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Abstract—Brain-Computer Interfaces (BCIs) offer a direct
connection between the human brain and digital systems, en-
abling innovative applications. However, realizing the full po-
tential of BCIs remains challenging due to issues like noise,
artifacts, and limited data availability. In this study, we develop a
multimodal classifier that integrates electroencephalogram (EEG)
and eye-tracking (ET) data to decode user responses to predictive
text suggestions. Utilizing an automated feature engineering
approach, our pipeline efficiently generates and selects relevant
features without extensive manual intervention or deep theo-
retical insights. Applied to a recent BCI case study involving
predictive text input, our method achieved higher classification
accuracies compared to traditional approaches. Additionally,
it revealed novel insights, such as behavioral patterns where
participants did not fully read incorrect predictions and the
enhanced performance of multimodal classifiers when combining
ICA-preprocessed EEG data with ET data. While automated
feature engineering is standard in other domains, it is seldom
applied in BCI research. Our findings demonstrate that this
approach is a valuable tool for data-driven exploration and
the development of competitive single-trial classifiers in novel
multimodal BCI paradigms, particularly during the initial stages
of research with limited data.

Index Terms—EEG, Eye Tracking, automated feature engi-
neering, predictive interaction systems

I. INTRODUCTION

Brain-computer interfaces (BCIs) enable users to interact
directly with digital systems through their neurophysiological
signals, offering transformative potential for human-computer
interaction and assistive technologies [1]. While significant
progress has been made, fully realizing the capabilities of
BCIs necessitates the exploration of new experimental setups
and paradigms. Several recent studies have proposed novel
BCI paradigms, highlighting the potential of using Brain-
Computer Interfaces (BCIs) in innovative applications [2]–[4].
One of the recent interesting case studies includes predictive
text inputs [5], where systems suggest the next word or phrase
as users type, as commonly seen in smartphones and modern
text editors.

1 This work was done as a research intern at Microsoft Research, Redmond,
WA 98052, USA.

One critical component in developing novel BCI paradigms
is the task of building effective single-trial classifiers. De-
veloping these classifiers in new paradigms is particularly
challenging because persistent issues such as noise, artifacts,
and inter-user variability [6] make it difficult to discern
whether meaningful neurophysiological signals are present in
the data. This challenge is amplified in multi-modal setups
[7], [8], where integrating different types of physiological
data introduces additional layers of complexity. Traditionally,
single-trial classification in the BCI domain involves either
deep learning approaches [9] or methods based on feature
extraction motivated by theoretical insights [1]. However, both
of these approaches exhibit limitations and challenges in the
BCI context. On the one hand, deep learning methods, despite
their success in various domains, struggle with limited data
availability in the BCI domain. This is especially more relevant
in the context of early exploration of new paradigms and small
datasets. On the other hand, feature extraction, often grounded
in existing literature and theories, typically has limitations
in terms of classification accuracy. In novel experimental
paradigms, existing theoretical frameworks may not fully
capture all pertinent aspects of the data, potentially leading
to suboptimal feature selection and overlooking important
information.

In this study, we show that automated feature engineering
— a common technique applied in many other domains —
can be also successfully applied in BCI, especially in the
case of novel paradigms, where the theoretical insights are not
fully developed and there is a lack of large scale collection of
data to build effective deep learning models. While automated
feature engineering is not novel, it is not typically explored in
BCI research. This is mainly because, once experiments are
collected on a large scale or the paradigm and data are fully
studied, deep learning methods and expert-crafted features
usually perform best. However, in the initial stages of new
paradigms, this is challenging to achieve. We argue that the
simplicity and efficiency of automated feature engineering
allow for a quick initial exploration and can be a valuable
pipeline to be used in the early stages of researching BCI
applications.

