
Maintaining Constructive Interference
Using Well-Synchronized Sensor Nodes

Michael König
mikoenig@ethz.ch

Distributed Computing Group
ETH Zürich, Switzerland

Roger Wattenhofer
wattenhofer@ethz.ch

Distributed Computing Group
ETH Zürich, Switzerland

Abstract—Traditionally, achieving constructive interference
(CI) required specialized timekeeping hardware. Recently, the
ability and interest to employ CI distributedly at any time using
groups of ordinary single antenna wireless sensor nodes have
grown.

In this paper, we investigate achieving CI on sensor nodes. We
consider the commonly employed IEEE 802.15.4 wireless stan-
dard, which uses a chip frequency of 1 MHz. This means signals
need to be synchronized with an error below 0.5 microseconds
to allow for CI. Hence, excellent clock synchronization between
nodes as well as precise transmission timing are required.

We implemented and tested a prototype addressing the im-
plementation challenges of synchronizing the nodes’ clocks up
to a precision of a few hundred nanoseconds and of timing
transmissions as accurately as possible. Our results show that,
even after multiple minutes of sleep, our approach is able to
achieve CI in over 30% of cases, in scenarios in which any
influence from the capture effect can be ruled out. This leads to an
increase in a packet’s chance of arrival to 30-65%, compared to
0-30% when transmitting with either less synchrony or different
data payload. Further, we find that 2 senders generally increase
the signal power by 2-3 dB and can double the packet reception
ratio of weak links.

I. INTRODUCTION

In recent years, the benefits of constructive interference
(CI) have been discovered for wireless sensor networks: By
synchronizing identical signals well enough, the interference
caused by the collision is not destructive but rather unno-
ticeable or even strengthening. On the one hand, this allows
the development of algorithms which can expect identical
packets not to destructively interfere. On the other hand, more
unstable and longer links can be used more reliably through
the strengthening of the signal.

Traditionally, the frugal nature of sensor node hardware and
timekeeping moved synchronizing clocks and transmissions
out of reach for commodity sensor nodes. In the past, several
workarounds have been proposed to nevertheless enable the
signals of separate nodes to interact meaningfully:

• One way is to provide a highly accurate external global
clock source by some means, e.g. GPS, with each sensor
node.

• Another approach is to forgo the ability to send fully
articulated data packets – and to simply transmit wave-
forms instead, which are unlikely to fatally destructively
interfere [1].

• Most recently, Glossy [2] explored how to leverage
incoming reference packets to send a packet immediately
afterwards with an almost constant delay. When multiple
nodes use the same reference packet (or different well-
synchronized reference packets), their outgoing packets
are then synchronized enough to achieve CI.

All of these approaches have in common that they try
to avoid dealing with the rather unreliable internal clocks
of commodity sensor nodes. In this paper, we explore the
possibilities of creating synchrony sufficient for harnessing CI
without relying on any of these workarounds. By meticulously
keeping time using the available local clocks to extrapolate a
global time value, and by minimizing the variance in packet
departure delay, we manage to at least partially obtain this
goal. In particular, we present a proof of concept imple-
mentation achieving CI on the popular TelosB sensor nodes,
confirming the viability of our approach: Even for only 2
senders we obtain an increase in signal strength of at least
2 dB in 60% of cases and an increase in packet reception
ratio of 20-35% when signal strengths are equal. For ideal
results, we need the last synchronization of the senders to
lie at most 20 seconds in the past when attempting to send
simultaneously, but even after multiple minutes of sleep our
approach can benefit from CI. We carefully compare several
parameters in order to understand the limits of CI on sensor
nodes. For instance, already a synchronization error in the
order of 1 µs is problematic. More precisely, as we are using
the IEEE 802.15.4 standard, the transmissions need to start
within less than 0.5 µs of each other to avoid destructive
interference.

Hence, a significant part of this work is dedicated to
synchronizing the clocks of the sensor nodes, maintaining this
synchrony and, finally, precisely dictating the time span of
the wireless transmission. Clock synchronization for wireless
nodes in general is a well-studied problem, but the synchro-
nization precision requirements by our setup are more stringent
than those of the common use cases such as TDMA.

II. RELATED WORK

A. Clock Synchronization

Time synchronization between network nodes has been
studied for a long time even before wireless nodes became

widespread. The 30 years old Network Time Protocol (NTP)
[3] is still in use today for time synchronization between
two machines over the Internet, achieving accuracies of about
10 milliseconds. Recently, adjustments have been proposed
improving its accuracy to about 1 millisecond [4], which is
still off by a factor of over 1000 from the precision we require.

Wireless networks face additional challenges [5] but also
have additional options at their disposal due to the different
nature of their medium. Römer [6] proposes a synchronization
algorithm focusing on sparse ad hoc networks. Dozer [7]
minimizes energy consumption by keeping sender-recipient
pairs synchronized over long periods of time and only rarely
waking them for brief scheduled rendezvous exchanges. To
maintain synchrony in spite of clock drift, the drift is mod-
eled and compensated for. We employ a similar scheme, see
Appendix B.

RBS [8] makes use of the broadcasting nature of every
wireless transmission to synchronize multiple nodes with a
single transmission. RBS achieves synchronization accuracy
on the order of microseconds. TPSN [9] builds a hierarchical
tree structure for synchronization from a root node. TPSN also
introduces the concept of MAC layer timestamping, which we
build upon in this work (see Appendix A). FTSP [10], [11]
floods periodical synchronization waves through the network,
improving accuracy to around 1µs. Further improvements for
synchronizing networks of nodes are RITS [12], reactively
synchronizing nodes using global events, and RATS [13] and
PulseSync [14], which propose rapid network-wide flooding
while employing schedules to avoid collisions.

