ants are controlled by the same finite automa-
ton (FA). However, since we design a protocol for a constant number of
ants, we allow each ant to run a different individual protocol. This is
modeled by assigning to each ant an individual initial state in the shared
automaton. This assumption allows us to consider deterministic proto-
cols, where each state transition is deterministic (recall the definition from
Section 6.2).

In an asynchronous environment, the execution of each ant progresses
in discrete (asynchronous) steps indexed by the non-negative integers. We
denote the time at which ant a completes step i > 0 by ta(i) > 0 and call
ta(i) an activation time. Following common practice, we assume that the
activation times ta(i) are determined by the policy ψ of an adversary
that knows the protocol but is oblivious to its random bits, whereas the
ants do not have any sense of time. In order to prevent the adversary
from delaying a single ant arbitrarily long, we require a policy to acti-
vate each ant at least once every time unit, i.e., for all ants ta(1) ≤ 1
and ta(i + 1) − ta(i) ≤ 1 for i > 0. The set of activation times deter-
mined by the adversary is called a schedule and we will use the terms
synchronous/asynchronous policy and -/- schedule interchangeably in the
rest of the paper, despite their subtle difference. The special case of a
synchronous environment corresponds to the case where ta(i) = i for all
ants a and all i > 0.

Formally, the ants’ protocol is captured by the 3-tuple

Π = 〈Q, sa0 , δ〉 ,

where Q is the finite set of states; sa0 ∈ Q is the initial state of ant a; and

δ : Q× 2Q × {>,⊥}4 → 2Q×{N,E,S,W,P}

is the transition function. At time 0, all ants are positioned at the origin
and their FAs are in the respective initial states. Suppose that at time
ta(i), ant a is in state q ∈ Q and positioned in cell z ∈ Z2. Then,
the state q′ ∈ Q of a at time ta(i + 1) and its corresponding position
transition τ ∈ {N,E,S,W,P} are determined by the transition function

102 CHAPTER 8. LABYRINTH SEARCH

δ(q,Qa, b) = (q′, τ), where Qa ⊆ Q contains state p ∈ Q if and only if
there exists some (at least one) ant a′ 6= a such that a′ is in state p and
positioned in cell z at time ta(i), and b is a 4-tuple indicating which of the
neighboring cells N/E/S/W are blocked (>) or free (⊥). If the transition
function dictates that an ant enters a blocked cell, the ant stays put
instead. For simplicity, we assume that while the state subset Qa (input
to δ) is determined based on the status of cell z at time ta(i), the actual
application of the transition function δ occurs instantaneously at the end
of the step, i.e., ant a is considered to be in state q and positioned in cell
z throughout the time interval [ta(i), ta(i+ 1)).

8.2 Basic Idea

In order to find the treasure, the ants have to visit every free cell. The
high level idea is that the ants walk in growing squares counter-clockwise
around the origin. To this end, each ant is given a specific task. An
explorer explores the plane by walking along squares of increasing sizes,
whereas four other ants, called guides, mark the four corners of the square
that the explorer should walk along. We identify the four guides by the
cardinal direction of their respective corner NE,NW, SW, SE. Upon enter-
ing a cell with a guide, the explorer accompanies the guide to the correct
position for the next square before continuing the search. After updating
the position of the last guide, the explorer starts a new search along the
next bigger square. We define square(d) as the square given by the four
corner cells (d, d), (d,−d), (−d,−d), (−d, d).

In the presence of obstacles, the subroutines get more involved. Ob-
stacles can obstruct the path of the explorer or hinder a guide to mark
the cell it is supposed to. To solve the former of the aforementioned prob-
lems we provide a subroutine that essentially allows the explorer to walk
“through” the obstacle. For the second problem we change the conditions
for the guides. Instead of marking the corner of the square, a guide has
to either mark the correct y-coordinate or the correct x-coordinate, de-
pending on the guide. The NE- and SW-guides mark the y-coordinates
of the corners of the square whereas the NW- and SE-guides mark the
x-coordinates of said corners (see Figure 8.2).

Let us describe the new condition for the NE-guide. Consider the NE-

8.2. BASIC IDEA 103

(0,0)

NE

NW

SESW

Figure 8.1: The filled black dots represent the corner ants (N,E, S,W), marking
the next spot, where the exploring group should turn counter-clockwise in order
to walk a square. The hollow dots represent where the corner ants were in earlier
stages. The arrows present the way the exploring group was taking so far.

guide that is supposed to mark the cell z = (d, d) for some value of d and
assume further that z is blocked. Then, the surrogate cell for the cell z is
given by z′ = (x′, d) where x′ = min{x | x ≥ d ∧ (x, d) 6∈ B}. Informally,
z′ is the first free cell with the same y-coordinate as z further away from
the origin. As the obstacles are of finite size we can guarantee that such
a cell always exists. With this condition, we make sure that the guide
is either on the corner (if it is free) or outside the square on which the
explorer is walking.

The condition for the other three guides is analogous. Consider now
square(d) and a guide responsible for the corner x ∈ {NE,NW,SW,SE}
of said square. Then, we denote by Zx(d) the cell where this guide will
be positioned during the exploration of the square.

ZNE(d) = (x′, d) where x′ = min{x′′ | x′′ ≥ d ∧ (x′′, d) 6∈ B},
ZNW(d) = (−d, y′) where y′ = min{y′′ | y′′ ≥ d ∧ (−d, y′′) 6∈ B},
ZSW(d) = (x′,−d) where x′ = max{x′′ | x′′ ≤ −d ∧ (x′′,−d) 6∈ B},
ZSE(d) = (d, y′) where y′ = max{y′′ | y′′ ≤ −d ∧ (d, y′′) 6∈ B}

104 CHAPTER 8. LABYRINTH SEARCH

ZNE(d)

ZNW(d)

ZSE(d) = (d,−d)ZSW(d) = (−d,−d)

(d, d)

(−d, d)

origin

Figure 8.2: The red dots indicate where the NE- and NW-guide would be if
there was no obstacle. The black dots indicate the cells, that the guides actually
mark. The dashed lines indicate the side of the square that the respective guide
is marking and altogether mark the square that the explorer is supposed to walk
along.

8.3 Basic Capabilities

Our protocol requires the ants and in particular the explorer to be able to
perform various advanced maneuvers. They have to be able to walk along
the boundary of an obstacle, memorize their offsets from other cells, be
able to find back to a cell they previously occupied, update the position
of a guide to the next square, and, most importantly, to virtually walk
through an obstacle. In this section, we will present the basic routines
which are then combined in Section 8.4 to obtain the more complex ones.

8.3. BASIC CAPABILITIES 105

a

d

z1z2z3

O

Figure 8.3: ant a wants to “walk through” an obstacle in a straight line in
direction d, which is accomplished by tracing the boundary of the obstacle along
the path p to locate the cell where the straight line exists the obstacle and then
continue walking straight.