We apply a simple, and fully automated data-driven ap-
proach to a recent BCI case study that investigated users’979-8-3315-2192-9/25/$31.00 ©2025 IEEE



neurophysiological responses during interactions with com-
monplace systems that simulated a natural typing environ-
ment. While the original analysis focused on grand average
responses across all trials and provided the initial insights into
this novel application, the potential for real-time, single-trial
classification between a correct and incorrect word prediction
remained unexplored. Despite the limited data in this dataset
and the inherent challenges of early-stage research in novel
paradigms, we show that automated feature engineering can
help in discovering new insights and building data-driven
single-trial classifiers. In an entirely data-driven approach,
we automatically uncover novel insights into this BCI case
study and additionally develop a single-trial classifier that
outperforms traditional approaches. More concretely, through
automated feature engineering, we achieve the following re-
sults:

1) Single Modality Classifiers: Our best single-modality
classifier achieved an accuracy of 69% within partici-
pants and 64% across participants for EEG, as well as
78% within participants and 74% across participants for
Eye Tracking (ET). Notably, our pipeline automatically
identified that higher ET accuracy primarily resulted
from a distinctive behavioral pattern: participants tend
to read the entire suggested word when predictions are
correct but not when predictions are incorrect, resulting
in varying reaction times.

2) EEG and ET Hybrid Classifier: We developed an EEG-
ET hybrid classifier that outperformed single-modality
classifiers, achieving an accuracy of 81% within and
77% across participants. This underscores the synergy
between EEG and ET modalities. Notably, in contrast to
the single-modality case, our automatic pipeline showed
that the highest accuracy was achieved when Indepen-
dent Component Analysis (ICA) was applied to EEG
data, as this enabled the extraction of true brain activity
signals that complemented the eye-tracking data.

II. RELATED WORK

This section discusses relevant research that highlights vari-
ous methods for feature extraction from eye tracking (ET) data
and EEG signals, as well as different approaches of single-trial
multimodal classifiers in comparable experimental setups.

a) ET: Zagermann et al. [10] sheds light on the relation-
ship between eye movements and cognitive load. Their com-
prehensive analysis delves into various eye-tracking features,
including saccades, fixations, blinks, and pupil size, revealing
their relevance in capturing cognitive processes. In particular,
they state that the higher the load the longer the fixations
and lower the fixation rates. Additionally, they also conclude
that pupil dilates with increasing cognitive load. Finally, they
also find that the higher the load, the lower the blinking rate.
Salminen et al. [11] focuses on correlating confusion with
fixation-level features. Their findings indicate a link between
eye-tracking metrics and user confusion. In particular, they
use a Random Forest and achieve 70% accuracy to predict
user confusion using only fixation features such as fixation

duration, fixation position, etc. Another work explores changes
in pupil size during auditory tasks in response to mistakes [12].
In particular, when subjects listened to somebody counting
from 1 to 19, they observed a sharp spike in pupil diameter
when a mistake was made by saying a number out of sequence.
This research not only illustrates the potential of pupil size as
an indicator of cognitive processes, especially in error-related
contexts, but also suggests that pupil size could be a valuable
feature in our classification task.

b) EEG: Ferrez and Millan [1] investigate Error-Related
Potentials (ErrP) in the context of BCIs. They demonstrate
the presence of ErrP when a BCI system makes mistakes
and propose building single-trial classifiers to distinguish such
cases. Chavarriaga and Millan [13] extend the application
of ErrP to passive BCIs, where users monitor the system
without providing intentional feedback. They illustrate how
ErrP can be used to train an external agent to perform
better within the system, showcasing its role in enhancing
user interactions. Salazar-Gomez et al. [14] employ ErrP to
rectify real-time mistakes made by robots. That application
demonstrates the practicality of EEG-based error detection
for immediate error correction. [9] showcases the utilization
of ErrP to assess the accuracy of a classifier designed for a
different BCI setup (SSVEP-based). They use ErrP as a means
to estimate when the classification is correct and when it is
not, effectively calibrating the model online. This research
highlights the adaptability of EEG signals in various BCI
scenarios. In addition, there is a recent study on importance
of EEG signals related to word recognition with applications
in medical domain [15].

c) EEG-ET: There is a range of studies that employ
both EEG and ET modalities in different applications. [7]
investigated multimodal feature fusion approaches for atten-
tion classification in hybrid BCIs using deep learning methods.
They compared unimodal EEG and eye-tracking classification
to multimodal approaches, including early, middle, and late
fusion strategies. On the other hand, [8] presents a method that
fuses EEG and ET for emotion recognition by using manual
feature engineering. These papers highlight that both deep
learning and manual feature engineering methods are used and
remain competitive in different applications.

