
DISS. ETH NO. 26959

Byzantine Agreement

on Representative Input Values
Over Public Channels

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES

(Dr. sc. ETH Zurich)

presented by

DARYA MELNYK

M.Sc.(TUM)
born on 05.10.1991
citizen of Germany

accepted on the recommendation of

Prof. Dr. Roger Wattenhofer, examiner
Dr. Ittai Abraham, co-examiner

Prof. Dr. Bryan Ford, co-examiner

2020

First Edition 2020

Copyright © 2020 by Darya Melnyk

Series in Distributed Computing, Volume 33
TIK-Schriftenreihe-Nr. 185
Edited by Roger Wattenhofer

Free Space Publishing
ISBN 9798563171725

Abstract

In the Byzantine agreement problem, n nodes with possibly different input
values aim to reach agreement on a common value in the presence of t < n/3
Byzantine parties by communicating over a fully connected network. This
dissertation focuses on a special communication model, called the public
channel model, where the adversary can see all values sent over the channels
of the network. In the first part of the dissertation, the synchronous message
passing model is considered. It is assumed that the values of the nodes are
ordered and a novel validity condition that accepts consensus values that
are close to the kth smallest value of the correct nodes is introduced. A
deterministic algorithm is proposed in order to approximate the kth smallest
value. It is then shown that this approximation is the best possible. In the
next step, a multidimensional case is considered. In this case, the input
values of the nodes are assumed to be preference rankings of three or more
candidates. This so-called preferential voting raises new questions about
how to approximate consensus vectors. At first, a deterministic algorithm
to solve Byzantine agreement on rankings is proposed under a generalized
validity condition, which will be called Pareto validity. These results are
then extended by considering a special voting rule which chooses the Kemeny
median as the consensus vector.

This dissertation also considers the shared memory model as a possible
communication model for blockchain protocols. It presents a novel shared
memory model that simplifies the analysis of consensus on a Chain and a
DAG. In this new model, referred to as the append memory model, nodes
are allowed to write their values to the unordered memory, but not to over-
write already existing values. It is shown that although this model differs
from the standard shared memory model with n shared read-write registers,
many known results from the shared memory model still hold in the append

III

IV

memory model. Assuming a probabilistic access to the append memory, the
Byzantine agreement protocols on the Chain and the DAG are compared. It
is shown that the DAG structure achieves an almost optimal resilience (close
to t < n/2) in contrast to the Chain structure whose resilience depends on
the access rate to the memory.

Another considered communication model is the asynchronous message-
passing model. In this part, the idea of the blackboard model is used to
define a strong broadcast abstraction called blackboard broadcast. Since
the nodes receive almost the same input values from all other nodes when
the blackboard broadcast is used, detectability of Byzantine behavior can
be defined with respect to their input values. It is shown that Byzantine
behavior is not easily detectable in this model if message scheduling and
t ∈ Ω(n) input values are controlled by the Byzantine party. To develop ef-
ficient Byzantine agreement algorithms in the asynchronous communication
model, a deep reinforcement learning framework (DRL) is implemented. It
is shown that DRL can be used to learn Byzantine behavior. To extend this,
a self-play environment is considered, where a Byzantine agent is compet-
ing against a collection of correct agents. The results show that DRL can
in general be applied to standard Byzantine agreement problems and that
Byzantine behavior is tentatively harder to learn when the correct nodes
use fully randomized strategies.

Zusammenfassung

Das Problem der byzantinischen Generäle ist ein Kommunikationsproblem,
bei dem n Prozessoren, welche verschiedene Eingabewerte besitzen, sich auf
einen Wert einigen. Die Prozessoren kommunizieren dabei über ein voll-
ständig verbundenes Netzwerk, und es wird angenommen, dass t < n/3 der
Prozessoren byzantinischen Verhalten aufweisen. Im ersten Teil dieser Dis-
sertation wird das synchrone Message-Passing-Modell betrachtet. Es wird
angenommen, dass die Eingabewerte geordnet werden können. Unter dieser
Annahme wird eine Validität-Bedingung vorgestellt, die eine Übereinkunft
auf einem Wert zulässt, der nahe des k-ten Wertes aller geordneten Ein-
gabewerte liegt. Es wird eine Methode vorgestellt, die es ermöglicht diese
Validität-Bedingung zu erfüllen. Im nächsten Schritt werden mehrdimen-
sional Eingabewerte betrachtet. In diesem Fall wird angenommen, dass die
Eingabewerte aus Präferenz-Rankings von 3 oder mehr Kandidaten beste-
hen. Das sogenannte Präferenzwahlsystem wirft neue Fragen darüber auf,
wie eine faires Konsensus-Ranking unter der Annahme von byzantinischen
Prozessoren im System approximiert werden kann. Es wird ein deterministi-
scher Algorithmus vorgestellt, der das Problem der byzantinischen Generäle
für Rankings als Eingabewerte löst unter der Annahme einer verallgemei-
nerten Validität-Bedingung – der Pareto-Validität. Diese Ergebnisse werden
verwendet, um ein spezielles Wahlsystem zu betrachten – das der Approxi-
mation eines Kemeny-Medians als Konsensus-Ranking.