106 CHAPTER 8. LABYRINTH SEARCH

8.3.1 Walking Around an Obstacle

Consider an ant a that currently walks into direction h where h can be
N/E/S/W and is called the heading of a. We say that a turns right or left
as shorthand for a changing its heading to an adjacent cardinal direction.
Now suppose that ant a is in cell z = (x, y) and the cell z + h is blocked
by the obstacle O that a intends to walk around. In the very first step, a
turns right so that the obstacle is on its left side — an invariant that will
be maintained during the process of walking around the obstacle. Then,
in every following step, a first checks if the cell on the left side with respect
to the current heading is blocked. If this is the case, a walks once towards
its heading, if possible. In case the cell towards the heading is blocked,
a turns right. In the case that the cell on the left is free, a turns left
and walks once towards the new heading. We can verify that this case
only occurs if in the previous step, a moved towards its current heading
and therefore, the cell on the left was blocked. Thus, the obstacle will
again be left of a in the next step. Assuming that ant a is positioned
in a cell along the border of the obstacle O and the cell left of a (with
respect to h) is blocked by the obstacle O, the details of the method for
a single step are given in Procedure 8.1. As the procedure ensures the
aforementioned invariant, ant a can execute it repeatedly to traverse the
complete boundary of the obstacle.

ant a is located in (x, y) and has heading h.
if cell on left is free then

turn left.
else if (x, y) + h is blocked then

while (x, y) + h is blocked do
turn right.

end while
end if
move once towards h.
return h.

Algorithm 8.1: StepCounterClockwise()

8.3. BASIC CAPABILITIES 107

8.3.2 Bounded Offset Counter

In this section, we explain how the ants can simulate a bounded counter
suitable to memorize offsets to cells while moving along the boundary
of an obstacle. The counter provides the basic operations On, Off, Is-
Null, IsPositive, IsNegative, Increment, and Decrement, which ac-
tivate/deactivate the counter, allow the ant to determine whether the off-
set is zero/positive/negative, or to increment/decrement it, respectively.
It is important to note that our implementation of the offset counter is
only available while the ant is adjacent to an obstacle and while this obsta-
cle stays the same. As soon as the ant moves to a cell that is not adjacent
to the obstacle anymore, the value of the counter becomes invalid. Hence,
our protocols ensure that the counter is always turned off before leaving
an obstacle. Moreover, the value of the counter only works correctly as
long as its value is bounded by the circumference of the obstacle. This
does not pose a problem, however, as all offsets that the ants need to store
are bounded appropriately.

We first give an informal description of our implementation and then
specify how the basic operations can be implemented. Consider an ant
a located in a cell (x, y) adjacent to an obstacle O. Ant a is equipped
with the counter c represented by the auxiliary ants ac, ab, and am called
count ant, base ant, and messenger ant, respectively. When the counter
is turned off, the auxiliary ants are in the follow mode, which implies that
they simply follow ant a and do not perform any specific task. When
the counter is turned on, the auxiliary ants enter the counter mode and
perform special tasks. The job of ab is to mark the cell where the counter
has been turned on the last time. Ant ac’s task is to store an offset value v
by residing in the cell that is reached when starting in the cell containing
ab and walking |v| cells clockwise along the boundary of the obstacle O.
In order to distinguish positive and negative offsets, ac encodes the sign
of v in its states. Ant am generally resides in the same cell as ant a and
moves to ac and ab when the counter is to be changed or read. Either of
the basic operations can only be executed when the previous operation
has been completed, which is the case when am is in the same cell as a.

For the purpose of argumentation, we denote the value represented by
counter c as val(c). We remark, however, that this value is not directly

108 CHAPTER 8. LABYRINTH SEARCH

accessible to any of the ants.
Operation On(c). When a activates the counter, it signals this to the
auxiliary ants using a special state, upon which they enter their respective
counter mode states.
Operation Off(c). Ant am moves clockwise around the obstacle, in-
structs ac and ab to move along the obstacle to the cell containing a, and
finally does the same. The auxiliary ants then enter the follow mode.
Operation IsNull(c). Ant am walks clockwise until it locates the cell
containing ant ab. It checks whether ant ac occupies the same cell and
reports this information to ant a.
Operation IsPositive/IsNegative(c). Ant am walks clockwise until it
locates the cell containing the ant ac. If the cell also contains ant ab —
the value of the counter is zero — ant am reports false to a . Otherwise,
am senses the sign of c through the state of ac and reports the result to a
accordingly.
Operation Increment/Decrement(c). Ant am walks clockwise until
it locates the cell containing ant ac. It then instructs ac to incremen-
t/decrement and returns to ant a. Depending on whether the state of ac
corresponds to a positive or negative sign, ac moves one cell clockwise or
counter-clockwise along the obstacle. If ac resides in the same cell as ab,
it also needs to change its sign state accordingly.

These operations complete the specification of the counter functionality.

8.3.3 Combining Offset Counters

The ants in our protocol sometimes employ a constant number of offset
counters c1 to ck on the same obstacle, where the respective counters
are activated in the same cell. This functionality can be provided by
having one base ant ab and one messenger ant am and k count ants for
the different counters. To ensure that the messenger interacts with the
correct count ant, they encode an index in their states such that the
messenger ant can distinguish them. Correspondingly, the messenger ant
encodes the index of the counter that it is operating on in its state. As
only a constant number of offsets are used, this is possible with a finite

8.4. ADVANCED PROCEDURES 109

automaton. We distinguish the count ants of different counters by their
index as superscript, i.e., aic is the count ant of the counter ci.

When an ant uses several counters, it has access to two additional op-
erations. Operation LessThan(ci, cj) compares the value of two counters
and returns a boolean indicating whether val(ci) < val(cj). The operation
Set(ci, cj) sets the value of counter ci to val(cj).
Operation LessThan(ci, cj). Ant am moves clockwise around the ob-
stacle until it locates the cell containing ab. Then, am walks further clock-
wise around the obstacle until having located both aic and ajc. Based on
the signs encoded in the states of aic and ajc and the order in which these
ants were located, am infers the result of the comparison, then returns to
a and signals it.
Operation Set(ci, cj). Ant am walks along the obstacle to the cell con-
taining aic and instructs aic to walk to the cell containing ajc, while am
accompanies aic on its way. When aic enters the cell containing ajc, ant aic
updates its sign to the sign of ajc and ant am returns to a to finish the
operation.

8.4 Advanced Procedures

In this section, we combine the basic functionalities described in the pre-
vious section into the complex procedures, that eventually constitute our
search protocol. The most important functionality is the ability to virtu-
ally walk through an obstacle following a horizontal or vertical straight
line. The ants do this by locating the closest cell that lies on the straight
line through the obstacle and then continue the walk from there. This
functionality is realized by the procedures Shift and Probe that will be
described next.