III. METHODS

A. Dataset

We use the dataset of a recent study at the intersection of
BCIs and commonplace interactive systems within digital tech-
nologies. For a comprehensive understanding of the dataset,
the details of the study can be found in [5].

Experimental Paradigm: The dataset comprises 150 typ-
ical English sentences, ranging from 4 to 8 words in length,
selected from an existing in-lab dataset. Only one word per
sentence is selected for prediction. Each selected word carries
a 50% chance of being predicted correctly by the system,
which we refer to as a “match.” Conversely, there is an equal
50% chance of an alternative word from the same grammatical
category being presented (“mismatch”). Given a suggested



word (called also ghost word), the user are asked to press TAB
key in case of a match, while in case of mismatches users are
required to simply ignore the word and continue typing.

Recording Setup: 32-channel EEG system, utilizing the
Brain Products LiveAmp system with active gel electrodes.
EEG data is sampled at a rate of 500 Hz, while eye-tracking
data is recorded using a Tobii Pro Nano system, sampling eye
movements at a rate of 60 Hz. This data was synchronized
with the experiment data and computer keyboard using Lab
Streaming Layer [16].

Participants: The study includes ten healthy adults with
proficiency in English and normal or corrected-to-normal
vision. Prior to the study, each participant read and signed
a informed consent approved by the an IRB and compliance
team at Microsoft Research.

Trials: To gather robust data, each of the ten participants
undertakes three runs. During these runs, they engage with
150 different sentences, comprising 50 sentences per run.
Consequently, the dataset encompasses a total of 1,500 trials.
To ensure data quality, we exclude trials where participants did
not press TAB for matches or pressed TAB for mismatches.
Also trials with a system lag > 100 msec in displaying the
visual stimulus are removed from analysis.

B. Temporal and Spatial Areas of Interest

1) Eye-Tracking Temporal Masking: We mask the eye-
tracking data, where specific time points in the data timeseries
are replaced with default values based on specific criteria.
Here, we explore between sentence masking where only data
about participants looking at the sentence on the screen is
retained, with any data outside this region being masked with
a default value. Similarly, we also explore stricter temporal
ghost masking, where data is preserved only when participants
gaze at the suggested word (the “ghost”) within the sentence.
Any data outside this region is masked with a default value.
These masking techniques allow us to analyse the feasibility
of classifying correct and incorrect word prediction based on
the eye movements only while the persons are reading the
sentence or the ghost word. An illustration is shown in Fig 1.

Fig. 1: Sentence and ghost Areas of Interest (AOI) from ET
data. When sentence masking is used, only eye movements
within the sentence box are kept. Similarly, for ghost masking,
only eye movements while the user is looking at the ghost are
kept.

a) EEG Spatial Clustering: EEG data acquisition often
involves a trade-off due to practical constraints, making it
challenging to utilize all 32 electrodes simultaneously. To
address this limitation, different electrode clustering configura-
tions are explored. The various clustering options we try are no
hair, hair-covered regions, and a combination of both regions.
These different clusters allow us to analyse the feasibility of
classifying correct and incorrect word predictions based on
only specific regions of brain activity collected from a subset
of electrodes. See Figure 2 for detailed information of the
channels chosen on each cluster.

C. Preprocessing

Eye Tracking Preprocessing: We transform eye tracking
data (XY-coordinates on the screen) to relative coordinates.
Transforming the data to relative coordinates (X ′, Y ′) is
achieved by subtracting the coordinates from the position of
the text of interest (ghost) as follows: Given the position of the
ghost word (XG, YG), then (X ′, Y ′) = (X −XG, Y − YG).

EEG Preprocessing: We used EEGLAB [17] and applied
several standard preprocessing methods to the EEG data
such as filtering, bad channel detection and interpolation,
independent component analysis (ICA), and re-referencing
to common average. In particular, we performed bandpass
filtering between 1–40 Hz and applied a notch filter to elimi-
nate powerline noise at 50 Hz. For bad channel detections,
we utilized the CleanRawData function to detect noisy or
faulty electrodes and interpolate them based on surrounding
electrodes [17]. We experimented with various combinations
of these preprocessing methods to assess their impact on the
subsequent classification performance.

D. Manual Feature Engineering & Baseline Classifiers

We follow existing literature and include classifiers based on
both methods such as manual feature engineering from related
literature, as well as deep learning models.

