
DISS ETH NO. 18573

TIK-Schriftenreihe Nr. 108

Routing on the Geometry
of Wireless Ad Hoc Networks

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

Roland Flury

accepted on the recommendation of

Prof. Dr. Roger Wattenhofer, examiner
Prof. Dr. Sándor P. Fekete, co-examiner

Prof. Dr. Leonidas J. Guibas, co-examiner

2009

Abstract

The routing of messages is one of the basic operations any computer network
needs to provide. In this thesis, we consider wireless ad hoc and sensor
networks and present several routing protocols that are tailored to the limited
hardware capabilities of network participants such as sensor nodes. The
constraint memory and computing power as well as the limited energy of
such devices requires simplified routing protocols compared to the IP based
routing of the Internet. The challenge is to build light routing protocols that
still find good routing paths, such as to minimize not only the number of
forwarding steps but also the energy consumption.

In the first part of this work we focus on the protocol design and analyze
the properties of our routing algorithms under simplifying network models.
In particular, we describe a location service that supports geographic routing
even if the destination node is constantly moving. Such a location service
is important as the geographic routing technique bases each routing step on
the position of the destination node by repeatedly forwarding a message to
the neighbor which is geographically closest to its destination. If there is no
such neighbor, the message has reached a local minimum. This is a node
at the boundary of a network hole around which the message needs to be
led before it can continue its greedy path. We extend the classic notion of
network holes to 3-dimensional unit ball graphs and propose several random-
ized recovery techniques to escape from local minima in such networks. In
addition, we show that it is possible to forward messages greedily without
ever falling in a local minimum. We do so by embedding the network into
an higher-dimensional space such that there is a greedy path between any
two nodes. Similarly, we describe a renaming technique in combination with
small routing tables that ensures good routing paths not only for unicast,
but also for anycast and multicast.

In the second part of this thesis, we examine the design of applications
and come up with a programming technique to efficiently translate protocols
to the limited hardware of sensor networks. We describe the slotted program-
ming paradigm that fosters modular programming and decouples unrelated
software components temporally. We demonstrate the advantages of our ap-
proach with two case studies: (1) an efficient clock synchronization module,
and (2) an alarming module through which all nodes of a network can be
awaken efficiently and reliably.

Zusammenfassung

Das Routing von Nachrichten ist eine Funktionalität, die jedes
Computernetzwerk anbieten muss. In dieser Dissertation untersuchen
wir Routing Protokolle für drahtlose Ad-hoc- und Sensornetzwerke, wo die
Netzwerkteilnehmer, wie zum Beispiel Sensorknoten, oftmals sehr limitierte
Hardware zur Verfügung haben. Dabei muss nicht nur die Rechen- und
Speicherkapazität, sondern auch der Energiehaushalt von solchen Geräten
berücksichtigt werden. Dies bedingt einerseits vereinfachte Protokolle im
Vergleich zum IP-Routing, andererseits aber auch qualitativ gute Protokolle,
welche gute Pfade finden um Energie zu sparen.

Im ersten Teil dieser Arbeit beschäftigen wir uns mit dem
Design von Protokollen und analysieren mehrere Routingtechniken an
vereinfachenden Netzwerkmodellen. Wir starten mit einem Positionsdienst,
der geographisches Routing zu mobilen Knoten ermöglicht. Dies ist wichtig,
da jeder Routingschritt auf den Koordinaten des Zieles beruht, indem
die Nachricht jeweils zu dem Nachbar gesandt wird, der am nächsten
zum Ziel liegt. Falls kein solcher Nachbar existiert, hat die Nachricht ein
lokales Minimum erreicht. Dies ist ein Knoten am Rande eines Loches im
Netzwerk, um welches die Nachricht geroutet werden muss. Wir erweitern
die klassische Notation von Löchern zu dreidimensionalen Unit-Ball-Graphen
und zeigen mehrere randomisierte Techniken auf, die aus lokalen Minima in
solchen Netzwerken herausführen. Des Weiteren beschreiben wir eine virtuelle
Einbettung von einem Netzwerk in einen mehrdimensionalen Raum, so dass
zwischen allen Knotenpaaren ein direkter Pfad ohne Löcher besteht. Das
Umbenennen von Knoten benutzen wir ebenfalls für eine Routingtechnik
mit kleinen Routingtabellen, welche auch Multicasting und Anycasting
unterstützt.

Im zweiten Teil erörtern wir die Konstruktion von Applikationen und
präsentieren eine Programmiertechnik, die ein effizientes Implementieren
von Protokollen für die limitierte Hardware von Sensorknoten erlaubt.
Die beschriebene Technik fördert eine modulare Programmstruktur und
separiert die verschiedenen Softwarekomponenten zeitlich, so dass die
Komponenten unabhängig bleiben. Wir demonstrieren die Vorteile der
Programmiertechnik anhand von zwei Beispielen: (1) einem Modul für
energieeffiziente Uhrensynchronisation und (2) einem Alarmmodul, durch
welches alle Knoten in einem Netzwerk effizient aufgeweckt werden können.

Acknowledgements

I look back at exciting years as a PhD student at ETH Zurich – last but
not least because of the many people who supported me. In particular, I
would like to thank my advisor Roger Wattenhofer for his guidance through
the scientific jungle. Roger, I appreciate your patience with which you led
me through the ups and downs of the past four years.

I would also like to thank my co-examiners Sándor Fekete and Leonidas
Guibas for their willingness to serve on my committee board and work
through this thesis.

Furthermore, my thanks also go to the members of Da C ool Gang. Ste-
fan Schmid, my office mate number 1, thanks for not only sharing your office,
but also your passion for running. I will never forget our nightly Sola Duo
race. Roland Mathis, my office mate number 2, thanks for showing me the
secrets of our servers and strengthen the Nidwalden-force in our group. Fur-
thermore, I would like to thank Nicolas Burri for organizing all the coffee,
Raphael Eidenbenz for helping to torture our DES students, Michael Kuhn
for exploring our taste of music, Christoph Lenzen for beating everybody in
chess, Remo Meier for knowing everything about Java, Johannes Schneider
for surviving Iceland’s summer storms, Benjamin Sigg for eating no killed
animal, Jasmin Smula für dis Interässi a Schwizerdütsch, Philipp Sommer
for synchronizing our motes, Pascal von Rickenbach for putting our nodes
to sleep, Thomas Locher for teaching me how to use a Chinese dictionary,
Yvonne Anne Pignolet for showing me how a real marriage works, Olga
Goussevskaia for taking me to a favela disco in Rio de Janeiro, and Aaron
Zollinger, Fabian Kuhn, Thomas Moscibroda, Keno Albrecht, and Regina
O’Dell for the amusing table soccer matches.

Last but not least I would like to thank my parents Margrit and Peter and
my two sisters Barbara and Regula who have supported me during my entire
education in so many ways. Finally, my very special thanks are reserved for
my darling Bea for the wonderful time we spent together.

Contents

1 Introduction 1
1.1 Geographic Routing . 2
1.2 Thesis Overview . 3

I Protocol Design 5

2 Routing in Mobile Networks 6
2.1 Related Work . 7
2.2 Model . 9
2.3 Position Information . 10
2.4 Lookup . 13
2.5 Lazy Publishing . 14
2.6 Concurrency . 16
2.7 The MLS Algorithm . 18
2.8 Analysis . 20
2.9 Simulation . 32

3 Routing in 3D Networks 35
3.1 Random Walks . 36
3.2 Notation and Model . 37
3.3 Lower Bound . 37
3.4 Towards 3D Routing Algorithms 40
3.5 Dual Graph . 41
3.6 Routing on the Dual Graph 47
3.7 Simulation . 49

4 Greedy Routing 51
4.1 Related Work . 52
4.2 Background, Results, and Approach 55
4.3 Greedy Embeddings of CUDGs 60
4.4 Simulation . 63

5 Compact Routing with Any- and Multicast 67
5.1 Related Work . 70
5.2 Definitions and Preliminaries 71
5.3 Dominance Net . 72
5.4 Routing . 77
5.5 Multicasting . 81
5.6 Anycast . 81
5.7 Distributed Dominance Net Construction 82

6 Conclusion 87

II Application Design 89

7 Simulation 90
7.1 sinalgo . 91
7.2 Simulation modes . 93
7.3 Mobility . 93
7.4 Discussion . 94

8 Slotted Programming 97
8.1 Related Work . 99
8.2 Background . 100
8.3 Slotted Programming . 102
8.4 The slotos Reference Implementation 105

9 Slotted Clock Synchronization 110
9.1 Synchronized Transmission 111
9.2 Pipelined Synchronization . 111
9.3 Initialization . 112
9.4 Experiments . 113
9.5 Discussion . 113

10 Low-Power Signaling 115
10.1 Pipelining . 116
10.2 Signaling of Binary States . 116
10.3 RSSI vs Waves . 117
10.4 Slotted Signaling . 119
10.5 Test Application . 120

11 Conclusion 127

1
Introduction

Wireless sensor networks and wireless mesh networks in general have received
a lot of attention lately, last but not least because of their countless applica-
tions in various fields. The data collected by the nodes’ sensors is valuable
as it provides the basis to understand the monitored processes in more detail
and react to predefined events. For example, we could imagine to equip our
homes with sensors to monitor the usage of water and electricity to identify
saving potentials. Similarly, the control of the heating and air conditioning
may be driven by several environmental parameters such as the tempera-
ture inside and outside the building, humidity of the air, presence of people,
or whether the doors and windows are open or closed. Independent of the
application, the sensor readings only reveal their full potential if they are
analyzed in a broader context, for example in combination with the readings
of neighboring sensors. Therefore, the sensor nodes need to be equipped with
a communication device to either share their sensor readings with close-by
neighbors or to send the data to a central processing unit.

In this thesis, we will focus on sensors nodes that are equipped with a
wireless communication device. In contrast to a wired solution, wireless com-
munication allows for autonomous sensors if they are powered by a battery.
On the one hand, such autonomous sensor nodes drastically simplify the de-
ployment and reduce the installation cost as no wiring is necessary. On the
other hand, however, the communication on wireless networks is much more
involved and requires dedicated algorithms. Generally, the action of sending
a message from a sender node to a target node is driven by a routing algo-
rithm which guides messages through the network towards their destination.
Being such an integral part of any network, there already exists a large di-
versity of routing algorithms, including the IP routing of today’s Internet,
communication protocols that connect robots exploring our solar system, and
algorithms that ensure message delivery in ad hoc networks. The different

CHAPTER 1. INTRODUCTION 2

needs and characteristics of the various networks impose many challenges, re-
quiring appropriate routing techniques. Throughout this thesis, we examine
several routing algorithms for large wireless ad hoc networks such as sensor
and mobile ad hoc networks.

In contrast to the IP based Internet routing, which relies on large for-
warding tables, routing algorithms for wireless ad hoc networks face not only
the problem of unstable networks, but also that of rather limited network
participants. The instability of the network may be caused due to mobility
of the network nodes, or just by fluctuations of the wireless communication
medium which is far more vulnerable than a wired network. The limitations
on the network nodes are manifold, including hardware constraints such as
small memory and low processing power, as well as power supply limitations.

1.1 Geographic Routing

Exploiting the geometry of the network to perform routing is a prominent
approach to overcome the challenges posed by such limited ad hoc networks.
Geographic routing protocols forward the packet to a neighbor geographically
closer to the target, until the message reaches its destination. Thus, a re-
quirement for geographic routing is that each node knows its own, as well as
its neighbors’ Euclidean coordinates. A node can learn its position through
hardware support such as GPS. Alternatively, the position can be obtained
through localization algorithms, of which a variety has been proposed in re-
cent years, e.g. [16, 50, 73]. Furthermore, the position of the target node
needs to be known, as each routing step is based on this information. Be-
cause learning the position of the target node may come at a certain cost,
the sender node includes this information in the message for reuse in further
routing decisions by the nodes along the route. The initial request for the
position of a remote network node can be handled by a location service which
determines the position of a node given its ID. Such services have been stud-
ied for static ad hoc networks [2, 24], and a probabilistic approach for mobile
networks was presented in [45].

We define a geographic routing algorithm to base its decision solely on
the position of the current node, the neighbors, and the destination, and
we require the network nodes to be memoryless, i.e. not store any state for
messages they see. This not only binds the routing state uniquely to the
messages, but also removes an additional storage overhead from the nodes,
which could limit the number of messages forwarded by a node if its memory
is too small. As a matter of fact, the size of the memory is not the only
challenge. The problem of storing message state is that this data arrives
dynamically, and it is hard to predict how much of this data needs to be
stored at any given time. Dynamic memory allocation would partially solve
the problem, but introduces a computational overhead that many devices

CHAPTER 1. INTRODUCTION 3

cannot afford. Consequently, the number of messages for which a node may
store the state needs to be determined at compile time, jeopardizing routing
success if more messages than anticipated need to be handled.

Another important property of geographic routing algorithms is that their
decisions are only based on local information, which can easily be refreshed
upon changes in the network. This stands in sharp contrast to routing al-
gorithms that rely in some way on a global view of the network. Whereas
these global routing schemes provide excellent routing paths, the construc-
tion of their routing information is rather expensive, and any change of the
network may require a complete, network wide reconfiguration of the routing
information. As a result, these routing algorithms are an excellent choice for
static networks, but not for (wireless) ad hoc networks, where a continuous
change of the network topology is unavoidable.

A key concept of geographic routing is greedy forwarding, where each node
forwards a received message to the neighbor that is geographically closest
to the target. This constitutes a very simple, yet efficient way of routing
messages. Greedy routing, however, is not always successful in delivering the
packet. When a packet reaches a node, whose neighbors are all further away
from the target than the node itself, greedy forwarding fails, and we say that
the message has reached a local minimum. Such local minima are especially
common in sparse networks and in networks with holes, i.e. regions in the
network where no network nodes are placed, and around which a message
needs to be led. For 2-dimensional networks, face routing and several variants
thereof are the most prominent solutions to escape local minima. In the
greedy-face-greedy approach [13, 25], a message routes greedily until it gets
stuck in a local minimum. It then routes along the face of the network
hole until it finds a node closer to the target than the local minimum, from
where it continues greedily. Techniques to proactively avoid routing voids
are presented in [36] and a worst case optimal, but still average case efficient
routing algorithm was obtained by constraining the range of the face routing
in [59, 60]. Unless the the voids of the network are described through a
boundary detection system [56], the latter two protocols require a planarized
network graph to route along the faces.

1.2 Thesis Overview

In this thesis, we discuss several routing techniques that exploit the geome-
try of the underlying network to provide efficient routes. In the first part of
this work we focus on the protocol design and analyze the proposed protocols
under simplified network models. We start with the description of a loca-
tion server for geographic routing that allows to deliver messages even if the
destination node is constantly moving. Whereas we restrain our analysis to
2-dimensional networks for the location server, we also consider geographic

CHAPTER 1. INTRODUCTION 4

routing in 3-dimensional networks where the recovery from local minima can-
not be resolved deterministically using only local information. In particular,
we extend the classic notion of network holes to 3-dimensional networks and
describe several randomized recovery techniques to escape from local minima.
Finally, we discuss two routing techniques that assign special coordinates to
each network participant. On the one hand, we show that the coordinates
can be assigned such that there is a greedy path between any two nodes. On
the other hand, we describe a coordinate assignment that uses small routing
tables to ensure good routes not only for the unicast, but also for anycast
and multicast requests.

In the second part of this thesis, we shift our focus to the application
design where we discuss the verification of such protocols and how the cor-
responding applications can be programmed for the limited hardware of sen-
sor nodes. We first describe the simulation tool we used to examine the
algorithms described in the first part. Afterwards, we propose a novel pro-
gramming paradigm that eases the implementation of applications for sensor
nodes. We conclude this thesis with two case studies that demonstrate the
power of our programming approach: An efficient clock synchronization mod-
ule and a low-power signaling module through which all nodes of a network
can be alarmed efficiently.

Part I
Protocol Design

2
Routing in Mobile Networks

For systems where each node is equipped with a location sensing device,
geographic routing has received much attention recently and is considered to
be an efficient and scalable routing paradigm. However, geographic routing
algorithms assume that the sender knows the position of the destination
node. This introduces a high storage overhead if each node keeps track
of the position of all other nodes. Even more challenging is the situation
with mobile nodes: In a mobile ad hoc network (MANET), nodes might be
moving continuously and their location can change even while messages are
being routed towards them. Clearly, a node cannot continuously broadcast
its position to all other nodes while moving. This would cause a high message
overhead.

In the so-called home-based approach, each node is assigned a globally
known home where it stores its current position. A sender first queries the
home of the destination node to obtain the current position and then sends
the message. This can be implemented using distributed or geographic hash-
ing [81], and is a building block of many previous ad hoc routing algorithms,
including [34, 80, 93, 98]. Despite of its broad usage, the home-based ap-
proach is not desirable, as it does not guarantee a good performance: The
destination might be arbitrarily close to the sender, but the sender first needs
to learn this by querying the destination’s home, which might be far away.
Similarly, a large overhead is introduced by moving hosts, which need to peri-
odically update their homes, which might be far away. Even more important
is the observation that the destination node might have moved to a different
location by the time the message arrives. Thus, simultaneous routing and
node movement require special consideration.

In this chapter, we present a routing framework called MLS (for M obile
Location Service) in which each node can send messages to any other node
without knowing the position of the destination node. The routing (lookup)
algorithm works hand in hand with a publish algorithm, through which mov-

CHAPTER 2. ROUTING IN MOBILE NETWORKS 7

ing nodes publish their current location on a hierarchical data structure. We
compare the length of the routes found by our protocol to the corresponding
optimal routes and define the stretch to be the maximal factor by which the
routes of our lookup algorithm are longer than the corresponding optimal
routes. We formally prove that the stretch of the lookup algorithm is in
O(1) and show in extensive simulation that the constant hidden in the O()-
notation is approximately 6. The amortized message cost induced by the
publish algorithm of a moving node is in O(d log d), where d is the distance
the node moved. Again, our simulations show that the hidden constants
of the O()-notation for the publish overhead are small, the average being
4.3 · d log d. Finally, MLS only requires a small amount of storage on each
node. For evenly distributed nodes, the storage overhead is logarithmic in
the number of nodes (with high probability).

We formally prove the correctness of MLS for concurrent lookup requests
and node movement. That is, while a message is routed, the destination node
might move considerably, but the lookup stretch remains O(1). To prove this
property, we derive the maximum node speed vnodemax at which nodes might
move. We express this speed as a fraction of vmsgmin , the speed at which
messages are routed. Clearly, if vnodemax ≥ vmsgmin , a message may not reach its
destination at all. As a main result of this chapter, we show that MLS is
correct if vnodemax ≤ vmsgmin/15 in the absence of lakes1. I.e. we show that the
lookup stretch remains in O(1) even though the destination node might move
at a speed up to 1/15 of the message speed. To the best of our knowledge,
this is the first work that determines the maximum node speed to allow
concurrent lookup and node movement.

2.1 Related Work

Routing on ad hoc networks has been in the focus of research for the last
decade. The proposed protocols can be classified as proactive, reactive, or
hybrid. Proactive protocols distribute routing information ahead of time
to enable immediate forwarding of messages, whereas the reactive routing
protocols discover the necessary information only on demand. In between
are hybrid routing protocols that combine the two techniques.

Much work has been conducted in the field of geographic routing where
the sender knows the position of the destination. Face routing is the most
prominent approach for this problem [13]. AFR [60] was the first algorithm
that guarantees delivery in O

`
d2
´

in the worst case, and was improved to
an average case efficient but still asymtotically worst case optimal routing
in GOAFR+ [59]. Similar techniques were chosen for the Terminode routing
[11], Geo-LANMAR routing [26], and in [36]. All of them combine greedy

1In the presence of lakes, vnodemax is reduced by a factor equal to the largest routing
stretch caused by the lakes.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 8

routing with ingenious techniques to surround routing voids. Georouting is
not only used to deliver a message to a single receiver, but also for geocasting,
where a message is sent to all receivers in a given area. All these georouting
protocols have in common that the sender needs to know the position of the
receiver.

If we consider a MANET, a sender node needs some means to learn the
current position of the destination node. A proactive location dissemination
approach was proposed in DREAM [10], where each node maintains a rout-
ing table containing the position of all other nodes in the network. Each
node periodically broadcasts its position, where nearby nodes are updated
more frequently than distant nodes. In addition to the huge storage and
dissemination overhead, DREAM does not guarantee delivery and relies on
a recovery algorithm, e.g. flooding.

An alternative to the fully proactive DREAM is the hybrid home-based
lookup approach, as utilized in [34, 80, 93, 98]. However, this approach does
not allow for low stretch routing, as outlined in the introduction.

Awerbuch and Peleg [8] proposed to use regional matchings to build a
hierarchical directory server, which resembles our approach. However, to
handle concurrent lookup and mobility, a Clean Move Requirement was in-
troduced, which hinders nodes to move too far while messages are routed
towards them. With other words, a lookup request can (temporarily) stop
its destination node from moving. Furthermore, the lookup cost of [8] is
polylogarithmic in the size of the network, which restrains scalability.

A novel position dissemination strategy was proposed by Li et al. in [63]:
For each node n, GLS stores pointers towards n in regions of exponentially
increasing size around n. In each of these regions, one node is designated
to store n’s position based on its ID. The lookup path taken by GLS is
bounded by the smallest square that surrounds the sender and destination
node. As outlined in [2], GLS cannot lower bound the lookup stretch and
lacks support for efficient position publishing due to node movement. Xie
et al. presented an enhanced GLS protocol called DLM in [99], and Yu
et al. proposed HIGH-GRADE [101], which is similar to [64]. In contrast
to GLS, DLM and HIGH-GRADE do not store the exact position of the
corresponding nodes, which reduces the publish cost. Nevertheless, neither
of them can lower bound the publish cost (e.g. due to the problem described
in Figure 2.3) and they do not tackle the concurrency issue described above.

Abraham et al. proposed LLS [2], a locality aware lookup system with
worst case lookup cost of O

`
d2
´
, where d is the length of the shortest

route between the sender and receiver2. Similar to GLS, LLS publishes

2The quadratic overhead for lookups in LLS has two reasons. First, the proposed
model utilizes an underlying routing algorithm such as GOAFR+ with a quadratic worst
case overhead. But even with a constant-stretch routing algorithm, the worst case lookup
cost of LLS remains in O

`
d2
´
. This is due to a flooding technique that is interleaved

with the spiral lookup to find a first pointer to the destination node. The authors

CHAPTER 2. ROUTING IN MOBILE NETWORKS 9

position information on a hierarchy of regions (squares) around each
node. A lookup requests circles around the sender node with increasing
radius until it meets one of the position pointers of the destination node,
and then follows this pointer. MLS borrows some ideas from LLS and
HIGH-GRADE, adding support for concurrent mobility and routing, im-
proving the lookup to have linear stretch and bounding the publish overhead.

In the following sections, we present the MLS algorithm. We start with
our model assumptions and the hierarchical lookup system through which
messages are routed. Then, we discuss in more detail the routing of messages,
and define a policy when a moving node needs to update its position data
in Chapter 2.5. We introduce the issues of concurrent message routing and
node movement in Chapter 2.6 and present the MLS algorithm in a concise
and formal way in Chapter 2.7, such that we can prove its correctness in the
sequel. Finally, we describe our simulation setup.

2.2 Model

For the analysis of our algorithm, we consider a world built of land and lakes.
The nodes are distributed on the land areas, whereas no nodes can be placed
on lakes. In order to allow for total connectivity, we assume that there are no
islands, i.e. there are no disconnected land areas. The nodes are expected to
contain a positioning system such as GPS, Cricket [89], cell tower or WLAN
triangulation. Furthermore, each node is equipped with a communication
module that provides reliable inter-node communication with minimal range
rmin.

In our model, the nodes actively participate in ad hoc routing to deliver
messages. To guarantee the reachability of any location on land, we consider
a relatively dense node distribution and require that for any position p on
land, there is a node at most λ = rmin/3 away. Furthermore, this invariant
should hold over time while nodes are moving.

Using MLS, each node can send messages to any other node without know-
ing the position of the destination. To perform this task, MLS stores informa-
tion about the nodes’ whereabout in well defined positions (see Chapter 2.3).
Then, the messages are routed to some of these special positions, where they
learn about the current location of their destination. Because the positions

motivated the bounded flooding to overcome extreme situations due to the underlying
routing algorithm. However, LLS allows worst case scenarios in which the destination
can only be found through flooding. One such case can be observed when a node n1
moves along the diagonal of its publish squares. In that case, n1 can approach another
node n2 on the same diagonal up to an ε-distance without writing any new pointers into
the lookup range of n2. This is possible due to the delayed publish strategy of the moving
nodes, and the limited and gird-aligned lookup range. This quadratic lookup overhead
might be overcome relatively easily, but it is much harder to add support for concurrency
to LLS, which was not considered in its current version.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 10

of the intermediate destinations are known, this underlying routing might be
performed by a geographic routing algorithm.

For the rest of this chapter, we abstract from this low level routing and
assume the following communication capability: For any two positions ps
and pt on land, a node s in the λ-proximity of ps can send a message to a
node in the λ-proximity of pt. The time to route the message is bounded
by η · |pspt|, where |pspt| is the Euclidean distance3 between ps and pt. We
assume that this underlying routing algorithm selects the shortest path if it
has a choice.

Note that this underlying routing capability is orthogonal to the main
routing problem discussed in this chapter, where the sender does not know
the position of the receiver.

2.3 Position Information

In this section, we describe how each node t maintains a lookup system
through which MLS routes messages to t. This lookup system is based on
several layers, where the top layer is the smallest square of side length ρ · 2M
that encloses the entire world. M is dependent on the size of the world, and
ρ = λ/

√
2 = rmin/(3

√
2) is given by the radio range (see Chapter 2.2). In

the following, we denote this square by level-M and write LM . (Please refer
to Table 2.1 for a summary of the notation used in this chapter.) Similar to
a geographic hash table (GHT) [81], each node has a designated position on
land where it stores directions to its position. But instead of storing its exact
position, a node t only stores in which of the four possible sub squares it is
located, as depicted in Figure 2.1. Recursively, each selected square contains
a pointer to its sub square that surrounds t. Finally, the chain is broken
when the size of the sub square reaches ρ. Thus, a message for node t can
be routed along these pointers until it reaches the smallest square.

We use the term LM−1 to denote any of the squares received when LM is
divided into 4 sub squares of side length ρ·2M−1. Recursively, Li denotes any
square of side-length ρ·2i that can be obtained by dividing a Li+1 square into
its 4 sub squares. The recursion stops for L0, which is a square of side length
ρ. To denote the Li that surrounds a specific node t, we use the notation Lti.
Clearly, LxM is the same for all nodes x, namely the square that surrounds
the entire world.

On each Lti for i > 0, node t has a well defined position where it stores
in which of the 4 possible Li−1 it is located. We call this information Level
Pointer and write LPti to denote the level pointer on Lti that points to Lti−1.
Also, we write ∗LPti to denote the Lti−1 where LPti points.

3Note that if |pspt| → 0, the message would have to be delivered instantaneously.
However, unless the sender and receiver are identical, at least one hop is necessary,
which requires time. We can safely ignore this border case because this chapter presents
a worst case analysis, where the shortest distance to be routed is λ.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 11

ρ · 2M

tLPtM−1

LPtM

LtM−1

LtM t

LPt1

LPt2

ρ

Lt2

Lt0 =
∗LPt1

Lt1 =
∗LPt2

Figure 2.1: The left figure shows the entire world surrounded by LM , the
square of side length ρ · 2M . The land masses are filled with solid color
(green), lakes are filled with waves. For each node t, Lti contains a level
pointer LPti that points to the sub square Lti−1 of size ρ · 2i−1 that contains
t. The right picture shows the smallest three levels around t and how each
level for i > 0 contains a pointer that points to the next smaller level.

We have seen that every node t stores a LPti on each of its levels Lti. This
information needs to be hosted on a node somewhere in Lti. But because the
nodes are mobile, we cannot designate a specific node on each Lti to store
the LPti. Therefore, we propose to store this pointer at a specific position p
on land in Lti. Due to the minimal node density, we know that there exists
at least one node in the λ-proximity of p, which we can use to store LPti. If
there are several nodes in the λ-proximity of p, we pick the one closest to p.
The selected node then hosts LPti until it moves away from p by more than λ.
At that point, it passes on LPti to its neighbor node closest to p, which must
exist due to the minimal node density. Over time, the LPti is not necessarily
stored on the node closest to p, but by an arbitrary node in the λ-proximity
of p.

Each node t stores a LPti at a well defined position pt on land within Lti,
where pt is determined through the unique IDt of t. Any consistent hash
function that maps the ID of a node onto a position on land can be used for
this purpose, as long as the chosen positions are evenly distributed over the
land area for different IDs.

One possible function is the following, where we use two hash-functions
H1() and H2() to map the ID of t to real numbers in the range]0, 1]. pt
is determined as an offset (∆x,∆y) from the top left corner of Lti. ∆y is

CHAPTER 2. ROUTING IN MOBILE NETWORKS 12

Lti Level that contains t with side-length ρ · 2i
(Lsi)

8 The 8 surrounding squares of Lsi
LPti Level pointer on Li for node t; points to Li−1
∗LPti The Li−1 where LPti points to

δti distance of a node t to ∗LPti+1

FPti Forwarding pointer if LPti /∈ ∗LPti+1
∗FPti The Li where ∗FPti points

TFPti Temporary forwarding pointer, before a pointer to t is removed
∗TFPti The Li where TFPti points

TTLi Time to live of a TFPi
vnodemax Max. speed of nodes

rmin Min. communication range of a node

λ Min. distance to a node from any land point

ρ Side length of L0; ρ = λ/
√

2 = rmin/(3
√

2)

M LM surrounds the entire world

α When δti ≥ α · ρ · 2i, LPti+1 is updated

β(βT) Max. number of forwarding hops to reach LPti from a FPti
(TFPti)

γ See Lemma 2.4

η Routing overhead to route to a given position

Table 2.1: Nomenclature used throughout this chapter.

chosen such that, when only considering Lti, the fraction of land above ∆y
is H1(IDt). Once ∆y is fixed, we must choose ∆x such that pt lies on land.
We concatenate the line-segments where pt can be placed to a single line and
determine ∆x such that the length of the line left to pt is H2(IDt) of the
total line length.

Given this mapping, any node can determine the potential position pt
where a node t might store a LPti for any Lti. All the node needs to know
is the ID of the receiver and the position of the lakes. Amongst others, this
is necessary to route a message along the level pointers towards t: Once a
message has been routed to a LPti, the node hosting LPti determines p′t in
∗LPti and forwards the message to LPti−1, which is located at p′t.

We can already see that the number of levels only depends on the size
of the deployment area and the transmission radius rmin. Therefore, every
node needs to maintain only a constant number of level pointers. Because the
positions of the level pointers are chosen randomly on the different levels, the
storage overhead is balanced smoothly on the nodes if the nodes themselves
are evenly distributed. This is an important property of MLS, and avoids
overloading a few nodes with excessive amounts of data.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 13

2.4 Lookup

Because messages are routed to a priori unknown positions, we denote them
as lookup requests. When a sender node s wants to send a message to a des-
tination node t, it issues a lookup request for node t, which encapsulates the
message to be sent. So far, we have described where each node publishes its
level pointers and how a lookup request is forwarded along the level pointers
towards t once a first LPti has been found. This section is devoted to the first
phase of the lookup algorithm, which routes the lookup request to the first
LPti.

We propose a lookup algorithm that first searches t in the immediate
neighborhood of s and then incrementally increases the search area until a
LPti is found. From there, the lookup request can be routed towards the
smaller levels, as described in the previous section. Using this approach, we
find t quickly if it is close to s. In particular, we prove that the lookup time
is linear in the distance between s and t. As for the search areas, we use an
extended version of the levels of node s, who issued the lookup request. For
each Lsi , we define (Lsi)

8 to be the 8 Li squares adjacent to Lsi .
In the very first step of a lookup, node s checks whether t is in its im-

mediate neighborhood. In this case, the message can be sent directly to t.
Otherwise, the lookup request is sent to Ls1 to check whether it finds a LPt1.
If this is not the case, the lookup request is forwarded in sequence to the 8
squares of (Ls1)8, where it tries to find LPt1. This step is repeated recursively:
while the lookup request fails to find a LPti on Lsi and (Lsi)

8, it is forwarded to
Lsi+1 and then in sequence to squares of (Lsi+1)8, where it tries to find LPti+1.
A possible lookup path through the first 3 levels is depicted in Figure 2.2.
Note that when the lookup request is forwarded through the levels of (Lsi)

8,
the sequence is chosen such that the last visited Li is contained in Lsi+1, and
the request is always forwarded to a neighboring Li that shares an edge with
the current Li. (Skip Li that are completely covered by lakes.)

In the first phase of the lookup algorithm, the lookup request is routed to
a series of levels Li, where it tries to find a level pointer LPti. In the following
lemma, we provide an upper bound for the time needed to search i levels.
Note that this also gives an upper bound for the time needed to find LPti on
Li, given that LPti ∈ Li.

Lemma 2.1. The accumulated time for searching a level pointer of node t
on the levels 0 through i is bounded by η2i+1ρ(

√
2 + 8

√
5).

Proof. When a lookup request for node t issued by a node s starts its search
on Lj , it first queries for LPtj in Lsj . From the lookup algorithm presented
above, we know that the lookup request tries4 to end its search of the lev-

4This fails, if Lsj−1 is the only sub-level of Lsj covering land. In this case, the lookup

request first needs to move into Lsj . This additional overhead is well compensated on the

previous level, where at least 3 Lsj−1 were not visited.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 14

s

Figure 2.2: When s issues a lookup request for node t, the request is for-
warded to the potential positions of a LPti in Lsi ∪ (Lsi)

8 for increasing i. The
bold gray squares in the left image indicate the first 4 levels of node s. Note
that we have only drawn the nodes visited by the chosen route. The right
image shows a lookup path found by our simulation framework. The square
dots indicate the LP of the destination node. Because no lakes were present
in the lookup area, the lookup path is regular and draws quadratic shapes.

els Lj−1 on a node in Lsj . Thus, in the worst case, the request has to be
routed over the diagonal of Lsj to reach the potential place of LPtj , which

implies a maximal route-time of η2jρ
√

2. Then, to check for LPtj in (Lsj)
8,

the lookup request is repeatedly sent to a neighboring Li to which the pre-
vious Li shares an edge. At the worst, this takes η2jρ

√
5 for each of the

8 neighbors. Thus, the total time to query for LPtj on level j is at most

η2jρ(
√

2 + 8
√

5), and the accumulated time to query i levels is bounded by
t ≤

Pi
j=0 η2jρ(

√
2 + 8

√
5) < η2i+1ρ(

√
2 + 8

√
5).

Because LM is the same square for all nodes, we are sure that a lookup
request finds a level pointer for t at the latest on LsM

5. In a later section,
we give an upper bound on the time the lookup request needs to find a first
LPti based on the distance between s and t.