8.4.1 Shifting the Position Along an Obstacle

The procedure Shift(cx, cy) allows an ant a positioned in cell z = (x, y)
next to the obstacle O and equipped with two counters cx and cy to move
to the cell z′ = (x+ val(cx), y+ val(cy)) where z′ must be also next to O.
During the process, ant a continuously updates the counters to reflect the

110 CHAPTER 8. LABYRINTH SEARCH

new offsets, so that when a has reached cell z′, the values of both counters
cx and cy are zero. Consequently, both counters are then turned off.

while ¬IsNull(cx) ∨ ¬IsNull(cy) do
h← StepCounterClockwise()
Increment(cx) / Decrement(cx) according to h
Increment(cy) / Decrement(cy) according to h

end while
Off(cx); Off(cy)

Algorithm 8.2: Shift(cx, cy)

8.4.2 Probing Target Cells

While the procedure StepCounterClockwise allows the ant a to walk
around an obstacle O, it still needs to figure out which of the cells visited
along the walk is the next free cell t along the straight path through
O. There are two main difficulties that we face when trying to identify
t. First, the circumference of O can be arbitrarily large and therefore,
a single ant cannot keep track of its relative location with respect to its
starting cell z = (xb, yb). Second, there might be many possible cells along
the edges of O that are hit by the straight line through O. We refer to all
these cells along the border of O as potential target cells (cf. Figure 8.4).

The procedure Probe allows an ant a located at cell z to locate the
closest potential target cell z∗ in direction of the heading h and returns
a counter representing the distance of z∗ relative to z. The exact for-
mulation of Probe depends on the heading h of a. Procedure 8.3 gives
a pseudo-code description for the case of h = W , the other cases are
analogous.

The idea is that ant a employs three counters cx, cy and cmin while
walking along the boundary of O. The counters cx and cy track the offset
of a from the initial cell (xb, yb). Whenever cy is zero, a has located a
cell with the same y-coordinate and the value of cx is stored in cmin if it
is smaller than the previous cmin. This process is iterated until the ant
returns to the starting position (it meets ant ab again). Then it turns off

8.4. ADVANCED PROCEDURES 111

a

d

z1z2z3

O

Figure 8.4: Ant a wants to walk west but the direct path (dashed arrow)
is obstructed by an obstacle O. Thus, a walks counter-clockwise around the
boundary of O (continuous arrow) and uses offset counters to detect the potential
target cells z1, z2, and z3.

counters cx and cy and returns cmin.

8.4.3 Procedure Scan

A detail that we have to be careful with is, when traveling from one guide
to another, that each cell along the current square gets discovered and
that we eventually reach the guide. To this end, the explorer visits each
cell on the boundary of an obstacle that it meets using the procedure
Scan.

When an ant a executes Scan, it first activates two counters cx and
cy. Then, it walks once around the obstacle by repeatedly invoking Step-
CounterClockwise and updating cx and cy according to its actual
movements. If a meets the next guide along the way, it does not up-
date the counters anymore. When a returns to the cell containing the
base ant ab of its counter, the walk is finished. If both cx and cy equal
0, no guide was not found during Scan. Otherwise, the values of the
counters represent the offset to the guide and the procedure “returns” the
two counters cx and cy. Since a might meet different guides, it stores

112 CHAPTER 8. LABYRINTH SEARCH

On(cx); On(cy); On(cmin)
repeat
h← StepCounterClockwise().
Increment(cx) / Decrement(cx) according to h
Increment(cy) / Decrement(cy) according to h
if IsNull(cy) ∧ (IsNull(cmin) ∨ LessThan(cx, cmin)) then

Set(cmin, cx).
end if

until a meets ab
Off(cx); Off(cy)
return cmin

Algorithm 8.3: ProbeW ()

the index of the next guide that it is supposed to meet according to the
protocol in its state, thereby allowing it to ignore all other guides.

8.4.4 Procedure Update
As the last building block of our algorithm, we establish the procedure
Update(M) that updates the location ZM (d) of some guide M to ZM (d+
1) for any d > 0.

Consider Update(NW) on position ZNW(d). We access to counter cy,
denoting the y-offset to the line y = d (as seen later, the protocol using
Update provides this counter if the offset is greater than 0, otherwise the
explorer turns on the counter cy). Procedure Update first locates a cell z
whose x-coordinate is −(d+1) and whose y-coordinate is greater than d. If
the neighbor cell z′ west of ZNW(d) is blocked, the explorer walks around
the obstacle containing z′ until an appropriate cell z is found. Then, the
explorer repeatedly uses Shift(0, Probe) to find the cell ZNW(d+1). To
update the position of the guide, the explorer instructs the guide to follow
it on every step until cell ZNW(d+ 1) is reached.

Lemma 8.1. The procedure Update(M, cy) enables the the explorer to
move from cell ZM (d) to cell ZM (d+ 1) and back to cell ZM (d).

The description of Update consists of many special cases and the

8.4. ADVANCED PROCEDURES 113

correctness generally follows from carefully examining the details of the
description. Therefore, we dedicate the rest of the section to provide the
details of Update and simultaneously establish Lemma 8.1. Consider
Update in the case of the NW-guide currently occupying cell ZNW(d) =
(−d, y∗). We assume that the explorer has access to a counter cy, denoting
the y-offset to the line y = d. To initialize the update, the explorer leaves
another ant to mark ZNW(d) and instructs the NW-guide to follow the
explorer. To locate the cell ZNW(d + 1), our first task is to find a cell
z ∈ L, where L is the set of cells whose x-coordinate equals to −(d + 1)
and whose y-coordinate is at least as large as d+ 1, i.e.,

L = {(i, j) ∈ Z2 | (i = −(d+ 1)) ∧ (j ≥ d+ 1))} .

We divide our description of Update into several cases. First, we consider
the case that the cell zw = (−(d + 1), y∗) west to ZNW(d) is blocked by
obstacle O. The explorer turns on the cx counter. Then, it increments
its value by 1 to correspond to the offset from ZNW(d + 1). Also the cy
counter is decremented by 1, to mark the next desired y-coordinate. Refer
to Figure 8.5 for an illustration.

To reach a cell z ∈ L, the explorer now simply turns its heading to
north to initialize a walk counter-clockwise around O. Now since O is
finite, it has to be the case that there is at least one cell from L on the
boundary of O. The explorer successively executes StepCounterClock-
wise, updates counters cx and cy accordingly, and always checks if cx = 0
and if cy is positive. If the check returns true, the explorer has reached a
cell z ∈ L.

