

From Few to Many Faults

A. Constantinescu, M. Dufay, **A. Paramonov**, R. Wattenhofer

Plan

- Problem definition
 - Consensus on its own (binary, strong validity)
 - Three major time models
- Message complexity
 - Dolev-Reischuk
 - Optimistic
 - Decouple n and t
- Results
 - Optimal in synchrony
 - Optimal in partial synchrony
 - Almost optimal in asynchrony
- Technical highlights
 - Expanders!!!

Consensus

- n parties, up to t malicious

Consensus

- n parties, up to t malicious
- Parties propose 0 or 1

Consensus

- n parties, up to t malicious
- Parties propose 0 or 1
- Strong validity: If all honest parties propose v , then v must be decided

Consensus

- n parties, up to t malicious
- Parties propose 0 or 1
- Strong validity: If all honest parties propose v , then v must be decided

Synchrony

Δ

Partial Synchrony

Δ after GST

Asynchrony

eventually

Communication complexity

- Dolev-Reischuk^[1]: $\Omega(n^2)$

[1] Dolev, D., & Reischuk, R. (1985). Bounds on information exchange for Byzantine agreement. *Journal of the ACM (JACM)*, 32(1), 191-204.

Communication complexity

- Dolev-Reischuk^[1]: $\Omega(n^2)$
- But in fact...
 $\Omega(f^2)$! f - the actual number of faults in a given run

[1] Dolev, D., & Reischuk, R. (1985). Bounds on information exchange for Byzantine agreement. *Journal of the ACM (JACM)*, 32(1), 191-204.

Communication complexity

- Dolev-Reischuk^[1]: $\Omega(n^2)$
- But in fact...
 $\Omega(f^2)$! f - the actual number of faults in a given run

Common: $f = t = n/3$

[1] Dolev, D., & Reischuk, R. (1985). Bounds on information exchange for Byzantine agreement. Journal of the ACM (JACM), 32(1), 191-204.

Communication complexity

- Dolev-Reischuk^[1]: $\Omega(n^2)$
- But in fact...
 $\Omega(f^2)$! f - the actual number of faults in a given run

Common: $f = t = n/3$

This work: $f \ll t \ll n/3$

Why consider algorithms for $t \ll n/3$?

System A: $t = 1000$, $n = 3001$

System B: $t = 1000$, $n = 10,000$

Why consider algorithms for $t \ll n/3$?

System A: $t = 1000$, $n = 3001$

System B: $t = 1000$, $n = 10,000$

$$n^2 = 100t^2$$

Results

	Communication	Resilience
Synchrony		
This paper	$\mathcal{O}(n + tf)$	$t < \frac{n}{2}$
Spiegelman et al. [2]	$\Omega(n + tf)$	Any

Results

	Communication	Resilience
Synchrony		
This paper	$\mathcal{O}(n + tf)$	$t < \frac{n}{2}$
Spiegelman et al. [2]	$\Omega(n + tf)$	Any
Partial Synchrony		
This paper	$\mathcal{O}(n + t \cdot f)$	$t < n/3$

Results

	Communication	Resilience
Synchrony		
This paper	$\mathcal{O}(n + tf)$	$t < \frac{n}{2}$
Spiegelman et al. [2]	$\Omega(n + tf)$	Any
Partial Synchrony		
This paper	$\mathcal{O}(n + t \cdot f)$	$t < n/3$
Asynchrony		
This paper	$\mathbb{E}(\mathcal{O}((n + t^2) \cdot \log n))$	$t < n/3$
This paper	$\mathbb{E}(\Omega(n + t^2))$	Any