An analysis of the single-hop and multi-hop performance
of the different synchronization protocols and a proposal for a
non-hierarchical synchronization method improving the multi-
hop case can be found in [15].

B. Constructive Interference

Already early on, primarily flooding algorithms became
privy to the possible gains of using non-interfering signals and
thus being able to flood the network without the overhead of
building and adhering to a flooding schedule. We distinguish
single and multiple source flooding: while in single source
flooding a node desires to disseminate information or an event
in the whole network, in multiple source flooding any number
of nodes may raise redundant alarm events which need to be
propagated. Lu et al. [16] proposed a single source flooding
protocol, which simply ignores collisions between neighboring
nodes at the flooding front, leaving it to the capture effect to
let each node receive a copy of the message sooner or later.
They show that such recklessness can in fact improve latency
by as much as 80%.

Slotos [1] implemented multiple source flooding in form of
an alarm system in which an alarm signal, a simple waveform,
was propagated through a network by nodes which received
the alarm starting to send out the signal as well. In this case
the concurrent signals were not artificially aligned but the
resulting amount of destructive interference was acceptable to
the protocol, as the signal did not carry any data beyond its

existence. Similarly, the Black Burst Synchronization (BBS)
scheme [17] employs non-destructively interfering pulses, so
called “black bursts”. Dutta et al. [18] exploit the fact identical
acknowledgment packets automatically sent by the receiving
hardware are aligned well enough to cause CI. While essen-
tially all of these approaches have the common disadvantage of
having very little control over the data being sent, this is well
suited for multiple source flooding, as such events typically
are not expected to carry detailed information.

More recently, Glossy [2] proposed a technique by which
simple single antenna sensor nodes could send with unprece-
dented synchrony, leading to a fast single source flooding
algorithm avoiding collisions through constructive interference
and the capture effect. This technique is based on tying the
departure time of each packet to the end of the incoming
transmission of the previous packet, effectively reducing the
timespan during which clock skew can erode synchrony. The
goal of this paper is to do away with this restriction while still
allowing collision-free transmission of data packets instead of
mere events.

The introduction of this new tool spawned a multitude of
applications: Not only have several new protocols for flooding
and data dissemination been developed, e.g. [19], [20], but also
more advanced packet pipelining has been proposed [21]. A
general model for the occurrence of CI and the capture effect
was proposed by Yuan et al. [22].

III. EXPERIMENT SETUP

A. Hardware

As wireless nodes for our experiments we used the Tmote
Sky sensor nodes (also known as “TelosB”) [23]. They feature
a 16-bit RISC microcontroller, the TI MSP430, and a TI
CC2420 wireless transceiver. The clocks available to the
MSP430 are a 32 kHz (215 Hz) quartz crystal as well as
an internal digitally controlled oscillator (DCO) which serves
as the pulse generator for the instruction execution. The
frequency of the DCO is very prone to being skewed through
fluctuations in temperature and voltage, but can generally be
configured to be anywhere in the range from 100 kHz to
5 MHz.

The CC2420 is tailored to support IEEE 802.15.4 and offers
many convenience features such as framing given packet data
including automatically including a 16-bit CRC checksum
field in the packet footer. We rely on this checksum mechanism
as our main way to tell whether a received packet has been
corrupted. The CC2420 offers a range of transmit powers from
-30 dBm to 0 dBm. We make use of this feature as it is easier
to adjust to output power than to physically move the nodes
every time changes in the environmental conditions require it
(see Section VII).

We made use of an installation of 30 of these sensor
nodes part of the wireless testbed FlockLab [24], placed at
various locations at the ceiling of the same floor in an office
building, some inside enclosed offices, some on the hallway.
This allowed us to consider a variety of real life scenarios.

Fig. 1: A figure from the CC2420 Manual [25] depicting
the pseudo-random modulation pattern of the zero symbol
on the I and Q phases. TC is defined to be 0.5 µs by [26],
i.e., the chip rate is 1 Chip/TC = 2 MChips/s.

B. Software

On the sensor nodes we run code based on Contiki version
2.7. We chose Contiki because it allows making the kind of
low-level modifications we required the easiest. In particular,
we overhauled the clock module which is concerned with
using the MSP430’s Timer A (configured with the 32 kHz
quartz crystal as clock source) to count elapsed seconds
and periodically test for expired user-defined “timers”. We
decrease the time span between timer interrupts to 1

210 seconds,
and instead of counting elapsed seconds we count the occur-
rences of overflow interrupts for the Timer A timer register.

Contiki also offers a mechanism to periodically re-configure
the DCO to best match the desired frequency. We make use
of this to keep the DCO frequency near 222 Hz (roughly
4 MHz), the highest supported power-of-two multiple of the
quartz crystal frequency (215 Hz). This essentially subdivides
each tick of the quartz crystal into 27 sub-ticks, i.e., increasing
the combined precision by 7 bit (see Section V).

The DCO is usually turned off to conserve energy during
idle low-power phases of the processor. While our approach
allows such sleep phases, we naturally do require the DCO
to have been running since at least the last quartz crystal
tick to be able to provide accurate timestamps. This incurs
an overhead of up to 1/215 seconds of DCO operation after
each wake-up.

We also configure the CC2420 driver to not use CCA (clear
channel assessment) for packet transmission and extend it
to support recording 64-bit timestamps on incoming packets
and adding 64-bit timestamps to outgoing packets (see Ap-
pendix A).