To now find the cell ZNW(d + 1), the explorer first turns its head-
ing towards south and then successively executes Shift(0, Probe), and
updates cy accordingly after every Shift, until Probe returns a value
greater than the current cy. If the next cell found by Probe is further
away than cy we know that we are in the cell ZNW(d+ 1) at the moment.
As the last step of this case, the explorer instructs the NW-guide to re-
main in this cell, and walks counter-clockwise around O until it finds the
ant denoting cell ZNW(d).

Then, consider the case that cell zw is not blocked. We further split
into two cases and we first consider the case that cy > 0, which can be
asserted by the explorer by checking if IsPositive(cy) returns true. Then,

114 CHAPTER 8. LABYRINTH SEARCH

ZNW(d+ 1)

ZNW(d)

y = d

x = d

(a)

ZNW(d)

ZNW(d+ 1)

︸
︷︷

︸

y = d+ 1

cy = 2

︸
︷︷

︸

cy = 5

z ∈ L

︸
︷︷

︸

cy = 3

(b)

Figure 8.5: Two special cases of Update that considers the case of updating
the NWguide. Figure 8.5(a) represents the case where the first cell to the west
from ZNW(d) is free, cy equals 0, and ZNW(d+1) is located by moving once west
and then executing Probe and Shift with heading N. Figure 8.5(b) illustrates
a more complicated case, where there initially is an offset of 2 from the north
side of the square(d + 1) (stored in the cy counter). First, the explorer locates
cell z and then executes Probe and Shift until ZNW(d + 1) is located. When
ZNW(d+ 1) is reached, the value of cy is 0 and therefore smaller than the value
of the counter returned by Probe.

8.4. ADVANCED PROCEDURES 115

it has to be the case that all cells (−d, y∗ − i), for i ≤ y∗ − d, are blocked
by some obstacle O due to the invariant that ZNW(d) has the smallest
y-coordinate among free cells (−d, y ≥ d). Thus, the explorer can move
to zw and the counter cy is still valid. Furthermore, cell ZNW(d+ 1) has
to be on the boundary of O.

Next, the explorer decrements cy by 1. If cy = 0, then we have reached
cell ZNW(d + 1). Otherwise, similarly to the previous case, the explorer
now turns its heading towards south and executes Shift(0,Probe) until
Probe returns a value greater than cy. When Probe returns a value
greater than cy, the explorer has reached cell ZNW(d + 1). Similarly to
the previous case, the explorer instructs the NW-guide to mark this cell
and travels back to ZNW(d) by walking around obstacle O.

Consider now the case where zw is not blocked and cy ≤ 0. Note that
due to the invariant that ZNW(d) has the smallest y-coordinate among
free cells (−d, y ≥ d), we get that cy = 0. Therefore, the explorer can
turn off both counters cx and cy without losing any information. Then,
the explorer along with the other ants, moves to cell zw. After reaching
zw, the explorer turns its heading towards north and if (−(d + 1), d + 1)
is not blocked, it moves once north reaching the cell ZNW(d + 1). After
instructing NW to mark ZNW(d+1), the explorer can find back to ZNW(d)
simply by reversing its movements.

If (−(d+1), d+1) is blocked, the explorer executes Shift(0,Probe())
once, so that it reaches the free cell with the smallest y-coordinate at least
d + 1, i.e., the cell ZNW(d + 1). The explorer again instructs the NW-
guide to remain in ZNW(d+ 1) and travels back to ZNW(d) by turning its
heading south, executing Shift(0,Probe) once, and moving once east.
See Figure 8.5 for an illustration.

In all of the above cases, the guide was left in a cell ZNW(d + 1)
yielding the correctness of the update procedure for the NW-guide and
the explorer found its way back to the cell ZNW(d). This concludes the
description of Update for the NW-guide. The procedure Update works
analogously for other guides. Note that when updating the NE-guide, the
explorer does not return back to cell ZNE(d) and therefore does not leave
an ant in that cell either. Thus, Lemma 8.1 follows.

116 CHAPTER 8. LABYRINTH SEARCH

8.5 Searching the Plane

When executing the search protocol SquareWalk, the ants begin the
search by four ants moving into the cells (1, 1), (−1, 1), (−1,−1), and
(1,−1), corresponding to ZNE(1), ZNW(1), ZSW(1), and ZSE(1). Recall
that these ants, the guides, essentially mark the corners of the square
that the explorer will explore next and that we identify each guide with
the cardinal direction of its corner (NE, NW, SW, SE). The explorer e,
equipped with a set of counters in follow mode, moves to the NE-guide in
the cell ZNE(1). It then starts to explore square(1) by moving west until
it meets the NW-guide in cell ZNW(1) and, together with the NW-guide,
moves to cell ZNW(2). Then, the explorer returns to ZNW(1) and moves
south towards the SW-guide. It proceeds analogously with the other
guides and eventually returns to the NE-guide. After moving the NE-
guide to cell ZNE(2), the explorer does not return to ZNE(1) but instead
starts to explore square(2)

Starting from the next iterations, things get more involved as obstacles
might be in the way of the explorer or of the guides. Consider the situation
that the next square to be searched by the explorer is square(d), every
guide M is in the corresponding cell ZM (d), and the explorer is in cell
ZNE(d). We explain how e can walk from the NE-guide to the NW-guide
and thereby explore the north side of square(d); the three other sides of
the square are analogous. Procedure 8.4 gives a pseudo-code description
in which ze = (xe, ye) denotes the current cell of the explorer while an
explanation follows below.

The explorer e sets its heading towards west and, as long as the cell
in front is free, moves forward. If e senses an obstacle in front in cell z, e
executes Probe to find the next free cell z′ in the direction of its heading,
resulting in the counter cprobe representing the distance between ze and
z′. Then e scans the obstacle using Scan yielding the counters cx and cy.
If Scan was not successful, i.e., the NW-guide was not located along the
obstacle, the counters cx and cy are both zero. Now, e moves to z′ using
Shift(cprobe, 0) (cy is reset and used as second parameter) if

8.5. SEARCHING THE PLANE 117

h←W //set heading
repeat

if (ze + h) /∈ B then
move(h) //next cell is free

else
cprobe ← Probe()
(cx, cy)← Scan()
if (IsNull(cx) ∧ IsNull(cy)) ∨ LessThan(cprobe, cx) then

Off(cy); On(cy); Off(cx)
Shift(cprobe, cy) //move to next free cell

else
Off(cprobe); On(cupdate). //re-use ants from cprobe
Set(cupdate, cx)
Shift(cx, cy) //move to NW-guide

end if
end if

until e meets NW
Update(NW, cupdate).