Technical Highlight

Bipartite Expander

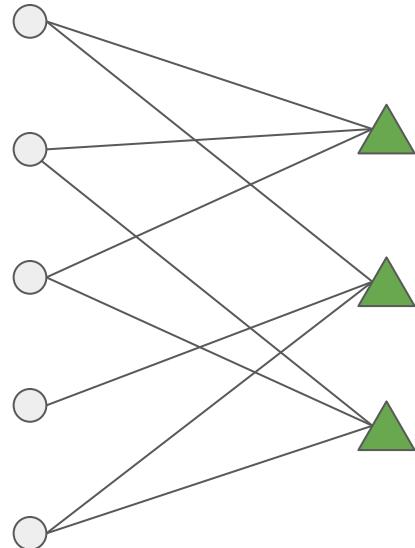
Parties

Committees

Bipartite Expander

Parties

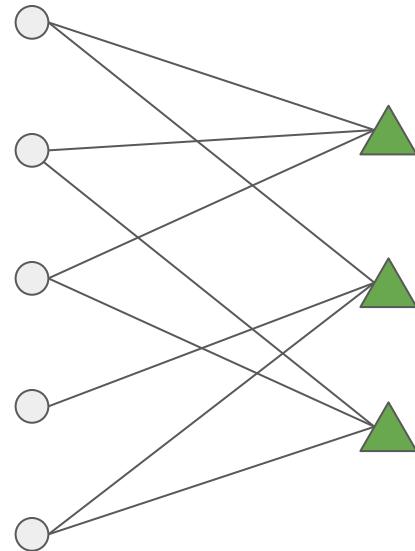
Committees



Bipartite Expander

Parties

Committees

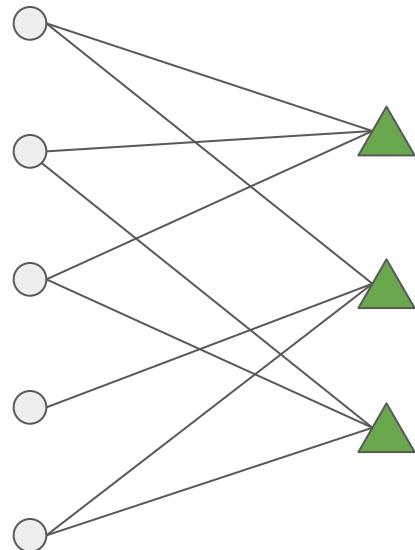


1. Few committees

Bipartite Expander

Parties

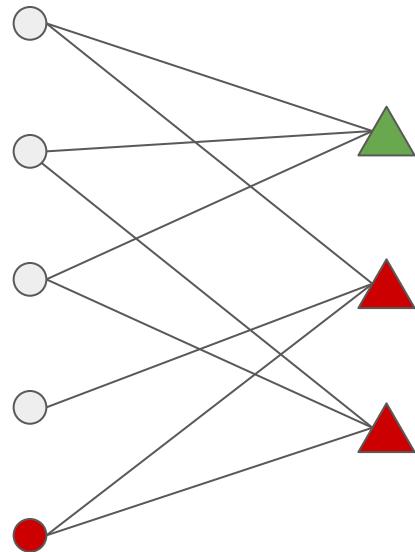
Committees



1. Few committees
2. One partie in a tiny fraction of committees

Bipartite Expander

Parties Committees

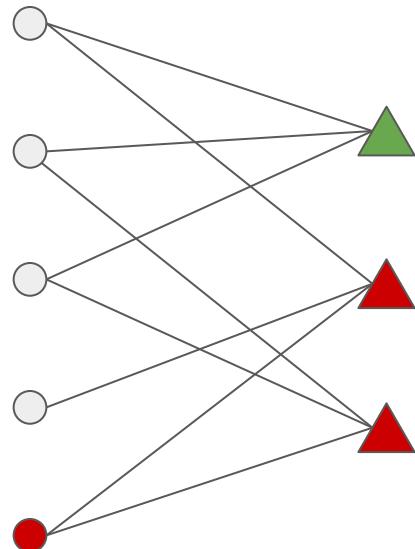


1. Few committees
2. One partie in a tiny fraction of committees

Committee is **compromised** if it has at least 1 byzantine.

Bipartite Expander

Parties Committees



1. Few committees
2. One partie in a tiny fraction of committees

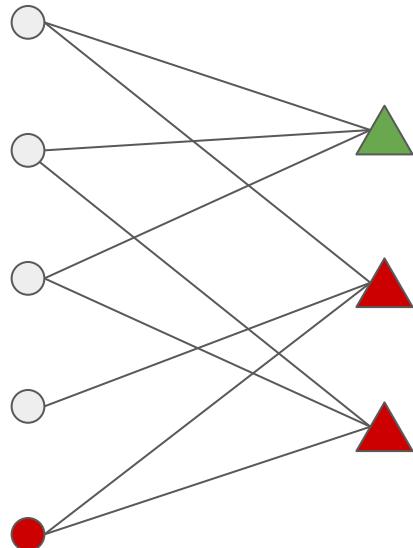
Committee is **compromised** if it has at least 1 byzantine.

3. Most of the honest parties belong to a non-compromised committee

Bipartite Expander

Thank you!

Parties Committees



1. Few committees
2. One partie in a tiny fraction of committees

Committee is **compromised** if it has at least 1 byzantine.

3. Most of the honest parties belong to a non-compromised committee