2.5 Lazy Publishing

In this and the following section, we analyze the implications of mobile nodes.
In particular, this section focuses on the publish algorithm, through which
every node keeps its level pointers up to date when it moves. Remember that

5This holds also under lazy publishing and in the concurrent setting, two concepts
that are introduced in the following sections.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 15

a b

LPti+2

LPti

LPti+1

LPti

LPti+1 LPti+1

αρ2i αρ2i

LPti+1

A B

B’A’

ρ2i t

Figure 2.3: If a node t oscillates between the two points a and b in the left
picture, immediate updating of its level pointers would cause an enormous
amount of traffic. In black are the level pointers necessary if t is at a, the
level pointers necessary at b are gray. Lazy publishing delays the updating
of LPti+1 until node t has moved away from ∗LPti+1 by more than αρ2i, as
depicted in the right picture. Only when t moves across A, LPti+1 is updated
to A’. Similarly, only when t crosses B, A’ is deleted and B’ is added.

every node t maintains a LPti on each of its Lti for 0 < i ≤ M . Clearly, if
a node t must update its LPti+1 as soon as it changes Lti, the publish cost
might be extremely high. The left part of Figure 2.3 depicts a situation
where many level pointers would have to be updated due to an arbitrarily
small move of node t. If t oscillates between the two points a and b, and
immediately sends messages to update the level pointers after moving an ε-
distance, an enormous amount of traffic would be generated. To reduce this
overhead, we employ lazy publishing, a concept that is similar to the lazy
update technique utilized in [2].

Lazy publishing allows a node t to move out of ∗LPti+1 up to a certain
distance without updating LPti+1, and reduces the overhead due to oscillating
nodes. The following publish policy defines when a node t needs to update
its LPti.

We use the notation δti to denote the air distance of node t to ∗LPti+1.
Formally, δti is the shortest distance of t to any edge of ∗LPti+1 if t /∈ ∗LPti+1.
Otherwise, δti = 0.

Definition 2.2. (Publish Policy) When a node t has moved away from
∗LPti+1 by more than α·ρ·2i, it needs to update LPti+1, such that LPti+1 points
to the current Lti. Formally, a node t must update LPti+1 if δti ≥ α · ρ · 2i, for
a fixed α ∈ R+.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 16

We need to consider two cases while updating a LPti+1: If the outdated
LPti+1 is in Lti+1, it suffices to change the value of LPti+1 such that it points to
Lti. In the right half of Figure 2.3, this is the case when t moves over the line
marked A. However, if t has moved to a different Li+1, the outdated LPti+1

needs to be removed and a new one must be added to Lti+1. An example of
this case is depicted in Figure 2.3, when t moves over the line marked B.

The implementation of such an update is straight forward: Node t sends
an update message to the outdated LPti+1 to change its value. If a new LPti+1

needs to be created, t sends a remove message to the outdated LPti+1 and a
create message to the position of the new LPti+1.

2.6 Concurrency

Clearly, the lookup algorithm presented in Chapter 2.4 does not support
lazy publishing in its second phase, where the lookup request follows the
level pointers in order to find a destination node t. So far, we have assumed
that for i > 1, ∗LPti contains a LPti−1. However, under the lazy publishing
policy, LPti−1 might be outside ∗LPti. We now derive modifications to the
lookup and publish algorithms such that they support lazy publishing. At
the same time, we introduce the issue of simultaneous lookup and publish
requests.

2.6.1 Forwarding Pointer

MLS uses a forwarding pointer to guide a lookup request to LPti. If LPti /∈
∗LPti+1, ∗LPti+1 contains a forwarding pointer at the location where the LPti
would be. This forwarding pointer points to the neighboring Li that contains
LPti. In the following, we denote such a forwarding pointer by FPti and write
∗FPti to denote the Li where FPti points. Figure 2.4 depicts a situation where
a FP is necessary. Note that we restrict the value of α to the range [0, 1[such
that a FPti might only point to an adjacent Li. This simplifies our analysis,
but does not restrain the final result, where α is chosen clearly smaller than
1 in order to maximize the allowed speed at which nodes may move.

With the forwarding pointers, a lookup request has an easy means to find
the LPti if LPti /∈ ∗LPti. However, this simplistic approach only works in a
static setup, where all publish requests of node t have terminated before a
lookup request queries for t. Consider again Figure 2.4 and suppose that t
moves upwards. When δti > αρ2i−1, t needs to send three messages: one to
remove LPti from [C], one to add a new LPti in [D] and one to change the
direction of FPti in [B]. Because the messages might be delayed randomly by
the presence of lakes, it is possible that a lookup request reads FPti before
it is updated, and then fails to find LPti in ∗FPti because LPti was already
removed. This is a racing condition between a lookup request and the publish
request which we need to avoid.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 17

LPti

ρ2i

LPti+1

t

αρ2i

αρ2i−1

FPti

[A] [D]

[B] [C]

Figure 2.4: A node t is outside ∗LPti+1, but does not need to update LPti+1.
Instead of removing its LPti in ∗LPti+1, t maintains a FPti that points to the
neighboring Li there LPti can be found. When t moves upwards along the
indicated (solid) path, it eventually leaves ∗LPti by more that αρ2i−1 and
needs to add a new LPti in [D], update FPti in [B] and remove the LPti in [C].
To prevent a racing condition with a concurrent lookup, LPti in [C] is not
removed, but transformed to a TFPti that points to [D].

CHAPTER 2. ROUTING IN MOBILE NETWORKS 18

2.6.2 Temporary Forwarding Pointer

Inspired by the fact that the racing condition in the previous example arose
because of a LPti that was removed too early, MLS does not remove LPti
immediately, but leaves behind a Temporary Forwarding Pointer, denoted
TFPti. Such a TFPti points to the neighboring Li where t was located when
it decided to remove the LPti. We will write ∗TFPti to denote the Li where
the TFPti points.

To come back to Figure 2.4, t changes the LPti in [C] to a TFPti instead
of removing it. A lookup request that follows the outdated FPti then might
find such a TFPti instead of the expected LPti and follows the TFPti to finally
find LPti in [D].

At the time when LPti+1 is updated, the FPti in ∗LPti+1 becomes obsolete
and needs to be removed. But deleting the FPti could cause similar rac-
ing conditions with a concurrent lookup request as when a LPti is removed.
Therefore, MLS overwrites a FPti with a TFPti instead of removing the FPti.

According to its name, a TFP does only exist for a limited time. TFP
are automatically removed after a given time, which we denote TTLi for a
TFPti. Thus, the lifetime TTLi of a TFPti depends on the value of i. We
give constraints on the value of TTLi while proving the correctness of MLS.
Given that TTLi can be determined statically, a TFPti can be removed by
the hosting node without any interaction of node t.

2.7 The MLS Algorithm

We have now gathered all parts of MLS and present it here in a concise form
before proving its correctness and performance. As before, the algorithm
comes in two parts, the publish and the lookup algorithm. The publish
algorithm is executed permanently by each moving node as to maintain valid
information on its hierarchy of levels, whereas the lookup algorithm is used
to route a message to a given node.

2.7.1 MLS Publish

During the startup phase of node t, initialize all level pointers LPti+1 to point
to Lti. While t is moving, it executes the protocol shown in Algorithm 2.1.
In the initialization phase, t sends a message to the position of LPti on each
Li. This message tells the receiving node to store LPti, which points to Lti−1.
We assume that there are no lookup requests for t during this initial phase.

While t is moving, it utilizes lazy publishing where it only performs an
action on level i if δti (its distance to ∗LPti+1) is above the given threshold
(Line 1). If t updates LPti+1, FPti becomes obsolete and is changed to a
TFPti that points to Lti (Line 2). The simplest case arises when only the
value of LPti+1 needs to be changed, because LPti+1 can still point to the

CHAPTER 2. ROUTING IN MOBILE NETWORKS 19

Algorithm 2.1: Publish protocol of node t

if δti ≥ α · ρ · 2i then1

if i > 0 then change FPti in ∗LPti+1 to TFPti2

if LPti+1 ∈ Lti+1 then3

change LPti+1 to point to Lti4

else5

if LPti+1 ∈ ∗LPti+2 then6

change LPti+1 to FPti+1 that points to Lti+17

else if Lti+1 = ∗LPti+2 then8

change LPti+1 to TFPti+1 that points to Lti+19

else10

change LPti+1 to TFPti+1 that points to Lti+111

change FPti+1 to point to Lti+112

end13

on Lti+1, add LPti+1 that points to Lti14

end15

if i >0 and LPti /∈ Lti then16

add FPti on Lti that points to Li 3 LPti17

end18

end19

current Lti (Lines 3,4). This corresponds to the situation in the right part of
Figure 2.3 where t crosses A. Otherwise, LPti+1 is added to the current Li+1

of t (Line 14). In between, we update the forwarding pointers according to
the three different cases: (1) If the old LPti+1 is on the lookup-path because
it is in ∗LPti+2, it is modified to a FPti+1 (Lines 6,7). (2) If t returned to
∗LPti+2, we replace the old LPti+1 with a temporary forwarding pointer to
∗LPti+2 (Lines 8,9). The FPti+1 in ∗LPti+2 is implicitly overwritten by Line 14.
(3) In all other cases where t moves from one square to another in (∗LPti+2)8,
we replace the old LPti+1 with a temporary forwarding pointer to the new Li
and update FPti+1, which is located in ∗LPti+2 (Lines 11,12). Finally, if the
new LPti+1 does not point to the Li that contains LPti, a forwarding pointer
is added to Lti. This FPti points to the Li that contains LPti (Lines 16, 17).
This last case arises for example in Figure 2.4 when t moves along the dashed
path, such that the publish algorithm is triggered at the circled area. In that
case, a FPti is added in square [D] and points to square [C], which holds LPti.

When t needs to update a pointer (LPti or FPti) on an arbitrary Li, t sends
a command message to the node that hosts the pointer, where the command
message indicates how the pointer should be modified. In order to create
a new pointer on a Li, t sends a create message to the node closest to the
position pt in Li. If t sends a create message to set a LPti or FPti at position
pt, but there already exists a pointer (LPti, FPti or TFPti) at this position,
the existing pointer is overwritten.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 20

Algorithm 2.2: Lookup protocol of node s to route to node t

if t ∈ Ls0 ∪ (Ls0)8 then exit1

for i = 1; true; i++ do2

if P ti ∈ Lsi or P ti ∈ (Lsi)
8 then3

p = P ti4

break5

end6

end7

Follow p until LPt1 is reached8

Route to a node closest to an arbitrary point on land in ∗LPt19

Forward to t10

2.7.2 MLS Lookup

A lookup request for node t issued by a node s is routed according to Algo-
rithm 2.2. If the destination node t is in the same unit square or an immediate
neighbor, node s and t can communicate directly over their radio. Because
s needs to know all its neighbors in Ls0 ∪ (Ls0)8 for routing, this situation can
be detected immediately and the lookup stops (Line 1).

Then, for increasing size of the levels, s searches a pointer of t in Lsi
and then in the squares of (Lsi)

8. Note that the lookup request accepts any
kind of pointer of node t, whether it is an LPti, FPti or TFPti. Furthermore,
remember from Chapter 2.4 that the squares of (Lsi)

8 need to be accessed in
a given order.

In the second phase of the lookup algorithm, the lookup request is routed
along the pointers until it reaches LPt1 (Line 8). Because ∗LPt1 does not
contain a LPt0, the lookup picks an arbitrary position p on land in ∗LPt1 and
routes the lookup request to the node closest to p (Line 9). From that node,
the lookup can be sent directly to t (Line 10).

2.8 Analysis

We devote this section to the analysis of MLS. In particular, we show that
MLS works in a concurrent setup, where publish requests and lookup requests
occur simultaneously. We prove that a lookup request finds its destination in
O(d) hops, where d is the distance between the sender and the destination.
Also, we show that the amortized cost for publishing the position data is
O(d log d), where d denotes the distance a node has moved. In order to prove
these properties, we need to limit the maximum speed of nodes, denoted
vnodemax . Throughout the proofs, we introduce different constraints on the value
of vnodemax . After proving the correctness of MLS, we determine the maximum
node speed that satisfies all these constraints.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 21

We base the lookup performance on the distance |st| between two nodes s
and t. In the static case, this distance is well defined during an entire lookup
operation. However, in the concurrent setting, both nodes, s and t, might
be moving while a lookup request is executing, and the distance |st| changes
over time. In our analysis of the lookup algorithm, we determine the distance
|st| when a lookup request is issued and base the performance analysis on
this value.

2.8.1 Lookup Analysis

For the first phase of the lookup algorithm, we show that a lookup request for
a node t can be routed such that it finds a level pointer to node t. Then, for
the second phase of the lookup algorithm, we prove that the lookup request
can be routed along the pointers of t to finally reach t.

Lookup – Phase 1
We consider a lookup request for a node t issued by a node s, where

d = |st| is the distance between s and t at the moment when s issues the
request. In this section, we prove that the time needed to find a first location
pointer for t is in O(d). To start, we give a lower bound on TTLi such that
a lookup request cannot miss a pointer6 to t due to concurrency. Then, we
show that the lookup request meets a pointer to t at the latest while visiting
Lsk+1 ∪ (Lsk+1)8 for a given k dependent on d.

Lemma 2.3. Given that t is (and remains) located in Lsi ∪ (Lsi)
8 and main-

tains a LPti in this area, a lookup request issued by s finds a pointer to t at
the latest while visiting Lsi ∪ (Lsi)

8, if TTLi ≥ η2iρ(
√

2 + 8
√

5).

Proof. When t needs to relocate its LPti, it sends a message m to create a new
LPti on Lti, which takes at most ∆tm ≤ η2iρ

√
2 time to arrive (traversing Lti).

At the same time, t sends a message m′ to transform the outdated LPti to a
FPti or TFPti. For this worst case analysis, we assume that m′ is delivered
instantaneously.7

A lookup request fails to find LPti if it interleaves with these publish
messages such that it arrives at the position p of the new LPti before m,
and if it reaches the position p′ of the outdated LPti after m′. In the worst
case, t relocates LPti into Lsi at time T0 and the lookup request visits p just
before m arrives at T1 < T0 + ∆tm. The lookup request then continues its
search in the squares of (Lsi)

8 and might choose the path such that it visits
p′ only on its last step, which is at the latest after ∆tlookup ≤ η2iρ8

√
5 (see

proof of Lemma 2.1). Thus, the lookup request reaches p′ at the latest at
T2 ≤ T1 + ∆tlookup < T0 + η2iρ(

√
2 + 8

√
5). Even if the outdated LPti was

6A pointer to t is either a LPt, a FPt or a TFPt.
7There might also be a message to update a potential FPti, which is of no importance

for this proof.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 22

transformed to a TFPti at T0, the TFPti exists at least until T0 + TTLi > T2

and the lookup request finds the TFPti. (Note that if the outdated LPti is
transformed to a FPti, the time during which p′ hosts a pointer to t is even
longer, because the FPti is transformed to a TFPti after t updates LPti+1.)

In the static case where publish requests and lookup requests do not
interfere, a lookup request finds a pointer to t at the latest while visiting
Lsk+1∪ (Lsk+1)8, if the side length of Lk is at least d (d ≤ ρ2k). (We can argue
that s ∈ Lsk+1 and thus t is at most d away from Lsk+1. At the same time,
the distance from t to any Lk outside Lsk+1 ∪ (Lsk+1)8 is at least ρ2k ≥ d.
Because α < 1, t must have created a LPtk+1 in Lsk+1 ∪ (Lsk+1)8.)

For the concurrent case, we weaken this result and show that the lookup
request finds a pointer to t at the latest while visiting Lsk+γ ∪ (Lsk+γ)8, where

ρ2k ≥ d > ρ2k−1 and γ ∈ N+, if the maximum node speed is bounded by

vnodemax <
1− α

2
− 2−γ

η
√

2
(2.1)

and the temporary forwarding pointers exist long enough:

TTLi ≥ η2i+1ρ(1/
√

2 + 8
√

5) (2.2)

Note that increasing the value of γ results in a higher node speed, but a
lookup request might need to search longer until it finds a first pointer to t.
We keep γ ≥ 1 as a parameter of MLS to tune its performance.

Lemma 2.4. Consider a lookup request for t issued by s and let d be the
distance |st| at the moment when the request is issued. For any γ ≥ 1,
k ∈ N such that ρ2k−1 < d ≤ ρ2k, and if the Equations (2.1) and (2.2) hold,
the lookup request finds a pointer to t at the latest on one of the levels in
Lsk+γ ∪ (Lsk+γ)8.

Proof. In a first step, we show that t has created a LPtk+γ in Lsk+γ ∪ (Lsk+γ)8

at the latest when the lookup request is issued. This property is necessary
to ensure that the lookup request cannot arrive too early on Lk+γ and miss
LPtk+γ because it is not yet created.

By definition, s ∈ Lsk+γ and thus t is at most d ≤ ρ2k away from Lsk+γ . At
the same time, the distance from t to any Lk+γ−1 outside Lsk+γ∪(Lsk+γ)8 is at

least ρ(2k+γ−2k). Furthermore, we know that t sent off a message to create a
LPtk+γ in Lsk+γ ∪ (Lsk+γ)8 when it entered this region by more than α2k+γ−1ρ

(lazy publishing). Thus, t moved at least a distance ∆d = ρ2k(2γ(1− α
2

)−1)
after sending off the message to create LPtk+γ and when the lookup request
was issued.

At the limit, the update message to create LPtk+γ needs to be sent across

Lk+γ which needs ∆tupdate ≤ η2k+γρ
√

2. But the lookup request is only

CHAPTER 2. ROUTING IN MOBILE NETWORKS 23

issued after t has moved ∆d, which takes at least ∆tmove ≥ ∆d
vnodemax

. By

Equation (2.1), ∆tmove > η2k+γρ
√

2 ≥ ∆tupdate, which shows8 that the
lookup request is issued after a LPtk+γ has been created in Lsk+γ ∪ (Lsk+γ)8.

To conclude the proof, we show that a TFPtk+γ lives long enough to catch
all cases where the lookup request does not find a LPtk+γ . From Lemma 2.3
we know that the lookup request finds a pointer to t while t remains inside
Lsk+γ ∪ (Lsk+γ)8. Before t can relocate LPtk+γ outside Lsk+γ ∪ (Lsk+γ)8, it must

move at least ∆d′ = ρ2k(2γ(1 + α
2

) − 1) after the lookup was issued, which

takes at least ∆t ≥ ∆d′

vnodemax
> η2k+γρ

√
2 by (2.1). Thus, t might create a

TFPtk+γ in Lsk+γ ∪ (Lsk+γ)8 at least ∆t after the lookup request was issued.
By Lemma 2.1, the lookup request finishes visiting the levels of Lk+γ at

the latest after ∆tlookup ≤ η2k+γ+1ρ(
√

2 + 8
√

5). Thus, to ensure that the
TFPtk+γ has not expired, it must have lived for at least ∆tlookup−∆t, which
holds by Equation (2.2).

The previous lemma states that a lookup request can find a pointer to
t. We now show that the lookup request meets another pointer to t when
it is routed along a forwarding pointer (or temporary forwarding pointer).
However, we need to restrain the maximum node speed to

vnodemax <
α

η · 2(3
√

2 + α)
(2.3)

to ensure that this holds in all situations.

Lemma 2.5. A lookup request that finds a FPti or a TFPti also finds a pointer
to t in ∗FPti or ∗TFPti, respectively, if the maximum node speed satisfies
Equation (2.3).

Proof. We need to show that [a] a pointer p′ for t has been written in ∗FPti
(∗TFPti) before the lookup request following FPti (TFPti) arrives, and that
[b] p′ cannot expire before the lookup request arrives, if p′ has been trans-
formed to a temporary forwarding pointer. Let us denote the found FPti
(TFPti) by p, the Li that contains p by A, and the Li where p points by B.
Throughout the proof, we refer to the lines of the publish algorithm presented
in Chapter 2.7.1.

The found pointer p was created by one of the Lines 2, 7, 9, 11, 12, or 17.
If p = TFPti was created by Line 2, it points to the Lti where t was located
when t sent the message m to change the FPti to p. By the Lines 16-18, we
know that if B = ∗TFPti did not contain LPti, t sent a message m′ to create
a FPti in B. If p = FPti was created by Line 17, B = ∗FPti contains LPti by

8Note that we did not consider that the lookup request needs some time to visit
the levels 1...k + γ − 1, because there are situations where this time is negligible small.
Including this time would allow for a slightly better vnodemax , but unnecessarily complicate
the proofs.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 24

definition. If p was created by Line 7, 9, 11, or 12, t sent a message m′ to
create a LPti in B at the same time while sending a message m to create p.

Because t sends the message m′ to create the necessary pointer p′ in B no
later than m that creates p, the lookup request cannot arrive at the location
of p′ in B before m′. Otherwise, m′ would have been sent over a sub-optimal
route contradicting the triangle inequality. Therefore, condition [a] holds.

Consider the case where p is a TFPti and T0 is the time when t sent
message m to crate p. Then, B (where p points) is the Li where t was
located at T0, and B contains as p′ either a LPti or a FPti (Lines 14, 16-18).
Because t is located in B at T0, it needs to move at least α2i−1ρ away from
B until p′ is changed to a TFPti. Also, at T0, t is at most α2iρ away from
A (Line 1), and therefore m arrives no later than T1 ≤ T0 + η2iρ(

√
2 + α)

to create p = TFPti. At the limit, the lookup request reads p just before
it expires at time T2 = T1 + TTLi, and then moves to p′ in B. Because
the air-distance p− p′ is bounded by 2iρ

√
8, the lookup request might arrive

at p′ no later than T3 ≤ T2 + η2iρ
√

8 ≤ T0 + TTLi + η2iρ(3
√

2 + α). By
this time, p′ must not be expired, which requires that it was created after
T4 > T3 − TTLi. Before T4, t moved at most ∆d = (T4 − T0) · vnodemax . By
Equation (2.3), ∆d < ρ2i−1α, which shows that t has changed p′ to a TFPti
after T4 and that p′ cannot expire before the lookup request arrives.

For the second case where p is a FPti, we use the fact that p is changed
to a TFPti if t moves away from A by more than α · 2iρ (Lines 1,2), and
therefore an update message m′′ from t to p sent at T0 arrives at the latest
at T1 ≤ T0 + η2iρ(

√
2 +α). If t moves out of B and modifies p′ to a TFPti at

T0, it sends a message m′′ to p (Line 2 or 12). In the worst case, the lookup
request reads p just before m′′ arrives and visits p′. Because the air distance
p − p′ is bounded by 2iρ

√
8, the lookup request arrives at p′ no later than

T2 ≤ T1 + η2iρ
√

8 ≤ T0 + η2iρ(α + 3
√

2). From Equation (2.2), we know
that TTLi ≥ η2i+1ρ(1/

√
2 + 8

√
5). Because α < 1, p′ cannot expire before

the lookup request arrives.

We have shown that a lookup request can find a pointer to t and that
it can follow pointers to find new pointers. In the following, we give upper
bounds on the time needed to find a LPti after a lookup request has been
routed to an arbitrary FPti or TFPti. We tackle this problem by limiting
the maximum number of forwarding hops that the lookup request has to
follow until it reaches LPti. If the lookup request finds a FPti, we show that
it is routed to the corresponding LPti in at most β forwarding hops, if the
maximum node speed is bounded by

vnodemax ≤
α(β − 2)

2η(
√

2 + α+ β
√

8)
(2.4)

CHAPTER 2. ROUTING IN MOBILE NETWORKS 25

and β > 2. If the lookup request finds a TFPti, we show that it is routed to
the corresponding LPti in at most βT forwarding hops, if the maximum node
speed is bounded by

vnodemax ≤
α2i−1ρ(βT − 2)

η2iρ(
√

2 + α+ βT
√

8) + TTLi
(2.5)

and βT > 2. The values of β and βT become two additional tuning param-
eters of MLS which influence vnodemax and the time a lookup needs to find its
destination.

We will use the following helper lemma, which says that a node t needs
to move at least a certain distance between consecutive updates to its LPti.

Lemma 2.6. Between successive updates to LPti, node t moves at least
∆dupdate ≥ α2i−1ρ.

Proof. When a node t updates LPti, the new LPti points to Lti, the Li that
contains t. Due to the publish policy (Definition 2.2), t only needs to update
LPti after it has moved out of Lti by α2i−1ρ and thus t must move at least
∆dupdate before it needs to update LPti.

Lemma 2.7. Given a lookup request for a node t that has found a FPti, and
that vnodemax satisfies Equation (2.4), the lookup request can be routed to the
corresponding LPti in at most ∆t ≤ βη2iρ

√
8 for a given β > 2.

Proof. Node t maintains FPti as long as δti < α2iρ (Lines 1,2 of the publish
algorithm in Chapter 2.7.1) and t does not return to ∗LPti+1 (Line 9). When
t updates its LPti, it also sends an update to FPti, which takes at most
∆tupdate ≤ η2iρ(

√
2 + α) time to arrive. When δti = α2iρ, t updates LPti+1

and changes the FPti to a TFPti (Line 2). Thus, when the lookup request
reads FPti, it reads a direction that is at most ∆tupdate outdated.

Consider the case where a node t moved from level X to Y and sent an
update m to FPti, such that FPti points to Y instead of X. If a lookup request
reads FPti before m arrives, it first visits XY , where it finds a TFPti that
points to Y 9. By Lemma 2.5, this TFPti has not yet expired.

For each forwarding (FPti or TFPti), the lookup request has to move an
air distance bounded by 2iρ

√
8. Thus, the last lookup request relayed by X

arrives in Y at most ∆tupdate+2η2iρ
√

8 after m was sent off. But during this
time, t might have moved - and left behind yet other (possibly temporary)
forwarding pointers.

In order to limit the routing time to βη2iρ
√

8, the lookup request can
follow at most β forwarding pointers until it reaches LPti. Thus, the total
time between sending m and when the lookup request reaches LPti is ∆ttot ≤

9It is possible that ∗FPti does not contain a TFPti that points to Y . We discuss this
case later on.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 26

∆tupdate + βη2iρ
√

8 ≤ η2iρ(
√

2 + α + β
√

8). During this time, t moves at
most ∆d ≤ ∆ttot ·vnodemax . By Equation (2.4), ∆d ≤ ρ(β−2)α ·2i−1 and causes
at most ∆d/∆dupdate ≤ β − 2 additional forwarding pointers by Lemma 2.6.
Including the two forwarding hops to visit X and Y , the lookup request has
to follow maximally β pointers, which takes at most βη2iρ

√
8.

If ∗FPti does not contain a TFPti that points to Y , then t must have
returned to X and overwritten the TFPti with a LPti, a FPti or a more recent
TFPti. Following such a FPti or TFPti short-cuts the path to LPti, and the
lookup request finds LPti even faster.

Lemma 2.8. Given a lookup request for a node t that has found a TFPti,
and that vnodemax satisfies Equation (2.5), the lookup request can be routed to
the corresponding LPti in at most ∆t ≤ βT η2iρ

√
8 for a given βT > 2.

Proof. We distinguish if the found TFPti was created due to [a] Line 9 or 11
of the publish algorithm in Chapter 2.7.1 or [b] by Line 2. For both cases,
we consider the time T0 when t sends a message m to create TFPti. Also, if
the lookup request is forwarded along a FPti (TFPti), it finds the next pointer
to t at the latest after ∆tforward ≤ η2iρ

√
8, because a FPti (TFPti) points to

a neighboring Li. Therefore, it is sufficient to show that the lookup request
reaches LPti at the latest after βT forwarding hops.

For case [a], t changed its old LPti to a TFPti because it has moved away
from the Li that contains LPti by more than α2i−1ρ. Thus, message m
needs ∆tupdate ≤ η2iρ(α/2 +

√
2) until it reaches the old LPti. From Line 14

and Lemma 2.5, we know that the lookup request finds a pointer to t in
∗TFPti. Also, a lookup request that reads the TFPti just before it expires,
arrives in ∗TFPti at the latest at T1 = T0 + ∆tupdate + TTLi + ∆tforward,
where it might not find LPti (created due to Line 14), because t has already
moved away. The lookup request must catch up with t and find LPti at
the latest at T2 = T0 + ∆tupdate + TTLi + ∆t. By this time, t has moved
up to ∆d = (T2 − T0)vnodemax , which is bounded by ∆d ≤ (βT − 2)α2i−1ρ
using Equation (2.5). From Lemma 2.6, we deduce that t has caused at
most b ∆d

∆dupdate
c ≤ βT − 2 (possibly temporary) forwarding pointers due to

its motion, and the lookup request needs to follow at most a total of βT
pointers until it reaches LPti.

We follow a similar argumentation for the second case [b], where t
changed a FPti to the found TFPti. At T0, δti = α2iρ and thus the mes-
sage m needs ∆tupdate ≤ η2iρ(α +

√
2) until it reaches the outdated FPti.

Case [b] is also different in that ∗TFPti might never contain a LPti, but
only a FPti (Lines 16-18). Therefore, the lookup request might have to fol-
low 2 pointers until it reaches LPti, even if t does not move at all after T0.
Again, the lookup request must catch up with t and find LPti at the lat-
est at T2 = T0 + ∆tupdate + TTLi + ∆t. By this time, t has moved up to

CHAPTER 2. ROUTING IN MOBILE NETWORKS 27

∆d = (T2−T0)vnodemax , which is bounded by ∆d ≤ (βT −2)α2i−1ρ using Equa-
tion (2.5). From Lemma 2.6, we deduce that t has caused d ∆d

∆dupdate
e ≤ βT−2

(possibly temporary) forwarding pointers due to its motion. (Note that we
needed to round up the number of forwarding pointers because t did not
update LPti at T0.) Therefore, the lookup request needs to follow at most a
total of βT pointers until it reaches LPti.

We are now ready to assemble the first pieces of the puzzle and show that
a lookup request finds a first LPt in bounded time.

Lemma 2.9. Given that vnodemax satisfies the Equations (2.1), (2.3), (2.4) and
(2.5), and TTLi satisfies Equation (2.2) for fixed values of 0 < α ≤ 1, γ ≥ 1,
β > 2, and βT > 2, then, a lookup request for node t issued by node s finds
a level pointer LPt in O(d) time, where d is the distance |st| at the moment
when the request is issued.

Proof. By combination of the Lemmas 2.4, 2.7, and 2.8: A first pointer p to t
is found at the latest in one of the squares Lsu∪ (Lsu)8, where u = dlog2

d
ρ
e+γ

(Lemma 2.4). The necessary time the lookup request needs to visit all these
levels is bounded by T1 ≤ η2u+1ρ(

√
2 + 8

√
5) (Lemma 2.1). If p is a FPti, the

lookup request reaches the corresponding LPti in T2 ≤ βη2iρ
√

8 (Lemma 2.7),
and if p is a TFPti, the lookup request reaches the corresponding LPti in
T3 ≤ βT η2iρ

√
8 (Lemma 2.8). For T2 and T3, i ≤ u. The total time T to

find a first LPti is bounded by

T ≤ T1 + max(T2, T3)

≤ η2dlog2 (d/ρ)e+γ+1ρ(
√

2 + 8
√

5 + max(β, βT)
√

2)

≤ d · η2γ+2(
√

2 + 8
√

5 + max(β, βT)
√

2)| {z }
constant

∈ O(d)

Lookup – Phase 2
For the second phase of the lookup algorithm, we need to show that once

a lookup request has found a first LPti, it can follow the pointers and find the
destination node t. We start with another helper lemma stating that if LPti
points to Li−1 and t is at most α2i−1ρ away from Li−1, then Li−1 contains
a LPti−1 or a FPti−1.

Lemma 2.10. As long as δti < α2iρ, ∗LPti+1 contains a node that hosts
either a LPti or a FPti.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 28

Proof. By inspection of the publish algorithm presented in Chapter 2.7.1.
The only places where pointers are transformed to TFPti are on the Lines 2,
9 and 11. On Line 2, a FPti is removed, because LPti+1 will no longer point
to the level that contains the FPti. But this only happens when δti ≥ αρ2i

(Line 1).
Line 9 or 11 is executed when δti−1 ≥ αρ2i−1. However, if Line 9 or 11

executes, we know from Line 6 that the LPtj that is overwritten is not in
∗LPtj+1. We conclude that the pointer for t in ∗LPti+1 is transformed to a
TFPti iff δti ≥ αρ2i.

The following lemma states that a lookup request that has reached a LPti
can be routed along LPti and find LPti−1.

Lemma 2.11. Under the condition that i > 0, and all constraints on vnodemax

and TTLi are satisfied, a lookup request can follow LPti+1 and find LPti after
∆t ≤ η2iρ

√
8(1 + max(β, βT)).

Proof. First, we show that ∗LPti+1 contains a pointer p to t when the lookup
request arrives. Then, we apply Lemma 2.7 and Lemma 2.8 to bound the
time to find LPti.

While δti < αρ2i, ∗LPti+1 contains a LPti or a FPti (by Lemma 2.10). At
T0, when δti ≥ αρ2i, the FPti in ∗LPti+1 is changed to a TFPti (Line 2 of
the publish algorithm in Chapter 2.7.1) and a message m is sent to change
LPti+1, where it arrives at T1 ≤ T0 + η2iρ(α +

√
8). A lookup request that

follows the outdated LPti+1 before m arrives reaches the TFPti in ∗LPti+1 at
the latest at T2 = T1 + η2iρ

√
8 ≤ T0 + η2iρ(α + 4

√
2). By Equation (2.2),

TTLi > T2−T0, and thus the TFPti does not expire before the lookup request
arrives.

So far, we have shown that the lookup finds a pointer to t in ∗LPti+1.
Following LPti+1 to reach p takes at most η2iρ

√
8. If p is a FPti, the additional

time to route to LPti is bounded by βη·2iρ
√

8 (Lemma 2.7). If p is a TFPti, the
additional time to route to LPti is bounded by βT η2iρ

√
8 (Lemma 2.8). Thus,

the total time to LPti is upper-bounded by ∆t ≤ η2iρ
√

8(1+max(β, βT)).

Using the previous lemma, we can show that a lookup request can be
routed from a LPti to LPti−1 until it reaches LPt1, from where it is forwarded
to ∗LPt1. It remains to verify that the lookup request can be sent directly to
t from within ∗LPt1, which we show under the constraint that

vnodemax <

√
2− α

η(α+ 4
√

2)
(2.6)

Lemma 2.12. If vnodemax satisfies (2.6), a lookup request that has found LPt1
can be sent directly to t from within ∗LPt1.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 29

Proof. When t moves out of ∗LPt1 by more than αρ, it sends an update
message m to change LPt1 at time T0 (Definition 2.2). This message arrives
at T1 ≤ T0 + ηρ(α +

√
8). A lookup request that reads LPt1 just before m

arrives, is forwarded to ∗LPt1. Because ∗LPt1 does not contain a LPt0, the
lookup request is routed towards an arbitrary point on land in ∗LPt1, and
might end up on a node u that is up to λ away from ∗LPt1 (Lines 8-10 of
the lookup algorithm in Chapter 2.7.2). At the limit, this forwarding to u
requires to traverse Lt1, and the lookup request arrives at u at T2 ≤ T1+ηρ

√
8.

By this time, t has moved ∆d ≤ (T2 − T0)vnodemax < ρ(
√

2− α) and is at most
∆d+αρ ≤ λ away from ∗LPt1. Both, u and t are at most λ away from ∗LPt1,
and the diameter of ∗LPt1 is ρ

√
2 = λ. Thus, the total distance between

u and t is at most 3λ = rmin, which shows that u can forward the lookup
request directly to t.

Theorem 2.13. (Lookup) Given that vnodemax satisfies the Equations (2.1),
(2.3), (2.4), (2.5), and (2.6), and that TTLi satisfies the Equation (2.2) for
fixed values of 0 < α ≤ 1, γ ≥ 1, β > 2, and βT > 2, then, a lookup request
for a node t issued from a node s takes O(d) time to reach t, where d = |st|
is the distance between s and t when the request is issued.