Algorithm 8.4: ExploreNorthSide

(i) Scan was not successful, i.e., the NW-guide was not located along
the obstacle (corresponding to (IsNull(cx) ∧ IsNull(cy) = true))
or

(ii) Scan found the next guide but it is further west than the next target
cell (corresponding to LessThan(cprobe, cx) = true)

and repeats the above. We note that item (ii) is necessary to ensure that
all cells are discovered during the search and refer to Figure 8.6 for an
example of a problematic case. If val(cprobe) ≥ val(cx), which corresponds
to LessThan(cprobe, cx) = false, the explorer executes Shift(cx, cy) to
move to ZNW to meet the NW-guide.

Finally, e uses Update to update the position of the NW-guide from
ZNW(d) to ZNW(d + 1) and returns to ZNW(d). Then, it sets its head-
ing to south, turns off all counters and starts the analogous procedure
ExploreWestSide, this time walking south towards the SW-guide.

118 CHAPTER 8. LABYRINTH SEARCH

ZNE(d)

ZNW(d)

y = d z3z4 zz2

Figure 8.6: Even though ant e encounters the NW-guide already when it scans
in cell c there are many more cells to be visited, another obstacle has to be
circumvented, before e turns south with the help of the guide.

The above procedure is repeated for all four sides of the square until
the explorer arrives back at the NE-guide and updates its position to
ZNE(d+ 1). Now e does not return to ZNE(d) but instead starts a search
of square(d+ 1) using ExploreNorthSide.

Correctness. In this section, we establish the correctness of the pro-
tocol SquareWalk, i.e., that it guarantees that the explorer eventually
visits all free cells of the grid. We define the concept of a configuration
C : A 7→ Z2 as an assignment of a cell to each ant. A configuration is a
snapshot of the positions of the ants at a given time. The start configura-
tion for distance d, denoted by Z(d), is the configuration where each guide
M is in its corresponding cell ZM (d) and the explorer and the auxiliary
ants are in cell ZNE(d) with the NE-guide. We furthermore define the set

Fi = {(x, y) /∈ B | (|x| = i ∧ |y| ≤ i) ∨ (|y| = i ∧ |x| ≤ i)}

as the free cells of square(i) for some i ≥ 1. We are now ready to prove
the following theorem which establishes the correctness of SquareWalk.

Theorem 8.1. The protocol SquareWalk guarantees that every cell
z ∈ Z2 is visited by the explorer within finite time.

8.5. SEARCHING THE PLANE 119

Proof. We show by induction over d that for any d, there is a time such
that the explorer has visited all cells in Fd =

⋃
i≤d Fi and the ants are in

Z(d+ 1).
The induction base holds by design of the protocol as the ants start

the search in configuration Z(1) and the cells in distance 2 from the origin
are free. Hence, the explorer visits all cells and afterwards the ants are in
Z(2).

For the inductive step, assume that the ants are in configuration Z(d)
and all cells in Fd−1 have been explored. We consider the walk along the
north side of square(d). Let

V N
d = 〈z0 = ZNE(d), z1 = (x1, d), . . . , zk = (xk, d), zk+1 = ZNW(d)〉

be the sequence of free cells of the north side of square(d) excluding the
corners {(−d, d), (d, d)} extended by the cells z0 = ZNE(d) and zk+1 =
ZNW(d), ordered by descending x-coordinates. Initially, the explorer is
located in z0 and we show that for any i < k, the explorer moves to zi+1
in finite time.

Consider the case of i ≤ k − 1 and thus zi+1 6= ZNW(d). If zi+1
is neighbor to zi, the explorer moves to zi+1. If the cell west of zi is
blocked, then Probe finds zi+1 and the explorer moves there.

Now consider the case of i = k and thus zi+1 = ZNW(d). If (−d, d) =
ZNW(d) and thus a free cell, the explorer moves there either directly or
through Probe/Shift. If (−d, d) is blocked, ZNW(d) is located along
the boundary of the obstacle that blocks the cell (−d, d) by definition.
As the explorer explores the boundary of said obstacle using Scan, the
explorer is guaranteed to arrive at ZNW(d). Consequently, all cells in V N

d

are visited by the explorer and by Lemma 8.1, we know that the explorer
can execute Update in cell ZNW(d) to move the NW-guide to ZNW(d+1)
and then return to ZNW(d).

The argumentation for the three other sides of the square is analogous
and thus the explorer visits all cells in Fd and then has visited all cells in
Fd. After moving the NE-guide to ZNE(d + 1), the explorer stays in the
same cell. Hence, the ants are in configuration Z(d+ 1), which concludes
the inductive step.

The design of our protocol ensures that the ants cannot enter an in-
finite loop and thus, in every time unit, at least one ant — and thus the

120 CHAPTER 8. LABYRINTH SEARCH

execution of the protocol — progresses. Consequently, the explorer visits
every cell in finite time.

9
Conclusion

In the second part of the thesis, we studied several variants of the Stone
Age model introduced in [36], where the nodes are operated by finite
state machines and are only allowed to send constant sized messages. We
considered several different settings, where the nodes or the agents/ants
operating in the system have to adapt to unknown/unpredictable features
of the environment. First, we extended their model by accommodating
crash failures, i.e., nodes are subject to crash failures in any point of the
execution. We presented a fault-tolerant protocol for the MIS problem
that works in an arbitrary finite network.

To measure the performance of our protocol, we introduced a new
metric, where the runtime of a node is measured in the computationally
meaningful steps it performs during the execution and the runtime is
amortized over the total number of crash failures. We say that a protocol
is effectively confining if the runtime is polylogarithmic for nodes that do

121

122 CHAPTER 9. CONCLUSION

not have any crashed nodes in their neighborhood and if the runtime for
other nodes is O((C+1) logO(1) n) for other nodes, where C is the number
of failures. In other words, the runtime is polylogarithmic for all nodes
when amortized over the number of crash failures.

We introduced an effectively confining algorithm for the MIS problem
in our variant of the Stone Age model. We contrasted this upper bound
with an almost matching lower bound that states that there are no fault-
tolerant MIS protocols with better runtime than Ω(C). Finally, we showed
that the runtime of any node u only depends on the 1+logn neighborhood
of u, i.e., our protocol is pseudo-local.

Then, we studied a mobile variant of the Stone Age model, where
n ants cooperatively search for a treasure hidden into an infinite grid
by an adversary. We presented an algorithm that solves the problem
in time O(D + D2/n + Df) with high probability, while tolerating f ∈
O(n) failures during the execution. Our algorithm uses a combination
of a constant number of fault-tolerant giants and Θ(n) explorer ants,
working together. The few “expensive” giants are used to manage the
algorithm such that it is fault-tolerant, and the many “cheap” explorers
are responsible for solving the problem efficiently.

Then, we turned our attention to a constant number of ants and to a
different type of adaptivity. Instead of crash failures, we considered the
effects of obstacles in their search environment. We presented the proto-
col SquareWalk that allows a group of finite state machines to locate
the treasure in an infinite grid obstructed by arbitrary obstacles of finite
circumference. Our search protocol employs the weak communication ca-
pabilities of the ants to simulate a sufficient amount of memory to ensure
progress in the search.