Diese Dissertation betrachtet weiter das Shared-Memory-Modell als ein
mögliches Kommunikationssystem für Blockchainsysteme. Es wird ein neu-
artiges Shared-Memory-Modell vorgestellt, welches die Analysis von Kon-
sensus-Protokollen für die Chain- und die DAG-Strukturen vereinfacht. In
diesem Modell, welches als das Append-Memory-Modell bezeichnet wird,
dürfen die Prozessoren ihre Werte in einen ungeordneten Speicher schrei-

V

VI

ben, jedoch die dort bereits vorhandenen Werte nicht ersetzen. Es wird
gezeigt, dass, obwohl dieses Modell sich vom Shared-Memory-Modell unter-
scheidet, viele bekannte Resultate aus dem Shared-Memory-Modell auf das
Append-Memory-Modell übertragen lassen. Unter der Annahme, dass der
Zugriff zum Append-Speicher probabilistisch ist, werden verschiedene Pro-
tokolle für das Problem der byzantinischen Generäle auf der Chain- und der
DAG-Struktur verglichen. Es stellt sich heraus, dass die DAG-Struktur die
optimale Anzahl von t < n/2 byzantinischen Prozessoren tolerieren kann,
während die Anzahl byzantinischer Prozessoren, welche die Chain-Struktur
tolerieren kann, indirekt proportional zur Zugriffsrate auf den Speicher ist.

Ein weiteres Kommunikationsmodell, das in dieser Arbeit betrachtet
wird, ist das asynchrone Message-Passing-Modell. In diesem Teil der Ar-
beit wird die Idee des Blackboard-Modells verwendet, um ein zuverläs-
sigeres Übertragungsprotokoll einzuführen, den sogenannten Blackboard-
Broadcast. Da die Prozessoren unter der Annahme des Blackboard-Broadcast
bei der Kommunikation fast identische Werte erhalten, kann byzantinisches
Verhalten durch das Betrachten der Werte nachgewiesen werden. Es wird ge-
zeigt, dass es dennoch nicht einfach möglich ist byzantinisches Verhalten in
diesem Modell nachzuweisen, sofern die Ankunftszeit der Nachrichten sowie
t ∈ Ω(n) Prozessoren von einem byzantinischen Gegner kontrolliert werden.
Um eine effiziente Lösung für das Problem der byzantinischen Generäle zu
finden, wird ein Deep Reinforcement Learning (DRL) Framework implemen-
tiert. Es wird zunächst bestätigt, dass DRL sich eignet, um byzantinisches
Verhalten zu erlernen. Daraufhin wird dieses Resultat im Self-Play-Scenario
betrachtet, bei dem byzantinische Agenten gegen eine Gruppe von korrek-
ten Agenten antreten. Die Ergebnisse aus dieser Arbeit zeigen, dass DRL
sich auf das Problem der byzantinischen Generäle anwenden lässt und, dass
byzantinisches Verhalten schwieriger zum Lernen ist, wenn die korrekten
Prozessoren randomisierte Strategien verwenden können.

Acknowledgments

During my time as a PhD student in the Distributed Computing Group
(DISCO) at ETH Zurich, I have had the opportunity to develop versatile
skills: I have learned how to supervise students, prepare lecture notes, give
great talks and, most importantly, how to carry out research. All of this
would not have been possible without the guidance of my supervisor, Prof.
Roger Wattenhofer. I would like to thank him for the opportunity to pursue
a PhD in his group, for his encouragement to look into different topics
beyond my main expertise, for sharing his devotion to teaching and for
keeping up the tradition of weekly meetings.