Proof. By Lemma 2.9, we know that the time to find a first level pointer
is bounded by T1 ≤ d · η2γ+2(

√
2 + 8

√
5 + max(β, βT)

√
2) Also, we know

that this first level pointer is found at the latest on level dlog2
d
ρ
e+ γ. From

Lemma 2.11, we deduce that following the level pointers from level dlog2
d
ρ
e+

γ downto 1 takes

T2 ≤
dlog2 d/ρe+γX

j=1

η2jρ
√

8(1 + max(β, βT))

and the time to forward the lookup request from LPt1 to t can be bounded
using Lemma 2.12 to

T3 ≤ ηρ
√

8(1 + max(β, βT))

The total time until the lookup request reaches t is therefore bounded by

Tlookup ≤ T1 + T2 + T3

≤ T1 +

dlog2 d/ρe+γX
j=0

η2jρ
√

8(1 + max(β, βT))

< T1 + dη2γ+2
√

8(1 + max(β, βT))

≤ d · η2γ+2(3
√

2(1 + max(β, βT)) + 8
√

5)| {z }
constant

∈ O(d)

CHAPTER 2. ROUTING IN MOBILE NETWORKS 30

2.8.2 Maximum Node Speed

While proving the lemmas in the previous section, we formulated constraints
on the value of vnodemax and TTLi. In this section, we collect all of these
constraints and present the maximum node speed for which MLS is proven
to work. The value of TTLi only needs to satisfy Equation (2.2). Because
enlarging TTLi implies a reduction of vnodemax by Equation (2.5), we choose
TTLi as small as possible:

TTLi = η2i+1ρ(1/
√

2 + 8
√

5) (2.7)

To determine the maximum vnodemax , we need to fix the parameters 0 < α <
1, β > 2, γ ≥ 1 and βT > 1. The value of η is given indirectly by the topology
and the underlying routing algorithm. While maximizing vnodemax , we opt to
minimize Tlookup, the worst case time of a lookup request, which depends
on the same parameters. Thus, we need to determine α, β, γ and βT , such
as to maximize vnodemax and minimize Tlookup under the constraints that the
Equations (2.1), (2.3), (2.4), (2.5) and (2.6) are satisfied.

For γ → ∞; β → ∞, βT → ∞, we receive that vnodemax ≈ 0.0845
η

for
α ≈ 0.863. This is an unreachable upper bound, because the maximum cost
of a lookup request would grow to infinity. Clearly, there is a tradeoff be-
tween maximizing vnodemax and minimizing Tlookup. The higher we choose the
maximum node speed, the longer is the worst-case time of a lookup request.
But while Tlookup increases exponentially with γ, the value of γ barely in-
creases vnodemax . Similarly, β and βT have an impact on vnodemax while they are
below 20, higher values only increase Tlookup. Twiddling the parameters, we
found γ = 1, β = 5, and βT = 19 to optimize the tradeoff between vnodemax

and Tlookup. Using these values, vnodemax becomes maximal for α = 0.8. We
can now state our lower bound on the maximum node speed for which MLS is
proven to work.

Theorem 2.14. For α = 0.8, β = 5, βT = 19 and γ = 1, the nodes might
move at speed vnodemax ≤ 1

15·η without breaking MLS.

Proof. By plugging the parameters into the Equations (2.1), (2.3), (2.4),
(2.5) and (2.6).

In the absence of lakes, 1/η can be interpreted as the minimum speed at
which messages are routed by the underlying routing algorithm. Therefore,
the above result shows that nodes might move at a speed that is only 15
times smaller than the routing speed, which is remarkably fast. If we consider
real-world nodes such as the mica2 nodes from UC Berkeley, a data packet
experiences around 50 ms delay while being forwarded by a node. Thus, a
packet can be sent about 40 hops per second. If we assume that a message is
forwarded around 10 meters per hop, the message speed reaches around 400
meters per second. In this setup and in the absence of lakes, the maximum

CHAPTER 2. ROUTING IN MOBILE NETWORKS 31

node speed is bounded by 400/16 = 25 meters per second (90 km/h, about 56
mph), which exceeds by far the node speed in typical network applications.

2.8.3 Publish Analysis

Last but not least, we need to consider the cost of the publish algorithm.
While a node is moving, it continuously sends updates onto its different levels.
This produces messages that need to be routed by the nodes of the system.
Thus, bounding the message overhead of the publish algorithm is of critical
importance to ensure that the overall routing cost induced by the moving
nodes is reasonable. First, we derive the maximum cost of publishing to a
level. Then, we determine the amortized message cost for publishing while a
node is moving.

Until now, we made use of an underlying routing algorithm that can
deliver a message to its destination in η·d time, when the air distance between
the sender and destination is d. For the following, we assume that the number
of routing hops needed to send a message over a distance d is proportional to
the routing time and write η̃ ·d to denote the number of routing hops needed
to route a message to a target that is d away.

Lemma 2.15. The cost to publish on level-i is bounded by η̃2i+2ρ(
√

8 + α)
message-hops.

Proof. By inspection of the publish algorithm in Chapter 2.7.1. We deter-
mine the message cost c of each individual line to pick the execution with
maximum cost.

On Line 2, FPti is in the neighboring level-i, which t just left by more
than α · 2i, thus c2 ≤ η̃2iρ(α +

√
2). For the Lines 4, 7, 9, and 11, the

distance from t to LPti+1 is maximally 2i(α +
√

8) and the message cost is
c4,7,9,11 ≤ η̃2iρ(α +

√
8). FPti+1 on Line 12 is contained in (Lti+1)8, but

only as long as δti+1 < α2i+1. Thus, the cost to send a message to FPti+1 is
bounded by c12 ≤ η̃2iρ(2α +

√
8). For Line 14, LPti+1 is contained in Lti+1,

and therefore the cost is c14 ≤ η̃2iρ
√

8. Finally, for Line 17, t reaches FPti in
c17 ≤ η̃2iρ

√
2 hops, as FPti ∈ Lti. The execution with maximum cost visits

the Lines 2, 11, 12, 14 and 17. Summing up the corresponding costs results
in the indicated number of hops.

Using an amortized analysis, we can now show that the expected message
overhead induced by the publish method can be bounded.

Theorem 2.16. (Publish)
The amortized message cost of a node induced by the publish method is at

most O(d log d) message hops, where d denotes the distance the node moved.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 32

Proof. A node t updates its LPti when δti−1 ≥ αρ2i−1 (Definition 2.2). After
an update to LPti, t ∈ ∗LPti and thus t needs to move at least αρ2i−1 before
it needs to issue another update for LPti (Lemma 2.6). Therefore, t needs to
update LPti at most d/(αρ2i−1) times while moving a distance d. The cost to
publish on Li is maximally η̃2i+2ρ(

√
8 +α) (Lemma 2.15), and the total cost

for updating Li while moving the distance d is bounded by dη̃8ρ(
√

8 +α)/α.
The total publish cost is given by the sum of the cost of each level to which
t has to publish. Because ∀j : δtj = 0 after the initialization phase of the
publish method, t only needs to publish on Li if d ≥ αρ2i−1, and the total
publish cost is bounded by d log2(2d/α)η̃8ρ(

√
8 + α)/α ∈ O(d log d). Note

that the total number of levels is M (Chapter 2.2) and the publish cost is
further bounded by dMη̃8ρ(

√
8 + α)/α.

2.9 Simulation

We support our theoretical results with a series of simulations, through which
we show that the average lookup time and publish cost are well below the
worst case costs. Our simulation framework implements mobile nodes that
select their route using the random waypoint model and maintain their hi-
erarchical lookup data according to Chapter 2.7.1. However, being mainly
a proof of concept, the simulation abstracts from the underlying routing10,
where we delay messages according to the route length, but do not simulate
the node-to-node routing. Also, we simulate only a (random) sub-set of the
nodes as to improve the run-time. As a consequence, the storage of pointers
is performed by the framework and relieves us from ensuring the minimum
node density.

The techniques of Le Boudec et al. [61] to obtain a stationary regime
cannot be applied, because the nodes are not memoryless with respect to
their lookup hierarchy. Therefore, we obtain a close to stationary regime
through a long first phase, during which each node moves at least to its
first waypoint before any lookup request is issued. Afterwards, the nodes
issue lookup requests to randomly chosen nodes, where each node only sends
another lookup request when the previous request arrived.

We ran the simulation with 5000 nodes issuing a total of 100000 lookup
requests and repeated it for different node speeds and two different world
maps. Map1 corresponds to the world shown in Figure 2.1. The maximal
routing stretch due to lakes is 10, the side-length is 5300 units and ρ was
chosen to be 1 unit. Map2 is of the same size, but contains no lakes at
all. The average lookup stretch is shown in the left plot of Figure 2.5. For
increased node speed (1 corresponds to vnodemax), nodes produce more TFP,
which helps lookup requests to find a first pointer to their destination, which

10Remember that the underlying routing can route a message to a given position. This
is orthogonal to our main goal, where the location of the destination node is unknown.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 33

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

Fractional node speed

Lo
ok

up
 s

tre
tc

h

0 0.2 0.4 0.6 0.8 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fractional node speed

Fr
ac

tio
n

of
 lo

ok
up

 fo
r F

P
 o

r T
FP

Figure 2.5: The left plot shows the lookup stretch depending on the node
speed, where 1 is the maximum speed. The right plot shows the fraction of
the time a lookup spends following FP and TFP. The solid lines indicate
runs with Map1 (a world as shown in Figure 2.1), the dotted lines show runs
with Map2 (no lakes). The results for the adapted fast-lookup are drawn
with circles, the results for the sequential lookup with squares.

in turn decreases the lookup stretch. This fact is supported by the right plot
of Figure 2.5, which shows that lookup requests spend more time following
FP and TFP for increased node speed.

In order to obtain the average lookup stretch of approximately 6, we
slightly modified the lookup algorithm: Instead of using the slow sequential
search for a pointer in the 9 Li of each level, the sender node s sends the
lookup request to all 9 Li in parallel. If a lookup request finds a pointer
to the destination node t, it is immediately forwarded towards t and sends
back a FOUND message to s. Lookup requests that do not find a pointer to t
send back a NOT FOUND message and die. s collects all the responses and only
sends the lookup request to the next higher levels Li+1 if all responses are
negative.

This fast-lookup approach reduces the lookup time by a factor 2 at the
cost of increased message overhead. However, more than one copy of the
lookup request might be routed towards t if no coordination between the 9
parallel lookup requests takes place. Consequently, each node needs some
means to detect messages that were received several times.

For the publish requests, we measured the total message cost dependent
on the distance a node moved (Figure 2.6). Using a least-square approach,
we determined the average publish overhead to be 4.3 · d log d, where d is
the moved distance. This overhead is reasonably small and ensures that the
network is not saturated with messages due to moving nodes.

CHAPTER 2. ROUTING IN MOBILE NETWORKS 34

Figure 2.6: We captured over 600000 node motions during our simulation.
This figure shows the publish overhead caused by a moving node plotted
against the distance the node moved. The (least-square) average is indicated
with the dashed line.

3
Routing in 3D Networks

We have seen that the geographic routing approach is very scalable as it is
based solely on local information. In the preceding chapter, we have described
a lookup system through which messages can even be delivered to nodes that
are constantly moving. But all results we have seen so far are valid only
for 2-dimensional networks. In this chapter, we examine how the geographic
routing technique needs to be adapted to reliably deliver messages in 3-
dimensional networks. In contrast to the previous chapter, however, we only
consider the simpler case of static networks.

Clearly, messages can still be greedily forwarded towards their destina-
tion, which is likely to work fine in dense networks. But the recovery from
local minima becomes more challenging, as the faces surrounding the network
hole now expand in two dimensions and are much harder to capture. We show
in Chapter 3.6.1 that it is indeed possible to describe the surface of network
holes using only local information. Our approach is quite different from 2D
as there is no equivalent to the planarization of a graph in 3D. Furthermore,
we used the right/left hand rule in 2D to route along the 1-dimensional face,
but there is no simple analogon in 3D to visit all nodes delimiting the surface
of a hole. In fact, Durocher et al. have proved that there is no determinis-
tic local routing algorithm for 3D networks that guarantees the delivery of
messages if the nodes are not allowed to store any message state [30]. As
an immediate consequence, there is neither a local memoryless algorithm to
traverse all nodes on a given surface in a deterministic manner.

The proof in [30] has two parts: First, the authors show that the existence
of a k-local1 geographic routing algorithm for UBG implies the existence
of a 1-local geographic routing algorithm for any connected graph. In the
second part, they show that any deterministic 1-local routing algorithm can

1A k-local routing algorithm can base its routing decision on a k-neighborhood of the
current node.

CHAPTER 3. ROUTING IN 3D NETWORKS 36

be defeated, disproving the existence of a k-local routing algorithm. In fact,
even very simple graph structures do not allow for deterministic routing
algorithms.

In the sequel, we present memoryless and local geographic routing pro-
tocols for 3-dimensional networks and compare them to other routing tech-
niques. Unlike the deterministic greedy-face-greedy solutions in 2D, our ap-
proach applies a randomized recovery to lead messages out of local minima.

3.1 Random Walks

The non-existence of local, memoryless routing algorithms that deliver
messages deterministically [30] has many direct and indirect consequences.
Whereas it is possible to deterministically traverse a planar subdivision and
report all nodes and faces [12], there is no corresponding algorithm in 3D.
However, it has been shown in [27] that for any undirected graph, it is pos-
sible to assign each node a local ordering of its edges such that a routing
algorithm can visit all nodes in O(n) time (deterministically!) by leaving a
node through the edge succeeding the edge through which it entered. Unfor-
tunately, the construction of the local edge-orderings requires a global view
of the graph and has construction time cubic in the number of nodes. The
greedy geographic routing we would like to apply to our 3D graphs is actually
close to optimal - as long as the messages do not get stuck at local minima.
But as there is also no deterministic recovery algorithm that could lead the
messages out of local minima, we need to fall back to randomized recovery
techniques which we describe breifly in this section.

A message moving around randomly in a network may seem very ineffi-
cient and too simplistic, but there is quite some work in this area indicating
that random walks need not be as bad as it looks at a first glance. The two
prominent models to capture a random walk on a graph G = (V,E) are (1)
the Markov chain, and (2) the flow in an electrical network obtained from G
by replacing every edge by a resistance of 1Ω. See [68] for a survey of the
topic. In the following, we use n := |V | and m := |E|.

For our purpose, the hitting time Huv, and the cover time CG turn out
to be most interesting. Huv is the expected time until the random walk first
visits vertex v when starting its walk at u, and CG is the expected time
needed to visit all nodes of G at least once. For arbitrary graphs, we have
CG = O(n ·m) = O

`
n3
´

[9], which poses also an upper bound on Huv. The
complete graph has optimal cover time Θ(n logn), and the worst cover time
of Θ

`
n3
´

is obtained from the lollipop graph [38]. The 2D mesh has a non-
optimal cover-time O

`
n log2 n

´
, whereas the 3D mesh has optimal cover-time

O(n logn) [20]. Using the electrical resistance approach, the cover time of
an arbitrary graph can be bounded to CG ≤ 2mRspan [20], where Rspan is
the minimum resistance of a spanning tree in G. Since Rspan ≤ n − 1 for

CHAPTER 3. ROUTING IN 3D NETWORKS 37

any graph, we obtain that CG ≤ 2m(n− 1). The hitting time Huv seems to
be intrinsically difficult to capture, but the somewhat related commute time
κuv, the expected time to travel from u to v and back again, can be expressed
by Huv < κuv = 2mRuv, where Ruv is the effective resistance between u and
v [20].

A random geometric graph is obtained by placing n nodes uniformly at
random in the unit square and connect two points if their distance is at most
r. The minimal value of r such as to obtain a connected graph is subject of

the percolation theory. It has been shown that if r ≥ rcon = Θ
“p

logn/n
”

,

the graph is connected w.h.p. [78]. Random geometric graphs with r ≥√
8rcon have optimal cover time of O(n logn) [5]. Whereas this model seems

appealing for wireless networks at the first moment, we need to keep in
mind that the analysis only holds for n → ∞. Furthermore, a connected
random geometric graph requires so many network nodes that the graph
tends to have no routing voids at all, causing no local minima to the greedy
routing algorithm. In addition, wireless networks are obviously not random
geometric graphs: There tend to be many holes in the network, where no
nodes are deployed, which is ignored completely in this model.

3.2 Notation and Model

We now summarize the notation used to describe our 3D routing protocols
before we show a lower bound on the routing stretch of any local routing
algorithm in 3D. Whereas this lower bound applies for arbitrary graphs, we
restrict our attention to unit ball graphs in Chapter 3.5. Unit ball graphs
(short UBG) are the 3D equivalent to the unit disk graphs in 2D, and con-
stitute a basic model for wireless networks where we assume that any two
network nodes are connected iff their distance is below a certain thresh-
old rmax, the maximal transmission radius2. W.l.o.g. we will assume that
rmax = 1 unit. As usual, we describe the network as a graph G = (V,E),
where V is the set of network nodes, and E the set of connections between
nodes. The number of nodes is denoted by n := |V |, and the number of edges
by m := |E|. Furthermore, we use the notation Sr(v) to denote the sphere
of radius r around a given node v, and the set of neighbors of a node v is
abbreviated by N (v).

3.3 Lower Bound

We start by deriving a lower bound for the performance of geographic routing
algorithms in 3 dimensions. The following theorem states that any random-

2We are aware that a UBG is a very simplistic model for wireless networks, where the
transmission range is far from circular. Our main routing techniques presented in this
work, however, are valid for real wireless networks.

CHAPTER 3. ROUTING IN 3D NETWORKS 38

ized geographic routing algorithm has at least a cubic stretch. (This lower
bound would also hold for deterministic algorithms, which we know to not
exist at all.)

Theorem 3.1. Let d be the length of the optimal path between a given source
and destination in a 3-dimensional network. There are networks for which
the route found by any randomized geographic routing algorithm has expected
length Ω

`
d3
´
.

Proof. The proof idea is similar to the lower bound for 2-dimensions pre-
sented in [60]. We consider the following family of networks: For a positive
integer r, construct a 3-dimensional graph as shown in Figure 3.1: First
place nodes on the surface of a sphere with radius r such that the mutual
distance between any two nodes is at least 2. Obtain a first set of surface-
nodes from S1 := {(r · sin(2i · arcsin(1/r)), 0, r · cos(2i · arcsin(1/r))) | i ∈
[0, b0.5π/ arcsin(1/r)c]}. In Figure 3.1, these nodes are drawn as solid squares
on the left boundary of the sphere. The remaining surface points, also drawn
as solid squares, are obtained from this initial set: For each (x, y, z) ∈ S1, add
{(x · sin(2i · arcsin(1/x)), x · cos(2i · arcsin(1/x)), z) | i ∈ [1, bπ/ arcsin(1/x)c]}
to an initially empty set S2. As a second step, add intermediate nodes on the
surface (drawn as small diamonds) that connect nearby surface nodes. (The
math is nearly the same as for the surface nodes and is omitted.) Further-
more, append to each surface-node a line of b(r− 1)/2c nodes. The distance
between nodes on the line is 1, and the line is directed towards the center of
the sphere. These line-nodes are represented with round (red colored) dots
in Figure 3.1. Finally, select an arbitrary surface node w, and append to its
line further nodes until the center of the sphere, node t, is reached.

Note that there is no edge between nodes on different lines, as the lines
are mounted on surface-points at least 2 units apart, and the length of the
lines is less than r/2. Furthermore, the number of points per line is Θ(r). To
determine the number of surface nodes, we use (a) α/2 < arcsin(α) < 2α,
and (b) sin(α) > α/2 for α ∈ [0, 1]. For a surface-node in S1 with a given x-
coordinate, the number of surface-nodes added to S2 is bπ/ arcsin(1/x)c > x
for x ≥ 1.4, using (a). Thus, we can bound |S2| by summing up the values
of the x-coordinates of the nodes in S1 using (a) and (b):

|S2| ≥ 2 ·

1
2

j
π

2 arcsin(1/r)

kX
i=1

r · sin(2i · arcsin
1

r
) ≥

r/2X
i=1

i ∈ Θ
`
r2´ .

The total number of nodes in the graph is (|S1|+ |S2|) ·Θ(r) = Θ
`
r3
´
.

We now route from an arbitrary node s on the surface to node t in the
center of the sphere. An optimal routing algorithm routes along the surface
until it hits w and then follows the line until it reaches t. The path on the
surface consists of at most 2.5 surroundings of the sphere, requiring O(r)

CHAPTER 3. ROUTING IN 3D NETWORKS 39

w

t

Figure 3.1: Lower bound graph for geographic routing algorithms. Nodes
represented by solid squares lie on the surface of a sphere with mutual dis-
tance at least 2. Nodes printed as diamonds lie also on the surface and
connect these points. The round (red colored) nodes lie on lines leading from
the surface-nodes towards the center. A single dedicated surface-node w has
an extended line leading to node t in the center of the sphere. This image
was created with sinalgo, our simulator for network algorithms described in
Chapter 7.

hops. The line contains at most r nodes to traverse, which results in a total
cost of O(r) hops for the optimal algorithm.

A geographic routing algorithm, on the other hand, needs to find the
surface-node w on whose line-end the destination node t is located. Since only
local routing information is available, this can only be achieved by exploring
the lines by descending from the surface-nodes until t is found. For any
randomized routing algorithms, the adversary can attach the line leading to
t to a random surface-node, requiring the algorithm to explore Ω

`
r2
´

lines
until it finds t, which requires Ω

`
r3
´

hops, which shows that the expected
routing stretch is at least cubic.

CHAPTER 3. ROUTING IN 3D NETWORKS 40

3.4 Towards 3D Routing Algorithms

For our geographic routing algorithm, we use a greedy-random-greedy ap-
proach, short GRG, where the message is forwarded greedily until a local
minimum is encountered. To resolve local minima, a randomized recovery
algorithm kicks in. Unlike the deterministic face-routing in 2D, there is no
deterministic recovery algorithm for 3D networks [30]. Therefore, our recov-
ery technique is bound to be randomized.

Of course, the recovery part also needs to be memoryless and local, which
immediately rules out flooding techniques3 which could quickly find a node
closer to the destination than the local minimum. We propose to use random
walks (short RW), which constitute a very simple, yet surprisingly efficient
recovery technique. We apply the following four techniques to ensure the
performance of random walks:
(1) Region Limited Random Walks: When applying a RW to escape a local
minimum at node u, the message is likely to explore large parts of the entire
network until hitting a node v which is closer to the target than u, requiring
O(n ·m) hops. In most cases, however, such an extensive exploration is not
needed: Let v be the node closet to u such that v is closer to the target than
u, and let k be the length of the shortest path connecting u and v. Then,
exploring Sk(u) with a RW would have been sufficient in order to find v. As
the value of k is not known, the recovery algorithm performs an exponential
search by limiting the RW in sequence to S2i(u) with i ∈ {2, 3, . . . } until a
node closer to the target is found. For each sphere of radius r, the recovery
algorithm performs O

`
r6
´

RW hops, which corresponds to the cover time for
the sparse subgraph contained in the sphere, bounding the recovery cost to
O
`
k6
´

hops (see Theorem 3.5).
(2) RW on the surface: Similar to the face routing in 2D graphs, we can
further restrict the RW to nodes delimiting the hole which causes the local
minimum and which needs to be surrounded. Chapter 3.6.1 describes how
the nodes can locally determine the surface in a UBG, using the dual graph
of Chapter 3.5.
(3) Sparse Subgraph: We have seen that for arbitrary graphs, Huv =
2mRuv < 2mn, and CG ≤ 2mRspan < 2mn. Both Huv and CG grow linearly
in m and n, and we can improve Huv and CG by removing nodes in dense
regions, and any edge that is not critical for the connectivity of the graph.
We can achieve both points relatively easy by performing the RW on a con-
nected dominating set, e.g. see [94], which implicitly also reduces the number
of edges. Similarly, topology control algorithms build sparse subgraphs con-
sidering the network characteristics, and tend to be more stable [83, 97]. A

3Needless to say that we could implement a memoryless flooding algorithm where
each node rebroadcasts a message whenever its TTL permits to do so, allowing multiple
transmissions from the same node. However, such a scheme comes with an impractical
overhead growing exponentially with the TTL.

CHAPTER 3. ROUTING IN 3D NETWORKS 41

truly sparse subgraph could be obtained by limiting the RW to an arbitrary
spanning tree, reducing CG and Huv to 2n2. But as a spanning tree cannot
be constructed locally, this approach is rather impractical for unstable net-
works. The dual graph presented in 3.5 is not only sparse, but also also fulfills
the property that any Sr(u) contains at most O

`
r3
´

dual nodes, limiting the
cover time of a RW restricted to Sr(u) to O

`
r6
´
.

(4) Power of choice for RW: The cover time of a RW can be improved by
not returning to the previous node, if applicable. I.e. when the message is
sent from n to m, and if n is not the only neighbor of m, then m forwards the
message to a random neighbor, but not n. This improvement derives from
the power of choice for RW [6].

3.5 Dual Graph

We now describe the construction of a dual graph eG = (eV , eE) of G = (V,E),
on which our routing schemes are based. The position of the dual vertices
(short DV) is bound to the intersection points of a regular cubic (imaginary)
grid, covering the entire space. The DV are only placed nearby network
nodes in order to populate the grid in regions where G is present. Each
DV is owned by exactly one nearby network node, relating eG to G. The
relation from G to eG is a bit more involved, as the relation is not bijective.
In order to switch from a node v ∈ V to eG, v chooses the DV d closest to v.
We will see that d is owned by either v or a neighbor of v.

Edges in eG are only present between direct neighbors in the underlying
grid. The dual graph is defined such that the connectivity of G is preserved
in eG. I.e. a path between eu, ev ∈ eV in eG implies a path in the original graph
between own(eu) and own(ev), where own(x) denotes the owner of x. Similarly,
a path between u, v ∈ V in G implies a path between the corresponding
DV in eG. As a result, we can perform a virtual routing on eG, and execute
the corresponding routing steps on G. Finally, eG is sparse in the sense that
each d ∈ eV has constant out-degree, and ‖eV ‖ is linear in the volume ofS
v∈V S1(v), the volume G occupies. In the remainder of this section, we

show the following theorem:

Theorem 3.2. eG is a sparse, connectivity preserving virtual graph of G,
which can be constructed locally.

The construction of eG consists of the following two steps. First, each
node determines the set of DV it owns. Then, the edges eE are added to eG
such that two DV are connected iff they are direct neighbors in the virtual
grid: (x1, x2) ∈ eE ⇔ ‖x1x2‖ = η, where η denotes the cell-side-length of
the grid, whose value we determine in Chapter 3.5.2. This step basically
requires each node to determine all neighboring DV owned by other nodes.

CHAPTER 3. ROUTING IN 3D NETWORKS 42

Algorithm 3.1: Construction of G̃ (Code for node v)

Ownership Selection1

foreach(DV d ∈ Sρ(v))2

if(@u ∈ N (v) s.t. u.ID < v.ID∧‖ud‖ ≤ ρ)3

v selects d as RDV4

foreach(u ∈ N (v))5

S := {DV d | dist(d, vu) ≤ h ∧ ‖vd‖ < ‖ud‖}6

remove from S all DV already known to be RDV7

TDV= TDV ∪ S8

send TDV to N (v)9

drop multi-owned DV if v.ID > ID of other owner10

Connect11

send(RDV ∪ TDV) to 3-hop neighborhood of v12

Determine the edges adjacent to any owned DV13

The construction of eG is completely local, and each of the network nodes
only knows a very limited local view of eG at any time.

3.5.1 Ownership Selection

The DV are positioned only on specific positions in space, defined by the
intersection points of a regular cubic grid. The set of possible positions for a
DV is given by (iη, jη, kη) | i, j, k ∈ N. Our algorithm will ensure (locally!)

that at most one DV is added to eV for any of these positions.
The ownership selection algorithm executed by each node v ∈ V deter-

mines for each node the set of DV v owns, see Algorithm 3.1. It consists of
two substeps. First, v determines its regular dual vertices (short RDV), for
which v can determine statically whether it owns them (Lines 2–4). Node
v chooses as RDV all DV which are most ρ away from v. In addition, for
every selected RDV d, v may not have a neighbor u with a lower ID, whose
distance to d is bounded by ρ. Formally, the set of RDV of node v is {d | d
is a DV ∈ Sρ(v) ∧ @u ∈ N (v)(u.ID < v.ID ∧d ∈ Sρ(u))}. The exclusion of
some nodes based on their ID is to ensure that each DV is owned by exactly
one network node. In Figure 3.2, the sphere with radius ρ around v denotes
the region where v selects its RDV. The value of ρ at least as large as to
ensure that Sρ(v) contains at least one DV, further information about ρ is
given in Chapter 3.5.2. Please note that if a node v ∈ V does not own any
RDV, then the DV ∈ Sρ(v) are owned by (direct) neighbors of v.

The second substep of the ownership selection ensures connectivity in the
dual graph by adding additional DV to eG. In contrast to the first substep,
there may be several nodes v ∈ V that decide to own the same DV. The reso-
lution of these conflicts is straight forward, but requires communication with
the 1-hop neighborhood in G. Therefore, each node calls the DV selected

CHAPTER 3. ROUTING IN 3D NETWORKS 43

in this substep tentative dual vertices (short TDV). To ensure connectivity,
the TDV depend on the neighborhood N (v) of node v. For each neighbor
u, node v determines all DV at most h =

√
3η/2 away from the line vu and

closer to v than to u4. Then, v selects as TDV only the DV which it does
not already own (as RDV or TDV), and are not already known to be regu-
larly owned by a direct neighbor (Lines 5–8). Figure 3.2 depicts the region
where node v chooses its TDV with a cylinder enclosing the line vu. For
each RDV node v keeps, it also remembers the reason, i.e. the node u due
to which the RDV was considered in the first place.

For the removal of multiple owners for the same TDV introduced in
this second step, each node v sends its TDV list to its neighbors (Line 9).
Assume v selects TDV d due to its neighbor u, and also another node n
choose d. Again, we resolve the conflict using the IDs, and let the lower
ID win. Assume w.l.o.g. that n.ID < v.ID. Then, v needs to learn that it
should drop its ownership of d. The value of η, and therefore the value of h,
is chosen such that in such a situation, either (a) n ∈ N (v) or (b) n ∈ N (u),
see Chapter 3.5.2 for more details. In case (a), v receives the TDV list from n
directly and therefore learns about n’s ownership of d. In the second case (b),
u receives the TDV lists from both, v and n, and u can detect the conflict.
u then determines whether u was v’s reason for the conflicting TDV d, and
if n /∈ N (v). If (and only if) both conditions hold, u sends a withdraw(d)
message to v, indicating that v should not own d.

After this second substep is completed, each DV (RDV and TDV) is sure
to have exactly one owner v ∈ V . When the DV are connected as described
in the introduction of this section, we are ready to state a first connectivity
property of eG: If there is a path between two nodes v1, v2 ∈ V , there also
exists a path between d1, d2 ∈ eV , where di is the closest DV to vi. This
property follows directly from Lemma 3.3, which is formulated for a single
hop in G.

Lemma 3.3. Given two neighboring nodes (v1, v2) ∈ E and two dual vertices

d1, d2 ∈ eV s.t. di is the closest DV to vi, we can ensure that d1 and d2 are
connected in eG by adding to eV all DV at most h =

√
3η/2 away from the

line ` = v1v2.

Proof. Because the side length of the grid is η, we know that the di themselves
are at most h away from vi. This forms the base-case of our inductive proof.
As for the induction step, we consider a point P that moves along ` from v1

to v2, and a DV x which is at most h away from `. Let Q be the position
of P when P leaves Sh(x). We show that when P moves out of Sh(x), there
is a DV x′ whose distance to Q is strictly smaller than h, and that x′ is
connected to x in eG.

4In case of equal distance, the node with smaller ID may own the DV.

CHAPTER 3. ROUTING IN 3D NETWORKS 44

v

u

h

ρ

Figure 3.2: Dual vertices that are at most ρ away from a network node v ∈ V
are added to the dual graph G̃. The location of these DV is depicted by the
spheres of radius ρ around u and v. To ensure connectivity, the dual graph
also contains all DV whose distance from any edge (u, v) ∈ E is bounded by
h =
√

3η/2, illustrated with the cylinder of radius h around the edge (u, v).

Let C be the cube of the virtual grid (which has side length η and x as
one of its corners) that surrounds Q. If Q is exactly the center of C, all 8
corners of C have distance at most h from `. Therefore, all of them are added
to eG, and there is a path to each of them starting from x. Thus, when P
moves from Q to Q′, ε closer to v2, at least one of the 7 remaining corners
is in Sh(Q′), which we pick as x′. If Q is not the center of C, there is a
corner a of C neighboring x, whose distance to Q is strictly smaller than h.
Therefore, a is added to eG and is suitable as x′.

3.5.2 Tuning the Dual Graph

Before we describe the construction of the edge set eE, which connects any
two DV that are direct grid neighbors, we make a short detour and give
some insight in how to determine the values of η and ρ. Remember that
η is the side length of the virtual grid and therefore the minimal distance
between any two DV, and ρ is the radius of the sphere Sρ(v) in which a
node v ∈ V searches for RDV. We select these two parameters such that for
any edge (d1, d2) ∈ eE, there is a short path of at most 3 hops in G between
v1 = own(d1) and v2 = own(d2), the corresponding owners. This will be

a crucial property for routing algorithms simulated on eG, as they need to
perform the actual routing hops on G.

We need to distinguish the following three cases: (i) d1 and d2 are both
RDV, (ii) d1 xor d2 is RDV, and the other is TDV, and (iii) d1 and d2

CHAPTER 3. ROUTING IN 3D NETWORKS 45

are both TDV. From the ownership selection algorithm, we deduce that the
maximal distance of a RDV from its owner is ρ.

In the first case (i), there should be an edge (d1, d2) ∈ eE only if (v1, v2) ∈
E, requiring (a) 2ρ + η < 1. Otherwise, it could happen that the path
between v1 and v2 is of length O(|V |), which we wanted to avoid. For (ii),
assume w.l.o.g. that d1 is a TDV selected by v1 due to its connection with
r1 (the reason for d1), and that d2 is a RDV. Then, the distance from v2 to
d1 is at most ρ+η, and the distance from v2 to v1r1 is bounded by ρ+η+h.
By requiring (b) ρ+ η+ h ≤

√
3/2, we ensure that v2 ∈ S1(v1)∪S1(r1), and

that v2 is a neighbor of either v1 or r1. As a result, we can route from v1

to v2 either directly, or via r1. For (iii), where vi choose di as TDV due to

a node ri, there should be an edge (d1, d2) ∈ eE only if v1 or r1 is neighbor
of at least one of v2 or r2: (N (v1) ∪ N (r1)) ∩ (v2 ∪ r2) 6= ∅. Otherwise, it
could again happen that the path between v1 and v2 requires O(|V |) hops.
Assume the situation where (N (v1) ∪ N (r1)) ∩ (v2 ∪ r2) = ∅. Then, d2 can
be placed closest to v1r1 if ‖v1r1‖ = ‖v2r2‖ = 1 and if v2 and r2 are placed
on S1(v1) ∩ S1(r1). Then, the minimal distance between the two lines v1r1

and v2r2 is 1/
√

2. As the di may be placed h away from their corresponding

line, we need that (c) 1/
√

2− 2h > η s.t. (d1, d2) /∈ eE. Thus, if (d1, d2) ∈ eE,
this constraint ensures that there is a route from v1 to v2, either directly or
via r1 and r2, requiring at most 3 hops.