Our search protocol requires ten ants in total, where one of the ants
acts as an explorer, who performs the searching. The protocol uses three
offset counters, requiring five ants. The other four ants mark the sides of a
square around the origin that bounds the area discovered so far. In other
words, we established that a constant amount of ants is able to locate the
treasure in finite time in an arbitrary labyrinth.

Bibliography

[1] Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn,
F.: Beeping a Maximal Independent Set. In: Proceedings of the 25th
International Conference on Distributed Computing (DISC). (2011)
32–50

[2] Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph,
Z.: A Biological Solution to a Fundamental Distributed Computing
Problem. Science 331(6014) (2011) 183–185

[3] Albers, S.: A Competitive Analysis of the List Update Problem with
Lookahead. Theoretical Computer Science 197 (1998) 95–109

[4] Albers, S., Henzinger, M.: Exploring Unknown Environments. SIAM
Journal on Computing 29 (2000) 1164–1188

[5] Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.:
Random Walks, Universal Traversal Sequences, and the Complexity
of Maze Problems. In: Proceedings of the 20th Annual Symposium
on Foundations of Computer Science (FOCS). (1979) 218–223

[6] Alon, N., Awerbuch, B., Azar, Y., Patt-Shamir, B.: Tell Me Who
I Am: an Interactive Recommendation System. In: Proceedings of

123

124 BIBLIOGRAPHY

the 18th ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA). (2006) 261–279

[7] Alon, N., Babai, L., Itai, A.: A Fast and Simple Randomized Parallel
Algorithm for the Maximal Independent Set Problem. Journal of
Algorithms 7 (December 1986) 567–583

[8] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Computation in Networks of Passively Mobile Finite-State Sensors.
Distributed Computing (2006) 235–253

[9] Aspnes, J., Ruppert, E.: An Introduction to Population Protocols.
In Garbinato, B., Miranda, H., Rodrigues, L., eds.: Middleware for
Network Eccentric and Mobile Applications. Springer-Verlag (2009)
97–120

[10] Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal Graph
Exploration by a Mobile Robot. Information and Computation 152
(1999) 155–172

[11] Awerbuch, B., Patt-Shamir, B., Peleg, D., Saks, M.E.: Adapting
to Asynchronous Dynamic Networks. In: Proceedings of the 24th
annual ACM Symposium on Theory of Computing (STOC). (1992)
557–570

[12] Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.: Collaboration
of Untrusting Peers with Changing Interests. In: Proceedings of the
5th ACM Conference on Electronic Commerce. (2004) 112–119

[13] Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.R.: Improved
Recommendation Systems. In: Proceedings of the 16th ACM-SIAM
Symposium on Discrete Algorithms (SODA). (2005) 1174–1183

[14] Awerbuch, B., Sipser, M.: Dynamic Networks are as Fast as Static
Networks. In: 29th Annual Symposium on Foundations of Computer
Science (FOCS). (1988) 206–219

[15] Azar, Y., Gamzu, I.: Ranking with Submodular Valuations. In: Pro-
ceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms
(SODA). (2011) 1070–1079

BIBLIOGRAPHY 125

[16] Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in
the Plane. Information and Computation 106 (1993) 234–252

[17] Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir,
T.: On Chromatic Sums and Distributed Resource Allocation. In-
formation and Computation 140(2) (1998) 183–202

[18] Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The Locality of
Distributed Symmetry Breaking. In: Proceedings of the 53rd Annual
Symposium on Foundations of Computer Science (FOCS). (2012)
321–330

[19] Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The
Power of a Pebble: Exploring and Mapping Directed Graphs. In:
Proceedings of the 30th annual ACM Symposium on Theory of Com-
puting (STOC). (1998) 269–278

[20] Bikhchandani, S., de Vries, S., Schummer, J., Vohra, R.V.: An
Ascending Vickrey Auction for Selling Bases of a Matroid. Operations
Research 59(2) (2011) 400–413

[21] Blum, M., Kozen, D.: On the Power of the Compass (or, Why Mazes
Are Easier to Search Than Graphs). In: Proceedings of the 19th
Annual Symposium on Foundations of Computer Science (FOCS).
(1978) 132–142

[22] Blum, M., Sakoda, W.J.: On the Capability of Finite Automata
in 2 and 3 Dimensional Space. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS). (1977)
147–161

[23] Budach, L.: Automata and Labyrinths. Mathematische Nachrichten
(1978) 195–282

[24] Chlamtac, I., Kutten, S.: On Broadcasting in Radio Networks–
Problem Analysis and Protocol Design. Communications, IEEE
Transactions on [legacy, pre - 1988] 33(12) (1985) 1240–1246

126 BIBLIOGRAPHY

[25] Cole, R., Vishkin, U.: Deterministic Coin Tossing with Applications
to Optimal Parallel List Ranking. Information and Control 70(1)
(1986) 32–53

[26] Cornejo, A., Kuhn, F.: Deploying Wireless Networks with Beeps.
In: Proceedings of the 24th International Conference on Distributed
Computing (DISC). (2010) 148–162

[27] Daum, S., Ghaffari, M., Gilbert, S., Kuhn, F., Newport, C.: Maximal
Independent Sets in Multichannel Radio Networks. In: Proceedings
of the 2013 ACM Symposium on Principles of Distributed Computing
(PODC). (2013) 335–344

[28] Dean, B., Goemans, M., Vondrák, J.: Approximating the Stochas-
tic Knapsack Problem: The Benefit of Adaptivity. Mathematics of
Operations Research 33 (2008) 945–964

[29] Deng, X., Papadimitriou, C.: Exploring an Unknown Graph. Journal
of Graph Theory 32 (1999) 265–297

[30] Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree Exploration
with Little Memory. Journal of Algorithms 51 (2004) 38–63

[31] Döpp, K.: Automaten in Labyrinthen. Elektronische Informa-
tionsverarbeitung und Kybernetik 7(2) (1971) 79–94

[32] Drineas, P., Kerenidis, I., Raghavan, P.: Competitive Recommen-
dation Systems. In: Proceedings of the 34th ACM Symposium on
Theory of Computing (STOC). (2002) 82–90

[33] Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal Con-
strained Graph Exploration. ACM Transactions on Algorithms
(TALG) 2(3) (2006) 380–402

[34] Emek, Y., Langner, T., Stolz, D., Uitto, J., Wattenhofer, R.: How
Many Ants Does it Take to Find the Food? In: 21th International
Colloquium on Structural Information and Communication Complex-
ity (SIROCCO). (2014) 263–278