For the process of the experiments themselves see Sec-
tion VII-A.

IV. TIMING REQUIREMENTS

The IEEE 802.15.4 standard specifies the encoding of the
raw logical data stream to electromagnetic signal as follows:
First, the data is segmented into groups of 4 bits, called
“symbols”. Each of the 16 possible symbols is then mapped to
a certain pseudo-random noise sequence of 32 binary “chips”.
Finally, the chip sequences are concatenated and modulated
using O-QPSK, i.e., every chip is modulated alternatingly onto
the I and Q phases, offset by half a chip duration. At a chip rate
of 2 MChips/s this pans out to 62,500 symbols per second or

a 250 kbit/s data rate. See Figure 1 for an example modulation
of the zero symbol (corresponding to 4 zero bits).

In the ideal case all the senders’ (identical) chip sequences
arrive at the recipient node at the same time overlapping each
other at a small random (carrier) phase offset, likely causing
CI and thus increasing the signal strength. Unfortunately, such
alignment does not come easily, and in the remainder of
this section we will discuss the different sources of signal
misalignment.

As an upper limit for the acceptable signal shift between
two signals we can identify TC = 0.5 µs, half the duration of
a single chip within one of the two phases. If the signal shift is
any greater, every chip of the second signal will superimpose
the chip subsequent to the corresponding chip of the first
signal more than the actually corresponding chip. This would
cause both of the signals to be harder to decode correctly as
some of the bits of each signal will experience destructive
interference, i.e., the reduction of signal strength in a chip
through summing up of opposing signal values. This upper
limit of 0.5µs is certainly not tight as that is merely the point
at which chips certainly cannot be unambiguously matched to
a signal anymore. In practice, we are aiming for a signal shift
of 0.2 µs or lower to ensure a strong CI effect. When using
a set of more than 2 senders, we aim to minimize the shift
between every pair of signals.

We identify 3 main sources of signal misalignment between
the signals of two senders A and B: the clock synchronization
error eclock, the transmission timing error etransmit, and the
difference in the signal travel times etravel:

etotal = eclock + etransmit + etravel
!
� 0.5 µs

Each of the components can be positive or negative and thus
they can cancel each other out. They are defined as follows.

The clock synchronization error is simply the difference
in the senders’ views of the global clock value. We discuss
reducing this error in detail in Section V.

eclock = clockA − clockB

The transmission timing error of a node is the delay the
node starts the transmission after a given desired local time.
The difference in transmission timing errors (delays) at each
node forms etransmit. We discuss reducing this error in detail
in Section VI.

etransmit = etransmitB − etransmitA

Finally, the travel time error is the difference in each
senders’ signal’s travel time.

etravel = traveltimeB − traveltimeA

The travel time error is of note because at the precision of
time we are working with here – tens of nanoseconds – the
travel time of the electromagnetic waves becomes significant,
even on a testbed located in a medium-sized office building
floor. For instance, if one of the senders is 30 meters further

away from the recipient than the other the difference in signal
travel time is 100 nanoseconds.

We tried measuring these travel times by measuring the
round-trip times of links and subtracting the time the respond-
ing node measured between the arrival of the incoming and
the departure of the outgoing packet. Two factors thwarted this
attempt: The CC2420 transceiver we are using experiences a
“data latency”, which denotes the time between the sender and
the receiver activating their SFD (“start of frame delimiter”)
pin, which indicates the start of an incoming or outgoing
transmission. This delay is apparently caused by the processing
of the non-packet signal in the receiver and specified to be 3µs
by the CC2420’s data sheet. Our measurements show that this
delay is probably closer to 3.6 µs and that it can fluctuate
by several dozen nanoseconds in subsequent measurements.
Additionally, we observed the round-trip time to vary by
hundreds of nanoseconds over the course of a day. This is
likely caused by environmental effects, such as temperature
influencing the wireless transceiver’s clock and the opening
and closing of doors in the office building changing the actual
travel times, although we doubt that hundreds of nanoseconds
of difference can be explained by travel time changes. In the
end, we did not come to a conclusive explanation and decided
to simply make best effort to eliminate this error: we pick
senders at roughly equal distance to the recipient node and
adjust for the “data latency” with a constant time offset of
3.6 µs.

V. CLOCK SYNCHRONIZATION

In general, quartz crystals exhibit a more stable and thus
more desirable behavior than digitally controlled oscillators
(DCOs), both in terms of long term drift as well as short term
frequency stability. The TelosB possesses 2 quartz crystals:
a 32768 Hz one attached to the MSP430 for general high-
accuracy timekeeping, and a 16 MHz one attached to the
CC2420 transceiver used for signal processing and as data
rate reference. Unfortunately, the latter is not accessible to
the CPU, so we need to make do with the MSP430’s built-in
DCO as sole source for high granularity clock ticks: It offers
a resolution of about 0.24 µs, compared to the resolution of
the 32 kHz quartz crystal of about 30 µs.