Our goal is to maximize η such that ‖ eE‖ is as small as possible. Consider-
ing condition (c), we need to choose h as small as possible. In Chapter 3.5.1,
we have seen that h =

√
3η/2 satisfied our requirements. In fact, choosing

h any smaller could break the connectivity of eG. Using (c), we deduce that
η < 1/(

√
2+
√

6). As for ρ, we would like to choose its value as large as possi-
ble to maximize the number of statically determinable RDV. Constraint (a)
yields ρ=0.37 for η=0.258, which also satisfies condition (b). We have just
shown the following lemma:

Lemma 3.4. Given two DV d1, d2 from the dual graph, and vi = own(di),

the corresponding owners of the di. Then, if (d1, d2) ∈ eE, i.e. the distance
between d1 and d2 is η, there is a path from v1 to v2 in G of at most 3 hops.

Proof. The lemma is satisfied by setting the values of η, ρ and h as described
above.

3.5.3 Connecting the Dual Graph

In the remainder of this section, we describe the construction of the edge
set eE. The dual edges connect any two DV which are direct grid neighbors,
which limits the outdegree of any DV to 6. For our local construction, this
means that the owner own(d) = v of a DV d needs to determine which of the

CHAPTER 3. ROUTING IN 3D NETWORKS 46

Algorithm 3.2: RW step (On node v, previous node p, Sr(s))

if(target ∈ (v ∪N (v))) v or one of its neighbors is the target1

deliver the message and return2

if(number of hops for this sphere-size has been performed)3

r = 2r Increase the sphere delimiting the region of the RW4

N := set of owners of Ñ (v) s.t. ∀n ∈ N : ‖ns‖ ≤ r5

Only select the owners which are in Sr(s)

if(N = {p}) RW can only return to p, no choice6

send message to p7

else Apply “power of choice”8

send message to random node in (N \ p)9

6 potential neighbors of d exist. For each existing neighbor n, v determines
the owner own(n), and the path over which own(n) can be reached in G.

We know from Lemma 3.4 that the owner own(n) is at most 3 hops
away from v. Therefore, it is sufficient if each node broadcasts5 the set of
DV it owns to its 3-hop neighborhood (Line 11 of Algorithm 3.1). Along
the broadcasting path, every node that forwards the message can add its
own ID, such that the receiver can easily determine the path (in G) to reach
the sender. Please note that any node owns only O(1) DV, and therefore
the storage overhead to remember the local view of the dual graph does not
exceed the desired size.

Finally, we have seen all the pieces to state the proof of Theorem 3.2:

Proof of Theorem 3.2. From the ownership selection algorithm we deduce
that the maximal distance between any DV and its owner is below 1. With
other words, a network node v ∈ V only owns DV that lie in S1(v). Thus,

any u ∈ eV lies in Q =
S
v∈V S1(v). As the volume Q is composed of spheres

of radius 1, there are no arbitrarily thin areas in Q, and we can conclude
that Q contains O(Q) DV. In combination with the fact that the outdegree

of any DV is at most 6, this shows that eG is sparse.
The connectivity of the dual graph eG is an immediate consequence of

Lemma 3.4 and Lemma 3.3, and an algorithm to construct eG locally has
been presented in this section.

5Broadcasting from a node v to its 3-hop neighborhood can be implemented quite
efficiently without retransmissions in the following way: The message contains a TTL
counter initially set to 3 and a variable s storing the sender v. Upon reception of a
message m at node u, u first decrements the TTL. Then, u rebroadcasts the message
only if the following three conditions hold. TTL > 0, m.s 6= u, and m.s /∈ N (u) if
TTL = 1.

CHAPTER 3. ROUTING IN 3D NETWORKS 47

3.6 Routing on the Dual Graph

Our simplest routing scheme, called pureRW, performs region limited random
walks (see Chapter 3.4) until it finds the target. The spheres delimiting the
regions to explore are centered at the sender node, and the random walk
applies the “power of choice” technique. Note that pureRW does not perform
any greedy routing steps at all.

The RW selects its next hop based on the sparse dual graph eG, the se-
lection algorithm is described in Algorithm 3.2. If the sender node s does
not own any DV itself, it first sends the message to its neighbor which owns
the DV closest to s. (The existence of such a neighbor is given, see Chap-
ter 3.5.1.) We use the following additional notation: For a node v, let v.DV

denote the set of DV owned by v, and eN (v) the set of DV which are neigh-
boring a DV in v.DV, excluding the ones owned by v itself.

The number of random hops for a sphere of radius r is O
`
r6
´
, the cover

time of the nodes contained in the sphere. The routing stretch of pureRW can
be bounded as following:

Theorem 3.5. Let Sopt be the stretch of the optimal geographic routing al-
gorithm for 3D graphs. The expected stretch of pureRW is O

`
Sopt

2
´
.

Proof. For any source-target pair (s, t), let k be the length of the optimal
route between s and t, and j the smallest integer s.t. 2j ≥ k. pureRW performs
a RW limited to S2i(s) for i ∈ {2, 3, . . . , j}. For any sphere of radius r, it
performs O

`
r6
´

random hops, which results in a total of O
`
k6
´

random hops.
As any optimal algorithm has cubic stretch requiring O

`
k3
´

hops in the worst
case (Theorem 3.1), the stretch of pureRW is O

`
Sopt

2
´
.

Clearly, pureRW is not a practical routing scheme as its expected delivery
time is just as bad as its stretch. Therefore, we try to route much more
optimistically using the GRG approach, at the cost of that we are unable to
analytically express its performance.

The greedy routing step of the GRG routing scheme selects the DV ineN (v) closest to the target and forwards the message to its owner (Line 3 of
Algorithm 3.3). Initially, if the sender s of the message does not own any
DV, it sends the message to its neighbor which owns the DV closest to s.
The message is greedily forwarded until the target is found (Line 2), or a
local minimum is reached (Line 5).

The recovery algorithm chosen by the GRG is either the region limited
RW described in Algorithm 3.2, or a region limited RW that is also bound
to the surface of the hole which needs to be surrounded.

CHAPTER 3. ROUTING IN 3D NETWORKS 48

Algorithm 3.3: Dual Greedy Step (On node v)

if(target ∈ (v ∪N (v))) v or one of its neighbors is the target1

deliver the message and return2

select d ∈ (Ñ (v) ∪ v.DV) closest to the target3

if(d is owned by v) v is in a local minimum for the target4

start recovery5

else6

send message to own(d)7

3.6.1 Routing on the Surface

We describe the surface of a hole in the network with the aid of the virtual 3D
grid introduced in Chapter 3.5. The surface S is described by a list of grid-
cubes which delimit the boundary between the hole and the network. Each
node has only its local view of S, which it determines using the presence,
respectively absence of DV.

When the greedy routing described in Algorithm 3.3 reaches a local min-
imum at node v (Line 5), the DV d closest to the target is owned by v itself.
Therefore, at least one of the 6 grid-neighbors of d is not present, otherwise,
d would not be closest to the target. Let i be the non-present grid-neighbor
which is closest to the target, i.e. i is an intersection point of the grid neigh-
boring d, where no DV was placed. Then, the four grid-cubes delimited by
the cube-edge di are part of the surface S. The remaining grid-cubes describ-
ing v’s view of S are obtained iteratively: Until S does not change anymore,
v does the following for every grid-cube q ∈ S: For every corner c of q for
which v owns the corresponding DV, v determines {c1, c2, c3}, the three cor-
ners adjacent to c on q. For each ci, v adds to S the 4 grid-cubes delimited
by the cube-edge cci iff no DV was placed on ci. When the iteration stops,
S contains the grid-cubes delimiting the surface around the local minimum,
as seen by v.

Let SN (v) be the set of owners which own a DV lying on the corner
of a grid-cube q ∈ S, and exclude v from SN (v). This set describes the
neighbors of v which also lie on the surface S, and from which the RW picks
an arbitrary node to forward the message to. If node v decides to forward
the message to u ∈ SN (v), it needs to describe the surface to u. It does so
by including each q ∈ S which has a corner owned by u. Upon receiving the
message, u sets its initial view S of the surface to this subset and determines
the remaining grid-cubes describing u’s view of the surface by applying the
iterative algorithm described above.

Thus, the description of the surface changes constantly, but remains
strictly local. In fact, when v sends the surface description to u, it is possible
that u determines yet more grid-cubes which touch DV of v as well. This
can happen when the surface S touches v in two or more independent places,

CHAPTER 3. ROUTING IN 3D NETWORKS 49

such that v cannot determine locally the relationship. In situations where
u is the only node that knows that the surface bends back to v, we need
to ensure that u sends its view of the surface to v from time to time. But
this requires that we drop the ‘power of choice” optimization presented in
Chapter 3.4. Otherwise, we risk falling into an infinite loop, as the RW may
not explore the entire surface.

3.7 Simulation

In order to validate our geographic routing algorithms for 3D networks, we
performed a series of simulations in Sinalgo, our Java-based simulation frame-
work for testing and validating network algorithms described in Chapter 7.
We chose a fairly large simulation area of 20 × 20 × 10 units and deployed
between 2000 and 40000 nodes to cover the range between very sparse and
dense networks. In order to obtain more realistic networks, we first placed
100 randomly rotated and randomly positioned cuboids of 2× 2× 1 units in
the simulation area. The cuboids were areas where no node could be placed,
and they enforced holes in the network, such that, especially for dense net-
works, the messages could not be forwarded greedily without surrounding
any holes.

Sparse graphs tend to be heavily twisted, which challenges our GRG
routing algorithms with many local minima. To account for this fact, we
performed more simulations for sparse networks, which can also be seen by
the accumulation of samples for small n in Figure 3.3. For each initial de-
ployment of n nodes, we first connected the nodes to a UBG, and kept only
the giant component, the largest connected part of the network.

For each network, we selected 5000 random sender/target node pairs (s, t)
and sent a message from s to t using the following five recovery algorithms
when the message got stuck in a local minimum: RW on the dual, RW on
the surface, RW on the Graph, bounded DFS on a spanning tree, and a
bounded flooding. All RW were limited to exponentially growing regions
(see Chapter 3.4), and all but the RW on the surface implemented the power
of choice technique. The bounded DFS on an arbitrary spanning tree is
not a local algorithm and was chosen for comparison. In that algorithm,
we first built a spanning tree, and then perform a DFS on the tree, where
the maximal depth to explore the graph increases exponentially. Finally,
we implemented a recovery algorithm that uses flooding to escape a local
minimum. The flooding relies on a mark-bits to avoid repetitions of the
message, and is thus not memoryless. The TTL of the flooding message was
incremented exponentially to obtain an optimal search time.

Figure 3.3 compares the overhead (measured in routing hops) of the five
recovery algorithms. For ease of interpretation, we plotted against the over-
head of the flooding algorithm, such that the y-axis shows how much more

CHAPTER 3. ROUTING IN 3D NETWORKS 50

0

2

4

6

8

10

12

14

16

18

0 5000 10000 15000 20000 25000 30000 35000 40000

Number of deployed nodes (n)

RW Graph

RW Dual

DFS Tree

RW Surface

R
o
u
ti

n
g
 o

v
e
rh

e
a
d
 c

o
m

p
a
re

d
 t

o
 f

lo
o
d
in

g

Figure 3.3: The overhead of our routing techniques compared against a non-
memoryless flooding algorithm. The x-axis indicates how many nodes were
deployed, the y-axis how much more routing-messages our routing algorithms
induced.

overhead the other routing algorithms induced.
A first important observation is that limiting the RW to the surface of

the hole does in fact not help at all. Unless the network is very dense, it
tends to have a single huge face covering nearly the entire network. I.e. the
holes in the network are nearly never completely closed and most of them
are interconnected over the surface. As a result, the restriction to the face
does not reduce the number of nodes to visit.

We can further observe that the overhead of the RW on the dual is below
the overhead of the RW on the graph, which shows that we achieved our goals
of obtaining a sparse network graph via the dual graph. The astonishing
good performance of the DFS on the spanning tree for the sparse networks
can be traced back to the fact that the nodes of these networks have very
low degree, resulting in a tree-like network. For denser networks, however,
the RW approaches perform much better. In particular, the RW on the dual
and the RW on the surface perform even better than the flooding for very
dense networks, as they operate on a sparser network.

4
Greedy Routing

There is a huge body of research on routing schemes, and we have already
seen several versions of geographic routing in the preceding chapters. Even
though greedy forwarding leads to nearly optimal routing paths on average,
the routing protocols must ensure to properly circumvent voids in the net-
work, enlarging the routes considerably. We now present a radically different
approach to overcome this limitation of geographic routing by embedding
the network into an higher-dimensional space such that there is a greedy
path between any two nodes. Such coordinate assignments are called greedy
embeddings as they allow for a purely greedy routing technique. Consider
Figure 4.1 where we have two embeddings of the same network in the Eu-
clidean plane. For instance, there is no greedy path from vertex 2 to vertex
6 in the left embedding. As the greedy algorithm forwards the message to

1

2

3

9

4

5

6

1

2
3

9

88

7

4

5

6

7

Figure 4.1: Embeddings of networks need not be greedy by default (left
network), but a greedy embedding can be constructed (right network).

CHAPTER 4. GREEDY ROUTING 52

the neighbor which is closest (in the Euclidean L2-norm) to the destination,
it gets stuck at vertex 1. We solve this problem by constructing a greedy
embedding for which the greedy forwarding scheme always succeeds. The
right figure shows such a greedy embedding which ensures a greedy path be-
tween any two vertices. In our example, the greedy algorithm finds the path
2−3−9−8−7−6 using 5 hops. The optimal path, however, is 2−3−4−5−6
using only 4 hops. Similar to the previous chapters, we capture this routing
overhead through the stretch, which is the ratio of the greedy path-length
and the optimal path-length. E.g. in our example, the path from 2 to 6 has
stretch of 5/4. The fact that a greedy embedding may use long routes is a
problem of critical importance that is solved in this chapter; we show that
our greedy embedding introduces only a constant stretch.

In a nutshell, our approach is as follows: Given the connectivity infor-
mation of a wireless network, modeled as a combinatorial unit disk graph
(CUDG) we assign each node a polylog-dimensional virtual coordinate such
that greedy routing is always provably successful, between any source-
destination pair, e.g. see Figure 4.1. In contrast to previous work our greedy
routing provides a bounded stretch (see Figure 4.7 for experimental results
supporting this claim). Previous work on greedy routing was done for geo-
metric UDGs where an embedding of the network is known (i.e. each vertex
knows its coordinates). We consider the more intricate problem of greedy
routing on CUDGs, which are UDGs without any position information. We
believe that our approach is valuable for real world networks where position
information is not readily available. Our main result is a polynomial-time al-
gorithm that embeds CUDGs into O

`
log2 n

´
-dimensional space, permitting

greedy routing with constant stretch. To the best of our knowledge, this
is the first greedy embedding with stretch guarantees for this class of net-
works. Our main technical contribution involves extracting, in polynomial
time, a constant number of isometric and balanced tree separators from a
given CUDG. We do this by extending the Lipton-Tarjan separator theorem
for planar graphs to CUDGs. Our result can be adapted to a compact rout-
ing scheme with routing tables of size O

`
log3 n

´
. Furthermore, the proposed

approach extends to general graphs as well, with a slightly higher overhead.
We support our results by extensive simulations and show that the constant
overhead is on average only about 10%; only few routes have a stretch above
1.5.

4.1 Related Work

Papadimitriou and Ratajczak conjectured that any planar 3-connected net-
work has a greedy embedding into 2 dimensions [75]. They also showed that
any planar 3-connected network has a greedy embedding in 3 dimensions, for
which an embedding algorithm was described in [22]. The Papadimitriou-

CHAPTER 4. GREEDY ROUTING 53

Ratajczak conjecture was settled by Moitra and Leighton [72] who present
a polynomial-time algorithm for constructing a greedy embedding of a given
3-connected planar graph. In this chapter, we study the embedding of a
combinatorial UDG where only the connectivity information but no position
information of the vertices is given. The absence of such geometrical informa-
tion eliminates the possibility of planarizing the network and using a triangu-
lation technique. The embedding of a UDG in combination with routing has
been studied widely [16, 43, 80, 86], but none of these approaches guarantees
a greedy embedding. In fact, finding an exact embedding is NP-hard [14]
and cannot be approximated arbitrarily well [58]: If non-neighboring ver-
tices must have a distance larger than 1, it can be shown that there may
be neighbors with distance

p
3/2. The best known approximation algorithm

for this problem is described in [77] and may induce distances in O
`
log2.5 n

´
.

Even if each vertex knows the exact distance to any of its neighbors or the
exact angles at which the neighbors are located, the problem of finding an
exact embedding remains NP-hard [4, 16].

As a way of avoiding these difficulties and finding embeddings for CUDGs,
anchor based routing was introduced, e.g. [37, 41, 96]. The main idea of these
routing schemes is that a few vertices are elected as anchor nodes and each
vertex stores the length of its shortest path to all anchor nodes. The set of
these distances can be seen as a virtual coordinate on which greedy routing
can be applied. To ensure a greedy embedding, however, Θ(n) anchors need
to be chosen in the worst case [96], which renders this approach unattractive.

Kleinberg proposed a greedy embedding of arbitrary networks into the
hyperbolic plane [52], which was improved by Eppstein et al. such that
coordinates of the embedding only need O(logn) bits [33]. As of this writing,
such greedy embeddings into hyperbolic space are only known for trees, i.e.
given a general network, only a spanning tree thereof is embedded. The
reduced connectivity information of a spanning tree has severe consequences
for the routing performance: Close-by vertices in the network may be far away
on the tree on which the routing takes place, introducing a linear worst-case
stretch. To the best of our knowledge, we present the first greedy embedding
with guaranteed sublinear stretch. For CUDGs, a generalization of planar
graphs, our embedding guarantees a constant stretch and for general graphs,
the stretch is in O(logn).

Compact routing is one of the most prominent routing paradigms. Com-
pact routing studies the tradeoff between the efficiency of a routing algorithm
(i.e. the stretch) and its space requirements for the routing tables. For gen-
eral graphs, there is a stretch-k routing algorithm with an average routing

table size of O
“
k3n1/k logn

”
and O(logn) bit labels[76]. Renaming (label-

ing) of the vertices is a widely used technique to reduce the routing table
size. In fact, any routing algorithm that does not rename the vertices and
requires a stretch below 3 may need routing tables of Ω(n) bits on general

CHAPTER 4. GREEDY ROUTING 54

Figure 4.2: Most compact routing results are analyzed for the general class
of doubling metrics and provide excellent results if the metric has a small
constant doubling dimension. Unfortunately, many reasonable metric spaces
induced by even common network models do not have a constant doubling
dimension. For example, consider the hop-metric induced by the UDG shown
in this figure: A ball of radius 2r around v covers all vertices, whereas

√
n

balls of radius r are needed. Note that the if we take the nodes in the network
to be embedded in the plane as shown, then the induced Euclidean metric
has constant doubling dimension. But, for network routing the hop-metric
may be more relevant.

graphs [42]. Many impressive compact routing results have been developed
for constant doubling metrics with doubling dimension α. These networks
have the property that the set of vertices in any ball of radius 2r can be
covered by at most 2α balls of radius r. We refer the interested reader to
Chapter 5 for an overview of the results in this area. Note that many graph
classes, including UDGs, do not have a constant doubling dimension (see
Figure 4.2).

Greedy routing schemes, such as the one presented here, are close rela-
tives to compact routing schemes: as the greedy routing decision is based
solely on the coordinates of the neighbors, this neighborhood information
could be stored locally, which is equivalent to the routing table in compact
routing. Using this transformation, we show that our greedy routing for
CUDGs can be transformed to a compact routing scheme with O

`
log3 n

´
bit

routing tables, beating any known compact routing scheme for this class of
networks.

CHAPTER 4. GREEDY ROUTING 55

4.2 Background, Results, and Approach

The focus of this chapter is on combinatorial unit disk graphs. For points p
and q in Euclidean space we use |pq| to denote the Euclidean distance in L2

norm between p and q. A graph G = (V,E) is a unit disk graph (UDG) if
there is an embedding φ : V → R2 of the vertices of G into the Euclidean
plane such that {u, v} ∈ E iff |φ(u)φ(v)| ≤ 1. The embedding φ is called a
realization of G. UDGs are widely used as models of wireless networks and
this is what motivates our focus on this class of graphs. A UDG may be
specified by its realization and in such a setting coordinates of all vertices
are known. Alternately, a UDG may be specified as a combinatorial object,
e.g., a collection of vertices and a collection of edges. In such a setting
the neighbors of each node are known, but no geometric information such
as node coordinates, pairwise Euclidean distances, etc. are known. These
two specifications are fundamentally different from a computational point of
view. Given a realization of a UDG, it is trivial to construct a combinatorial
representation of it; on the other hand given a combinatorial representation
of a UDG, it is impossible (unless P = NP) [14] to compute its realization.
We work in the latter setting, in which we are given a UDG merely as a
combinatorial object, with no recourse to any geometric information. To
emphasize this we refer to these graphs as combinatorial UDGs (CUDG).
This makes our approach robust to situations in which geometric information
is missing or is only partially available or is erroneous.

Let f : Rd × Rd → R be a function that assigns to each pair of points in
Rd a non-negative real. For any vertex v, let N(v) denote the set of neigh-
bors of v. A greedy embedding of an undirected graph G = (V,E) into the
space (Rd, f) is a mapping φ : V → Rd such that for any pair s, t ∈ V of
distinct vertices, there exists a vertex u ∈ N(s) such that f(u, t) < f(s, t).
Greedy embeddings formally characterize embeddings for which the greedy
routing algorithm will guarantee message delivery and were first defined in
this manner by Papadimitriou and Ratajczak [75]. These authors were con-
cerned with greedy embeddings into R2 and the function f was taken to
be the Euclidean distance between pairs of points. In our case, d will typi-
cally be poly-logarithmic in n, the number of vertices of G, and f will be a
“min-max” function that turns out to be a natural “distance” measure for us
because the space Rd into which we embed G is obtained by “gluing” together
a bunch of lower dimensional subspaces. In each subspace, an estimation of
the distance is obtained through the L∞ norm, and the overall distance is
obtained by taking the minimum of these estimated distances. Note that
even though using the min-max function is not as natural as using the L1, L2

or the L∞ norm, it is computationally as easy to deal with as any of these
norms. Formally, the min-max is defined as follows. Let c be a factor of d
and let s = (s1, s2, . . . , sd) and t = (t1, t2, . . . , td) be two points in Rd. For
each j, 0 ≤ j < d/c let

CHAPTER 4. GREEDY ROUTING 56

Dj = max
c·j+1≤i≤c·(j+1)

|si − ti|.

Then the function min-maxc is defined as

min-maxc(s, t) = min
0≤j<d/c

Dj .

The min-maxc function essentially views the space Rd as a composition
of d

c
c-dimensional spaces, takes the L∞ norm of the projections of s and t

into those spaces, and finally takes the smallest of those L∞ distances as the
“distance” between s and t. Often c will either be irrelevant or be understood
from the context and we will usually write min-maxc as min-max.

Let φ be a greedy embedding of G into (Rd, f). An st-path P = (s =
v1, v2, . . . , vk = t) in G is called a greedy st-path (or just a greedy path,
if s and t are clear from the context) if for each i, 1 ≤ i < k, vi+1 =
argminu∈N(vi)

f(u, t). In other words, among all neighbors of vi, the vertex
vi+1 is the neighbor that is closest to the destination t. A greedy embedding
φ of G into (Rd, f) is said to have stretch ρ if for all distinct s, t ∈ V and for
all greedy st-paths P , |P | ≤ ρ ·dG(s, t). Here |P | denotes the number of hops
in path P and dG(s, t) denotes the shortest path hop-distance between s and
t in G. We will use the latter notation widely throughout the remainder of
this chapter with different graphs serving as the subscript of “d” to denote
the shortest hop-distance between pairs of vertices in that graph.

4.2.1 Results

Our main result is a polynomial-time algorithm for constructing a low-
dimensional greedy embedding with constant stretch of a given CUDG. Our
algorithm constructs, for any given n-vertex CUDG, a greedy embedding
into (Rd, min-max), where d = O

`
log2 n

´
. Furthermore, each coordinate of

each vertex has size O(logn) bits, implying a total of O
`
log3 n

´
bits for

each vertex-label. Therefore our solution can be easily transformed into a
constant-stretch, labeled, compact routing scheme for UDG hop-metrics that
uses labels of size O

`
log3 n

´
per vertex1.

The main ingredient of our approach is the construction of small-size
constant-stretch tree covers. Given a graph G = (V,E), a tree cover of size k
and stretch ρ is a family T = {T1, T2, . . . , Tk} of spanning subtrees of G such
that for every u, v ∈ V , there is a tree Ti such that dTi(u, v) ≤ ρ ·dG(u, v). A

1To obtain the compact routing scheme, each node locally stores the labels of its
neighbors in a routing table. By only embedding an MIS of the network and by routing
on this virtual topology, only O(1) neighbors need to be stored.

CHAPTER 4. GREEDY ROUTING 57

tree cover T with stretch 1 is called an exact tree cover2. The main technical
contributions are as follows.

• We show that every CUDG has an O(logn)-size tree cover with con-
stant stretch and that such a tree cover can be computed in polynomial
time even for CUDGs. This is comparable to the result of Gupta et
al. [47] who show how to construct a constant-stretch O(logn)-size tree
cover for planar graphs.

• The above tree cover result is obtained via an extension to CUDGs
of the Lipton-Tarjan Separator theorem for planar graphs [66]. The
algorithm implied by the Lipton-Tarjan Theorem makes explicit use of
a planar embedding of the given planar graph. Similarly, recent work
by Chen et al. [21] constructs separators for UDGs, but again with
explicit use of a given UDG realization. As mentioned in Chapter 4.1,
recovering a realization of a CUDG is intractable and our result is the
first to show that Lipton-Tarjan type separators can be constructed
for UDGs even without any geometric information.

Our approach works for any class of graphs for which small-size, small-
stretch tree covers can be constructed. For example, via the result of Awer-
buch and Peleg (Lemma 6.8 in [7]) we can compute anO(logn)-stretch greedy
embedding of arbitrary graphs into (Rd, min-max), where d = O

`
log3 n

´
.

4.2.2 Overall Approach

At a high level, our algorithm, which we call GREEDY-EMBED, consist of the
three steps of Algorithm 4.1, which are depicted in the Figures 4.3–4.6. The
following theorem about algorithm GREEDY-EMBED drives the rest of this chap-
ter.

Theorem 4.1. Algorithm GREEDY-EMBED takes as input an n-vertex graph
G and returns a greedy embedding of G into (Rd, min-maxb) with stretch ρ,
where d = k · c logn and each coordinate of each vertex uses logn bits.

Proof. Let s and t be an arbitrary pair of vertices in G and let Ti ∈ T be
a tree containing a shortest st-path, among all trees in T . Then dTi(s, t) ≤
ρ ·dG(s, t). Let u be the neighbor of s along the unique, simple st-path in Ti.
Then the L∞ distance between φi(u) and φi(t) is smallest over all neighbors
of s and over all trees. The min-maxb function will therefore lead the message
to vertex u. Now the message is at a node that is at most ρ ·dG(s, t)−1 hops

2In literature on tree covers, see e.g., Awerbuch and Peleg [7], the trees in the tree
cover are not required to be spanning. Furthermore, the size of a tree cover is defined as
the maximum number of trees that a vertex participates in. For the purposes of greedy
routing, it is more convenient to require all trees to be spanning and therefore the size
of a tree cover can simply be defined as the number of trees in the collection.

CHAPTER 4. GREEDY ROUTING 58

Figure 4.3: We consider the network on the left. In a first step, we find a
separator which ensures that any connected component after removing the
separator has size at most 2/3 of the total network size (middle figure). Note
that this separator is a shortest path connecting u and v along with the 1-hop
neighborhood of this path. From this separator tree, we grow a BFS-style
tree by repeating the following two steps until we have a spanning tree (right
figure). (1) Determine all vertices adjacent to the tree but not yet contained
in the tree. (2) Attach each vertex found in (1) to one of its neighbors already
on the tree. On this top level, we only ensure good routing paths from one
side of the separator to the other. For instance, the vertices x and y in the
right bottom corner are 5 hops apart on the tree even though their graph
distance is 2. To fix this issue, additional trees are built on the components.

Figure 4.4: After removing the first separator, we obtain several connected
components (left figure), for each of which we find a separator (middle figure).
In this case, the separator already covers all vertices of the components s.t.
the tree of the components is equal to the separator. In the final step,
all trees constructed in this step are connected by reinserting the removed
separator and connecting the 3 trees. This gives the second tree of the tree
cover. Note that for larger networks, the recursion would continue for the
components created by the separators found in this step. Also notice that
this tree connects the two vertices x and y much better.

CHAPTER 4. GREEDY ROUTING 59

Figure 4.5: Given the tree cover, each tree is embedded in a O(logn)-
dimensional space. Note that each coordinate uses at most logn bits, re-
sulting in coordinates of size O

`
log2 n

´
bits. In our example, 6 dimensions

per tree are enough.

Figure 4.6: Finally, the coordinates assigned for the trees are combined
to a single coordinate for each vertex. Using at most O(logn) trees, the
size of the coordinates is bounded by O

`
log3 n

´
bits. To send a message

from x to y, x compares the label of y to its neighbors n1 and n2 and
forwards to the closer neighbor. The comparison is done tree by tree,
e.g. for n1 we have L∞(10 7 7 2 8 1, 10 7 7 6 8 2) = 4 for the first tree and
L∞(1 11 8 4 1 1, 0 12 9 3 2 1) = 1 for the second tree, giving an estimated dis-
tance of 1 from n1 to y. Similarly, the estimated distance from n2 to y is 1
as well. Therefore, x forwards the message to either of its neighbors.

CHAPTER 4. GREEDY ROUTING 60

Algorithm 4.1: GREEDY-EMBED(G)

Step 1
Construct a tree cover T = {T1, T2, . . . , Tk} of G with stretch ρ (Figures 4.3
and 4.4).

Step 2
Embed each tree Ti isometrically into Rb, where b = c · logn for some constant
c. For this we use a simple and well-known algorithm due to Linial et al. [65],
Theorem 5.3. We note that using this algorithm guarantees that every
coordinate of every vertex uses at most logn bits. Let φi(v) denote the
coordinates of vertex v obtained by constructing the embedding of Ti
(Figure 4.5).

Step 3
Output φ := φ1 · φ2 · · ·φk, the “concatenation” of the mappings φi. In other
words, φ(v) consists of k · c logn coordinates, obtained by writing the
coordinates in φ1(v), followed by the coordinates in φ2(v), followed by the
coordinates in φ3(v), and so on (Figure 4.6).

from the destination t. Continuing this argument we see that the message
will be greedily routed to t in at most ρ · dG(s, t) hops.

For arbitrary graphs we utilize the above theorem as follows. Awerbuch
and Peleg [7] have shown that every graph has a tree cover of stretch O(logn)
and size O

`
log2 n

´
and such a tree cover can be computed in polynomial

time. This yields ρ = O(logn) and k = O
`
log2 n

´
and leads to the following

corollary.

Corollary 4.2. There is a polynomial time algorithm that can compute for
any n-vertex graph an O(logn)-stretch greedy embedding into (Rd, min-max)
where d = O

`
log3 n

´
. Each coordinate of each vertex uses O(logn) bits.

In the next section we show our main technical result: for any CUDG we
can compute in polynomial time a constant-stretch O(logn)-size tree cover.

4.3 Greedy Embeddings of CUDGs

We now show how to construct a constant-stretch tree cover T =
{T1, T2, . . . , Tk} with k = O(logn) of any given CUDG G = (V,E). To ob-
tain a tree cover of G we use a recursive algorithm inspired by the approach
of Gupta et al. [47], based on isometric separators; Gupta’s algorithm yields
a constant-stretch O(logn)-size tree cover for any planar graph. For any
graph G = (V,E) a vertex-subset V ′ ⊆ V is called a 1/3-2/3 separator of
G if a largest connected component in G \ V ′ has size at most 2

3
· |V |. Such

“balanced” separators have played a fundamental role in algorithm design
for a variety of problems [82]. Given a graph G = (V,E), a k-part, isometric

CHAPTER 4. GREEDY ROUTING 61

Algorithm 4.2: CUDG-SEPARATOR(G)

Step 1
Pick an arbitrary vertex r of G and construct a breadth-first search tree T
rooted at r.

Step 2
For any u ∈ V , let P (u) denote the (unique) path in T from r to u and let
N(P (u)) denote the set of vertices in the closed neighborhood of P (u). In other
words, N(P (u)) contains all vertices in P (u) along with vertices that have a
neighbor on P (u). For every pair of vertices u, v ∈ V construct Guv by deleting
from G the vertices in N(P (u)) ∪ N(P (v)). Terminate this step successfully on
finding a Guv such that every connected component in Guv has size at most
2|V |/3.

Step 3
From P (u) construct a tree S1 by taking each vertex v in N(P (u)) \ P (u) and
connecting v to an arbitrary neighbor in P (u). Similarly construct S2 from P (v)
and return S1 and S2.

separator of G is a family S = {S1, S2, . . . , Sk} of subtrees (not necessarily
spanning) of G such that

1. S = ∪iV (Si) is a 1/3-2/3 separator for G. Here V (Si) is the vertex
set of the tree Si.

2. For each i and each pair of vertices u, v ∈ V (Si), dSi(u, v) = dG(u, v).
In other words, each of the subtrees Si contain the shortest paths
between their constituent vertices and hence are isometric to the re-
striction of G to V (Si).

This definition is due to Gupta et al. [47]. For a CUDG G we ob-
tain a 2-part tree separator that is not quite isometric, but preserves dis-
tances approximately. Specifically, we show that for some constant ρ ≥ 1,
dSi(u, v) ≤ ρ · dG(u, v) for all u, v ∈ V (Si). We will call such a family of
separators a 2-part stretch-ρ separator.

Theorem 4.3. Every CUDG has a 2-part, stretch-3 separator and such a
separator can be computed in polynomial time.

The proof of the above theorem is due to Sriram Pemmarju and can be
found in the conference publication [40]. It implies Algorithm 4.2, which we
call CUDG-SEPARATOR, for computing a 2-part, stretch-3 separator of G. In
a sense the proof of the above theorem should be thought of as a “proof of
correctness” for Algorithm 4.2 and it shows that Step 2 of CUDG-SEPARATOR

will always terminate successfully.
The reason Algorithm 4.2 returns S1 and S2 rather than just P (u) and

P (v), is worth mentioning here. For planar graphs, the paths P (u) and
P (v) separate T into several disconnected components. Since a UDG is not

CHAPTER 4. GREEDY ROUTING 62

planar, it is possible to “hop” between the components by following edges
that cross P (u) or P (v). However, UDGs have the nice property that if a
pair of edges cross then at least one pair of end points of the crossing edges
are neighbors. Therefore, if a path P is crossed by an edge {u, v} then either
u or v is a neighbor of a vertex in P . Therefore, by removing Si, the path
Pi along with its neighborhood, we ensure that the components are really
disconnected and Si separates the given graph.

The tree cover of G can now be constructed by recursively applying al-
gorithm CUDG-SEPARATOR for finding a 2-part, stretch-3 separator of G. Con-
sider the trees S1 and S2 returned by the above algorithm. For each i = 1, 2,
grow a BFS-style tree Ti from Si in the following way: Initially, set Ti = Si.
While Ti is not spanning, repeat the following two actions: (1) Determine
the set of nodes N that are adjacent to Ti, but not yet on Ti. (2) For each
n ∈ N , connect n to an arbitrary neighbor on Ti \N .