BIBLIOGRAPHY 127

[35] Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS
Problem with Asynchronous Finite State Machines. In: Proceedings
of the 41st International Colloquium on Automata, Languages, and
Programming (ICALP). (2014) 471–482

[36] Emek, Y., Wattenhofer, R.: Stone Age Distributed Computing.
In: Proceedings of the 32nd ACM Symposium on Principles of Dis-
tributed Computing (PODC). (2013) 137–146

[37] Feige, U., Lovász, L., Tetali, P.: Approximating Min Sum Set Cover.
Algorithmica 40 (2004) 219 – 234

[38] Feinerman, O., Korman, A.: Memory Lower Bounds for Randomized
Collaborative Search and Implications for Biology. In: Proceedings of
the 26th International Conference on Distributed Computing (DISC),
Berlin, Heidelberg, Springer-Verlag (2012) 61–75

[39] Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative
Search on the Plane Without Communication. In: Proceedings of
the 31st ACM Symposium on Principles of Distributed Computing
(PODC). (2012) 77–86

[40] Fisher, J., Henzinger, T., Mateescu, M., Piterman, N.: Bounded
Asynchrony: Concurrency for Modeling Cell-Cell Interactions. In:
Proceedings of the 1st International Workshop on Formal Methods
in Systems Biology (FMSB). (2008)

[41] Flury, R., Wattenhofer, R.: Slotted Programming for Sensor Net-
works. In: Proceedings of the 9th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks (IPSN). (2010)
24–34

[42] Fraigniaud, P., Ilcinkas, D.: Digraphs Exploration with Little Mem-
ory. In: 21st Symposium on Theoretical Aspects of Computer Science
(STACS). (2004) 246–257

[43] Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph
Exploration by a Finite Automaton. Theoretical Computer Science
345(2-3) (2005) 331–344

128 BIBLIOGRAPHY

[44] Gardner, M.: The Fantastic Combinations of John Conway’s New
Solitaire Game ‘Life’. Scientific American 223(4) (1970) 120–123

[45] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA (1979)

[46] Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.: Fault-containing
Self-stabilizing Algorithms. In: Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Distributed Computing (PODC).
(1996) 45–54

[47] Goemans, M., Vondrák, J.: Stochastic Covering and Adaptivity. In:
Proceedings of the 7th Latin American Conference on Theoretical
Informatics (LATIN). (2006) 532–543

[48] Goldman, S.A., Schapire, R.E., Rivest, R.L.: Learning Binary Rela-
tions and Total Orders. SIAM Journal of Computing 20(3) (1993)
245–271

[49] Golovin, D., Krause, A.: Adaptive Submodularity: Theory and Ap-
plications in Active Learning and Stochastic Optimization. Journal
of Artificial Intelligence Research (JAIR) 42 (2011) 427–486

[50] Grove, E.: Online Bin Packing with Lookahead. In: Proceedings
of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). (1995) 430–436

[51] Gupta, A., Nagarajan, V., Ravi, R.: Approximation Algorithms for
Optimal Decision Trees and Adaptive TSP Problems. In: Proceed-
ings of the 37th International Colloquium on Automata, Languages
and Programming (ICALP), Springer-Verlag (2010) 690–701

[52] Hanahan, D., Weinberg, R.A.: Hallmarks of Cancer: The Next Gen-
eration. Cell 144(5) (2011) 646 – 674

[53] Hastad, J.: Clique is Hard to Approximate within n1−ε. In: Pro-
ceedings of the 37th Annual Symposium on Foundations of Computer
Science (FOCS), Washington, DC, USA, IEEE Computer Society
(1996) 627–636

BIBLIOGRAPHY 129

[54] Hayes, T., Saia, J., Trehan, A.: The Forgiving Graph: A Distributed
Data Structure for Low Stretch Under Adversarial Attack. In: Pro-
ceedings of the 28th ACM Symposium on Principles of Distributed
Computing (PODC). (2009) 121–130

[55] Hoffmann, F.: One Pebble Does Not Suffice to Search Plane
Labyrinths. In: Fundamentals of Computation Theory. Springer
Berlin Heidelberg (1981) 433–444

[56] Kaplan, H., Kushilevitz, E., Mansour, Y.: Learning with Attribute
Costs. In: Proceedings of the 37th ACM Symposium on Theory of
Computing (STOC). (2005) 356–365

[57] Karp, R.M.: Reducibility Among Combinatorial Problems. In Miller,
R.E., Thatcher, J.W., eds.: Complexity of Computer Computations.
The IBM Research Symposia Series, Plenum Press, New York (1972)
85–103

[58] König, M., Wattenhofer, R.: On Local Fixing. In: 17th International
Conference On Principles Of Distributed Systems (OPODIS), Nice,
France. (2013) 191–205

[59] Korman, A.: Improved Compact Routing Schemes for Dynamic
Trees. In: Proceedings of the 27th Annual ACM Symposium on
Principles of Distributed Computing(PODC). (2008) 185–194

[60] Kranton, R., Minehart, D.: A Theory of Buyer-Seller Networks.
American Economic Review 91 (2001) 485–508

[61] Kuhn, F., Moscibroda, T., Wattenhofer, R.: What Cannot be Com-
puted Locally! In: Proceedings of the 23th Annual ACM Symposium
on Principles of Distributed Computing (PODC). (2004) 300–309

[62] Kuhn, F., Schmid, S., Wattenhofer, R.: A Self-repairing Peer-to-peer
System Resilient to Dynamic Adversarial Churn. In: Proceedings of
the 4th International Conference on Peer-to-Peer Systems (IPTPS).
(2005) 13–23

130 BIBLIOGRAPHY

[63] Kutten, S., Peleg, D.: Fault-Local Distributed Mending. Journal of
Algorithms 30(1) (1999) 144–165

[64] Kutten, S., Peleg, D.: Tight Fault Locality. SIAM Journal on Com-
puting 30(1) (2000) 247–268

[65] Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between
Selection Complexity and Performance when Searching the Plane
without Communication. In: Proceedings of the 33rd Symposium on
Principles of Distributed Computing (PODC). (2014) 252–261

[66] Li, X., Misra, J., Plaxton, C.: Active and Concurrent Topology
Maintenance. In Guerraoui, R., ed.: Distributed Computing. Vol-
ume 3274 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2004) 320–334

[67] Lin, J.C., Huang, T.: An Efficient Fault-Containing Self-Stabilizing
Algorithm for Finding a Maximal Independent Set. IEEE Transac-
tions on Parallel and Distributed Systems 14(8) (2003) 742–754

[68] Linial, N.: Locality in Distributed Graph Algorithms. SIAM Journal
on Computing 21(1) (1992) 193–201

[69] Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Near-
Optimal Algorithms for Shared Filter Evaluation in Data Stream
Systems. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data. (2008) 133–146