1) Manual Feature Engineering:
• Fixation & Saccades: Motivated from [10], for eye

tracking, we leverage the pygazeanalyzer [18] to extract
fixations and saccades. From these types of eye move-
ments, we derive a set of informative features, including:
number of fixations/saccades in the ghost/sentence (4
features), mean/total duration of fixations/saccades in the
ghost/sentence (8 features), first/last fixation/saccade in
ghost/sentence (8 features).

• PCPD: We consider the relative XY-coordinates and the
Percentile Change in Pupil Diameter (PCPD) over time,
creating a 3-dimensional time series. This time series is
then fed into a Random Forest classifier.

• xDAWN Dimensionalty Reduction: Following [9], we
begin with dimensionality reduction of EEG data using
the xDAWN algorithm, resulting in a reduced dataset with
only 4 dimensions.

2) Baseline Classifiers:
• Classical ML methods: We use as baseline a Random

Forest classifier (for eye tracking and EEG) as well as



Fig. 2: Spatial Areas of Interest from EEG data: electrodes in the areas covered by hair, no hair, and a combination of both.

Fig. 3: Eye Tracking experiments (within and across participants). All models make use of Random Forest (RF) classifier,
with the main difference in (1) TSFresh-RF we use automated feature engineering pipeline from TSFresh library to extract the
features, (2) X,Y,PCPD-RF we manually extract the percentile change of pupil diameter and feed the raw X,Y eye movements
to Random Forest Classifier and (3) FixSacc-RF we manually extract 20 features related to fixations and saccades.

Linear Discriminant Analysis (LDA) classifier (for EEG
motivated from [19]). These are two typical classical ML
methods used in eye tracking and EEG where features
are manually extracted.

• CNN: We also include a simple Convolutional Neural
Network consisting of only two layers, followed by a
fully connected layer in our baselines. We train the model
using binary cross-entropy loss.

• LSTM: Similar to the previous model (CNN), we also
insert an LSTM building block between the last convo-
lution layer and the subsequent fully connected layer to
capture time dependencies in the signal.

• Transformer: In our baseline models, we also include a
model that is attention-based. We perform two types of
attentions — through electrodes and through time. We use
a transformer encoder building block for both attention
building blocks and then concatenate the embeddings
before feeding them to a fully connected neural network.

E. Automated Feature Engineering & Multi-modal Classifier

Instead of extracting specific features or using the raw
timeseries data, we utilize the TSFresh library [20] to extract
tens of thousands of general-purpose but interpretable features.
In addition, we run a permutation feature importance analysis,
which allows us to determine which of these thousands of
features are important in our setup. Finally, for classification,
we use a Random Forest classifier with the most important
features. We also test a multi-modal model, where we leverage
the features extracted using TSFresh from both ET and EEG
data and simply concatenate them before feeding them to
the permutation feature importance (PFI) pipeline or Random
Forest classifier. The whole pipeline can be run automatically
and does not require any manual feature engineering.

IV. RESULTS

A. Eye tracker analysis

Fig. 3 shows the key findings from our eye-tracking experi-
ments conducted under three distinct masking scenarios. Con-



Fig. 4: EEG Experiments (within and across participants) with different classifiers across different preprocessing methods.
TSFresh-RF represents the model based on automated feature engineering and a random forest (RF) classifier. In the xDAWN-
LDA baseline, we perform dimensionality reduction using xDAWN algorithm and use the extracted features in an Linear
Discriminant Analysis (LDA) classifier. The CNN, LSTM, and Attention models are deep learning based models.

ducted inter and across participants, the results consistently
indicate that the TSFresh-RF (automated feature engineering
with a random forest classifier) model outperforms other
models across these scenarios. Particularly noteworthy is that
the highest accuracy is consistently achieved when no masking
is applied to the eye-tracking data.