T1 and T2 are the first two trees in the tree cover being constructed. Now
recurse on the connected components in Guv. More specifically, suppose
that the connected components in Guv are C1, C2, . . . , Ct and suppose that
for each Ci we find {Si1, Si2}, a 2-part, stretch-3 separator and obtain the
corresponding trees {T i1 , T i2}. The collection {T 1

1 , T
2
1 , . . . , T

t
1} is a forest and

we arbitrarily add vertices and edges to this forest to obtain a spanning tree
of G. We similarly extend the forest {T 1

2 , T
2
2 , . . . , T

t
2} to a spanning tree of

G, thus obtaining two more spanning trees for each level of the recursion.

Theorem 4.4. Given an n-vertex CUDG G, there is a polynomial-time algo-
rithm that computes a constant-stretch tree cover {T1, T2, . . . , Tk} of G with
k = O(logn). In addition, the stretch of the tree cover is upper-bounded by
4.

Proof. The size of the tree cover is inO(logn) as the separator ensures a 1/3−
2/3 cut such that each recursion step operates on a connected component
whose size is reduced at least by a factor 2/3 compared to the previous step.
A naive algorithm finds such a separator by testing each node pair u, v in
Step 2 of Algorithm 4.2, requiring at most O

`
n2
´

tests for each level of the
recursion. The test itself is trivial and can be done in O(n) operations. The
overhead for the construction of corresponding BFS trees and the assembly
of the forests to a spanning tree is in O(n). Thus, the overall complexity for
building the tree cover is polynomial in n.

As for the stretch, consider an arbitrary non-neighboring pair s, t of
vertices in G. There are two cases depending on whether or not s and t are
separated by a separator Si constructed by Algorithm CUDG-SEPARATOR. In
the following, we use the fact that Si is a shortest path Pi along with nodes
in the neighborhood of Pi.

CHAPTER 4. GREEDY ROUTING 63

1. Vertices s and t are not separated in any level of the recursion. In
this case s and t together lie on a separator S and we can show that
dS(s, t) ≤ 3 · dG(s, t). We need to analyze three cases: (a) If both, s
and t lie on P , the connection along S is optimal (as P is a shortest
path). (b) Assume w.l.o.g. that only s lies on P and t is attached to
an arbitrary neighbor y on P . Then, dP (s, y) ≤ dG(s, t) + 1, otherwise
P would not be a shortest path between s and y. (c) Similarly, if s and
t are attached to x and y on P , respectively, dP (x, y) ≤ dG(s, t) + 2.
As a result, dS(s, t) = dP (x, y) + 2 ≤ dG(s, t) + 4 ≤ 3 · dG(s, t) for
non-neighboring s and t.

2. Suppose that s and t are separated by a separator S1∪S2 in some level
of the recursion. Then, the shortest path between s and t intersects
either S1 or S2 in a point u. W.l.o.g. assume that it intersects S1.
We now consider the tree T of the tree cover which was built from S1

and show that dT (s, t) ≤ 3 · dG(s, t) + 2 using an argument similar to
Theorem 5.1 of Gupta et al. in [47]. Let s′ (t′) be the vertex on P1

closest to s (t) on the tree T . For our argument, we distinguish two
cases: (a) if the optimal path from s to t passes through a point u on P1,
we have that dT (s, s′) ≤ dG(s, u) and dT (t, t′) ≤ dG(t, u). In addition,
dT (s′, t) ≤ dT (s, s′) + dG(s, t) + dG(t, t′). Combining the inequalities,
we get that dT (s, t) = dT (s, s′) + dT (s′, t′) + dT (t′, t) ≤ 3 · dG(s, t).
(b) If the optimal path between s and t does not pass through any
vertex of P1 (this is possible as we do not have a planar network), then
u is a node neighboring a node in P1. In that case, we can bound
the path to reach a first node in S1 by dT (s, s′) − 1 ≤ dG(s, u) and
dT (t, t′) − 1 ≤ dG(t, u). dT (s′, t′) can be bounded as in the first case,
and we obtain that dT (s, t) ≤ 3 · dG(s, t) + 2 ≤ 4 · dG(s, t) for non-
neighboring s and t.

In both cases, there is a tree T along which the distance dT (s, t) is at most
4 times longer than the optimal distance dG(s, t) on the graph G.

Theorem 4.5. There is a polynomial time algorithm that can compute for
any n-vertex CUDG an O(1)-stretch greedy embedding into (Rd, min-max)
where d = O

`
log2 n

´
. Overall, each coordinate uses O

`
log3 n

´
bits.

Proof. The claim follows directly from Theorem 4.1 and Theorem 4.4.

4.4 Simulation

Extensive simulations on large, randomly generated networks show that on
average our embedding algorithms provide extremely low stretch routes, the
average stretch being much smaller than the worst case guarantees proved

CHAPTER 4. GREEDY ROUTING 64

0

50

100

150

200

250

300

2
4

6
8

10
12

14
16

18
20
1

1.05

1.1

1.15

1.2

Length of optimal pathAverage vertex degree

A
ve

ra
ge

 s
tr

et
ch

Figure 4.7: Average stretch as a function of the average vertex degree and
the length of the optimal path. Note that our greedy embedding guarantees
an upper bound on the stretch for any UDG. In practice, the stretch is always
below this bound and depends not only on the network topology, but also on
the length of the optimal route.

in the previous sections. We considered a range from very sparse to dense
networks for each of which we sampled random source and destination vertex
pairs. The average routing overhead is around 10% and the worst stretch we
ever encountered is 3. Of course, such a simulation is much weaker than our
formal proof (Theorem 4.5) on the maximum stretch. However, it provides a
good approximation for the average case and also helps to validate the overall
approach.

We used the sinalgo simulator described in Chapter 7 to construct the
desired network topologies which all live in an area of size 100 × 100 units.
For each network, we deployed n vertices at random positions, constructed
the UDG with a transmission radius of 1 unit, and kept the giant connected
component for the embedding. Varying n from 10,000 to 60,000 yields net-
works in the desired density and size range. In the following, we characterize
the resulting networks by their average degree of the vertices, which grows
linearly with n. With over 2,000 networks and 50,000 random source and
destination pairs, the simulation analyzed over 108 routing paths with an
average length of 74 hops.

Figure 4.7 shows the average stretch as a function of the network density
(the average degree of the vertices) and the length of the optimal path for
which the samples were taken. It is interesting to note that the average
stretch partially depends on the length of the chosen route: close vertex pairs
tend to have at least one tree connecting them nearly optimally, yielding a

CHAPTER 4. GREEDY ROUTING 65

0
50

100
150

200
250

300

2
4 6 8 10 12

14 16 18 20

1

1.5

2

2.5

3

Length of optimal path
Average vertex degree

M
ax

 s
tr

et
ch

Figure 4.8: Maximum stretch found over all sampled routing paths.

low stretch for short routes. Longer routes, on the other hand, have a higher
chance that the greedy algorithm first needs to travel along one or several
trees which do not connect optimally (or close to optimal) to the destination,
resulting in an increased stretch. While Figure 4.7 seems to indicate that the
average stretch falls as the length of optimal paths increases, this decrease
may be due to a sampling bias: in our experiments distant s-t pairs show up
relatively infrequently and as a result our experiments may be encountering
costly situations rarely, as well.

The density of the network is another key parameter for the average
stretch of our greedy routing algorithm. For sparse networks, the tree cover
tends to include many optimal paths resulting in a nearly optimal stretch.
With increasing density, the trees miss more and more shortcuts, the average
stretch grows. This growth, however, is stopped when an increased connec-
tivity only adds additional edges but no additional shortcuts. Figure 4.7
shows that this critical density is reached with an average vertex degree of
approximately 10.

Figure 4.8 shows the maximum stretch we have encountered for any of the
108 sampled routing paths. The highest peaks stem from the shortest routes,
for which even a short detour may result in a high stretch factor. However,
we know from Figure 4.7 that on average, only very few routes suffer such a
high stretch.

A comparison of our simulation results with related work is rather diffi-
cult. For instance in [52], Kleinberg illustrated his work with a set of very
small networks of 50 vertices, not covering the challenging networks where
the routing stretch may be linear in the network size. Kuhn et al. [59] com-
pared several greedy routing algorithms for UDGs with position information.

CHAPTER 4. GREEDY ROUTING 66

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Size of the partitioned networkR
el

at
iv

e
si

ze
 o

f t
he

 c
om

po
ne

nt
s

Average size of the components

Size of the largest component

Figure 4.9: When removing a separator, one or several connected components
remain in the network. This plot shows the relative size of these components,
compared to the network which was separated.

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 th
e

ve
rt

ic
es

on

 th
e

se
pa

ra
to

r

Size of the network to separate

Average size of separator

Size of the largest separator

Figure 4.10: To construct our greedy embedding, we recursively partition the
network into several smaller networks by removing a separator. In this plot,
we show the number of vertices on the separator in function of the network
for which the separator was built.

Their simulation for varying network sizes indicates that the average stretch
for sparse networks is well above 3 for small networks and increases linearly
with the size of the network.

For completeness, we also include some statistics on the size of the sep-
arators and the size of the connected components that we obtained during
the simulation. Figure 4.9 shows that indeed, after removing a separator,
none of the connected components had a size larger than 2/3 of the original
network. It is interesting to note that the average size of the components
increases with the density, which shows that in sparse networks, we tend to
obtain several components and in the dense networks only 2 or 3. In Fig-
ure 4.10, we plotted the size of the separators against the size of the network
for which the separator was built. We can see that for sparse networks, the
separator tends to remove between 10% and 30% of the vertices. For all other
networks, the size size of the separator is approximately constant around 5%.

5
Compact Routing with Any- and

Multicast

We finish this first thesis part on algorithm design with a routing scheme that
is slightly different from the previous routing techniques in that the nodes
are allowed to store small routing tables. In return, the presented routing
scheme not only supports unicast transmissions, but also offers efficient any-
casting and multicasting. Thereby, we not only consider how fast a message
is delivered, but also how much overhead the algorithm generates. For in-
stance, optimal routing is straightforward if each node stores in its routing
table the optimal path to every other node in the network. But this comes
at a cost of O(n) routing entries, which easily exceeds the memory capacity
of hardware limited network devices.

The multicasting feature may be extremely helpful to execute a query
only on a subset of nodes. E.g. consider a fire detection system where
a coordinator first determines the set of nodes measuring a critical state.
In subsequent rounds, it may only need to survey these nodes. Talking

u u

Figure 5.1: Support for efficient multicasting is crucial. If node u sends
a separate message to all destination nodes marked with solid circles (left
image), it causes a much higher message overhead than if it utilizes an efficient
multicast algorithm (right image).

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST68

to each of them individually introduces a much higher message overhead
than efficiently multicasting a single message, see Figure 5.1. The gain of
multicasting becomes even more substantial when the receiver set tends to
be clustered. In contrast to multicasting, anycasting becomes interesting
when a node needs to send some data to any node of a given set. In the
example of the fire detection network, this may arise when a node measuring
a critical state wants to inform one of several coordinators. The anycasting
algorithm picks the coordinator as to minimize transmission cost.

In addition to the routing tables, each node is assigned a special label
that encodes routing information. This is similar to the greedy embedding
of Chapter 4 where we assigned a special set of coordinates to each node.
But in contrast to the greedy embedding, we now talk about labels instead
of coordinates as the labels themselves cannot be used to deliver messages.
Furthermore, remember that the size of the coordinates in the greedy embed-
ding was in O

`
log3 n

´
bits for CUDGs and even in O

`
log4 n

´
bits for general

graphs. The labels used in this final routing scheme only require O(c · logn)
bits for a small constant c that depends on the network topology. Thus, by
adding a routing table on each node, we can drastically reduce the size of the
labels. But just as important as the size of the labels is the size of the rout-
ing tables and the overhead of the message delivery. We will show that our
routing tables are relatively small and prove our scheme to provide close to
optimal unicasting, and constant approximations to anycast and multicast.
In addition, our assumption about the capabilities of the nodes is minimal:
we only require that each node has a unique ID and that it can communicate
with its direct neighbors.

Unfortunately, the often studied UDG or UBG connectivity models are
not really appropriate for wireless networks because they do not consider
perturbations of the wireless medium, e.g. caused by obstacles, and assume
the transmission radius to be perfectly circular. However, to ensure applica-
bility of the proposed algorithms, the analysis should be on a connectivity
model that characterizes wireless networks as accurately as possible. Clearly,
any network connectivity can be described using a general graph. But taking
into account the limited range of wireless devices, we observe that nodes are
mostly connected with other nodes in their proximity, which results in a far
more regular connectivity graph than a general graph. Although close-by
nodes may be out of communication range due to obstacles, a node is typi-
cally highly connected to nodes in its surroundings. In other words, even in
environments with many obstacles, the total number of mutually indepen-
dent1 neighbors of a node is likely to be small [84].

We exploit the slightly more general formulation of this property that
takes into account the multi-hop nature of the network: Given a h-hop neigh-
borhood of a node v, it is possible to cover all these nodes with only a small

1Two nodes are independent if they are not (direct) neighbors.

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST69

number of h
2

-hop neighborhoods. Similar to before, this property states that
in any h-hop neighborhood, one can pick only a relatively small subset of
nodes with pairwise distance larger than h

2
. Figure 5.2 shows the deployment

of 39 sensor nodes in our office building and how the nodes are connected
[31]. In this network, the 2-hop neighborhood of any node can be covered by
at most five 1-hop neighborhoods. The figure shows the 2-hop neighborhood
of node v, which is covered by four 1-hop neighborhoods.

These observations motivate to characterize the network connectivity by
A, the maximum number of half-sized neighborhoods that are necessary to
cover any given neighborhood. This number is expected to be quite small
for most wireless networks, e.g. a small two-digit number. Being the only
parameter to describe the network, we can adjust A to apply our analysis to
virtually any wireless network topology, including obstacle-rich deployments
in 3D and worst case scenarios. Furthermore, because the presented routing
algorithms are self-adaptive and need not to know the value of A, they are
good for any network. It is only the performance of the routing algorithms
that depends on the value of A.

In the sequel we describe the network connectivity by a weighted graph
G = (V,E) where each network node is mapped to a node of the graph, and a
weighted edge is present between any two nodes within mutual transmission
range. We observe that the coverability property described above matches
the definition of a constant doubling metric2 on G (see Definition 5.2). The
distance metric M associated with G corresponds to the metrization of G
using the cost-function dM(a, b) which assigns to each pair (a, b) ∈ V ×V the
cost of the least cost path between a and b. Our analysis holds for a more
general class of networks, where each link may be assigned a cost, e.g. the
number of retransmissions needed to send a message over the link. Setting
all link costs to 1, we obtain the hop-metric discussed above.

Definition 5.1 (Ball). Given a node v ∈ V , the ball Bv(r) with radius r de-
notes the set of nodes with distance at most r from v: Bv(r) = {u|dM(v, u) ≤
r}.

Definition 5.2 (Constant Doubling Metric). A graph G = (V,E) fulfills
the doubling metric property if any ball Bv(r) can be covered 3 by a constant
number of balls B(r

2
) with half the radius: For r ≥ 0 and ∀v ∈ V : ∃U ⊆ Bv(r)

such that |U | = O(1) and Bv(r) ⊆
S
u∈U Bu(r

2
). If |U | is bounded by 2α for a

constant α, we say that the metric associated with G has doubling dimension
α.

We point out that the value of α = dlog2Ae is quite small for most
wireless networks, e.g. around 3 or 4.

2A metric assigns to each node-pair (a, b) ∈ V × V a cost satisfying non-negativity,
identity of indiscernibles, symmetry and triangle inequality.

3A ball B is covered by a set of balls {b1, . . . , bn} if ∀u ∈ B : ∃i such that u ∈ bi.

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST70

v

Figure 5.2: The figure shows a deployment of 39 nodes in an office building
and how they are connected. The nodes in black denote a 2-hop neighborhood
of node v. These nodes can be covered by four 1-hop neighborhoods indicated
with the dashed lines and rooted at the nodes with the small white dot.

5.1 Related Work

One milestone in the area of compact routing schemes was laid by Peleg
and Upfal in [76], where they examine the trade-off between the efficiency
of a routing algorithm and its space requirements. They present a stretch-k
routing algorithm for general graphs with an average routing table size of

O
“
k3n1/k logn

”
bits and O(logn) bit labels. The renaming (labeling) of the

network nodes is a widely used technique to reduce the routing table size.
In fact, any routing algorithm that does not rename the nodes and requires
a stretch below 3 may need routing tables of Ω(n) bits [42]. For constant
doubling metrics, we know that the stretch is above 9−ε if the routing tables

size is o
“
n(ε/60)2

”
[53].

In his recent work [91], Talwar described a (1 + ε) stretch routing scheme
for α-doubling metrics with routing tables of O(1/(εα))α log2+α Θ bits and
label-size O(α log Θ) bits where Θ is the diameter of the network. This work
was improved by Chan et al. in [19] by reducing the storage overhead to
(α/ε)O(α)(log Θ)(log ∆) bits per node and a label size of O

`
α log (ε−1)

´
log Θ

bits, with ∆ denoting the maximal degree of any node.
Slivkins presented two improved compact routing schemes in

[88]. The first uses (ε)−O(α)(log Θ)(log ∆) bits per routing ta-
ble and O

`
α log (ε−1)

´
log Θ bits per label, whereas the second

scheme uses ε−O(α)(log Θ)(log log Θ)(logn) routing table bits and
2O(α)(logn) log (ε−1 log Θ) bits for each label.

In their seminal work [3], Abraham et al. presented the first

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST71

compact routing scheme with dlogne bit labels and routing tables of
ε−O(α) logn log (min (Θ, n)) bits. This work emphasized on scale-freedom,
i.e. independence of Θ. Dropping this constraint, their technique easily
yields O(Θ) bit labels. In addition, the authors provide a scale-free name-
independent routing scheme, including the matching lower bounds.

Our work does not quite achieve the bounds of [3], our routing ta-
bles are of size O

`
1
ε

´α
(log Θ)(O(α) + log ∆) and the routing labels require

2αdlog Θe+dlogne bits4. This small overhead allows us to build an all-in-one
routing scheme that not only supports unicasting (Chapter 5.4), but also pro-
vides constant approximations to anycasting (Chapter 5.6) and multicasting
(Chapter 5.5). Furthermore, we present a distributed algorithm to construct
the labeling and routing tables in Chapter 5.7.

5.2 Definitions and Preliminaries

We first define some further terms and state properties of doubling metrics
that will turn out to be handy. We start with the definition of a ρ−net,
which is closely related to maximal independent sets and dominating sets.

Definition 5.3 (ρ−net). A subset U of the node-set V of a graph G = (V,E)
is a ρ−net if each node in V has distance at most ρ to at least one node in
U , and the mutual distance between any two nodes in U is strictly larger than
ρ. Formally, a set U ⊆ V is a ρ−net of G = (V,E) if

∀v ∈ V : ∃u ∈ U : dM(v, u) ≤ ρ and
∀u1, u2 ∈ U : dM(u1, u2) > ρ.

We say that a node u ∈ ρ−net covers the nodes contained in Bu(ρ). Thus,
each node of the network is covered by at least one u ∈ ρ−net. In the sequel,
we denote the nodes of a ρ−net as net-centers of the ρ−net.

Given a constant doubling metric, we know that for every ball Bv(r), it is
possible to cover all nodes in Bv(r) with 2α balls of half the radius. However,
this is only a feasibility statement and does not give an upper bound on the
number of B(r

2
) that may be deployed to cover Bv(r). The following property

gives an upper bound on the number net-centers of r
2
−net a ball Bv(r) may

cover.

Property 5.4 (Sparseness). For x ∈ N0, each ball Bv(2xρ) covers at most
2(1+x)α nodes from an arbitrary ρ−net on the same graph with constant dou-
bling dimension α.

Proof. By recursively applying the definition of the doubling metric, we ob-
serve that it is possible to cover Bv(2xρ) with at most 2(1+x)α balls of radius
ρ
2
. Assume we know such a covering C with |C| ≤ 2(1+x)α.

4Note that even for a huge network of 106 nodes, diameter 104, and α = 4, the routing
labels are still below the size of an IPv6 address and fit in the tiny messages of today’s
sensor nodes.

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST72

In order to see that Bv(2xρ) covers at most 2(1+x)α net-centers U =
{u1, u2, ..., u|U|} from any ρ−net, we first observe that the distance between
any two distinct nodes in U exceeds ρ. Secondly, by the definition of a cover,
each uj ∈ U is covered by at least one ball from the cover C. Because the
balls in C have radius ρ

2
and the distance between any two uj is more than

ρ, any c ∈ C covers at most one uj ∈ U . Thus, |U | ≤ |C| ≤ 2(1+x)α, which
completes the proof.

Along with this upper bound on the number of net-centers covered by a
ball, we can give an upper bound on the number of net-centers of a given
ρ−net that may cover any given node v. In particular, we are interested in
the maximum number of net-centers of a ρ−net that cover a node v, if each
net-center u covers an extended ball Bu(2xρ).

Property 5.5 (Dominance). Given a ρ−net on a α-doubling metric repre-
sented by the graph G = (V,E) where each net-center u covers Bu(2xρ) with
x ∈ N0, then any node v ∈ V is covered by at most 2(x+1)α net-centers from
the ρ−net.

Proof. If v is covered by a net-center u, then u is at most 2xρ away from
v. Therefore, it is sufficient to show that Bv(2xρ) contains at most 2(x+1)α

ρ−net-centers, which follows from Property 5.4.

Corollary 5.6 (Dominance II). Given a ρ−net on a α-doubling metric rep-
resented by the graph G = (V,E) where each net-center u covers Bu(iρ) with
i ∈ R+, i > 1, then any node v ∈ V is covered by at most 22αiα net-centers
from the ρ−net.

5.3 Dominance Net

Due to our minimal assumptions about the nodes’ capabilities (unique ID
and communication with direct neighbors), our routing algorithms need some
means to characterize the network.

We propose to obtain this information through a dominance net, which is
a hierarchic locality-preserving decomposition of the network. In a nutshell,
the dominance net is built of several layers of ρ−nets with exponentially
increasing radius ρ, each of which covers the entire network. In the sequel,
we will show how to build a dominance net with the following properties:

1. The number of layers is at most 1 + dlog Θe, where Θ is the diameter
of the network.5

2. Each node is dominated by at most O(log Θ) nodes.

5Throughout this chapter, log stands for the binary logarithm.

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST73

v

R

a
b

c

d
e

f
g

Figure 5.3: A small dominance net with only three levels. R is the root and
therefore the only net-center of level-2. It covers all nodes of the network.
The net-centers of level-1 are Γ1 = {a, b, R} and Γ0 = {c, d, e, f, g, a, b, R}
for level-0. (Note that some nodes are net-center on several levels.) The
solid circle around each net-center indicates its coverage area, whereas the
dashed circle indicates the extended coverage area. Note that the coverage
area may have arbitrary shape – the circular coverage area is only used for
this schematic representation.

3. The parent-tree induced by the dominance net allows for an unique
distance labeling with label-size O(log Θ) and stretch at most

√
6.

4. Adding routing tables of O(1/ε)α log ∆ log Θ bits to the nodes allows
for a routing scheme with stretch 1 + ε. (∆ is the maximum degree of
any node.)

We assume w.l.o.g. that the smallest distance between any two nodes
is 1, that the diameter of the network is given by Θ, and ϑ = 1 + dlog Θe.
Furthermore, we use G = (V,E) to denote the graph induced by the network,
whose metrization has constant doubling dimension α.

5.3.1 Dominance

For building the dominance net, we construct a hierarchy of ρ−nets on G
with ρ = 2i, where i is chosen from the range {0, 1, 2, 3, ..., ϑ − 1}. In the
following, we call the the (2i)−net the level-i of the hierarchy, and we denote
its net-centers by Γi. Note that on level-(ϑ − 1), a single (arbitrary) node
of the network is elected as net-center. We call this node the root of the
hierarchy. An algorithm to construct these ρ−nets in a distributed manner
is presented in Chapter 5.7.

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST74

R

1s

1p

2p

2s3p

2
1

1

2

R
2

3

1

Figure 5.4: The left picture shows the dominance-tree corresponding to the
dominance-net of Figure 5.3. The tree on the right is the cover-tree of
node v, a tree-representation of v’s label. At depth i, this tree contains
the enumeration-values of the net-centers of level-(ϑ− i− 1) which cover v.
The letter p indicates a primary net-center, s a secondary net-center.

We define the dominance on this ρ−net hierarchy in the following way:
A net-center γi ∈ Γi is dominated by a net-center γ ∈ Γi+1 iff γi ∈ Bγ(2i+1).
Thus, each net-center (except the root) is dominated by at least one net-
center of the next higher level.

5.3.2 Naming Scheme

Given the dominance-net, we name the net-centers in the following way: Each
net-center v except for the root node selects exactly one6 of its dominators to
be its parent P(v). This results in a dominance-tree with depth ϑ−1. Each
parent enumerates its children and informs each of them about the assigned
enumeration value. The naming scheme is defined recursively: The root has
an empty name, while any other net-center obtains its name by appending
its enumeration value to its parents name.

Figure 5.3 shows a sample dominance net with only three levels. The
left picture of Figure 5.4 shows the corresponding dominance-tree with the
assigned enumeration values. The name of a net-center is obtained by walking
from the corresponding node of the dominance-tree towards the root and
concatenating the enumeration values of the visited nodes. E.g. the name
of net-center g is R:1:2 whereas the name of c is R:2:3. The uniqueness
of the names is guaranteed due to the tree structure, where each net-center
is identified through its parent and the enumeration value assigned by the
parent.

Because any net-center may be parent of at most 22α net-centers (Prop-
erty 5.4), the enumeration values can be represented with at most 2α bits.
Thus, the name may grow by 2α bits on each level, which results in a maxi-
mum name size of 2αdlog Θe = O(log Θ) bits for net-centers on level-0.

6For performance reasons, each net-center may choose the closest net-center of the
next higher level.

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST75

5.3.3 Dominance Labeling

Based on the dominance-net and the corresponding naming scheme, each
node v of the graph G assigns itself a label L(v) of size O(log Θ) which
allows for efficient routing, multicasting, anycasting, and distance labeling.
In the remainder of this section, we show the following theorem:

Theorem 5.7 (Compact Labels). The nodes of G can be assigned unique
labels of size O(log Θ) allowing approximate distance queries of stretch

√
6

between any two nodes.

We use an extended dominance net for the labeling, where a net-center
γ ∈ Γi covers all nodes in Bγ(2i+1), cf. Figure 5.3. This extension results in
an overlap of the net-covers, which allows to rule out borderline effects where
two close-by neighbors are not covered by common net-centers. Given this
extended dominance set, each node v determines the net-centers by which
it is covered. Essentially, the label of v contains the name of all net-centers
that cover v.

In order to obtain the desired label size for a node v, we cannot simply
store all names of the covering net-centers: By construction, there are at most
ϑ levels, each of which has at most 22α net-centers covering v (Property 5.5).
From the previous section, we know that the naming for the net-centers uses
at most 2α(ϑ− i−1) bits on level-i, which bounds the maximum label length
to
Pϑ
i=0 22α2α(ϑ− i− 1) = O

`
ϑ2
´

= O
`
log2 Θ

´
. To receive the O(log Θ)

label size, we make use of the following lemma which shows that only partial
net-center names need to be stored for each covering net-center.

Lemma 5.8 (Parental Cover). If a net-center c ∈ Γi covers a node v in the
extended dominance net, then its parent P(c) ∈ Γi+1 covers v as well.

Proof. The net-center c on level-i only covers nodes in Bc(2i+1) in the ex-
tended dominance net. Therefore, dM(v, c) ≤ 2i+1. Because the par-
ent P(c) of c is chosen from the ordinary7 dominance net and P(c) ∈
Γi+1, dM(c,P(c)) ≤ 2i+1. Using the triangle inequality we receive that
dM(v,P(c)) ≤ dM(v, c) + dM(c,P(c)) ≤ 2i+2. The claim follows because
P(c) covers BP(c)(2

i+2) in the extended dominance net, which includes v.

5.3.4 Cover Tree

The label L(v) of a node v is the flat representation of a cover tree that
efficiently describes all net-centers that cover v. This tree is rooted at the
root node. The body of the cover tree is defined recursively: At depth i, the
tree contains the net-centers γ ∈ Γϑ−i−1 that cover v. Each γ in the cover
tree is connected to its parent P(γ). This is possible because we know from

7Ordinary means not in the extended dominance net.

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST76

Lemma 5.8 that if γ covers v, then also P(γ) covers v and therefore must be
present in the cover tree.

Because the name of a net-center is defined as the recursive concate-
nation of the enumeration values of its parents in the dominance net (see
Chapter 5.3.2) and the same parenthood persists in the cover tree, each node
of the cover tree only needs to store the enumeration value of its correspond-
ing net-center. The name of a net-center c in the cover tree can be obtained
by prefixing the enumeration value of c with the name of P(c), which is ob-
tained recursively. Therefore, each node of the cover tree carries at most 2α
bits, see Figure 5.4 for an example. We also know from Property 5.5 that
there are at most 22α net-centers per level covering node v. Because the
depth of the tree is at most ϑ − 1, we deduce that the cover tree holds at
most α22α+1ϑ bits. The serialization of the cover tree to a flat data structure
is straightforward and can be done introducing only two additional bits per
net-center, which leads to a label size of (2α+ 2)22αϑ ∈ O(log Θ) bits.

In the remainder of this discussion, we rely on a slightly enhanced node
labeling where each node v not only stores the net-centers by which it is
covered, but also indicates their type. We distinguish two types of net-centers
depending on their distance to v: A net-center c ∈ Γi is called primary if
v ∈ Bc(2i). Otherwise, the net-center is called secondary, i.e. a secondary
net-center covers v only in the extended dominance net, whereas a primary
net-center covers v already in the ordinary dominance net. This additional
bit per net-center does not significantly increase the size of the cover tree,
which becomes at most (2α + 3)22αϑ = O(log Θ) bits. This proves the first
part of Theorem 5.7.

5.3.5 Distance Approximation

To obtain the distance between two nodes a and b given their labels L(a)
and L(b), we determine the smallest level-i for which a and b have at least
one common net-center. Let ρ = 2i be the ordinary coverage radius of level-i
and C ⊆ Γi the set of common net-centers on level-i.

We immediately get a lower bound on the distance between a and b by
observing that if dM(a, b) ≤ ρ/2, there exists a net-center c ∈ Γi−1 that
covers both a and b. Therefore, dM(a, b) > ρ/2. For the remainder of this
proof, we need to consider the following three cases only:

1. If there is a net-center c ∈ C s.t. c is primary for both a and b,
then dM(a, b) ≤ 2ρ and therefore dM(a, b) ∈ (ρ/2, 2ρ]. This prop-
erty holds due to the triangle inequality: Because a and b are pri-
mary, dM(a, c) ≤ ρ and dM(b, c) ≤ ρ, which implies that dM(a, b) ≤
dM(a, c) + dM(c, b) ≤ 2ρ.

2. If all net-centers c ∈ C are secondary for a and b, dM(a, b) ∈ (ρ, 4ρ].
Again, the upper bound is given by the triangle inequality: dM(a, c) ≤

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST77

2ρ and dM(b, c) ≤ 2ρ, and therefore dM(a, b) ≤ 4ρ. The lower bound
stems from the fact that any primary net-center of a would cover b if
dM(a, b) ≤ ρ, and vice versa.

3. Finally, if there is at least one net-center c ∈ C s.t. c is primary for
either a xor b, then dM(a, b) ∈ (ρ/2, 3ρ]. W.l.o.g. assume that c is
primary for node a. Then dM(a, c) ≤ ρ and dM(c, b) ≤ 2ρ. Therefore,
dM(a, b) ≤ dM(a, c) + dM(c, b) ≤ 3ρ.
Note: If for either a xor b there is no c ∈ C s.t. c is primary for the
node, then dM(a, b) ∈ (ρ, 3ρ]. The increase in the lower bound holds
because no primary net-center of a xor b covers the other node, which
is only possible if dM(a, b) > ρ.

Given the interval (r1, r2] for the possible values of dM(a, b), we set
dM(a, b) =

√
r1r2, the geometric mean of the two bounds. The maximum

factor by which the approximation is off from the actual distance is
p
r2/r1.

Therefore, our labeling scheme suffers from a maximum stretch in the third
case, which is at most

√
6. This concludes the proof of Theorem 5.7.

5.4 Routing

We present a single destination routing algorithm (SDR) which will be used
as a building block for multicasting and anycasting. In SDR, a message needs
to be forwarded from a sender node s to a single target node t. The stretch
SA of a routing algorithm A is defined as SA = maxs,t∈V

dA(s,t)
dM(s,t)

where

dA(s, t) is the length of the path found by the routing algorithm. Clearly,
we desire the stretch to be as small as possible, but this comes at a certain
cost. In our approach, the stretch is coupled with the routing table size,
i.e. lowering the stretch induces bigger routing tables. Our unicast routing
result is summarized in the following theorem, where Θ is the diameter of
the network, and ∆ stands for the maximum degree of a node.

Theorem 5.9. For a fixed ε with 0 < ε ≤ 2, SDR routes messages with
stretch (1 + ε) such that the chosen path by SDR is at most (1 + ε)dM(s, t).
The header size of each message is at most 2αdlog Θe+ dlogne bits, and the
routing tables stored at each node require only O

`
1
ε

´α
(log Θ)(O(α) + log ∆)

bits.

The routing scheme is based on the node labeling introduced in Chap-
ter 5.3.4 and is quite simple: The sender node s extracts from L(t) the name
N of an arbitrary primary net-center γ ∈ Γ0 that covers the target node t.
This name N and the ID of t serve as header information in the message,
which uses at most 2αdlog Θe+ dlogne bits (see Chapter 5.3.2). Remember
that N is a concatenation of the enumeration values of γ and its ancestors

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST78

in the dominance tree. Therefore, N encodes the names of exactly one net-
center (primary or secondary) per level that covers t (Lemma 5.8). Let us
denote these net-centers by {c0, c1, c2, c3, . . . , 2ϑ−2}, where ci is the net-center
on level-i. The forwarding mechanism works as follows: Each node that re-
ceives a message finds the net-center ci on the lowest level for which it has
routing information and forwards the message in this direction. This is re-
peated until the message hits a direct neighbor of t which sends the message
directly to t based on its neighborhood list.

In order to support this forwarding scheme, each node needs to store how
to reach some of the net-centers in its surroundings. For this purpose, each
net-center γ ∈ Γi advertises itself to Bγ(η2i) with η = 8

ε
+ 6. I.e. every

node in this ball stores how to reach γ on an optimal path. In fact, it suffices
to store the neighbor node lying on the optimal path. This corresponds
to the shortest path problem (in a restricted area) and can be obtained by
distributed versions of the Dijkstra algorithm. Thus, the routing table of each
node v stores how to reach any net-center γ ∈ Γi iff dM(v, γ) ≤ η2i. This
can be seen as a mapping from the name of the net-center γ to the neighbor
of v which lies on the shortest path to γ. Before we show in Chapter 5.4.2
that the routing information can be stored efficiently, we prove that SDR
finds good routing paths.

5.4.1 (1 + ε)-Stretch Routing

We first observe that once the message has reached a net-center covering t,
it can be forwarded to a net-center covering t on a lower level:

Lemma 5.10 (Net-Center Hopping). Given a net-center ci ∈ Γi that covers
the destination node t, the routing table of ci contains entries for all net-
centers ci−x ∈ Γi−x covering t. This holds for x ≤ blog2

η−2
2
c.