[70] López-Ortiz, A., Sweet, G.: Parallel Searching on a Lattice. In:
Proceedings of the 13th Canadian Conference on Computational Ge-
ometry (CCCG). (2001) 125–128

[71] Luby, M.: A Simple Parallel Algorithm for the Maximal Independent
Set Problem. SIAM Journal on Computing 15 (1986) 1036–1055

[72] Malpani, N., Welch, J.L., Waidya, N.: Leader Election Algorithms
for Mobile Ad Hoc Networks. In: Proceedings of the 4th Interna-
tional Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIAL-M). (2003) 96–103

BIBLIOGRAPHY 131

[73] Mitzenmacher, M., Upfal, E.: Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University
Press, New York, NY, USA (2005)

[74] Munagala, K., Babu, S., Motwani, R., Widom, J.: The Pipelined Set
Cover Problem. In: Proceedings of the 10th International Conference
on Database Theory (ICDT). (2005) 83–98

[75] Navlakha, S., Bar-Joseph, Z.: Distributed Information Processing
in Biological and Computational Systems. Communications of the
ACM 58(1) (December 2014) 94–102

[76] Panaite, P., Pelc, A.: Exploring Unknown Undirected Graphs. In:
Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). (1998) 316–322

[77] Panconesi, A., Srinivasan, A.: On the Complexity of Distributed
Network Decomposition. Journal of Algorithms (1996) 356–374

[78] Peleg, D.: Distributed Computing: a Locality-sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA (2000)

[79] Schneider, J., Wattenhofer, R.: A Log-star Distributed Maximal
Independent Set Algorithm for Growth-bounded Graphs. In: Pro-
ceedings of the 27th ACM Symposium on Principles of Distributed
Computing (PODC). (2008) 35–44

[80] Scott, A., Jeavons, P., Xu, L.: Feedback from Nature: an Opti-
mal Distributed Algorithm for Maximal Independent Set Selection.
In: Proceedings of the 32nd Symposium on Principles of Distributed
Computing. (2013) 147–156

[81] Shukla, S., Rosenkrantz, D., Ravi, S.S.: Observations on Self-
Stabilizing Graph Algorithms for Anonymous Networks (Extended
Abstract). In: Proceedings of the Second Workshop on Self-
Stabilizing Systems. (1995) 1–15

132 BIBLIOGRAPHY

[82] Valiant, L.: Parallel Computation. In: 7th IBM Symposium on
Mathematical Foundations of Computer Science. (1982)

[83] von Neumann, J.: Theory of Self-Reproducing Automata. University
of Illinois Press, Champaign, IL, USA (1966)

[84] Walter, J., Welch, J.L., Vaidya, N.: A Mutual Exclusion Algorithm
for Ad Hoc Mobile Networks. Wireless Networks 7 (1998) 585–600

[85] Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign,
Illinois (2002)

[86] Yao, A.C.C.: Probabilistic Computations: Toward a Unified Measure
of Complexity. In: Proceedings of the 18th Annual Symposium on
Foundations of Computer Science (FOCS). (1977) 222–227

BIBLIOGRAPHY 133

Curriculum Vitae

1987 Born in Kerava, Finland

2006-2011 Studies in computer science, University of Helsinki

2011 M.Sc. in computer science, University of Helsinki

2009-2011 Research Assistant,
Helsinki Institute for Information Technology (HIIT)

2011-2015 PhD Student, Distributed Computing Group,
supervised by Professor Roger Wattenhofer,
ETH Zürich, Switzerland

2015 PhD Degree, Distributed Computing Group,
ETH Zürich, Switzerland

134 BIBLIOGRAPHY

Publications

The following list contains all publications that I have co-authored
during my PhD studies. The authors are listed in an alphabetical order.

1. Randomness vs. Time in Anonymous Networks. Jara Uitto,
Jochen Seidel and Roger Wattenhofer. 29th International
Symposium on Distributed Computing (DISC), October 2015

2. Ignorant vs. Anonymous Recommendations. Jara Uitto and Roger
Wattenhofer. 23rd European Symposium on Algorithms(ESA),
September 2015

3. Lower Bounds for the Capture Time: Linear, Quadratic, and
Beyond. Klaus-Tycho Förster, Rijad Nuridini, Jara Uitto and
Roger Wattenhofer. 22nd International Colloquium on Structural
Information and Communication Complexity (SIROCCO), July
2015

4. How Many Ants Does It Take to Find the Food? Yuval Emek,
Tobias Langner, David Stolz, Jara Uitto and Roger Wattenhofer.
Theoretical Computer Science. To appear

5. On Competitive Recommendations. Jara Uitto and Roger
Wattenhofer. Theoretical Computer Science. To appear

6. SpareEye: A Smart Phone App that Enhances the Safety of the
Inattentionally Blind. Klaus-Tycho Förster, Alex Gross, Nino Hail,
Jara Uitto and Roger Wattenhofer. 13th International Conference
on Mobile and Ubiquitous Multimedia (MUM), November 2014

BIBLIOGRAPHY 135

7. Towards More Realistic ANTS. Yuval Emek, Tobias Langner,
David Stolz, Jara Uitto and Roger Wattenhofer. 2nd Workshop on
Biological Distributed Algorithms (BDA), October 2014

8. Fault-Tolerant ANTS. Tobias Langner, David Stolz, Jara Uitto
and Roger Wattenhofer. 28th International Symposium on
Distributed Computing (DISC), October 2014

9. How Many Ants Does It Take to Find the Food? Yuval Emek,
Tobias Langner, David Stolz, Jara Uitto and Roger Wattenhofer.
21th International Colloquium on Structural Information and
Communication Complexity (SIROCCO), July 2014

10. Solving the ANTS Problem with Asynchronous Finite State
Machines. Yuval Emek, Tobias Langner, Jara Uitto and Roger
Wattenhofer. 41st International Colloquium on Automata,
Languages, and Programming (ICALP), July 2014

11. On Competitive Recommendations. Jara Uitto and Roger
Wattenhofer. 24th International Conference on Algorithmic
Learning Theory (ALT), 2013

	Collaboration in Multi-Agent Systems
	I Competitive Recommendations
	Introduction
	Related Work

	The Online Algorithm
	Model
	The Quasi-offline Algorithm
	Online Algorithms

	The Anonymous Algorithm
	Model
	Anonymous Recommendations
	Learning the Preferences
	The Greedy mssc Algorithm

	Conclusion

	II Adaptivity in the Stone Age Model
	Fault Tolerance
	Related Work
	Model
	Maximal Independent Set
	The Fixing Component
	Lower Bound
	Pseudo-Locality

	Mobile Agents
	Related Work
	Model
	An n-Robust Protocol
	Runtime

	Labyrinth Search
	Model
	Basic Idea
	Basic Capabilities
	Advanced Procedures
	Searching the Plane

	Conclusion