Further, we performed a permutation feature importance
(PFI) analysis on the TSFresh-RF model. The analysis re-
vealed that the most critical feature for classification was the
maximum value of the X-coordinate of eye movement. Since
the XY-coordinates of eye movements is transformed relative
to the ghost word, the maximum value of the X-coordinate
represents how far the participant looked on the right of the
start position of the ghost word. This observation suggests that
the extent to which participants scan the ghost word directly
correlates with its classification as a match or mismatch. We
provide a visual representation of the relationship between
word length (in characters) and scan length (in seconds) for
ghost words in Figure 5. Notably, for mismatches, the scan
length does not increase with word length, confirming our
previous observation. This indicates that participants tend to
simply stop from reading incorrect ghost words until the end.
The TSFresh-RF model successfully utilizes this information,
achieving an accuracy of approximately 78% within partici-
pants and approximately 76% across participants.

B. EEG analysis

In Figure 4, we present the results for all EEG models under
different EEG preprocessing methods, both within and across
participants. The experiments for within participants demon-
strate that the TSFresh-RF model consistently delivers the best
performance. Similar patterns are observed across participants,
except for the case of CleanRawData, where the XDAWN-
LDA model performs better. Surprisingly, preprocessing the
EEG data did not result in performance improvements. In
fact, combining CleanRawData and ICA led to a decrease
in model accuracy. To this end, we conducted a permutation

Fig. 5: The relation between word length and scan length.
This insight was automatically discovered from the features
extracted from TSFresh library.

feature importance (PFI) analysis on the EEG model. The
analysis revealed that the most important electrode was FP2.
This observation suggests that the model might be utilizing
information similar to that of the eye tracker, as FP2 is closely
positioned to the eye and captures eye movements. Notably,
preprocessing, especially ICA, removes these artifacts, leading
to a degradation in performance.

C. Eye tracker and EEG analysis

In Figure 6, we present the results for the hybrid model
(TSFresh-RF) under different preprocessing types, electrode
clusters, and eye-tracking data masking scenarios. Within
participants, the model achieves 81% accuracy when both
CleanRawData and ICA are applied to EEG data, and the com-
bined cluster of EEG electrodes is used without any masking
on the eye-tracking data. This differs from the EEG-only setup,
where preprocessing did not improve performance due to the
removal of eye movement information by ICA. However, in
the hybrid model, preprocessing enhances performance, as
the eye movement information is already present in the eye-
tracking data, making the cleaned EEG data complementary.
Similar patterns are observed for across participants, although



Fig. 6: Hybrid Model (EEG-ET) Experiments for each preprocessing type, for each cluster type, for each masking type. First
row = within participants, second row = across participants.

here, CleanRawData or ICA alone perform slightly better
than their combination. The best accuracy achieved across
participants with existing methods is 77%.

V. CONCLUSION

In this study, we developed a multimodal classifier com-
bining EEG and eye-tracking (ET) data for a BCI appli-
cation involving predictive text systems. We demonstrated
the feasibility and utility of automated feature engineering
in BCI setups, particularly during the initial stages of data
exploration when theoretical frameworks are still evolving
and data availability is limited. We showed that pipelines
with automated feature engineering can be effectively utilized
in BCI contexts, offering a practical and efficient tool for
generating and selecting relevant features without the need for
extensive manual effort or deep theoretical insights.

This approach yielded valuable insights, including the au-
tomatic detection of behavioral patterns such as participants
not fully reading incorrectly predicted words. Furthermore,
we discovered that integrating ICA-preprocessed EEG data
with ET data enhanced classification performance by allowing
brain features to complement eye-tracking information. In

contrast, in the single-modality EEG-only case, ICA inadver-
tently removed informative eye movement artifacts, reducing
classification accuracy. The inclusion of ET data mitigated this
issue, enabling cleaner brain activity signals to synergize with
eye-tracking data for improved predictions.

Although our findings highlight the benefits of automated
feature engineering in early-stage BCI research, we acknowl-
edge its limitations. Automated feature engineering is not
intended to replace existing methods or achieve superior
performance in all scenarios. We anticipate that deep learn-
ing models, supported by larger datasets and well-developed
theoretical frameworks, will outperform automated feature
engineering approaches in more mature research contexts.
However, the ease of implementation and the ability to derive
meaningful insights make automated feature engineering a
valuable addition to the BCI research toolkit, particularly for
novel paradigms and initial explorations. Automated feature
engineering is a standard approach in many domains related to
timeseries classification, but, surprisingly, it is not commonly
applied in the BCI context. Our study demonstrates that it is
effective for data-driven exploration and competitive single-
trial classifier development in multimodal setups.
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