Proof. Suppose that cj ∈ Γj with j < i is a net-center of t. Due to the
routing table construction, all nodes in Bcj (η2j) have routing table entries
to cj . Using the triangle inequality, we know that dM

`
cj , ci

´
≤ 2j+1 + 2i+1.

Therefore, ci is sure to have a routing table entry if dM
`
cj , ci

´
≤ η2j , which

holds if x = i− j ≤ blog2
η−2

2
c.

The following proof of the routing stretch describes the worst case scenario
where the message visits the net-centers {ci, ci−x, ci−2x, . . . }, where ci is
the net-center towards which s forwards the message, cf. Figure 5.5.

Proof. (Routing Stretch) Let ci be the net-center on the lowest level for which
s has routing information. Following the routing algorithm, the message is
first forwarded to ci, from where it can be forwarded to ci−x with x =
blog2

η−2
2
c (Lemma 5.10). This step is repeated until the message reaches

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST79

s t
dM(s, t)

ci

ci−x

ci−2x

Figure 5.5: Schematic illustration (out of scale) of the worst case scenario
where a message to be sent from s to t first visits ci, then ci−x and so on, until
it reaches a level-0 net-center covering t which directly delivers the message.

a net-center on level-0, which directly delivers the message. Thus, the total
distance dSDR(s, t) of SDR is bounded by

dM
“
s, ci

”
+ dM

“
ci, ci−x

”
+ dM

“
ci−x, ci−2x

”
+ · · ·+ 1

Using the triangle inequality, we obtain that dM
`
s, ci

´
≤ dM(s, t)+2i+1 and

for j ≥ 0 : dM
“
ci−jx, ci−(j+1)x

”
≤ 2 · 2i−jx + 2 · 2i−(j+1)x. Therefore,

dSDR(s, t) ≤ dM(s, t) + 4

∞X
j=0

2i−jx (5.1)

= dM(s, t) + 4

∞X
j=0

2i

2blog2
η−2
2 cj

(5.2)

≤ dM(s, t) + 2i+2
∞X
j=0

„
4

η − 2

«j
(5.3)

≤ dM(s, t) + 2i+2 η − 2

η − 6
(5.4)

We obtain (3) from (2) by observing that 2blog2
η−2
2 cj ≥ 2j log2

η−2
4 =

((η − 2)/4)j . To obtain (4), note that the sum in (3) sums the elements of a
geometric series with factor 4

η−2
= ε

2+ε
< 1.

Because s does not have a routing table entry for cj with j < i, we deduce
that dM(s, t) > (η − 2)2i−1. This holds because dM

`
ci−1, t

´
≤ 2 · 2i−1 and

ci−1 advertises itself to Bci−1(η2i−1). Therefore, s has a routing entry to
ci−1 if dM(s, t) ≤ (η − 2)2i−1.

Putting together the two results, we obtain that the routing stretch of
SDR is

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST80

SSDR ≤ dSDR(s, t)

dM(s, t)
≤ 1 +

2i+2 η−2
η−6

2i−1(η − 2)

= 1 +
8

η − 6
= 1 + ε.

This constitutes the proof for the routing stretch statement in Theo-
rem 5.9.

Throughout the proof, we assumed that the message visits the net-centers
{ci, ci−x, ci−2x, . . . }, which is the worst case scenario. A considerable per-
formance boost can be achieved in the average case if the routing algorithm
tests in each step for a closer net-center. The key idea is that while the
message is being routed towards cj , it tests after each hop whether the cur-
rent node can route towards a closer net-center ck with k < j. If this is the
case, the message immediately routes towards ck. This produces a shortcut
towards t, reducing the routing path and therefore the stretch.

5.4.2 Compact Tables

The construction of the routing table is similar to the cover tree presented
in Chapter 5.3.4 with the main difference that each net-center γ ∈ Γi covers
an area which depends on ε, namely Bγ((8

ε
+ 6)2i). Because of this mutable

coverage radius, we need to restate Lemma 5.8:

Lemma 5.11 (Parental Cover II). If a node v has routing information about
net-center γ ∈ Γi, then v also has a routing entry to P(γ) unless γ is the
root node.

Proof. Node v has routing information about γ ∈ Γi iff v ∈ Bγ(η2i) with
η = 8

ε
+ 6. Because dM(γ,P(γ)) ≤ 2i+1 and dM(γ, v) ≤ η2i, dM(v,P(γ)) ≤

(η+ 2)2i using the triangle inequality. Therefore, it is sufficient to show that
(η + 2)2i ≤ η2i+1 such that v ∈ BP(γ)(η2i+1). The inequality holds because
η = 8

ε
+ 6 ≥ 2.

Using the same arguments as in Chapter 5.3.4, we can show that all net-
centers for which a node v needs to store routing information can be be stored
in a tree, where each tree node corresponds to one net-center. Each node of
the tree only holds the enumeration value of the corresponding net-center γ
and the routing information on how to reach γ. Recall that the enumeration
value fits in 2α bits and the routing information is the neighbor node which
lies on the optimal path between v and the corresponding net-center. Thus,
the routing information uses at most log ∆ bits, where ∆ is the maximum
degree of a node.

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST81

Each node v needs to keep routing information for at most 22α
`

8
ε

+ 6
´α

net-centers per level (Corollary 5.6). Because there are at most ϑ levels, the
tree has at most 22α

`
8
ε

+ 6
´α
ϑ nodes, each of which needs to store 2α+log2 ∆

bits. We have already noted that such a tree can be stored in a flat data
structure adding only two bits per node, which results in a total routing table
size of (2α+ log2 ∆ + 2)22α

`
8
ε

+ 6
´α
ϑ = O

`
1
ε

´α
(log Θ)(O(α) + log ∆) bits.

This concludes the proof of Theorem 5.9.

5.5 Multicasting

We now have developed all tools that allow for efficient multicasting from a
sender node s to a set U of receivers. In a nutshell, the sender s approximates
a minimum spanning tree (MST) on the set s∪U using Kruskal’s algorithm
and then routes the message along this tree towards all receivers. Note that
in contrast to the centralized multicasting presented in [95], our approach is
distributed. We show the following result:

Theorem 5.12. Consider a network G = (V,E) on which a dominance net
with the associated labeling and routing tables was created. Then, any sender
node s ∈ V can multicast messages to any set U ⊂ V with constant stretch.
The cost associated with the multicasting is at most 12(1+ε) times the cost of
an optimal multicasting algorithm, which knows the entire network topology.

Proof. We need to show that the path along the MST approximation is at
most 12(1 + ε) longer than the optimal path, which is given by a minimum
Steiner tree (MStT) on the set s ∪ U and the remaining nodes as Steiner
points. The stretch is composed of three parts: First, a MST on s ∪ U is a
2-approximation of the corresponding MStT. This result was shown by Kou
et al. in [54]. The (1+ ε) part is caused by the SDR routing scheme, which is
responsible to forward the message along the tree. Lastly, the construction of
the MST is based on the stretch-

√
6 distance labeling. As a result, Kruskal’s

algorithm may not choose the shortest, but up to a factor 6 longer edges in
each step, which results in a MST approximation at most 6 times longer than
the MST.

5.6 Anycast

As for the special case of anycasting, where a message has to be routed
to exactly one node of a given node set U , we provide a constant stretch
algorithm to deliver the message:

Theorem 5.13. The node labeling from Chapter 5.3.4 and SDR from Chap-
ter 5.4 allow for a 6(1 + ε)-approximation to anycast.

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST82

Proof. Based on the distance labeling, pick the node u ∈ U which seems
closest to the sender node s and send the message to u. Because of the
stretch of the distance labeling, this approach may pick a receiver that is up
to 6 times further away from s than the optimal receiver. The (1 + ε) factor
stems from the SDR routing scheme.

5.7 Distributed Dominance Net Construction

In this last section, we describe an efficient distributed algorithm to build
the ρ−nets that constitute the dominance net. Recall from Chapter 5.3.1
that the dominance net consists of ϑ ρ−nets with exponentially increasing ρ
chosen from {1, 2, 4, ..., 2ϑ−1}.

To start, we would like to point out that a centralized algorithm to build
a ρ−net on G = (V,E) is straightforward: Greedily pick an arbitrary v ∈ V ,
add v to Γ and remove all nodes in Bv(ρ) from V . Repeat until V is the
empty set. By construction, the distance between any two net-centers is
longer than ρ and each node v ∈ V is covered by at least one net-center.

For our distributed algorithm, we exploit the fact that a ρ−net is a max-
imal independent set (MIS) for the ρ metric closure8 Gρ = (V,Eρ). This
immediately leads to a simple distributed algorithm to create a ρ−net: cre-
ate a ρ metric closure where each node v ∈ V has all nodes in Bv(ρ) as
direct neighbors. Then, run a distributed MIS algorithm on the closure and
pick the nodes in the MIS to be the net-centers of the ρ−net. There exists
a broad assortment of distributed MIS algorithms, e.g. there is an elegant
randomized algorithm with expected running time in O(logn) by Luby [69].
More recently, Kuhn et al. [57] described a deterministic MIS construction
for bounded independence graphs with running time O(log ∆ log∗ n).

The above algorithm is realistic for small values of ρ. However, when
ρ approaches Θ, the nodes tend to have huge neighborhoods, consisting of
nearly all other nodes of the network. This may quickly exceed the memory
capabilities of simple network nodes, especially when considering large net-
works. To overcome this issue, we present not only a relatively fast, but also
memory conservative algorithm to construct the ρ−net hierarchy.

5.7.1 Sequential ρ−nets

Algorithm 5.1 describes in high-level pseudocode the steps each node v of
the network performs in order to create the dominance nets. At the end of
the algorithm, each node knows for which ρ−nets it is a net-center, and it
already holds the complete routing table for the SDR routing scheme pre-
sented in Chapter 5.4. In a nutshell, the algorithm is recursive and performs
the following two steps to build the ρ−net of level-i.

8The n metric closure of a graph G = (V,E) is the graph Gn = (V,En) with
En = {(u, v)|u, v ∈ V ∧ u 6= v ∧ dM(u, v) ≤ n}

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST83

Algorithm 5.1: Dominance Net (Code for node v)

state = active1

Main()2

N = nodes in Bv(1)3

Build MIS with neighbor set N4

if v /∈ MIS then5

state = passive6

else7

Inform Bv(1) v is a net-center of level-08

Add routing entries to v in Bv(η) η = 4
ε + 39

JoinMIS(1)10

end11

JoinMIS(i)12

ρ = 2i13

N = active nodes at most ρ away14

Build MIS with neighbor set N15

if v /∈ MIS then16

state = passive17

v is not covered if @ net-center u of level-i s.t. v ∈ Bu(ρ)

while ∃w ∈ Bv(ρ2) s.t. w not covered do18

P = arbitrary uncovered node in Bv(ρ2)19

Send EXC(i) to P and wait for answer20

end21

Send ACK(i) to N22

else23

Inform Bv(ρ) v is a net-center of level-i24

Add routing entries to v in Bv(ηρ)25

Collect ACK(i) from all neighbors N26

JoinMIS(i+ 1)27

end28

ReceiveMessage(EXC(i) from u)29

state = excited, ρ = 2i30

Add temporary routing entries to v in Bv(ρ)31

N = excited nodes at most ρ away32

Build MIS with neighbor set N33

if v ∈ MIS then34

state = active35

Inform Bv(ρ) v is a net-center of level-i36

Add/validate routing entries to v in Bv(ηρ)37

JoinMIS(i+ 1)38

else39

state = passive40

Remove temporary routing entries to v in Bv(ρ)41

end42

Send ACK(state) to u43

1. Approximate a ρ−net given the ρ
2
−net, i.e. build a MIS on the ρ

metric closure of Γi−1, the independent nodes join Γi. Note that this

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST84

ρ
a bc

ρ/2

Figure 5.6: A MIS on the ρ metric closure on the net-centers of a ρ
2
−net

does not necessarily cover all nodes of the network: Suppose that the ρ
2
−net

consists of {a, b, c}. One possible MIS on these 3 nodes is to pick a, which
covers b and c, but not the shaded areas. Note that coverage areas may have
arbitrary shape and need not be circular, as drawn in this example.

MIS only guarantees that the net-centers of the ρ
2
−net are covered,

but it does not ensure coverage of all nodes of the network.

2. Add additional net-centers to Γi until all nodes v ∈ V are covered by
at least one γ ∈ Γi.

We obtain the desired memory relaxation by building the ρ−nets se-
quentially on top of each other. Initially, all nodes participate in a MIS
construction on a 1 metric closure of the network, which results in the 1−net
(Lines 2–4). Then, for any level-i, the ρ metric closure is constructed only
with the net-centers Γi−1 and induces at most 22α neighbors per node, inde-
pendent of the network size (Property 5.4). The downside of this approach is
a longer running time and that the MIS on the net-centers of level-(i−1) does
not necessarily cover all nodes of the network, see Figure 5.6 for an example.
This requires a second phase, where additional net-centers are added until
full coverage is obtained.

The recursive call to join the next higher MIS is handled on the Lines 13–
15. Note that only nodes that are net-centers on level-(i − 1) participate in
the MIS construction for level-i. If node v does not make it into the MIS
of level-i, it becomes passive (Line 17) and is responsible that all nodes in
Bv(2i−1) are covered (Lines 18–22). This covering algorithm works in several
rounds, where v participates as long as Bv(2i−1) contains uncovered nodes.
In each round, each net-center whose B(2i−1) contains uncovered nodes picks
an uncovered node and sets its state to excited by sending an EXC message.
The set of excited nodes build a MIS on their ρ metric closure (Lines 32–
33), and the independent excited nodes join the (2i)−net (Lines 35–38).
The temporary routing entries added on Line 31 and, if the node does not
make it into the MIS, removed on Line 41 enable the MIS algorithm to

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST85

exchange messages on the optimal path between any two neighbors in the
corresponding metric closure.

For simplicity, we did not address the following issues in the pseudocode
of Algorithm 5.1.

• If a node v receives several EXC requests in the same round, it executes
Lines 30–42 only once, but finally acknowledges on Line 43 to all nodes
that sent the request.

• The net-centers need to obtain their enumeration values (see Chap-
ter 5.3.2) in order to construct their labels. Because these labels are
incomplete until all ρ−nets are constructed, the routing table entries
(constructed on Lines 9, 25, 31, 37) are built using a partial labeling.

• The algorithm requires a rough synchronization between consecutive
MIS constructions, such that a MIS construction only starts when the
previous one finished. This can be obtained during the construction of
the metric closure for the next MIS (Lines 14 and 32), where any node
can ask the others to wait. To support this synchronization, each node
that joined the ρ−net waits until all of its neighbors (in the metric
closure) have terminated the coverage procedure (Line 26).

• Whenever N = ∅ on Line 14, node v trivially joins the MIS and tests
whether it covers all nodes of the network. If this is the case, v becomes
the root of the network and stops the recursive call to JoinMIS().

• Before the first MIS can be constructed, the nodes need to determine
the lowest cost associated with any edge of the network, as to determine
the scaling factor that scales this cost to 1.

Theorem 5.14. Algorithm 5.1 constructs a dominance net as described in
Chapter 5.3.1. Furthermore, the algorithm requires to build a total of at most
ϑ(1 + 23α) = O(log Θ) MIS, which gives an upper bound on its running time.

Proof. We show the first property by induction on the levels: Initially, all
nodes participate in a MIS election on the 1-metric-closure, which corre-
sponds to building a MIS on the network where only the edges with cost 1
are considered. By construction, the resulting MIS is a 1−net.

Given the points Γi−1 of a 2i−1−net, the algorithm first approximates Γi
by a MIS on the 2i metric closure of Γi. By construction, a, b ∈ Γi =⇒
dM(a, b) > 2i. Because only nodes that are not covered by Γi may become
excited (Line 19), the addition of any excited node to Γi does not break
this property. Furthermore, the excited nodes added to Γi in one round are
independent with respect to the 2i metric closure on the set of excited nodes
(Lines 32–34). Therefore, the minimum distance between net-centers of level-
i is preserved. Because every γ ∈ Γi−1 repeats the completion process until

CHAPTER 5. COMPACT ROUTING WITH ANY- AND MULTICAST86

all nodes in Bγ(2i−1) are covered (Line 18), Γi finally covers all nodes and is
a valid 2i−net.

As for the running time, we show that the algorithm may have to build at
most 1 + 23α MIS per level: The first MIS is built on Line 15, the remaining
ones on Line 33. Therefore, we need to show that a node v may execute
the while-loop of Line 18 at most 23α times until all nodes in Bv(2i−1) are
covered. We first note that an excited node P (Line 19) may not join the
MIS if another excited node Q with dM(P,Q) ≤ 2i joins. Therefore, any
excited node Q that may interfere with P must lie in Bv(3 · 2i−1), and the
net-center that excited Q in Bv(2i+1). By Property 5.5, there are at most
23α net-centers of level-i−1 in Bv(2i+1) and therefore at most 23α−1 excited
nodes that may interfere with P . Just looking at P , we know that either P
or one of its interfering nodes is selected in each round of the while loop.
Thus, after at most 23α − 1 rounds, P can join the MIS, which shows that
at most 1 + 23α MIS are necessary per level. Because there are at most ϑ
levels, the number of MIS to construct is bounded by ϑ(1 + 23α).

6
Conclusion

In the preceding chapters we have described several routing protocols for
wireless ad hoc networks. We started with a location service for mobile
networks which is a prerequisite for any geographic routing approach when
the nodes may change their position over time. The described protocol is
novel in the sense that we can show that messages are successfully delivered
even if the destination node is constantly moving. The formalism introduced
to prove this property, however, is based on rather strong model assumptions
such as a dense node distribution, reliable communication, and the knowledge
of the position of lakes. In fact, by abstracting from the underlying routing
layer that forwards a message to a given position, we have hidden one of the
most difficult tasks in dynamic networks. For example, consider Figure 6.1
which depicts two networks A and B that are connected through two edges
e1 and e2 and assume that a message needs to be routed from a node within
A to a node within B. In a worst case scenario, the two components are
always connected either by e1 or e2, but when the message is at a1, e1 is not

B

e
1

a
1

b
1

A

e
2 b

2
a
2

Figure 6.1: In a dynamic scenario, the two links e1 and e2 may come and go
in a worst case fashion preventing communication between the two network
components A and B.

CHAPTER 6. CONCLUSION 88

available. Similarly, if the message is at a2, the connection to b2 is broken.
Thus, even though the two networks are constantly connected, it is hard to
route the message to its destination. Consequently, any protocol that wishes
to provably ensure message delivery either needs to be able to detect and
handle such situations or it needs to be analyzed under a network model
that prohibits such dynamic scenarios. But this raises the question on what
model should be chosen such that the model is simple enough to analyze
the protocols as well as realistic enough to represent the most important
properties of wireless networks. Of course, the construction of simplifying
models is a tightrope walk and may not be possible at all without losing some
important aspects. For instance, the UDG connectivity model abstracts from
temporary link failures and the non-circular transmission range of physical
radios.

Despite of the theoretical nature of our results and their analysis under
somewhat strong models, we believe them to be a valuable starting point for
further discussions and we hope that they may lay the basis for protocols
tailored to more aspects of wireless networks, analyzed on more realistic
models. For instance, many geometric routing algorithm for wireless ad hoc
networks were studied solely for 2-dimensional networks. In Chapter 3, we
described several randomized recovery techniques to escape local minima
in 3-dimensional networks, which are by far more complex to handle than
in the 2-dimensional counterparts. Even though the fine grained analysis
and the detection of the face was examined only under the simplified UBG
connectivity model, the results hold also for general graphs. Similarly, we
showed that any CUDG has a greedy embedding with constant stretch into
O
`
log2 n

´
dimensions. Without the simplified network model, our approach

is still valid, but requires O
`
log3 n

´
dimensions for the embedding and may

experience a stretch in O(logn). The compact routing result in Chapter 5
was based on a networking model that seems to match the properties of a
wireless network better than the circular transmission radii of a UDG. But
the construction of the labels and the routing tables suffers from the same
problem as the construction of our greedy embedding: the labels cannot be
computed strictly locally and they hardly support network dynamics. Thus,
there are still many open questions which we hope to see resolved in the
coming years.

Part II
Application Design

7
Simulation

The application development for distributed systems introduces new chal-
lenges compared to the traditional application design. Most importantly,
the actors of a distributed setup often need some means of coordination to
collaborate on a given task. Depending on the quality of the communication
medium, a broad range of potential failures needs to be handled to guaran-
tee a smooth operation, increasing the complexity of this coordination. Even
in the absence of such low-level failures, however, the design of distributed
applications remains challenging as it is often hard to foresee the interac-
tion patterns between a (possibly large) set of concurrently executing actors.
While hand-crafted toy examples give a basic insight into the application
behavior, they are limited to small systems and tend to be cumbersome.
Computer aided simulations can help to quickly grasp the functioning of
a given protocol also in large settings, offering the possibility to verify the
desired behavior under a variety of operational conditions.

In this thesis, we consider wireless sensor networks which can be seen as
large distributed systems: the sensor nodes collaborate to exchange messages
and perform the assigned surveillance tasks. For the design and validation
of protocols for such sensor networks, we have developed sinalgo, a simula-
tor for network algorithms that not only supports the development process,
but is also suitable to run large scale simulations. We have used a prelim-
inary version of sinalgo for the simulation of the MLS algorithm described
in Chapter 2.9. The simulations of the random walks on the dual graph in
Chapter 3.7 and the greedy embedding in Chapter 4.4 have been performed
with the final version available on sourceforge [39]. In all of our projects,
the customizable visualization of sinalgo was helpful to understand and to
perfect the algorithms before launching large scale batch simulations.

CHAPTER 7. SIMULATION 91

7.1 sinalgo

sinalgo offers a node-centric view of the network where each node may send a
message to a given neighbor or to all its neighbors, react to received messages,
and set timers to schedule an action in the future. Similarly to real sensor
nodes, our software nodes are passive by default and act only upon receiving a
message or when one of their timers fires. Therefore, the core task of sinalgo
is to schedule message deliveries, fire timers, and advance the simulation
time. For more complex simulation scenarios, additional simulation models
can be hooked up as needed. For instance, the simulation abstracts from
the hardware layer and provides no real MAC layer. To simulate message
loss sinalgo provides several plug-ins to drop messages randomly or based
on a interference models such as the SINR model. The connectivity models
define when two nodes are in communication range, UDG or QUDG are
the most prominent examples. Finally, mobility models describe how nodes
change their position over time, influencing indirectly the connectivity and
interferences models.

To allow for the greatest possible flexibility, each node holds its own
instance of a mobility, connectivity, and interference model. Thus, sinalgo
can simulate networks consisting of nodes with heterogeneous properties.
In addition to the described models, each node also implements a radio
reliability model which may drop messages ad libitum. This model can be
useful to test an algorithm under the conditions of a lossy network without
requiring the computational overhead of a complete interference model.

The implementation of a given network protocol in sinalgo consists of the
following two steps: First, the properties of the network need to be defined
by setting the appropriate models for the connectivity, mobility, and the in-
terference. Furthermore, the desired amount of nodes must be deployed in
the simulation area according to a given placement model. As sinalgo already
ships with an implementation of the most common models, this initial step
should not require much work. In the second step, the behavior of the nodes
must be specified by implementing their reaction to received messages and
fired timers. In addition, it must be defined how the progress of the algorithm
is visualized and how the user can interact with an ongoing simulation. As
for the visualization, nodes can be drawn with user defined shapes and colors
and may also display text. Figure 7.1 shows a screen shot of sinalgo while
developing the routing algorithms on 3D networks of Chapter 3. This visual-
ization tool not only enabled us to understand in more detail the construction
of the dual graph, but also facilitated the implementation and debugging of
the simulation. To simplify user interaction at runtime, each node offers a
context sensitive pop-up menu through which arbitrary actions on the node
may be initiated. Furthermore, the application code can be modified even
at run-time via hot-code replacement as sinalgo is written entirely in Java.

CHAPTER 7. SIMULATION 92

Figure 7.1: sinalgo in action showing the dual graph (light cubes) of a 3D
network (bold lines). The customizable visualization can be used to display
complex constructs while the GUI’s rotation and zoom functions help to
see the third dimension. The right panel contains the simulation control,
custom buttons for additional operations and logging output; it also shows
which part of the entire network is currently being displayed.

CHAPTER 7. SIMULATION 93

Algorithm 7.1: Synchronous simulation round

Increment Time The time advances by 1 unit1

PreRound Simulation specific initializations for this round2

Mobility Move each node according to its mobility model3

Connectivity Recompute the connections4

Interference Drop messages that experience too much interference5

On each node:6

Receive messages7

Handle fired timers8

PostRound Simulation specific cleanup code for this round9

These two tools turned out to be convenient for testing special cases and
different versions of an algorithm.

7.2 Simulation modes

The sinalgo simulator offers two simulation modes: a synchronous round
based simulation and an asynchronous event driven simulation. In the lat-
ter, each event (a message reception or the firing of a timer) executes at a well
defined time. sinalgo only needs to temporally order these events and execute
them sequentially. Whereas an asynchronous simulation mode reflects well
the asynchronous nature of wireless networks, it also breaks up the algorithm
in its atomic pieces, making it harder to grasp the overall picture. For this
reason, algorithms are often designed and analyzed in a round based model,
where the algorithm advances in rounds. In this model, the time advances
in discrete steps from round to round and the nodes perform their actions
synchronously during these rounds. I.e. a message sent in round i arrives at
the earliest in round i+ 1. Algorithm 7.1 shows the actions sinalgo performs
in each round: After initializing the round in Line 2, the mobility and con-
nectivity models move and reconnect the nodes and the interference model
drops messages if necessary (Lines 3–5). After this step, sinalgo iterates over
all nodes to signal message receptions and the firing of timers (Lines 7,8).
Please note that the order in which the nodes are processed is not important
as messages sent within this round will arrive at the earliest in the following
round. Finally, the round is concluded on Line 9 to perform cleanup and
logging operations specific to the simulation.

7.3 Mobility

The simulation of mobile nodes is quite involved if continuous paths should
be analyzed, especially in combination with interference and connectivity

CHAPTER 7. SIMULATION 94

models which are based on the geometry of the network. Therefore, sinalgo
offers only a simplified node mobility where the nodes move in discrete steps.
In the synchronous simulation mode, the nodes are moved according to their
mobility model at the beginning of each round (Line 3 of Algorithm 7.1)
such that the following connectivity check can reestablish connections. If
necessary, a finer resolution of the moved paths can be obtained by advancing
the time in each round by a smaller amount (Line 1). Consequently, messages
need more rounds until they are delivered and are therefore tested several
times for interference and dropped connections. For most simulations of
mobile networks, however, the default resolution is enough, as messages may
also be dropped through the reliability model, simulating message loss due
to arbitrary effects. In contrast to the synchronous mode, sinalgo does not
support mobility in the asynchronous simulation mode. A discrete mobility
could be implemented, but we did not want to break the purely event driven
scheme.

The simulation of mobile networks is computationally involved as each
node constantly needs to validate its connections and establish links to nodes
that have moved into its communication range (Line 4). For general connec-
tivity models, all node pairs need to be compared, costing O

`
n2
´

operations,
where n is the number of nodes. But as we mostly consider geometric net-
works where the connectivity depends on the distance between nodes, we
can bring down this overhead to O(n · d), where d is the expected node de-
gree. To achieve this performance gain, sinalgo stores the nodes according
to their position such that range queries can be answered efficiently. For 2D
networks, the deployment area is subdivided into a quadratic grid with a cell
side length of rmax, the maximum transmission range of the nodes. For each
of these grid cells, sinalgo remembers which nodes are located within the cell.
Therefore, all neighbors of a node located in a cell c are either in c or one of
the 8 cells adjacent to c. Similarly, 3D networks are subdivided into cubic
grids of side length rmax such that a set of potential neighbors can be found
efficiently.

7.4 Discussion

sinalgo is a simulation tool for testing and validating wireless network pro-
tocols. It is written in Java and ships with a set of common operational
modes such that the initial overhead to prototype a protocol is low. For a
basic simulation, it is sufficient to implement only the behavior of the nodes
before gradually fine tuning the simulation by customizing the simulation
models, the run-time environment, or the visualization. To obtain an effi-
cient framework, sinalgo operates on a message passing model that abstracts
from the physical properties of hardware devices. As a result, sinalgo only
provides limited support for the simulation of MAC layers. For simulations

CHAPTER 7. SIMULATION 95

that should consider the entire networking stack, the ns-2 simulator for wire-
less networks [74] is a widely used option. In contrast to sinalgo, however,
ns-2 focuses on the simulation and provides less support for the development
process, e.g. there is only a trace-based visualization that displays the in-
teractions after the simulation finished. The simulation tool most similar to
sinalgo is Shawn [55] which also abstracts from the networking layer to focus
on the protocol implementation. Shawn is written in C++ and outclasses
sinalgo in terms of performance when simulating huge networks. On the
contrary, sinalgo offers more visualization options and interaction with an
ongoing simulation.

Independent of the simulation tool in use, we need to keep in mind that no
simulation replaces a real experiment, especially in wireless networks where
the operational conditions often change over time. In addition, it is often
hard to predict how good simulation results match reality, especially if the
simulation was based on simplistic models. For instance, sinalgo offers the
convenient round based simulation mode where nodes advance synchronously
to perform their actions in parallel. This viewpoint helps to describe the al-
gorithms in a simpler form hiding the asynchronous nature of distributed
hardware. However, it raises the question on how such a synchronous proto-
col can be implemented on hardware after a successful simulation. In fact,
the transition from a simulation prototype to the hardware implementation
is challenging as any adaptation of the code must be verified to not break
the overall behavior. The TOSSIM emulator [62] for TinyOS applications
avoids this problem by using the same code base for the simulation as well
as for the device. To generate the simulation, TOSSIM requires a special
compilation procedure which redirects hardware calls to the simulation core
of TOSSIM which then simulates the corresponding interrupts to keep the
system running. Whereas this tool is great to emulate code prior to deploy-
ment, it requires the protocols to be written in nesC and the application
must already be tailored to a specific hardware platform. But both, the C
language and the platform dependence are highly undesirable for prototyp-
ing and testing new protocols, rendering high level simulation tools such as
sinalgo attractive.

To facilitate the transition between a simulation and the implementa-
tion for the hardware, we have studied how to port synchronous protocols to
asynchronous hardware such as our sensor nodes. In fact, the synchronous
approach not only facilitates simulations, but would also be handy for the
device software as the different steps of the protocols are automatically sep-
arated and synchronized, giving the execution an implicit structure. We
present first steps towards this goal in the remaining chapters of this thesis.
In particular, we propose a novel programming paradigm that challenges the
traditional asynchronous applications with a synchronized execution envi-
ronment where the nodes perform their operations in a series of synchronous

CHAPTER 7. SIMULATION 96

time slots. Even though our system does not work exactly as the synchronous
simulation mode described in Algorithm 7.1, we believe it to be powerful
enough to ease the implementation of protocols that were initially designed
in a synchronous context.

8
Slotted Programming

After the design and simulation of novel protocols for wireless networks,
they need to be implemented on the hardware devices. This final step often
requires a major redesign of the program code used for the simulation, as
hardware specific constraints need to be taken into account. In this chapter,
we focus on the software development for wireless sensor networks and present
a novel programming style to facilitate this rather involved task.

In general, software for distributed systems tends to be “heavy”, con-
sisting of several components and layers that interact with each other in a
non-trivial way to cope with various transient or permanent failures and most
likely also some kind of dynamics. The icing on the cake is the whole pro-
cess of software development, e.g. issues such as debugging between remote
nodes. But programming embedded systems is no picnic either. Embedded
systems ask for “light” software that does not waste resources such as mem-
ory, processing power, or energy. In addition, the systems often need to meet
tight run-time requirements and guarantee a predictable execution. Again
the software development cycle is tedious, as the programmer does not have
direct access to the hardware, but must go through cross-compilation and
cross-debugging.

Wireless sensor networks clearly inherit all the problems from networked
distributed systems as well as embedded systems. To make matters worse,
running “heavy” distributed systems software on “light” embedded systems
hardware sounds like an insurmountable contradiction at first. However,
sensor networks can be done. While early deployments have suffered in terms
of bad reliability, high energy consumption, or bad scalability, more recent
developments overcome these issues with novel algorithms such as energy-
efficient MAC protocols [51, 90, 100] which can be tuned to suit a given
application best.

The work to build such energy efficient protocols and applications shall
not be underestimated. Current energy efficient implementations need to be

CHAPTER 8. SLOTTED PROGRAMMING 98

optimized across the entire application. This comes at the price of a non-
modular design. Adding further functionality may require drastic changes in
code, and even small adaptations to parameters or changes of the environ-
ment may trigger a serious investment in re-testing.

Not surprisingly, there is a trend towards simplifying and standardiz-
ing the programming environment. Some proposals abandon the idea of
energy efficient hardware altogether, and instead advocate a Linux or Java
VM framework [15, 49, 85]. Some other proposals [51] envision an IP layer
hiding a general purpose low-power networking stack. Clearly, all these ef-
forts are fine for rapid prototyping. However, as we will argue later in this
chapter, these abstractions are not suitable for real-world implementations.
For instance, the energy efficiency of many applications could be improved
by an order of magnitude when writing special purpose communication pro-
tocols. In addition, the abstractions hide the complexity of the underlying
implementation. This is dangerous especially for time sensitive tasks, where
hardware devices such as the CPU or the radio must be available exactly at
a given time.

In this chapter we outline the slotted programming paradigm which sup-
ports both modularity and energy-efficiency. This programming approach is
not orthogonal to the current trend of providing high level abstractions. It
rather extends the abstractions with a predictable execution scheme, giving
back full control to the application developer. Our concept is simple: We
consider the different tasks of a sensor node such as clock synchronization,
routing, topology control, sensing, or code updates. Each of these tasks is
given time slots during which it performs its operations in parallel on all
nodes. The time slots need to be assigned in a non-overlapping way such
that at any time, at most one task executes its code. If a job has not ter-
minated at the end of its assigned time slot, it must be suspended and may
only continue its execution during its next time slot. Thus, tasks do not
interfere with each other, and they do not interrupt each other. Therefore,
each task can be implemented as an independent module which can be ex-
changed easily. Indeed, alternative modules for the same task can be tested
and compared within the same application. Moreover, different modules can
communicate with incompatible packet formats, e.g. IPv6 packets vs. AM-
packets, as they will not disturb each other. In fact, we will demonstrate
in Chapter 10 that it is even possible to use the radio in radically differ-
ent ways, e.g. packets vs “waves”. All in all, we believe that our approach
fosters modular programming where modules can be exchanged easily. In
addition, we show that also modular applications allow for highly optimized
and energy efficient code. For instance, our clock synchronization described
in Chapter 9 turns on the radio only for 0.06% of the time even though it
receives and sends one message every 32 seconds.

CHAPTER 8. SLOTTED PROGRAMMING 99

8.1 Related Work

The application development for sensor networks combines techniques from
embedded systems, networking, and also real time systems. To support this
delicate task, dedicated operating systems were built already in the early
days. The most prominent OS is TinyOS [92], which was a purely event
driven framework supporting many hardware platforms. Over time, TinyOS
was extended with new features to ease application development and reduce
programming errors. Most recently, a safe type-system [23] and support for
multi-threaded programming [71] were added.