To get the best from both worlds – the stability of the quartz
crystal and the precision of the DCO – we build a hybrid
clock, similar in spirit to the method proposed in [27]. The
215 Hz quartz crystal has priority and ensures relatively high
stability over the long term while the DCO, set to a speed as
close to 222 Hz as possible, fills out the time span in between
the quartz crystal ticks with 222/215 = 27 finer-grained ticks.
To accomplish this, we configured the MSP430 to copy the
current value of the DCO clock (a 16-bit counter) at each
quartz crystal tick into a special capture register. The MSP430
allows doing this in parallel with regular instruction execution
at no additional overhead. A complete current time value could
then be obtained by subtracting the current DCO counter from
the value in the special capture register and using the result as
7 bits of additional precision together with the current quartz

Fig. 2: The final layout of our timestamps with the different
clock sources in different rows. The quartz clock has
priority over the DCO clock, so actually only 7 bits of
the DCO clock are used. No clock we use is able to specify
the lowest 8 bits, but these bits allow for storing extra
precision when a timestamp is the result of arithmetic
operations.

crystal counter. Additionally, we keep the number of times the
quartz crystal counter overflowed in a variable. This variable
is incremented in an overflow interrupt handler causing a
negligible overhead every 2 seconds. Figure 6 shows how
a separate DCO clock would move in relation to the quartz
crystal. Not only is there a clear drift and oscillating behavior
(both of which could be accounted for to some degree), but
there also is a notable amount of randomness that would make
relying on the DCO alone as a clock source a poor choice.

As all the MSP430’s registers only hold 16 bits, the question
of the size for timestamps arises, as for the transmission be-
tween nodes they should denote globally unambiguous values.
16-bit variables do not suffice as the DCO clock alone wraps
around 256 times a second. 32-bit variables would wrap every
1024 seconds or roughly 17 minutes, and since we want to
enhance our timestamps by an additional 8 bits of precision
when extrapolating (see Appendix B), we settled on 64-bit
variables. Such variables are well supported by our compiler (a
GCC variant for the MSP430), but special care has to be taken
when performing arithmetic operations on variables of this
size, as they quickly grow to require hundreds of instructions
on 16-bit RISC CPUs. The final layout of our timestamps can
be seen in Figure 2. The precision of these timestamps is 1/230

seconds, roughly a nanosecond, and the range is sufficiently
large (several years).

For our implementation of MAC layer timestamping and
clock drift compensation refer to Appendices A and B. In the
end, we managed to solve the problem of single-hop clock
synchronization on TelosB as well as possible but still have
to admit an error eclock of up to 250 nanoseconds. However,
as the error is almost uniformly distributed, we will hit cases
as good as |eclock| ≤ 50 nanoseconds over 20% of the time.

VI. TRANSMISSION SYNCHRONIZATION

Even if our clock was perfectly synchronized to the global
clock, transmitting a packet exactly at some given time is not
a simple task. Once the transmission of a packet has begun, its
synchronization error will no longer change, since its trans-
mission is now controlled by the CC2420’s 16 MHz quartz

tSFD − tSTXON Instance Count Fraction of Total
1593 15 0.26%
1594 893 15.71%
1595 3726 65.53%
1596 1049 18.45%
1597 3 0.05%

Σ 5686 100.00%

TABLE I: Measured STXON→SFD times collected from
a single test run with 15 nodes. The time differences are
specified in DCO ticks.

crystal. However, the delay between reaching the desired de-
parture time and beginning the transmission is not necessarily
constant. It can be split into two parts: the time between
reaching the desired departure time and issuing the STXON
command strobe (requesting the transmission of a previously
loaded packet) to the transceiver, and the time between issuing
STXON and the actual start of the packet transmission. We
measured the latter of these two by comparing the DCO clock
values right before issuing the STXON command and at the
SFD event (see Appendix A). The distribution of the measured
values are shown in Table I. The fluctuations are well within
the limits of the frequency noise the DCO experiences (see
Figure 6). While it is possible that there is a small variable
delay, it is not discernible and we assume this time span to be
constant.

It remains to scrutinize the time span between reaching the
target time and issuing STXON. Initially, we employed busy
waiting: once the target time was close, we stop relinquishing
control to the operating system and enter a loop in which
all we do is query the time until the target time has been
passed. Immediately after, we call the driver routine to start
the transmission (one of the first instructions of which is to
issue STXON).

Listing 1: Simple Busy Wait
if (TargetTime - GetGlobalTime() < 10 ms) {

while (TargetTime > GetGlobalTime())
; // do nothing

cc2420_driver.transmit();
}

This approach experiences a large variance in loop exit
times and thus transmission times (relative to the target time)
due to the large amount of instructions within the loop: assem-
bling the local timestamp requires 55 instructions, computing
the global time from it requires at least 110 instructions and
comparing it to the target time requires 22 instructions. To
address this problem we made 3 changes. The first change was
to apply our model of the global time “backwards” to compute
the target local time before entering the busy wait loop. The
second change was to decompose the target local time into its
3 clock sources (see Figure 2) and spin on the 3 16-bit clocks
one after another. These two changes reduce each loop to the
minimum of 3 instructions. See Listing 2 for an approximate
implementation. TAR is the quartz counter register, TBR is
the DCO counter register and TBCCR6 contains the value of
TBR at the last quartz crystal tick.

Listing 2: Busy Wait Split by Clock Sources
void await(uint64_t local_target) {

uint16_t target_tarof =
(local_target >> 23) & 0xFFFF;

uint16_t target_tar =
(local_target >> 7) & 0xFFFF;

while (TAR_overflows < target_tarof)
;

while (TAR < target_tar)
;

uint16_t target_tbr =
(local_target & 0x007F) + TBCCR6;

while (TBR < target_tbr)
;

}

It is worth noting that not every instruction requires the
same amount of time to be executed. However, due to the
absence of caches and pipelining in the MSP430’s architecture,
the execution time of any given instruction can be specified
exactly in terms of a number of CPU cycles, which directly
correspond to the impulses generated by the DCO.

Listing 3: Busy Wait Assembly
.L24:
mov &__TBR, r15 ; 3 cycles
cmp r12, r15 ; 1 cycle
jlo .L24 ; 2 cycles

The third and final change we made was to insert NOPs
(1-cycle “no operation” instructions) ahead of the final loop
to ensure we exactly matched the target time when exiting the
final loop. The three instructions comprising the loop execute
in exactly 6 cycles (see Listing 3), so before the loop we wait
for (target tbr−TBR) mod 6 cycles by using a jump table
into a series of NOPs.

After applying these optimizations, the time offset between
the target time and the issuing of the STXON command strobe
was constant in over 80% of cases. By artificially delaying the
next periodic timer interrupt before entering the last busy-wait
loop to a point 1 ms in the future, this number increased to
> 99% of cases.

The constant delay is easily adjusted for, leaving the only re-
maining transmission error we can observe the delay between
issuing STXON and registering the SFD event as measured
by the DCO clock. Note that in this case the DCO clock is
used only for measuring and does not in any way influence
the wireless transceiver preparing for the transmission. Thus,
it is a reasonable assumption that the jitter seen in Table I is
merely a product of the DCO’s instability, albeit we cannot
rule out that the transceiver itself introduces a small variable
delay.

Finally, as with clock synchronization, we suffer a trans-
mission error etransmit of up to 250 nanoseconds, the res-
olution of our most precise clock, independent of the clock
synchronization error. However, this error is also distributed
uniformly in the interval [−1/223seconds,+1/223seconds]
and in a certain fraction of all samples |etransmit| will be
acceptably small.

VII. CONSTRUCTIVE INTERFERENCE

A. Experiment Procedure

A particular concern when designing the experiments was to
ensure we would be able to discern which transmissions were
successful due to CI and which were successful due to the so-
called capture effect. The capture effect is a phenomenon in
FM wireless receivers to be able to commit to a transmission
and continue to decode it correctly in spite of other later
transmissions starting during the duration of the first one. For
this to work, the “captured” transmission needs to be slightly
stronger than the sum of the remaining transmissions’ signal
powers. On our testbed we found the required extra signal
power to vary between 2 or 3 dB, highly depending on the
nodes (see Figure 3). As link qualities in real life scenarios
and on our testbed can easily vary by ±3 dB within minutes
or sometimes even mere seconds, completely avoiding power
settings in which the capture effect can occur is not feasible.
To nevertheless be able to detect the capture effect, we thus
frequently measure the quality of every link used.

In our experiments we considered several tuples of nodes,
where one node of each tuple was designated the recipient and
was known to have somewhat stable links to the other nodes,
the senders. We proceed in rounds, in which first we let all
senders send simultaneously twice: first with the same data
packet and then with data packets individual to the senders.
Then, as a second stage, each of the senders sends alone once.
Finally, the recipient gives the senders feedback on the round
and optionally also supplies them with fresh synchronization
information. During each round the senders keep their sending
powers constant. The purpose of the second stage is to ensure
we know the received signal strengths (RSS) for all senders.
Because a round takes less than half a second, we make the
assumption that the wireless environment does not change
significantly during the vast majority of all rounds. Knowing
the difference in RSS values is vital for us, as it allows us
to discern successful receptions which may have been caused
by the capture effect, as discussed above. We fix one of the
senders’ transmission powers at a medium value, such that the
other senders will be able to create RSS values both stronger
and weaker than the fixed sender. The other senders iterate
over a range of power settings whose limits are regularly
adapted based on the feedback received between rounds.

B. Results

First, consider the case of 2 senders. Figure 3 shows the
relation between the difference in received signal strengths
(RSS) and the packet reception ratio (PRR) for senders sending
the same data versus sending different data, in which case
the senders would set every symbol of the packet payload
to a symbol corresponding to their ID. A large positive RSS
difference means sender B, which is iterating over different
transmission powers over the rounds, was received a lot
stronger than sender A, whose transmission power stays con-
stant. Which sender was received can be seen when different
data is sent, as is shown by the dashed lines. This plot is

−3 −2 −1 0 +1 +2 +3 +4 +5
0

5

10

15

20

25

30

RSSsame −RSSdiff [dB]

Fr
ac

tio
n

[%
]

Fig. 4: The distribution of of the measured RSS gain of
simultaneous sending versus either of the two senders,
given both senders sending at the same power.

particularly interesting because it highlights the interplay of
CI and the capture effect: if either sender is received a lot
more strongly than the other, it will be received correctly
regardless of it sending a different packet. However, as the
signal powers become more similar, destructive interference
occurs more often. By sending the same data, we are able
to avoid a portion of the destructive interference, strongly
implying the occurrence of CI.

We were able to observe CI to varying degrees for any triplet
of nodes, as long as the senders are capable of creating signals
with similar strength at the recipient. As a result of CI the PRR
observed at equal RSS increases by 25-35% of samples. The
width of the gap between one sender dominating and the other
sender dominating appears to be a property of the hardware
and environment of a certain node tuple, but does not appear
to be connected to the CI we achieve.

Figure 4 displays the distribution of the signal strength
gained through CI at equal RSS for 2 senders. We observe a
large variation both due to an inherent gray area in link quality
and due to the variation in transmission synchrony achieved.
However, in over 65% of cases we measure an increase of
signal strength by 2 dB or more.