However, the quest for an optimal programming environment was not
only led by TinyOS. For instance, the MANTIS OS [1] supported preemp-
tive multi-threading well before TinyOS did, and Contiki [28] is based on
lightweight protothreads [29]. The notion of virtual memory was introduced
in the t-kernel [46] to protect the operating system from being corrupted by
the user application, and SOS [48] supports the dynamic loading of modules,
avoiding the static linking at compile time. All operating systems above are
based on the low level C programming language or a dialect thereof, but
there have been efforts to support Java [15, 49, 85], requiring the nodes to
run a virtual machine to execute the byte-code.

Besides these low-level OS developments, explicit support for energy
aware programming was proposed. Whereas Nano-RK [35] is a real-time
operating system with static resource allocation, the pixie OS [67] allows
for a dynamic resource allocation at runtime, predicting the energy draw of
the operations in an online fashion. As the radio is among the primary en-
ergy consumers, much work has also been put into building energy efficient
communication protocols. In asynchronous low power listening schemes such
as WiseMAC [32] or B-MAC [79], each node periodically samples the radio
for packet announcements. Whenever a node wishes to send a message, it
first sends a rather long preamble to announce the forthcoming packet. X-
MAC [17], SCP-MAC [100], RI-MAC [90] and [51] outline several approaches
to reduce this overhead. TP-MAC [44] is probably the most related work to
our signaling described in Chapter 10. The authors of [44] propose a pipelined
wake-up schedule but do not consider interference. We extend this idea and
provide an interference resilient signaling which we also tested on real hard-
ware. To the best of our knowledge, this work is the first to describe and
implement a fully functional wake-up signaling that is resilient to interfer-
ence.

To reduce the learning curve and simplify the development of sensor
network applications, TinyOS and other operating systems support multi-
threaded programs. Furthermore, low power listening protocols can be used
to provide a basic MAC layer to the application developer. In fact, Hui and
Culler [51] envision a IPv6 stack on top of such a MAC layer to hide the
underlying networking to the application developer. We embrace this trend

CHAPTER 8. SLOTTED PROGRAMMING 100

towards a standardized communication framework and believe it to be per-
fect for prototyping sensor network applications. However, when it comes
to the development of real-world applications, we would like to express our
reservation to this approach for several reasons. Firstly, the execution of
a multi-threaded application is hard to predict. As a result, the develop-
ment and also debugging is much more involved as some errors may occur
only sporadically under a specific preemption. Similarly, the introduction of
a networking abstraction such as a low power listening MAC introduces a
rather unpredictable use of the CPU and the radio device, possibly delay-
ing other tasks. Thus, the developer does not have complete control over
the application, which makes it hard to ensure a bug-free program. Last
but not least, the resulting applications are by far not as energy efficient
as they could be. For instance, the task of collecting a message from ev-
ery node once a minute causes a duty-cycle of 0.65% with the IPv6 network
stack of [51]. In Dozer [18], a data gathering protocol with a dedicated MAC
layer, a message was collected every 30 seconds. The duty-cycle for this
task was reported to be only 0.167%, reducing the overhead by a factor of
8. However, this improvement comes at the price of a higher latency and
a completely asynchronous application that is hard to maintain. For com-
parison, our clock synchronization algorithm described in Chapter 9 receives
and sends one message every 32 seconds and requires an average duty-cycle
of only 0.06%. Of course, these numbers cannot be compared directly, but
they indicate that there is still a lot of potential for saving energy. With the
slotted programming paradigm, we demonstrate that it is indeed possible to
write modular applications that are also energy efficient.

8.2 Background

Access to the different hardware components such as the radio module,
timers, flash chip, or the sensors is often done through software arbitration
or the explicit knowledge that no other code fragment is using the desired
component. Clearly, the latter approach is not only prone to undetected con-
flicts, but also renders code reuse a nightmare. But software arbitration alone
is not enough to write modular applications as we outline in the following
points.

Real time applications The load of the CPU is hard to predict, as other
pieces of the application may require computational complex tasks at any
time. As a result, tasks and synchronous events may execute with a non-
negligible delay, which poses problems to the implementation of time critical
applications where some actions should happen exactly at the prescribed
time. This is in sharp contrast to classic real time systems, where the tasks
should execute within a larger time window before a given deadline. For

CHAPTER 8. SLOTTED PROGRAMMING 101

instance, even the simple task of enabling the radio on two neighboring nodes
at exactly the same time is hard to achieve, as any of the nodes may be
occupied with other tasks and therefore delay the power-on command.

A common approach to suppress this problem is to introduce a guard-
time, which specifies how much before the arranged time the radio should be
turned on. Apart from the fact that it is hard to predict good guard-times,
applications use more energy than necessary and also gain in complexity.

Alternatively, the radios could be powered on in an asynchronous code
block, ensuring instantaneous execution if no other asynchronous event in-
terferes. However, implementations which rely on preemptive code execution
(e.g.[18]) are quite hard to maintain, as any modification or extension may
affect any other part of the system. As such asynchronous systems are often
very complex and even the slightest anomaly in the code can lead to misbe-
havior such as memory corruption or even a deadlock, we believe that this
approach should be avoided whenever possible.

Multi-threaded operating systems are not improving the situation, as they
even explicitly permit preemption of tasks, delaying operations even further.
Prioritization of the threads does not resolve the problem, as the thread with
the lower priority still experiences a delay.

Modularity In most sensor network scenarios, each network node needs
to fulfill several tasks, e.g. clock synchronization, sense the environment,
process the measurements, and disseminate the sensed data. To obtain a
highly optimized application that uses as little energy as possible, the usual
approach is to combine the required tasks as well as possible. In our example,
this could mean that the messages required for the clock synchronization are
piggybacked onto the data gathering messages or vice versa. Whereas such
an implementation can be very energy efficient, it is also highly specific to the
given problem instance. Therefore, any modification or extension needs to
take into account the entire application, and partial code reuse in a different
application is cumbersome.

Incomplete algorithm design We have already argued that any two
tasks running in parallel may interfere by reducing the responsiveness of the
node. Similarly, the software arbitration may temporarily block the access
to a hardware resource such as the radio module while another task is using
it. Also, if two hardware components happen to be connected to the CPU
through a shared bus, at most one of them may be accessed at any time. This
is the desired behavior, but it is often difficult or even impossible to predict
such conflict patterns. Therefore, algorithms for sensor nodes are normally
designed under the simplifying assumption of immediate access to the hard-
ware, ignoring the fact that another task may run in parallel competing for
the same resources. Adapting these algorithms to the existing hardware con-

CHAPTER 8. SLOTTED PROGRAMMING 102

time

S CS S S S S S CSP D CSP D S

Figure 8.1: A slot assignment on a sensor node with 4 tasks: Periodically
sample a sensor [S], process the sensor data [P], disseminate the processed
data [D], and run a clock synchronization algorithm [CS].

time

S S S S S S S

P DCS

D/CS

P P P

D D

CS

CS CS

CS CS

CS

Figure 8.2: In an uncoordinated execution model where tasks are not tem-
porarily decoupled, several collision patterns need to be taken into account.

strains is often a challenge, especially for time critical applications. Even if
a delay may be tolerable, the unpredictable timing may introduce new side
effects which must be verified to not break the original algorithm.

Configuration conflicts A wrongly configured hardware device not only
provokes unpredictable responses but may even hang a sensor node. If several
tasks require conflicting configurations, the application must be careful to
always load the appropriate configuration. If a task interrupts the execution
of another task due to asynchronous execution or multi-threading, this may
not be possible at all.

8.3 Slotted Programming

The above mentioned issues arise because several tasks of a sensor node may
execute simultaneously. With the slotted programming paradigm, we in-
troduce a temporal arbitration between the tasks to resolve the described
problems, and at the same time, slotted programming fosters code modular-
ity. In the following, we introduce the slotted programming paradigm and
show how the above issues are addressed.

In a nutshell, the slotted programming approach decouples the different
tasks of a sensor node to render them as independent as possible such that
each task can be implemented as a self-contained software module. The
decoupling is achieved through temporal separation of the different tasks,
assigning each module a time slot during which it may have exclusive access
to all resources. Figure 8.1 shows a possible slot assignment on a sensor node

CHAPTER 8. SLOTTED PROGRAMMING 103

Slot Scheduler

Clock

Sync

Module

M1 M2 Mi M3 . . .

Figure 8.3: Schematic view of a slotted system: The slot scheduler starts and
stops the software modules, the clock synchronization module is responsible
for obtaining the network time.

with 4 distinct tasks. This is in sharp contrast to an uncoordinated execution
model, where tasks my collide and experience unpredictable side effects as
illustrated in Figure 8.2.

8.3.1 The Basics

The slotted programming paradigm builds on a synchronous execution model.
It requires that all nodes have a global notion of time, i.e. they need to run
some kind of clock synchronization algorithm. This network time is used to
schedule the execution of the software modules, such that the same software
module executes simultaneously on all nodes.

Each task of a sensor node is implemented as an independent software
module providing the desired functionality. E.g. there may be a clock syn-
chronization module, a data gathering module, a sampling module, and a
data processing module. To obtain the temporal decoupling with other soft-
ware modules, each software module must ensure that its code executes only
within an assigned time slot and that it causes no side effects outside this
slot.

The software modules are then integrated into the slotted system by allo-
cating time slots for each of them. Whereas arbitrary complex schedules can
be built, simple periodic schedules similar to the one shown in Figure 8.1 are
already sufficient for most applications. The only restriction for the overall
schedule is that there may be no region where slots overlap, otherwise the
temporal decoupling would be broken. Depending on the scheduling com-
plexity, this property can already be tested at compile time. Alternatively, a
run-time check may be applied.

The basic support for slotted programs is provided by two components:
A clock synchronization module and a scheduler module. The latter executes
the desired schedule by signaling each module the start and end of its time
slots. Figure 8.3 illustrates a schematic view of a slotted system. Interesting

CHAPTER 8. SLOTTED PROGRAMMING 104

to note is the tight coupling of the clock synchronization module and the
slot scheduler: Whereas the slot scheduler depends on the network time to
schedule the modules, the clock synchronization module itself is scheduled
by the slot scheduler. This circular dependency is no problem as soon as the
node is roughly synchronized, but special care needs to be taken while a node
is not synchronized. See Chapter 8.4.2 for more details on this topic.

8.3.2 Guidelines for Slotted Programming

Given an operating system that provides the basic functionality for slotted
programming (clock synchronization and a slot scheduler), the development
of a sensor node application boils down to the following three steps:

(A) Modularization of the application. In this preliminary software design
step, we identify the tasks which can be implemented as self-contained
software modules. This first step intentionally leaves open a broad
range of design decisions such as to not restrict the programming
paradigm to a narrow field of applications. The focus of this step,
however, should be on the reusability of the individual modules and
on the temporal decoupling of the implemented tasks.

(B) Implementation of each individual module. First, define the time slots
during which the given module is allowed to operate. Whenever pos-
sible, this choice should be parametrized such that an overall schedule
can be obtained easily when assembling several modules (see below).
The implementation of the module must ensure that its code only
runs between the startSlot() and stopSlot() events generated by the
slot scheduler.

(C) Determine an overall schedule. The integration of the desired modules
requires a non-overlapping scheduling of all time slots. Ideally, each
module parametrizes the execution time of its time slots, such that the
global schedule can be obtained by tuning these parameters. When the
modules adapt their schedule dynamically at runtime, this task may
quickly become quite complex. But as periodic schedules are sufficient
for most applications, a valid schedule can often be found quickly.

8.3.3 Discussion

With the slotted programming paradigm, we foster modular programs for
sensor nodes. The key component is the temporal decoupling of modules
which guarantees that at any time, at most one module is running its code
without being preempted. This decoupling lays the basis for the following
properties of slotted programming:

CHAPTER 8. SLOTTED PROGRAMMING 105

• During the time slot of a module, full access to all hardware resources is
granted to the module, it is neither blocked nor delayed by other tasks.
This also includes the hardware configuration which is guaranteed to
be consistent during the entire slot. Overall, the programmer of the
module can count on the timely availability of the hardware, which
allows for simpler and more efficient implementations using less energy.

• Each module can be implemented and tested independently as there
are no side effects from other tasks. This greatly supports the software
development, as it is much easier to code and test several small pieces
instead of writing and testing an entire application altogether.

• The reuse of a module in a different applications is straightforward as
each module is supposed to work independently of the context. The
only thing that may need to be adjusted is the scheduling of the time
slots.

8.3.4 Limitations

Whereas the above properties are desirable for all applications, the slotted
programming paradigm has its limits. For instance, if a sensor node must
constantly perform some action, e.g. sample a sensor at 100Hz, other modules
cannot be scheduled without conflicting with the sensing task. In fact, there
is no clean solution to this fundamental problem as a complete decoupling
of the modules is impossible. We believe, however, that in the case of such
a scenario, the slotted programming is still useful. On the one hand, the
application developer may be more aware of the existing conflicts, which
helps to predict possible side effects. On the other hand, the conflicting
module can be designed to reduce its actions during foreign time slots to a
minimum, shifting the non-time-critical operations to its assigned time slots.

8.4 The slotos Reference Implementation

To demonstrate the potential of slotted programming in practice, we devel-
oped slotos, an operating system that supports slotted programming. In
general, any operating system can be adapted to provide this functionality.
For our reference implementation, we chose to extend TinyOS 2.1, an event
driven operating system widely used for sensor networks. It runs on many
hardware platforms and is continuously improved and extended with new
features. Being single-threaded in its default version, TinyOS is a perfect
candidate for applying the slotted programming paradigm.

In slotos, the slot scheduler is responsible to invoke the execution of the
software modules according to their time slot reservations. To simplify the
scheduling of periodic time slots, slotos provides a periodic slot management

CHAPTER 8. SLOTTED PROGRAMMING 106

Time

0

128 [s]

256

348 512

Figure 8.4: The slot scheduler repeats a partial schedule generating a periodic
execution of the allocated time slots.

Interface 8.1: Slot scheduler interface
events

void init()
void startSlot(slotID, slotCmd, syncQuality, syncStatus)
void stopSlot(slotID)

commands
slotID addTimeSlot(startTime, length, slotCmd)
void modifyTimeSlot(slotID, startTime, length, slotCmd)
bool testSchedule()

void stopScheduling()
void continueScheduling()
...

with an allocation window of 128 seconds. Each module allocates its time
slots within this allocation window which is repeated periodically by the slot
scheduler to obtain the overall schedule, see Figure 8.4 for an example. With
this scheduling approach, slotos facilitates the allocation of periodic time
slots which we believe to be sufficient for most applications. The size of
the allocation window is currently set to 128 seconds, but it may be set to
whatever fits best the application needs. For more sophisticated schedules,
the dynamic time slot reservation of slotos may be used to reorganize the
schedule at run-time.

Interface 8.1 sketches the interface of the slot scheduler. During the
init() event, which is called upon booting the node, each module allocates
its time slots. addTimeSlot() is used to reserve an additional time slot, and
modifyTimeSlot() reschedules an existing time slot. Whenever a time slot
starts, the startSlot() event is signaled on the corresponding module indi-
cating an estimate of the current synchronization quality. Finally, the end of
the slot is signaled by the stopSlot() event.

CHAPTER 8. SLOTTED PROGRAMMING 107

8.4.1 Policy Enforcement

The temporal decoupling of the modules is the key of slotted programming.
Whereas a static schedule can be checked at compile-time to have no over-
lapping regions, dynamically generated schedules can only be verified at
run-time. slotos implicitly detects overlapping time slots and refrains from
scheduling them simultaneously. Instead, it provides a best-effort service de-
laying the start of the later time slot until the end of the active time slot. It is
important to note that this error handling approach should not be exploited
as a feature of the slot scheduler. It is rather a last resort to guarantee a
continuous execution of all reserved time slots, based on the assumption that
the broken schedule is only of temporal nature.

In addition to a non-overlapping schedule, the temporal decoupling also
requires that the software modules operate only during their assigned time
slots. This property, however, is much harder to verify or even enforce, as
the modules should be allowed to execute arbitrary actions within their time
slots. For instance, a module may set a timer to fire outside its time slot or
initiate a split phase command whose callback returns only after the time slot
terminates. Whereas the timer issue can be addressed by cancelling timers
that are set outside the current time slot, callbacks from the hardware are
device specific and often hard to predict. The current implementation of
slotos does not try to detect or avoid activity outside the assigned time slots
and requires the module developer to adhere strictly to the time constraints.
Thus, slotos does not enforce slotted programming but only provides a suit-
able execution environment.

8.4.2 Clock Synchronization

Clock synchronization is an integral part of slotos; it ensures that the software
modules are scheduled simultaneously on all nodes. Its task is to maintain the
clocks synchronized with neighboring nodes and react to topology changes
which may leave the node unsynchronized for an arbitrary amount of time.

As clock synchronization is implemented as a self-contained module, it
needs to be scheduled by the slot scheduler, but the slot scheduler itself
relies on the synchronization. slotos supports two approaches to break this
circular dependency.

(A) The clock synchronization module may temporarily turn off the slot
scheduler. During this time, no other module is scheduled to execute
and the synchronization module is free to access the radio for an ex-
tended time to receive synchronization messages. Once an approximate
synchronization is available, the slot scheduler can be turned on again.

(B) It is often undesirable to completely shut down the slot scheduler as
this also stops any other activity on the sensor node, including the

CHAPTER 8. SLOTTED PROGRAMMING 108

Interface 8.2: Clock synchronization interface

event
void timeChanged()

commands
time hardwareToNetworkTime(hwTime)
time networkToHardwareTime(netTime)
time networkIntervalToHardwareInterval(netDT)

quality getSynchronizationQuality()

sensing tasks for which it was deployed. While the measured data
may be useless if the node is not synchronized with its neighbors in
some scenarios, many applications rely on a continuous stream of mea-
surements, making it impossible to turn off the slot scheduler. But if
the clock synchronization module can only access the radio during its
assigned time slots, it may never receive synchronization messages if
the neighboring nodes have a different notion of time. To accommo-
date such scenarios, slotos explicitly permits the clock synchronization
module to break the temporal modularity and listen on the radio also
outside its assigned time slot. But this violation of the slotted program-
ming paradigm needs to be taken into account by all modules that are
scheduled during this time. In particular, other modules should re-
frain from using the radio or turning it off. For that purpose, the
startSlot() command informs the modules about the current state
of the synchronization. Fortunately, this restriction does not really
limit the functionality of the node any further, as communication with
neighboring nodes is likely to fail anyways while it is not synchronized.

The choice between the two approaches depends on whether the sampling
or the synchronization is more mission critical. Clearly, the second approach
is not as clean as we would like, but it is as modular as possible for the given
application requirements.

In either case, the clock synchronization module must provide the in-
terface shown in Interface 8.2. Whenever the network time is modified,
timeChanged() needs to be called such that the slot scheduler can adapt
the schedule. Additionally, several methods to convert between hardware
and network time and a method to query the current synchronization qual-
ity should be provided.

CHAPTER 8. SLOTTED PROGRAMMING 109

8.4.3 Timers

It is often the case that two neighboring nodes wish to wake up simultaneously
to exchange messages or perform other operations. Slotted programs support
such interactions as the software modules are scheduled simultaneously on
all nodes. Thus, it is sufficient for a module to set a timer to be waken up at
the arranged time. To obtain a truly decoupled system, the modules should
respect the following guidelines when setting timers:

• Most importantly, timers may only be set to fire within the current
time slot. If a timer should fire during a later time slot, the module
should remember this and start the timer only at the beginning of the
desired time slot. Thanks to this restriction, timers never need to be
updated to reflect a modified network time because no timer is active
when the clock synchronization module resets the network time.

• Whenever possible, timers should be started relative to the start time
of the current time slot. This results in a more precise timing than
when using offset timers, as their fire time depends on the time when
they are set. In TinyOS, this can be done using the startOneShotAt()

method of the Timer interface.

• Interactions with other nodes should be arranged based on the common
network time. The timers in slotos, however, operate on the local
time of the node, requiring a conversion from the network time to the
corresponding local time. The methods offered by the synchronization
module can be used for this conversion, see Interface 8.2.

• To account for fluctuations of the clock synchronization, a module may
apply guard times to ensure that it does not miss an arranged meeting.
In the case of a scheduled message transmission, the receiver wakes up
a bit earlier and the sender sends the message a bit later to ensure
that the two meet. The estimation of the clock synchronization passed
on in the startSlot() event may be used to adaptively set the guard
times.

In the following we demonstrate the advantages of the slotted program-
ming approach at two applications. We start by describing the design and
implementation of a slotted time synchronization module in Chapter 9. In
Chapter 10, we describe a novel signaling technique which can be used to
propagate alarms efficiently and reliably through a network. While the sig-
naling technique itself is of interest, the simplicity of its integration into our
test application demonstrates the power of slotos.

9
Slotted Clock Synchronization

As clock synchronization is a central part of slotos and slotted programming
in general, we now describe in more detail the clock synchronization module
that comes with slotos. Being implemented itself as a software module, we
use this synchronization module to demonstrate the advantages of the slotted
programming paradigm.

Due to its simplicity, we provide a variant of the FTSP algorithm [70]
where an elected root node dictates its time to the remaining nodes. In
contrast to the original FTSP algorithm, we apply a simplified version thereof
where a dedicated root node dictates its time to the remaining nodes. Nodes
in the immediate neighborhood of the root node learn the network time
directly from the root node. Once a node is synchronized, it disseminates
synchronization messages itself such that nodes not directly connected to the
root synchronize indirectly. Each node selects a single parent node to which it
synchronizes, resulting in a tree algorithm. Furthermore, our synchronization
algorithm relies on a static root node. Whereas our implementation is not
really fine-tuned and experiences an average synchronization error of 44µs per
hop, this is already sufficient for many applications. In fact, as our hardware
timers are based on a rather slow 32.768 kHz oscillator, it is hard to obtain
a synchronization error below one time unit (30µs). Overall, we focused on
obtaining an energy efficient solution rather than a perfectly synchronized
system.

slotos offers a time window of 128 seconds to schedule the execution of
the software modules. Our clock synchronization module reserves 4 time slots
of 1 second in regular intervals such that the module is launched every 32
seconds, see Figure 9.1. Within these assigned time slots, the module may
perform any actions as the slotted programming guarantees that no other
task interferes. In our case, the module only needs to receive a sync message
from its parent and to broadcast a sync message for its children.

CHAPTER 9. SLOTTED CLOCK SYNCHRONIZATION 111

t

0 12832 64 96

Clock Sync

38 37 39 40 41

Figure 9.1: The default clock synchronization module of slotos allocates 4
time slots of 1 second. The time slots are spread over the allocation window
of the slot scheduler such that the module is invoked every 32 seconds. The
remaining time slots can be used arbitrarily by other software modules.

9.1 Synchronized Transmission

In order to avoid collisions, each node chooses its transmission time of the
sync message randomly within the assigned time slot. In each transmitted
message, the sender includes the seed value of the random number generator
that will be used to send forthcoming sync messages. From this information,
the receiving child can predict when its parent sends the next sync message
and enable its radio just for the required time period. The child can even
predict the arrival of a sync message when it has missed several messages
in between. This is possible as we use a circular random number generator
where the generated number is used as the seed for the following draw.

Synchronization fluctuations render it impossible for the receiver to wake
up just in time to receive the message. We apply an adaptive guard time
which is decreased for each successful reception and increased otherwise. This
leads to a close to optimal message reception overhead, ensuring low energy
consumption.

9.2 Pipelined Synchronization

When sending the sync message at a random time within the assigned slot,
a child may forward its sync message before receiving the sync message from
its parent. As a result, the sync message sent by the child may be inaccurate
as it is based on a synchronization which is at least 32 seconds old. To
overcome this issue, our implementation pipelines the transmission along the
synchronization tree. The synchronization module achieves this by dividing
its time slot into k cells of equal length (see Figure 9.2) and restricting the
transmission of the sync message to one specific cell. This cell assignment
is based on the number of hops the node is away from the root node (on
the synchronization tree). A node which is h hops away from the root node

CHAPTER 9. SLOTTED CLOCK SYNCHRONIZATION 112

39 40
t

0 1 2 3 4 5 6 7

Figure 9.2: The synchronization module divides its time slot into k logical
cells (in our case, k = 8). The root node broadcasts its sync message in the
first cell with ID 0. The immediate children of the root receive this message
and transmit their sync message within the second cell with ID 1. In general,
a node that is h hops away from the root receives a sync message from its
parent in the cell (h − 1) mod k and sends its sync message in the cell (h
mod k).

chooses to send its sync message in the cell (h mod k). Note that nodes with
a distance of k or more hops to the root reuse cells already assigned to nodes
much closer to the root.

The choice of k is driven mainly by two constraints. On the one hand,
k should be chosen as small as possible such that the sync messages can be
spred over a longer cell, reducing the probability of collisions. On the other
hand, if a node is i · k hops away from the root (with i ∈ N+), the node
sends its sync message in the cell with ID 0, but receives the sync message
from its parent only in the last cell with ID k − 1, not achieving the desired
pipelining. Thus, the larger k is, the fewer nodes break the pipelining. In
the current implementation of slotos , we have set k = 8 to ensure pipelining
for our sample networks.

9.3 Initialization

When a node is (at least roughly) synchronized to its parent node, the above
techniques are applied to keep the node synchronized. But after booting or
when the node has lost its synchronization parent, a special initialization step
is required to find a suitable parent. As the node has no a priori knowledge
about the network time, the techniques from Chapter 8.4.2 are required to
establish a first meeting point and obtain an initial synchronization. In our
implementation of slotos, we chose to keep the slot scheduler running while
the synchronization module listens for sync messages also outside its assigned
time slots.

CHAPTER 9. SLOTTED CLOCK SYNCHRONIZATION 113

9.4 Experiments

We have logged the performance of our clock synchronization algorithm while
testing our alarming system described in Chapter 10. During the 168 hours
of the experiment, a total of 18900 synchronization rounds were performed.

To measure the quality, a node determines its clock offset to its parent
whenever it receives a sync message. Throughout the experiment, we mea-
sured an average offset of 1.45 time units with a variance of 1.21. This is
equivalent to an average offset of 44µs as our hardware clock runs at 32768Hz.

The energy consumption of the clock synchronization is dominated by the
energy used to send and receive messages. To get a first approximation on the
energy usage, each node logged how long the radio module was enabled for
each synchronization round. The cumulated up-time of the nodes is plotted
in Figure 9.3. Note that the root node has a much smaller slope than the
remaining nodes as it does not receive sync messages. It is also interesting to
note that the lines of the non-root nodes diverge the longer the experiment
runs. The varying slopes are due to our synchronization algorithm which tries
to keep the guard time for receiving the sync messages as short as possible.
Nodes that tend to loose packets adapt a larger guard time, slightly increasing
their up-time. For instance node 12 (see also Figure 10.4) has the steepest
slope. During the experiment, this node changed its parent several times,
sometimes even synchronizing to node 7 across the building. The peaks in
Figure 9.4 indicate when node 12 was looking for a new parent.

On average, the non-root nodes required an overall duty cycle of 0.06%
for the synchronization, node 12 has the highest duty cycle of 0.07%. The
temporal progress of the duty cycle is shown in Figure 9.3. The curves show
the average (maximum) duty-cycle for the preceding 200 synchronization
rounds. Again, the peaks fall together with parent elections.

9.5 Discussion

We sketched the implementation of a clock synchronization algorithm with
the slotted programming approach, leaving out quite some details. For in-
stance, the choice of a reliable parent is intrinsically difficult as the quality
of a parent may change over time. Our goal was not to provide a synchro-
nization that matches or even exceeds the best existing algorithms, but to
demonstrate that it is indeed possible to write a modular clock synchro-
nization that can be replaced by any other synchronization module without
consequences for the remaining application. Furthermore, we would like to
point out that even a simple implementation as the one described above can
be quite energy efficient.

CHAPTER 9. SLOTTED CLOCK SYNCHRONIZATION 114

0 24 48 72 96 120 144 1680

50

100

150

200

250

300

350

400

450

Time [h]

C
um

ul
at

ed
 ra

di
o

up
-ti

m
e

pe
r n

od
e

[s
]

0.05%

0.06%

0.07%

0.08%

0.09%

0.1%

D
ut

y
C

yc
le

max duty cycle
avg duty cycle

Figure 9.3: The nearly straight lines show the cumulated radio up-time of
the 19 nodes using the left scale. The single line at half the rate belongs
to the root node which does not need to listen for sync messages. The two
horizontal curves indicate the temporal change of the duty cycle using the
right scale.

0 24 48 72 96 120 144 1680

20

40

60

80

100

120

Time [h]

R
ad

io
 u

p-
tim

e
of

 n
od

e
12

 [m
s]

Figure 9.4: Node 12 has the highest duty cycle as it repeatedly loses its
synchronization parent. This plot shows the up-time of node 12 for each
synchronization round. The peaks occur when node 12 is looking for a new
parent.

10
Low-Power Signaling

As a case study for slotted programming, this chapter describes the construc-
tion of an alarm system in which any node or any subset of nodes can alarm
all other nodes. The reliability of such a system is often guaranteed through
the following two phases: In the first phase, the nodes are awaken through
an energy efficient wake-up mechanism. Once the nodes are awake, the veri-
fication phase kicks in to rule out false alarms, authenticate the originator(s)
of the alarm, and perform other security relevant tasks before relaying the
alarm to the upper layer. Whereas this second phase may be costly in terms
of energy, this is no issue for most scenarios where alarms can be assumed to
occur rarely. On the contrary, the wake-up functionality should be as power
efficient as possible because it must be constantly available. In addition, the
wake-up should provoke as few false alarms as possible in order not to trigger
the second phase unnecessarily.

In this chapter, we only consider the wake-up phase and present a novel
technique to reliably transmit a wake-up signal. Our idea is the following:
Instead of transmitting ordinary messages to announce an alarm, a node
sends an unmodulated wave at a constant frequency. With this approach, we
solve two problems at one fell swoop. Firstly, several nodes may announce
an alarm at the same time without causing interference. This holds because
the superposition of several waves of the same frequency is received as a
wave of the given frequency. Secondly, we can build tight schedules for the
signal propagation. Previously, this was possible only with RSSI sniffs which
tend to give many false alarms when used outdoors. Both, the interference
resistance and the tight scheduling lay the basis for our energy efficient wake-
up phase. We propose a pipelined dissemination of the alarm signal such that
the dissemination delay is minimized. For each execution of the pipeline, the
nodes need to power the radio module for a total of 14ms in the current
implementation. Thus, the overall energy consumption of the wake-up phase

CHAPTER 10. LOW-POWER SIGNALING 116

depends on the frequency at which these pipelines are scheduled. E.g. having
a dissemination every 30 seconds causes a radio duty cycle of only 0.04%, but
also delays the delivery of a potential alarm by up to 30 seconds. Clearly,
this parameter is application specific.

A special configuration of the radio module is required to generate the
desired waves. As the radio also needs to support standard messages, the
application must ensure the required radio configuration at any time. This
guarantee comes nearly for free with a slotted application where the tasks,
and therefore also the conflicting configurations, are temporally decoupled.

10.1 Pipelining

The end-to-end delay of such an alarm can be minimized by pipelining the
transmissions of the nodes. But as any node of the network may initiate
an alarm, the pipelining would need to provide an any-to-all support. To
overcome this complex task, we reduce the problem to the following two
pipelinings: any-to-root and root-to-all, where the root is a dedicated node,
e.g. a sink node or the node leading the clock synchronization. This results
in a 2-phase approach, where the initiating node first signals the root node
about the alarm (any-to-root) and the root then signals the alarm to the
entire network (root-to-all).

The classic approach to both pipelinings is to build a BFS tree from the
root node. When sending messages to transmit the alarm, however, care
has to be taken to not cause interference. In the root-to-all phase, the root
node first broadcasts its message to all its direct children in the tree. Upon
receiving the message, the children should be coordinated to not forward the
message at the same instant. The same problem exists in the any-to-root
phase, where several children of a parent may wish to signal an alarm, or
an alarm is propagated on several branches of the BFS tree. This issue can
be solved by either using a global schedule or by applying randomization
techniques. But both solutions are not satisfactory as they increase the end-
to-end delay. Furthermore, the overhead to maintain a global schedule may
be considerable.

10.2 Signaling of Binary States

As we are interested only in binary states (e.g. alarm ON, alarm OFF), a
much simpler solution is possible. For instance, the value ON may be encoded
by sending a message and the value OFF by being quiet. In the any-to-root
case, each parent only needs to detect whether any of its children sends a
message, and depending on the outcome, send a message itself or not. To
do so, the parent only needs to detect the activity on the radio channel,
e.g. through an RSSI sniff, eliminating the interference problem. Therefore,

CHAPTER 10. LOW-POWER SIGNALING 117

 root

1 hop

2 hops

3 hops RX TX

RX TX

RX TX

RX TX

RX TX

RX TX

RX TX

t

any-to-root root-to-all

Figure 10.1: Alarms are disseminated in two steps. In the any-to-root step,
any subset of nodes can signal the root node. The root in turn then relays
the alarm to everybody in the following root-to-all step.

several children may send their message simultaneously without causing any
reception problems. The same holds for the root-to-all case where all children
of a parent may send their message simultaneously. As a result, we can apply
a tight pipelining which schedules the reception and transmission solely based
on the hop count to the root node as depicted in Figure 10.1. Such a tight
pipelining minimizes the end-to-end delay as well as the energy consumption,
as any node only needs to receive and send twice, independent of the number
of its children.

In the above example, the proposed encoding requires that the ON state
strictly dominates the OFF state. I.e. whenever at least one node signals
the dominant ON state, the ON state should be disseminated to the entire
network. Only when no node of the entire network requires the dominant
state, the subordinate OFF state is applied. This implicit conflict resolution
between the two states is a natural choice for many application scenarios
such as alarms (the alarm state is dominant), or any other form of wake-up
signaling where a single node should be able to signal the root (using only
the any-to-root pipeline) or all nodes of the network. Indeed, the proposed
signaling approach may be useful in other context than alarms. For instance,
it may be used to enable or disable entire software modules, e.g. a debugging
or configuration module that needs not to run most of the time.

In the remainder of this section, we demonstrate the advantages of the
slotted programming paradigm to implement such a pipelining for alarms. In
addition, we propose a more robust alternative to the RSSI sniffing as RSSI
measurements tend to give many false positives when used outdoors.

10.3 RSSI vs Waves

Many MAC protocols sample the radio channel prior to sending a message.
If activity is detected, the transmission is delayed to avoid a collision with

CHAPTER 10. LOW-POWER SIGNALING 118

the ongoing transmission. This sampling is called clear channel assessment
(CCA) and is often performed by an RSSI module on the radio chip which
indicates the received signal strength. If the value is above a given threshold,
the channel is assumed to be occupied. We propose to use exactly this tool
to circumvent interference problems while signaling an alarm. Indeed, the
approach works surprisingly well - as long as all nodes are deployed indoors.
But as soon as we placed nodes on the roof of our building, the RSSI module
started to intercept foreign signals, leading to roughly 30% false positives,
i.e. the RSSI module indicates activity on the channel even though none of
the nodes is sending. Whereas this degrades the performance but may still
be acceptable for some MAC protocols, the state signaling task requires a
far more reliable solution as false alarms or unnecessary wake-ups can be
costly. Ideally, an alternative approach still allows for a tight pipelining of
the transmissions without causing interference.