We also conducted experiments with 3 and 4 senders, mak-
ing an even larger case for CI as the capture effect is known
to occur less and less as the number of senders increases
[16]. Tables II, III and IV display the PRRs aggregated in
two different ways for one run with 3 senders and one run
with 4 senders. Empty cells correspond to configurations with
fewer than 5 samples. While there is a significant fluctuation in
values due to the unavoidably low number of samples in many
cells, as we cannot dictate the RSS values, a few clear trends
can be observed. Most visibly, the same data case usually
exhibits a PRR 25-40% higher than the different data case.
Further, the capture effect, whose occurrence can easily be

−6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RSSB −RSSA [dB]

PR
R

(a)

−6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RSSB −RSSA [dB]

PR
R

(b)

−6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RSSB −RSSA [dB]

PR
R

(c)
Same Data Different Data (Either Sender) Different Data (Sender A) Different Data (Sender B)

Fig. 3: The PRR plotted against difference in RSS for two senders for 3 different node triplets, clearly showing CI
occurring at a RSS difference close to zero for each triplet, while the capture effect causes larger differences to almost
always succeed. (a) and (b) show two pairs of senders with differing behavior. (c) depicts the result of deliberately
mistiming one of the senders by 1 µs, preventing any CI from occurring.

Same Data 0 1 2 3 4 5
0
1 32% 35%
2 39% 35% 34%
3 67% 36% 40% 41%
4 43% 48% 41%
5 58% 59% 51% 46% 42% 56%

Different Data 0 1 2 3 4 5
0
1 0% 2%
2 0% 0% 1%
3 7% 3% 2% 0%
4 14% 9% 8%
5 83% 50% 21% 3% 3% 0%

TABLE II: The PRRs measured in an experiment with 3
senders. The results are split by RSS difference between
the senders: rows correspond to the difference between the
weakest and second weakest sender, columns correspond
to the difference between the weakest and strongest sender.
(Column/row labels are in dB.)

Same Data 0 2 6 10
0 34%
2 36% 38% 56%
4 51% 48% 52% 50%
6 70% 91% 78% 62%
8 100%

Different Data 0 2 6 10
0 2%
2 1% 2% 0%
4 23% 10% 12% 0%
6 80% 78% 50% 24%
8 67%

TABLE III: The same data as in Table II, aggregated
differently: the results are split by average RSS difference
to the strongest sender (rows) and the variance amongst the
powers of the non-strongest senders (columns). (Colum-
n/row labels are in dB.)

Same Data 0 2 4 6 8 10
0 10%
2 23% 24% 36% 21% 17%
4 30% 32% 30% 18% 9% 56%
6 25% 34% 36% 33% 22%
8 50% 50% 50%

Different Data 0 2 4 6 8 10
0 0%
2 1% 0% 0% 0% 0%
4 1% 1% 2% 0% 0% 0%
6 4% 6% 9% 6% 6%
8 30% 28% 29%

TABLE IV: The same aggregation as in Table III, but for
a different experiment with 4 senders.

discerned from the different data case, occurs more often the
further the strongest sender’s signal strength is from the rest
(bottom left in Table II, bottom and to a lesser degree also left
in Tables III and IV). Finally, particularly high values can be
found in the bottom right of Table II, which are likely a result
of the possibility of the two much stronger signals invoking
both CI as well as the capture effect to survive the occasional
timing errors in the weakest signal.

As a further confirmation of our approach, we also con-
ducted a few runs of the experiment in which we configured
one of the senders to deliberately send 1 µs late. The expec-
tation is to have this completely remove all possibility for
CI. The result of one such run can be seen in Figure 3(c),
exhibiting almost no CI at all. This underlines the importance
of the synchronization precision we strove for. Similarly, when
increasing the resynchronization interval we found the effect
to diminish after varying periods of time: in some cases as
soon as after 30 seconds, in others not for multiple minutes.
This is attributable to the clock synchronization error rising
due to changes clock drift, which drift compensation can no
longer account for (see Figure 7).

For the packets sent by the senders we used payload sizes

ranging from 12 to 26 bytes. Together with the 2 final check-
sum bytes, 4 bytes of preamble and 1 SFD byte, transmissions
were thus 19 − 33 bytes or 608 − 1056 µs in length. The
different packet sizes did not exhibit a significant difference
in performance.

VIII. CONCLUSION

We predicted the total allowable error to be the sum of the
clock synchronization error, the transmission synchronization
error and the travel time error:

etotal = eclock + etransmit + etravel
!
� 0.5 µs

We reduced eclock by combining the TelosB’s 32 kHz
quartz crystal with the MSP430’s DCO to obtain a stable
4 MHz clock, and we reduced etransmit by optimizing our
transmission code path down to the CPU cycle. Both of these
values were minimized into the range of the length of a single
clock tick (2−22 s). In an attempt to reduce etravel, we picked
senders such that they had roughly the same distance to the
recipient nodes.

Using our example implementation we conducted several
experiments with 2 to 4 senders trying to create CI by
simultaneously sending the same packet to a recipient node.
To ensure packets were not arriving merely due to the capture
effect we also sent packets with differing data. Our results
show an increase in signal strength of at least 2 dB in 60%
of cases for 2 senders, and an increase in PRR of 20-35%
for any amount of senders when signal strengths are equal.
Considering we expected to only meet the necessary signal
alignment requirements in the fraction of samples, in which
both eclock and etransmit happened to be small enough, these
20-35% appear quite satisfactory and are likely mainly held
back by the precision of the underlying hardware.

While our implementation and results are based on the
TelosB and the 802.15.4 standard, we believe the concepts to
apply in a similar fashion to most sensor nodes and wireless
standards. Further, there are two properties the TelosB was
lacking, which were stunting our results: 1) a clock with a
precision a magnitude higher than the used chip length and 2)
a transceiver designed for a similar precision in transmission
timing.

In conclusion, we showed that maintaining the option of CI
on commodity sensor node hardware over longer periods of
time is feasible, through extraordinary inter-node synchroniza-
tion and without incurring the overhead of a global “wave” of
synchronizing packets before every transmission requiring CI.

REFERENCES

[1] R. Flury and R. Wattenhofer, “Slotted programming for sensor net-
works,” in Proceedings of the 9th ACM/IEEE International Conference
on Information Processing in Sensor Networks, ser. IPSN ’10. New
York, NY, USA: ACM, 2010, pp. 24–34.

[2] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with glossy,” in Information Process-
ing in Sensor Networks (IPSN), 2011 10th International Conference on,
April 2011, pp. 73–84.

[3] D. Mills, “Internet time synchronization: the network time protocol,”
Communications, IEEE Transactions on, vol. 39, no. 10, pp. 1482–1493,
Oct 1991.

[4] H. Li, X. Feng, S. Shi, F. Zheng, and X. Xie, “A high-accuracy clock
synchronization method in distributed real-time system,” in Computer
Engineering and Technology, ser. Communications in Computer and
Information Science, W. Xu, L. Xiao, J. Li, C. Zhang, and Z. Zhu,
Eds. Springer Berlin Heidelberg, 2015, vol. 491, pp. 148–157.

[5] J. Elson and K. Römer, “Wireless sensor networks: A new regime
for time synchronization,” SIGCOMM Comput. Commun. Rev., vol. 33,
no. 1, pp. 149–154, Jan. 2003.

[6] K. Römer, “Time synchronization in ad hoc networks,” in Proceedings of
the 2Nd ACM International Symposium on Mobile Ad Hoc Networking
&Amp; Computing, ser. MobiHoc ’01. New York, NY, USA: ACM,
2001, pp. 173–182.

[7] N. Burri, P. von Rickenbach, and R. Wattenhofer, “Dozer: Ultra-low
power data gathering in sensor networks,” in Information Processing in
Sensor Networks, 2007. IPSN 2007. 6th International Symposium on,
April 2007, pp. 450–459.

[8] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” SIGOPS Oper. Syst. Rev., vol. 36,
no. SI, pp. 147–163, Dec. 2002.

[9] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems, ser. SenSys ’03. New York,
NY, USA: ACM, 2003, pp. 138–149.

[10] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” in Proceedings of the 2Nd International
Conference on Embedded Networked Sensor Systems, ser. SenSys ’04.
New York, NY, USA: ACM, 2004, pp. 39–49.

[11] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “Robust multi-hop
time synchronization in sensor networks.” in International Conference
on Wireless Networks, 2004, pp. 454–460.

[12] J. Sallai, B. Kusý, Á. Lédeczi, and P. Dutta, “On the scalability of
routing integrated time synchronization,” in Wireless Sensor Networks,
ser. Lecture Notes in Computer Science, K. Römer, H. Karl, and
F. Mattern, Eds. Springer Berlin Heidelberg, 2006, vol. 3868, pp.
115–131.

[13] B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi, and D. Culler,
“Elapsed time on arrival: a simple and versatile primitive for canonical
time synchronisation services,” International Journal of Ad Hoc and
Ubiquitous Computing, vol. 1, no. 4, pp. 239–251, 2006.

[14] C. Lenzen, P. Sommer, and R. Wattenhofer, “Pulsesync: An efficient
and scalable clock synchronization protocol,” IEEE/ACM Trans. Netw.,
vol. 23, no. 3, pp. 717–727, Jun. 2015.

[15] P.-H. Huang, M. Desai, X. Qiu, and B. Krishnamachari, “On the mul-
tihop performance of synchronization mechanisms in high propagation
delay networks,” Computers, IEEE Transactions on, vol. 58, no. 5, pp.
577–590, May 2009.

[16] J. Lu and K. Whitehouse, “Flash flooding: Exploiting the capture effect
for rapid flooding in wireless sensor networks,” in INFOCOM 2009,
IEEE, April 2009, pp. 2491–2499.

[17] R. Gotzhein and T. Kuhn, “Black burst synchronization (bbs) - a protocol
for deterministic tick and time synchronization in wireless networks,”
Computer Networks, vol. 55, no. 13, pp. 3015 – 3031, 2011.

[18] P. Dutta, R. Musaloiu-e, I. Stoica, and A. Terzis, “Wireless ack collisions
not considered harmful,” in Proceedings of the 7th ACM Workshop on
Hot Topics in Networks (HotNets-VII), 2008, pp. 1–6.

[19] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in Proceedings of the 10th ACM Conference on Embedded
Network Sensor Systems. ACM, 2012, pp. 1–14.

[20] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale,” in
Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2013, pp. 1–14.

[21] M. Doddavenkatappa and M. C. Chan, “P 3: A practical packet pipeline
using synchronous transmissions for wireless sensor networks,” in
Information Processing in Sensor Networks, IPSN-14 Proceedings of
the 13th International Symposium on. IEEE, 2014, pp. 203–214.

[22] D. Yuan and M. Hollick, “Let’s talk together: Understanding concurrent
transmission in wireless sensor networks,” in Local Computer Networks
(LCN), 2013 IEEE 38th Conference on. IEEE, 2013, pp. 219–227.

[23] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power
wireless research,” in Information Processing in Sensor Networks, 2005.
IPSN 2005. Fourth International Symposium on. IEEE, 2005, pp. 364–
369.

[24] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel,
“Flocklab: A testbed for distributed, synchronized tracing and profiling
of wireless embedded systems,” in Information Processing in Sensor
Networks (IPSN), 2013 ACM/IEEE International Conference on. IEEE,
2013, pp. 153–165.