In the presented RSSI approach, the transmitters send arbitrary messages
as the receiver only looks for activity on the radio channel. To reduce the
number of false positives during silent phases, we propose to slightly change
the scheme and require all transmitters to send the exactly same message
which needs to be decoded by the receiver. Consequently, the probability
to decode the expected message even though no node is transmitting drops
exponentially. Whereas this method resolves the problem of false positives, it
is prone to interference, as all transmitters would need to be highly synchro-
nized to send each bit of the message at exactly the same time. Therefore,
we carefully choose the message such that the resulting radio signal is an un-
modulated wave of constant frequency. This solves the interference problem
at one fell swoop as the mixture of several waves of the same frequency is
received as a wave signal of the given frequency. But whereas MIMO and
SIMO radios make explicit use of this property to amplify the radio signal in
a certain location, we have no influence on the phase at which the distributed
transmitters send. As a result, some receivers may get an attenuated signal.
Fortunately, the probability for a complete attenuation is extremely low, and
our experiments indicate that the number of false negatives is in the range of
0.1% and comparable to the RSSI approach (See Table 10.1). In summary,
the proposed approach encodes the dominant state by sending an unmodu-
lated signal of constant frequency, and the subordinate state is encoded by
being quiet.

The desired radio wave can be generated easily with our XE1205 radio
module as it applies an FSK modulation. In this modulation technique, a
binary ’0’ is encoded by sending a wave at frequency f0 and a binary ’1’ is en-
coded by sending a wave at frequency f1. For sending and receiving standard
messages, the radio runs in a buffered mode utilizing a bit synchronizer and
pattern recognition block. When generating or sampling waves, we switch to
a continuous mode through which we can send raw data or directly access

CHAPTER 10. LOW-POWER SIGNALING 119

wave

RSSI

enable

radio

enable

radio

2ms 5ms 8.5ms

sample wave send wave

2ms 5ms

send RSSI packet sample RSSI

Figure 10.2: When a node is scheduled within the pipeline, it enables its ra-
dio, samples the RSSI or the wave, and depending on the outcome, transmits
itself an RSSI packet or a wave, respectively.

the received signal. Please refer to Chapter 10.5.1 for a description of the
used hardware and more details on its usage. Also note that the generation
of these waves may be harder to obtain on packet-based radios or on radios
that apply an encoding such as Manchester or NRZI.

10.4 Slotted Signaling

In the remainder of this section we outline the implementation of a test
application to compare the RSSI and the wave approach for the signaling
task. Similar to the first case study, our focus is on the software architecture,
rather than the implementation details.

Signaling Module The task of the signaling module is to run an any-
to-root sweep to detect requests to change a state, followed by a root-to-all
sweep to disseminate a potential request to the entire network. Both sweeps
are implemented in a pipelined fashion as described in Chapter 10.1. As the
timings for the RSSI as well as the wave approach are similar, we can use the
same pipelining for the comparison, see Figure 10.2. The time to enable the
radio is approximately 2ms and the time to send an RSSI message is 4.5ms.
The RSSI value is sampled three times in a row, indicating a signal only if all
three measurements show high activity on the radio channel. We hoped to
reduce the number of false positives with this approach, but the experiments
did not show a significant improvement compared to a single RSSI sniff,
indicating a high correlation of the RSSI measurements. The sampling time
for the wave is set to 5ms yielding 378 samples, and the transmission time for
a wave is set to a total of 8.5ms to account for synchronization fluctuations.

The signaling module allocates itself a time slot of 1 second. The first
500ms is reserved for the any-to-root pipeline and the second 500ms for the
root-to-all pipeline. As the overlap of the sender and receiver is only 7ms in
each pipeline step, the depth of the pipelines may be up to 60 hops (leaving

CHAPTER 10. LOW-POWER SIGNALING 120

some time gap at the beginning and the end of the time slot). Thus, the
current settings theoretically allow for large networks with a diameter up to
120 hops if the root node is chosen in the center.

Whenever startSlot() is called, the signaling module retrieves the node’s
hop-count to the root from the clock synchronization module and determines
its start-time in the any-to-root and the root-to-all pipeline. An adaptation of
this hop-count is however necessary, as the links used by the synchronization
tree may be unidirectional. This adaptation is implemented by a simple
online search that is launched whenever the root-to-all sweep does not reflect
a request sent on the any-to-root sweep.

Energy Cost of Signaling The energy cost of the signaling is dominated
by the energy used by the radio module for sampling and sending. In many
application scenarios, a signal will only be disseminated rarely on special
events. During the silent periods, a node needs to enable its radio once for
the any-to-root and once for the root-to-all pipeline, requiring an up-time of
14ms. In the event of a signaling, a node may enable its radio up to 31ms
to participate in the two pipelines. The overall energy cost for the signaling
depends on the frequency at which the signaling module is scheduled and
how often signals are disseminated.

10.5 Test Application

The integration of the signaling module into an application, in our case a test
application to compare the RSSI and the wave signaling, is straight forward.
All we need to do is to assign time slots to each module such as to obtain
a non-overlapping schedule. In our test application, we utilize the following
software modules:

• Clock synchronization module

• RSSI signaling module

• Wave signaling module

• Remote control module

• Feedback composition module

The remote control module is used for collecting the logs of an ongoing
experiment and for debugging the application. The module supports multi-
hop message forwarding to deliver log messages at a base station such that we
can track the progress of an ongoing experiment. In addition, it can also route
command messages from the base station to any given node in the network,

CHAPTER 10. LOW-POWER SIGNALING 121

C

S

RC W R W R W R W R W R W R W R W R F

9 10 11 12 13 14 15 16

32 64

C

S

RC W R W R W R W R W R W R W R W R

17 18 19

64 96

C

S

RC W R W R W R W R W R W R W R W R F

random subset

96 128

C

S

RC W R W R W R W R W R W R W R W R

1 2 3 4 5 6 7 8

0 32

Figure 10.3: The test application to compare the wave signaling and the RSSI
signaling allocates a total of 74 time slots within the scheduling window of
128 seconds. The following abbreviations are used for the modules: CS -
Clock Synchronization, RC - Remote Control, F - Feedback composition, W
- wave signaling, and R - RSSI signaling. The numbers above the time slots
indicate the ID of the node which triggers an alarm.

CHAPTER 10. LOW-POWER SIGNALING 122

�

� �
�

�

��

�

�

	
�

��

�
��

��

�� ��

�	
��

��

�����

����

Figure 10.4: The nodes 5, 15, 16, 17, 18, and 19 are placed outside the
building and are powered by battery. Whereas the nodes 15, 18, and 19
are on the roof, the nodes 5, 16, and 17 are placed on the facade along the
four floors to the roof to establish a radio connection with the nodes on
the roof. Node 1 is configured to be the root for the clock synchronization
and the signaling. The dashed lines show an instance of the dynamic clock
synchronization tree.

which was convenient to debug the application in its initial phase. The
feedback composition module collects and preprocesses the local data from
the experiment and feeds the remote control module with the log messages.
Both of these modules support our experiments, but they do not influence
the synchronization and signaling tasks in any way as they are temporally
decoupled. Therefore, they could be removed from the application without
consequences for the other modules.

The test application uses an allocation window of 128 seconds within
which it schedules its modules, see Figure 10.3. The clock synchronization
module is scheduled every 32 seconds, followed by the remote control module
that gathers the log messages. Every 64 seconds, the feedback composition
module prepares the log messages which are sent in the forthcoming remote
control time slot. The RSSI signaling module and the wave signaling module
are assigned a total of 64 time slots within the remaining allocation window
to test as many signaling rounds as possible. The two approaches are tested
in an alternating fashion such that they undergo similar external influences.

CHAPTER 10. LOW-POWER SIGNALING 123

10.5.1 Deployment and Experiment Setup

We performed our experiments with the TinyNode 584 from Shockfish
SA [87]. This sensor node features an MSP430 CPU with 10kB RAM and
48kB program space and works with the Xemics XE1205 radio which applies
an FSK modulation. For receiving data packets, the radio is configured in
a buffered mode with a built-in bit synchronizer and a pattern detector. As
the bit synchronizer requires at least some bit transitions every now and then
to operate correctly, we cannot use the buffered mode for detecting alarms,
as they consist of a wave of a given frequency. We therefore use the con-
tinuous mode of the radio which skips the bit synchronization and pattern
recognition and outputs the raw bit sequence on a data pin. Our application
samples this stream during 5ms to obtain the described sampling. Whereas
we could transmit waves in the buffered mode by sending a message with
every bit set to 1 (or 0), this requires quite some modification on the radio
stack. In continuous mode, the transmission of a wave is straight forward, as
the radio sends the pattern that is applied to a given pin. Keeping the pin
at 1 (or 0) results in the desired wave.

For our experiment, we have deployed a total of 19 nodes, 6 of them are
outside the building, see Figure 10.4. Node 1 acts as base station and as
root for the clock synchronization. The goal of the experiment is to test
the reliability of the proposed wave signaling and compare it to the RSSI
approach. In particular, we are interested in the following two errors: A
“false negative” signaling happens when a node fails to detect a signal sent
by a neighboring node. This type of error is especially undesirable in alarm
systems where the system should immediately react to a new situation. A
“false positive” signaling occurs when a node detects a signal even though
no node is transmitting. This fault is often called a “false alarm”.

To test for these errors, the following scenario is run through in each
window of the slot scheduler, Figure 10.3 depicts the setup.

• Exactly one node triggers an alarm in the first 38 time slots. Each
node is assigned a time slot pair (consisting of a time slot for the wave
signaling and one for the RSSI signaling) during which it triggers an
alarm. This is done by sending a wave or an message, respectively, at
the assigned time within the any-to-root pipeline.

• None of the nodes triggers an alarm during the following 16 time slots.

• A randomly chosen subset of the nodes triggers an alarm in the remain-
ing 5 time slot pairs. This last test case is used to explicitly examine
the decoding resistance when several nodes signal synchronously.

For each of these time slots, we decide whether the signaling was successful
or not. As the signaling module described in Chapter 10.4 performs an any-

CHAPTER 10. LOW-POWER SIGNALING 124

0 24 48 72 96 120 144 1680

2000

4000

6000

8000

10000

12000
C

um
ul

at
ed

 #
 o

f R
SS

I f
al

se
 a

la
rm

s

Time [h]

10%

20%

30%

40%

50%

%
 o

f f
al

se
 a

la
rm

s

Figure 10.5: The solid line shows the cumulated number of false positives
when using RSSI sniffs (left scale). The bumpy curve depicts the temporal
variability of the error probability (using the right scale).

to-root sweep followed by a root-to-all sweep, all nodes are supposed to have
the same state at the end of the signaling time slot. Therefore, if one or
several nodes fail to detect the signal in the root-to-all sweep, we count the
time slot as false negative. Similarly, if one or several nodes detect a signal in
one of the 16 silent time slots, we count the time slot as false positive. Please
note that we test the overall signaling procedure rather than each individual
signal decoding as the latter is prone to report subsequent errors.

10.5.2 Results

We have run the above experiment for 168 hours. During this time, the
schedule of Figure 10.3 was repeated 4725 times, generating 113400 rounds
in which at least one node triggered an alarm and 37800 silent rounds without
alarm. Table 10.1 summarizes the overall outcome of the experiment. On
average, the RSSI had false alarms in 31% of the silent rounds, compared to
only 0.8% of the wave approach. The probability for a dropped alarm (false
negative) is comparable for both the wave and RSSI approach.

Figure 10.5 depicts the cumulated number of RSSI false alarms, and the
horizontal curve shows how the error probability changes over time. Whereas
RSSI suffers from false alarms in 31% on average, the curve shows that the
error probability is sometimes as low as 10% for an extended period of time.

CHAPTER 10. LOW-POWER SIGNALING 125

Table 10.1: Performance of the wave and the RSSI signaling.
Wave RSSI Number
signaling signaling of tests

False positives 304 (0.8%) 11815 (31%) 37800

False negatives 94 (0.08%) 132 (0.11%) 113400

24 48 72 96 120 144 1680

50

100

150

200

250

300

350

C
um

ul
at

ed
 n

um
be

r o
f e

rr
or

s

Time [h]

wave false positives
wave false negatives
RSSI false negatives

Figure 10.6: Cumulated number of errors without the RSSI false positives.
Please note that errors tend to happen in bursts.

This fact can also be observed on the cumulative curve, where the slope
flattens temporarily during the early afternoon of the first and last day of
the experiment. (Please note that all plots start at midnight.) We belive
that this improvement could be related to the weather, as only the first and
last day of the experiment was sunny.

In contrast to the RSSI approach, the wave signaling has much less false
alarms. Figure 10.6 shows the temporal developing of the false positives and
false negatives of the wave signaling as well as the false negatives of the RSSI
approach. Please note that most errors come in bursts, indicating a temporal
correlation between successive samplings of the same kind. So far, we have
no explanation for these errors.

When decoding a wave transmission, a node samples the radio channel
during 5ms resulting in 378 samplings. As our radio module applies an

CHAPTER 10. LOW-POWER SIGNALING 126

70% 75% 80% 85% 90% 95% 100%

101

102

103

104

105

106

N
um

be
r o

f r
ec

ei
ve

d
si

gn
al

in
gs

Wave sampling percentage

Figure 10.7: For each decoded wave, the nodes remembered the percentage
of correct bits. This plot shows that a large majority of the alarms has
all or nearly all bits correctly, and that the probability for errors decreases
exponentially.

FSK decoding, each sample indicates which of the two frequencies is more
likely. If no wave is being transmitted, the radio module decodes white
noise indicating either frequency with a probability of 50%. However, if a
neighboring node transmits a wave at frequency fx, the radio module reports
all samples to be at frequency fx. The node counts the number of samples
with the expected frequency and indicates an alarm only if this number is
above a given threshold. In our implementation, at least 70% of the samples
must indicate the expected frequency.

Figure 10.7 shows the number of received alarms as a function of the de-
coding percentage. For over 63% of the decoded alarms, all samples indicated
the expected frequency. In 99.9% of the detected alarms, at least 75% of the
samples indicated the expected frequency. Thus, setting 70% as threshold
seems reasonable.

11
Conclusion

In the second part of this thesis, we proposed a novel signaling technique to
build energy efficient alarm systems. Our wave based approach is resilient to
interference, allows for a tight pipeline scheduling without unnecessary hop-
by-hop delay, is energy efficient at a duty cycle of less than 0.1%, and causes
few false alarms even when used outdoors. We believe that our signaling
scheme is a valuable alternative to traditional message based approaches
which need to handle interference. For instance, low power listening schemes
assume that messages are transmitted only sporadically such that message
collisions are rare. In an alarming scenario, however, a possibly large subset
of nodes may detect an abnormal state and trigger an alarm at the same
instant. While message-based approaches are burdened with the overhead
to avoid interference, the proposed wave signaling is specifically designed to
support simultaneous alarms, allowing for a better energy efficiency.

The implementation of such an alarm system is rather involved. Firstly,
the transmission and reception of waves requires a special configuration of
the radio module which does not support data messages. Thus, the appli-
cation must ensure a suitable configuration at all times. Secondly, the tight
pipelining for the alarm dissemination requires each node to enable its radio
exactly at the assigned time. If this operation is delayed by another task run-
ning on the node, a potential alarm may not be detected. With the slotted
programming approach, both issues are solved with the temporal separation
of the modules. In addition, the modularity of the software components al-
lowed us to setup a rather complex application to compare the RSSI and the
wave signaling with little effort.

Overall, we feel that the slotted programming approach greatly sup-
ported our work and we believe the slotted programming paradigm to be
a valuable tool for developing sensor network applications in general. But
the advantages are not only in the facilitated software development. Just as

CHAPTER 11. CONCLUSION 128

important are the modularity and temporal separation of the different tasks
which allow for a predictable execution of the application. This predictability
is also a basic requirement to build systems for which certain properties can
be guaranteed. In fact, the development of provably correct software is very
hard in general. The core difficulty lies in the fact that it is hard to compare
the application (written in a programming language) and the specification
(written in a descriptive language). The slotted programming paradigm
cannot solve this problem, but it shortens the gap between the two worlds
by reducing the complexity of the software implementation, rendering the
comparison easier. Most importantly, the slotted programming achieves
this by temporally decoupling independent tasks such that the different
components can be checked separately. In addition, the temporal decoupling
renders unnecessary many asynchronous code blocks as timely execution
is ensured implicitly by the slotted execution model. For instance, the
application to evaluate the alarming system of Chapter 10 requires no
asynchronous code block except for the system events. Such synchronous
code is much easier to analyze as there are much fewer execution patterns
to be considered and the simplified code itself reduces the risk of bugs.

Wireless sensor networks will gain more attention in the near future as
engineers in various fields become aware of the novel technology and its ca-
pabilities. But as wireless ad hoc networking is still in its infancy it needs
to go a long path to unfold its full potential. Towards this goal, the technol-
ogy first needs to gain acceptance by proving reliability and practicability.
Therefore, we not only need to build appropriate hardware, but also provide
suitable tools to efficiently develop the corresponding software. We believe
that it is important to facilitate the software development process for wire-
less sensor networks such that programming is not only easier, but also more
bug-resistant. Within this context, the slotted programming paradigm is
only a small piece of a huge puzzle through which we hope to contribute to
a more efficient development of energy efficient software for sensor networks.

Bibliography

[1] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker,
J. Deng, and R. Han. MANTIS: System Support for Multimodal Net-
works of In-Situ Sensors. In WSNA, 2003.

[2] I. Abraham, D. Dolev, and D. Malkhi. LLS: a Locality Aware Location
Service for Mobile Ad Hoc Networks. In DIAL-M-POMC, 2004.

[3] I. Abraham, C. Gavoille, A. Goldberg, and D. Malkhi. Routing in
Networks with Low Doubling Dimension. In ICDCS, 2006.

[4] J. Aspnes, D. K. Goldenberg, and Y. R. Yang. On the Computational
Complexity of Sensor Network Localization. In ALGOSENSORS, 2004.

[5] C. Avin and G. Ercal. On the Cover Time and Mixing Time of Random
Geometric Graphs. Theoretical Computer Science, 380(1-2):2–22, 2007.

[6] C. Avin and B. Krishnamachari. The Power of Choice in Random
Walks: An Empirical Study. In MSWiM, 2006.

[7] B. Awerbuch and D. Peleg. Sparse Partitions (Extended Abstract). In
FOCS, 1990.

[8] B. Awerbuch and D. Peleg. Online Tracking of Mobile Users. Journal
of the ACM, 42(5):1021–1058, 1995.

[9] G. Barnes and U. Feige. Short Random Walks on Graphs. In STOC,
1993.

[10] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward. A Dis-
tance Routing Effect Algorithm for Mobility (DREAM). In MobiCom,
1998.

[11] L. Blazevic, J.-Y. Le Boudec, and S. Giordano. A Location-Based
Routing Method for Mobile Ad Hoc Networks. IEEE Trans. Mob.
Comput., 4(2):97–110, 2005.

BIBLIOGRAPHY 130

[12] P. Bose and P. Morin. An Improved Algorithm for Subdivision Traver-
sal without Extra Storage. In ISAAC, 2000.

[13] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing With Guar-
anteed Delivery in Ad Hoc Wireless Networks. In DIAL-M, 1999.

[14] H. Breu and D. G. Kirkpatrick. Unit Disk Graph Recognition is NP-
hard. Computational Geometry, Theory and Applications, 9(1-2):3–24,
1998.

[15] N. Brouwers, P. Corke, and K. Langendoen. A Java Compatible Virtual
Machine for Wireless Sensor Nodes. In SenSys, 2008.

[16] J. Bruck, J. Gao, and A. A. Jiang. Localization and Routing in Sensor
Networks by Local Angle Information. In MobiHoc, 2005.

[17] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-MAC: A Short
Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks.
In SenSys, 2006.

[18] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer: Ultra-Low
Power Data Gathering in Sensor Networks. In IPSN, April 2007.

[19] H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On Hierarchical
Routing in Doubling Metrics. In SODA, 2005.

[20] A. K. Chandra, P. Raghavan, W. L. Ruzzo, and R. Smolensky. The
Electrical Resistance of a Graph Captures its Commute and Cover
Times. In STOC, 1989.

[21] J. Chen, A. Jiang, I. A. Kanj, G. Xia, and F. Zhang. Separability and
Topology Control of Quasi Unit Disk Graphs. In INFOCOM, 2007.

[22] M. B. Chen, C. Gotsman, and C. Wormser. Distributed Computation
of Virtual Coordinates. In SCG, 2007.

[23] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr. Efficient
Memory Safety for TinyOS. In SenSys, 2007.

[24] S. M. Das, H. Pucha, and Y. C. Hu. Performance Comparison of Scal-
able Location Services for Geographic Ad Hoc Routing. In INFOCOM,
2005.

[25] S. Datta, I. Stojmenovic, and J. Wu. Internal Node and Shortcut Based
Routing with Guaranteed Delivery in Wireless Networks. ICDCSW,
5(2):169–178, 2002.

BIBLIOGRAPHY 131

[26] F. de Rango, M. Gerla, B. Zhou, and S. Marano. Geo-LANMAR Rout-
ing: Asymptotic Analysis of a Scalable Routing Scheme with Group
Motion Support. In BROADNETS, 2005.

[27] S. Dobrev, J. Jansson, K. Sadakane, and W.-K. Sung. Finding Short
Right-Hand-on-the-Wall Walks in Graphs. In SIROCCO, 2005.

[28] A. Dunkels, B. Grönvall, and T. Voigt. Contiki – a Lightweight and
Flexible Operating System for Tiny Networked Sensors. In Emnets,
2004.

[29] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: Simpli-
fying Event-Driven Programming of Memory-Constrained Embedded
Systems. In SenSys, 2006.

[30] S. Durocher, D. Kirkpatrick, and L. Narayanan. On Routing with
Guaranteed Delivery in Three-Dimensional Ad Hoc Wireless Networks.
In ICDCN, 2008.

[31] M. Dyer, J. Beutel, and L. Thiele. S-XTC: A Signal-Strength Based
Topology Control Algorithm for Seonsor Networks. In ISADS, 2007.

[32] A. El-Hoiydi and J.-D. Decotignie. WiseMAC: An Ultra Low Power
MAC Protocol for the Downlink of Infrastructure Wireless Sensor Net-
works. In Computers and Communications, 2004.

[33] D. Eppstein and M. T. Goodrich. Succinct Greedy Graph Drawing in
the Hyperbolic Plane. In GD, 2008.

[34] J. Eriksson, M. Faloutsos, and S. Krishnamurthy. Scalable Ad Hoc
Routing: The Case for Dynamic Addressing. In INFOCOM, 2004.

[35] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-RK: An Energy-Aware
Resource-Centric RTOS for Sensor Networks. In RTSS, 2005.

[36] Q. Fang, J. Gao, and L. J. Guibas. Locating and Bypassing Routing
Holes in Sensor Networks. In INFOCOM, 2004.

[37] Q. Fang, J. Gao, L. J. Guibas, V. Silva, and L. Zhang. GLIDER:
Gradient Landmark-Based Distributed Routing for Sensor Networks.
In INFOCOM, 2005.

[38] U. Feige. A Tight Upper Bound on the Cover Time for Random Walks
on Graphs. Random Struct. Algorithms, 6(1):51–54, 1995.

[39] R. Flury. Sinalgo - Simulator for Network Algorithms. http://

sinalgo.sourceforge.net, May 2009.

http://sinalgo.sourceforge.net
http://sinalgo.sourceforge.net

BIBLIOGRAPHY 132

[40] R. Flury, S. Pemmaraju, and R. Wattenhofer. Greedy Routing with
Bounded Stretch. In INFOCOM, 2009.

[41] R. Fonseca, R. Fonseca, S. Ratnasamy, S. Ratnasamy, D. Culler,
D. Culler, S. Shenker, S. Shenker, I. Stoica, and I. Stoica. Beacon
Vector Routing: Scalable Point-To-Point Routing in Wireless Sensor-
nets. In NSDI, 2005.

[42] C. Gavoille and M. Gengler. Space-Efficiency for Routing Schemes of
Stretch Factor Three. Journal of Parallel and Distributed Computing,
61(5):679–687, 2001.

[43] C. Gotsman and Y. Koren. Distributed Graph Layout for Sensor Net-
works. In GD, 2004.

[44] A. Grilo, M. Macedo, and M. Nunes. An Energy-Efficient Low-Latency
Multi-sink MAC Protocol for Alarm-Driven Wireless Sensor Networks.
LNCS, 2007.

[45] M. Grossglauser and M. Vetterli. Locating Mobile Nodes With
EASE: Learning Efficient Routes From Encounter Histories Alone.
IEEE/ACM Transactions on Networking, 14(3):457–469, 2006.

[46] L. Gu and J. A. Stankovic. t-kernel: Providing Reliable OS Support
to Wireless Sensor Networks. In SenSys, 2006.

[47] A. Gupta, A. Kumar, and R. Rastogi. Traveling with a Pez Dis-
penser (or, Routing Issues in MPLS). SIAM Journal on Computing,
34(2):453–474, 2004.

[48] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A
Dynamic Operating System for Sensor Nodes. In MobiSys, 2005.

[49] T. Harbaum. NanoVM. http://www.harbaum.org/till/nanovm,
March 2009.

[50] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher.
Range-Free Localization Schemes for Large Scale Sensor Networks. In
MobiCom, 2003.

[51] J. W. Hui and D. E. Culler. IP is Dead, Long Live IP for Wireless
Sensor Networks. In SenSys, 2008.

[52] R. Kleinberg. Geographic Routing Using Hyperbolic Space. In INFO-
COM, 2007.

[53] G. Konjevod, A. W. Richa, and D. Xia. Optimal-Stretch Name-
Independent Compact Routing in Doubling Metrics. In PODC, 2006.

http://www.harbaum.org/till/nanovm

BIBLIOGRAPHY 133

[54] L. Kou, G. Markowsky, and L. Berman. A Fast Algorithm for Steiner
Trees. Acta Informatica, 15:141–145, 1981.

[55] A. Kroeller, D. Pfisterer, C. Buschmann, S. P. Fekete, and S. Fischer.
Shawn: A New Approach to Simulating Wireless Sensor Networks. In
DASD, 2005.

[56] A. Kröller, S. P. Fekete, D. Pfisterer, and S. Fischer. Deterministic
Boundary Recognition and Topology Extraction for Large Sensor Net-
works. In SODA, 2006.

[57] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer. Fast
Deterministic Distributed Maximal Independent Set Computation on
Growth-Bounded Graphs. In DISC, September 2005.

[58] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be Com-
puted Locally! In PODC, July 2004.

[59] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric Ad-
Hoc Routing: of Theory and Practice. In PODC, 2003.

[60] F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically Optimal
Geometric Mobile Ad Hoc Routing. In DIAL-M, 2002.

[61] J.-Y. Le Boudec and M. Vojnovic. Perfect Simulations and Stationarity
of a Class of Mobility Models. In INFOCOM, 2005.

[62] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications. In SenSys, 2003.

[63] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris. A
Scalable Location Service for Geographic Ad Hoc Routing. In Mobi-
Com, 2000.

[64] M. Li, W.-C. Lee, and A. Sivasubramaniam. Efficient Peer-to-Peer
Information Sharing over Mobile Ad Hoc Networks. In MobEA, 2004.

[65] N. Linial, E. London, and Y. Rabinovich. The Geometry of Graphs and
Some of its Algorithmic Applications. Combinatorica, 15(2):215–245,
1995.

[66] R. J. Lipton and R. E. Tarjan. A Separator Theorem for Planar Graphs.
SIAM Journal on Computing, 36(2):177–189, 1979.

[67] K. Lorincz, B. Chen, J. Waterman, G. Werner-Allen, and M. Welsh.
Resource Aware Programming in the Pixie OS. In SenSys, 2008.

BIBLIOGRAPHY 134

[68] L. Lovász. Random Walks on Graphs: A Survey. Combinatorics,
2:353–398, 1996.

[69] M. Luby. A Simple Parallel Algorithm for the Maximal Independent
Set Problem. SIAM Journal on Computing, 15:1036–1053, 1986.

[70] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. The Flooding Time
Synchronization Protocol. In SenSys, 2004.

[71] W. P. McCartney and N. Sridhar. Abstractions for Safe Concurrent
Programming in Networked Embedded Systems. In SenSys, 2006.

[72] A. Moitra and T. Leighton. Some Results on Greedy Embeddings in
Metric Spaces. In FOCS, 2008.

[73] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust Distributed
Network Localization With Noisy Range Measurements. In SenSys,
2004.

[74] ns-2. http://nsnam.isi.edu/nsnam/index.php, May 2009.

[75] C. H. Papadimitriou and D. Ratajczak. On a Conjecture Related to
Geometric Routing. Theoretical Computer Science, 344(1):3–14, 2005.

[76] D. Peleg and E. Upfal. A Trade-Off between Space and Efficiency for
Routing Tables. J. ACM, 36(3):510–530, 1989.

[77] S. V. Pemmaraju and I. A. Pirwani. Good Quality Virtual Realization
of Unit Ball Graphs. In ESA, 2007.

[78] M. Penrose. The Longest Edge of the Random Minimal Spanning Tree.
The Annals of Applied Probability, 7(2):340–361, 1997.

[79] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access
for Wireless Sensor Networks. In SenSys, 2004.

[80] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic Rout-
ing Without Location Information. In MobiCom, 2003.

[81] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. GHT: a Geographic Hash Table for Data-Centric Storage.
In WSNA, 2002.

[82] A. L. Rosenberg and L. S. Heath. Graph Separators, with Applications.
Springer: Frontiers in Computer Science, 2000.

[83] P. Santi. Topology Control in Wireless Ad Hoc and Sensor Networks.
ACM Computing Surveys, 2005.

http://nsnam.isi.edu/nsnam/index.php

BIBLIOGRAPHY 135

[84] S. Schmid and R. Wattenhofer. Algorithmic Models for Sensor Net-
works. In WPDRTS, April 2006.

[85] Sentilla. Sentilla Perk. http://sentilla.com/perk, May 2009.

[86] Y. Shang and W. Ruml. Improved MDS-based localization. In INFO-
COM, 2004.

[87] Shockfish SA. TinyNode. http://www.tinynode.com, November 2008.

[88] A. Slivkins. Distance Estimation and Object Location via Rings of
Neighbors. In PODC, 2005.

[89] A. Smith, H. Balakrishnan, M. Goraczko, and N. B. Priyantha. Track-
ing Moving Devices with the Cricket Location System. In MobiSys,
2004.

[90] Y. Sun, O. Gurewitz, and D. B. Johnson. RI-MAC: a Receiver-Initiated
Asynchronous Duty Cycle MAC Protocol for Dynamic Traffic Loads in
Wireless Sensor Networks. In SenSys, 2008.

[91] K. Talwar. Bypassing the Embedding: Algorithms for Low Dimensional
Metrics. In STOC, 2004.

[92] TinyOS Alliance. TinyOS. http://www.tinyos.net, May 2009.

[93] A. C. Viana, M. D. de Amorim, S. Fdida, Y. Viniotis, and J. F.
de Rezende. Easily-Managed and Topology-Independent Location Ser-
vice for Self-Organizing Networks. In MobiHoc, 2005.

[94] P.-J. Wan, K. M. Alzoubi, and O. Frieder. Distributed Construction
of Connected Dominating Set in Wireless Ad Hoc Hetworks. Mobile
Networks and Applications, 9(2):141–149, 2004.

[95] P.-J. Wan, G. Calinescu, and C.-W. Yi. Minimum-Power Multicast
Routing in Static Ad Hoc Wireless Networks. IEEE/ACM Transactions
on Networking, 12(3):507–514, 2004.

[96] M. Wattenhofer, R. Wattenhofer, and P. Widmayer. Geometric Rout-
ing Without Geometry. In SIROCCO, 2005.

[97] R. Wattenhofer and A. Zollinger. XTC: A Practical Topology Control
Algorithm for Ad-Hoc Networks. In WMAN, April 2004.

[98] S.-C. M. Woo and S. Singh. Scalable Routing Protocol for Ad Hoc
Networks. Wireless Networks, 7(5):513–529, 2001.

http://sentilla.com/perk
http://www.tinynode.com
http://www.tinyos.net

BIBLIOGRAPHY 136

[99] Y. Xue, B. Li, and K. Nahrstedt. A Scalable Location Management
Scheme in Mobile Ad-Hoc Networks. In LCN, 2001.

[100] W. Ye, F. Silva, and J. Heidemann. Ultra-Low Duty Cycle MAC with
Scheduled Channel Polling. In SenSys, 2006.

[101] Y. Yu, G.-H. Lu, and Z.-L. Zhang. Enhancing Location Service Scala-
bility with HIGH-GRADE. In MASS, 2004.

Curriculum Vitae

September 10, 1980 Born in Stans, Switzerland

1987–2000 Primary and secondary schools in Oberdorf, NW,
Switzerland and high school at the Kollegium St. Fi-
delis in Stans, Switzerland

2000–2005 Studies in Computer Science, EPFL, Switzerland

2002/2003 Exchange year at the Carnegie Mellon University in
Pittsburgh, PA, USA

April 2005 MSc in Computer Science, EPFL, Switzerland

2005–2009 PhD student, research and teaching assistant at the
Distributed Computing Group of Prof. Dr. Roger
Wattenhofer, ETH Zurich, Switzerland

September 2009 PhD degree, Distributed Computing Group, ETH
Zurich, Switzerland
Advisor: Prof. Dr. Roger Wattenhofer
Co-examiners: Prof. Dr. Sándor P. Fekete,

TU Braunschweig, Germany
Prof. Dr. Leonidas J. Guibas,
Stanford University, USA

Publications

The following list enumerates the publications I co-authored during my PhD
at ETH Zurich.

1. Slotted Programming for Sensor Networks. Roland Flury and Roger
Wattenhofer. Under submission.

2. Greedy Routing with Bounded Stretch. Roland Flury, Sriram Pem-
maraju, and Roger Wattenhofer. In 28th Annual IEEE Conference on
Computer Communications (INFOCOM), Rio de Janeiro, Brazil April
2009.

3. Randomized 3D Geographic Routing. Roland Flury and Roger Wat-
tenhofer. In 27th Annual IEEE Conference on Computer Communi-
cations (INFOCOM), Phoenix, USA, April 2008.

4. Routing, Anycast, and Multicast for Mesh and Sensor Networks.
Roland Flury and Roger Wattenhofer. In 26th Annual IEEE Confer-
ence on Computer Communications (INFOCOM), Anchorage, Alaska,
USA, May 2007.

5. MLS: An Efficient Location Service for Mobile Ad Hoc Networks.
Roland Flury and Roger Wattenhofer. In 7th ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing (MOBIHOC),
Florence, Italy, May 2006.

	Introduction
	Geographic Routing
	Thesis Overview

	Protocol Design
	Routing in Mobile Networks
	Related Work
	Model
	Position Information
	Lookup
	Lazy Publishing
	Concurrency
	The MLS Algorithm
	Analysis
	Simulation

	Routing in 3D Networks
	Random Walks
	Notation and Model
	Lower Bound
	Towards 3D Routing Algorithms
	Dual Graph
	Routing on the Dual Graph
	Simulation

	Greedy Routing
	Related Work
	Background, Results, and Approach
	Greedy Embeddings of CUDGs
	Simulation

	Compact Routing with Any- and Multicast
	Related Work
	Definitions and Preliminaries
	Dominance Net
	Routing
	Multicasting
	Anycast
	Distributed Dominance Net Construction

	Conclusion

	Application Design
	Simulation
	sinalgo
	Simulation modes
	Mobility
	Discussion

	Slotted Programming
	Related Work
	Background
	Slotted Programming
	The slotos Reference Implementation

	Slotted Clock Synchronization
	Synchronized Transmission
	Pipelined Synchronization
	Initialization
	Experiments
	Discussion

	Low-Power Signaling
	Pipelining
	Signaling of Binary States
	RSSI vs Waves
	Slotted Signaling
	Test Application

	Conclusion