[25] 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver, Texas Instru-
ments, cC2420 Data Sheet.

[26] IEEE Standard 802.15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal
Area Networks, Institute of Electrical and Electronics Engineers.

[27] T. Schmid, P. Dutta, and M. B. Srivastava, “High-resolution, low-power
time synchronization an oxymoron no more,” in Proceedings of the
9th ACM/IEEE International Conference on Information Processing in
Sensor Networks, ser. IPSN ’10. New York, NY, USA: ACM, 2010,
pp. 151–161.

APPENDIX

A. MAC Layer Timestamping
To synchronize the sending nodes’ clocks, a reference node

sends a couple of synchronization packets at the start of each
round (see Section VII-A). Every packet contains the times-
tamp of the reference node’s clock at the time of the packet’s
departure. For this we employ MAC layer timestamping [9],
which makes use of some wireless transceivers providing a
pin (the SFD pin for the CC2420) which goes active exactly
when the transmission or reception of a packet begins. This
pin is usually connected to a timer capture input pin at the
microcontroller to allow obtaining an accurate timestamp of
this event common to sender and receiver. Additionally, the
transceiver needs to offer a way to edit a packet’s contents after
its transmission has already begun. The CC2420 allows editing
its TXFIFO buffer in a non-FIFO fashion for this purpose.

Contiki’s CC2420 driver already provided this feature, but
only supported 16-bit timestamps from the 32 kHz quartz
crystal. We extended the driver to support our mixed-source
64-bit timestamps. As mentioned above, assembling such a 64-
bit timestamp from its individual components requires a fair

−600 −400 −200 0 200 400 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Synchronization Error [ns]

C
D

F

Fig. 5: The distribution of the clock synchronization error
a single node is detecting while being re-synchronized every
few seconds. For this plot the sample size was 1934.

amount of instructions on this architecture – a total of 55 in our
case. Further, applying drift compensation requires the mul-
tiplication of two 64-bit integer variables (see Appendix B),
which requires an additional few hundred instructions. As our
synchronization packets were 60 bytes in length, which require
roughly 2 milliseconds or 8500 CPU cycles to transmit, there
is still ample time to compute this timestamp and insert it at
the end of the packet.

B. Drift Compensation

Although the properties of quartz crystals are generally
rock-solid, their frequencies are not completely set in stone:
temperature changes affect their frequency and multiple in-
stances of the same crystal may have slightly different frequen-
cies. In a system with multiple such quartz crystals this leads
to observable clock drift: clocks which were synchronized at
some point in time may drift apart as a result of their ever so
slightly varying speeds. Worse, these speeds change over time
as the environment temperature changes.

To combat this, we implemented a drift compensation
mechanism based on linear regression with a rolling buffer:
For the last k received synchronization packets we store
(local i, offset i) pairs, where local i is the local time at which
the ith synchronization packet was received and offset i =
global i − local i was the clock offset at that time. We then
compute on the last k values:

drift =
local i · offset i − local i · offset i

local2i − local i
2

baseoffset = offset i − drift · local i

where exp denotes the average of the expression exp for i ∈
{n, n−1, n−2, . . . , n−k+1} where n denotes the number of

0 2 4 6 8 10
−10

0

10

20

30

40

Time [ms]

C
lo

ck
D

el
ta

[2
−
2
2

s]

Fig. 6: The delta between the quartz crystal clock and the
DCO clock over the span of 10 milliseconds, sampled at
every fourth tick of the quartz crystal.

0 120 240 360 480 600 720 840 960
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time [s]

Sy
nc

hr
on

iz
at

io
n

E
rr

or
[m

s]
Without Drift Compensation

With Drift Compensation

0 30 60 90 120 150
−8
−6
−4
−2
0

Time [s]Sy
nc

hr
on

iz
at

io
n

E
rr

or
[µ

s]

Fig. 7: Synchronization error of a single node over time.

received synchronization packets. To extrapolate an estimate
of the global time we compute:

globalest(local) = local + baseoffset + drift · local .

For the size of the rolling buffer we found k = 8 to be
adequate, adapting to changes quickly enough, while avoiding
wild fluctuations from noise and outliers. Other settings with
less frequent synchronization rounds might find smaller values
to suit their needs better.

While drift compensation is absolutely crucial in situations
where nodes are not re-synchronized for longer periods of
time, it can already offer substantial benefits after shorter
periods when high precision is required. To be able to store and
forward global timestamps computed using the formulas above
while preserving the gained precision, we append 8 additional
bits to our timestamps (see Figure 2).

Figure 5 shows the quality of the clock synchronization that
we were able to achieve using both MAC layer timestamping
and drift compensation. We observe most instances (over 70%)
to be spread uniformly between −250 and +250 nanoseconds.
We cannot hope to improve this by much since the timestamps
we measure when sending or receiving a synchronization
packet are only granular to 1/222 seconds. Hence, each of
these timestamps introduces an error distributed uniformly
at random in the interval [−1/223seconds,+1/223seconds]
(roughly [−120ns,+120ns]).

Figure 7 shows the development of the synchronization
error between two nodes which were synchronized a couple
of times at the start (to allow for drift detection) and then
not anymore. Clearly, not employing drift compensation when
not re-synchronizing nodes over longer periods of time is fatal
to the synchronization error. The almost constant slope shows
why linear regression is the right tool to combat clock drift. We
also see in this example that, in spite of drift compensation, the
synchronization error exceeds 0.5 µs after about 25 seconds.
Hence, when attempting simultaneous sending, the most recent
synchronization should ideally not lie further than 10 or 20
seconds in the past.