I would also like to thank my co-referees Ittai Abraham and Bryan Ford
for taking the time to read my thesis, providing me with constructive feed-
back and attending my defense.

In the past four years, I had the opportunity to work with wonderful
colleagues who contributed to my research with their great ideas, their will-
ingness to serve as test persons in my projects, and their jolly spirit. I have
especially enjoyed our Töggeli-traditions, hiking trips and ice skating events,
as well as simply having such nice people to talk to. I would therefore like
to thank each one of you in alphabetical order:

Aryaz Eghbali for preferring sledding over skiing and ordering a Rösti
pizza at the restaurant; Beat Futterknecht for being able to answer every
question I had outside of research, for being a great listener and giving great
advice; Béni Egressy for teaching me about British culture; Christian Fluri
for enabling me to visit the Iguazú Falls; Conrad Burchert for sharing his love
for the blockchain protocols; Damian Pascual for the stories from the not so
safe adventures in the Swiss alps; Friederike Bruetsch for always providing us
with a piece of chocolate in her office; Georg Bachmeier for his determination
to learn how to bake and all the tasty cakes that followed; Gino Brunner for

VII

VIII

being the only one afraid to play against me at Töggeli despite being the best
player, as well as for being the expert on every gadget that you might ever
need; Henri Devillez for introducing me to the art of cubing and for having
the most exquisite cube collection in the office; Jakub Sliwinski for being in
the office at random hours; Julian Steger for teaching me how to take care of
our office plants; Klaus-Tycho Förster for giving me valuable advice for my
future plans and always offering a helping hand; Ladislas Jacobe de Naurois
for showing how to give a great talk without slides; Laura Peer for being
a great Töggeli partner; Lukas Faber for encouraging people to bake more
cakes in my lasts few months than we have had in the past two years; Manuel
Eichelberger for finding a simple and useless solution to every problem in life
and for prolonging our hike all the way to his orchestra practice; Michael
König for his hidden talent at sports and his unique healthy diet; Oliver
Richter for being my fist seminar student; Pál András Papp for teaching me
how to pronounce “Kemeny” correctly, for drawing colorful forests on many
whiteboards and for his good humor; Pankaj Khanchandani for his lessons
on how to differentiate between “d” and “d” and for knowing every single
person in distributed computing; Pascal Bissig for his alternative humor;
Philipp Brandes for being a good company during our apple breaks, for
being the first colleague to join on a hike through Swiss mountains and for
being a good friend; Roland Schmid for his ability to decorate the office with
just one plant; Sebastian Brandt for teaching me basic Töggeli shots; Simon
Tanner for being a great companion on many hikes, skiing trips, climbs and
cave excursions, for keeping alive a constant flow of students to our office and
for sharing a passion for plants; Susann Arreghini for all the support during
the exam sessions and for many interesting discussions; Tejaswi Nadahalli
for his amazing programming skills and for sharing the best Swiss chocolate;
Thomas Ulrich for being a very good friend and a great office mate, for saving
all my plants during tough times and for sharing Thursday evenings at the
gym; Ye Wang for always having some sweets or vouchers to share and for
hoarding essential foods in the office; Yuyi Wang for being my first office
mate, for introducing me to new students all the time and for keeping alive
a giant network of researchers while traveling the world; Zeta Avarikioti for
hosting great rooftop parties with exquisite views; Zhao Meng for treating
us with a delicious green tea cake.

This thesis would not have been possible to complete without the strong
support of my family. I would especially like to thank my grandma Lena for
being my role model and teaching me that a woman can achieve anything she
wants. I also want to thank my parents Yuriy and Inna for always supporting
my dream to become a researcher, even though a dentist in the family would
have been an asset. I want to thank my brother Sergiy for always challenging
and supporting me. And I would like to thank Daniel Lindblad for always

IX

being the first to proofread my papers, for taking countless trips to Zurich
and simply for being my very best friend.

Finally, I would like to thank all my friends for the support they gave
me during my PhD and for visiting me in Zurich during this time.

Collaborations and Contributions

This dissertation resulted from a collaboration with colleagues whom I
would like to thank for the fruitful discussions and their contribution to
the projects. Below, the collaborators that contributed to the single chap-
ters of this dissertation are listed in alphabetical order. The referenced work
listed here is joint work with my supervisor Roger Wattenhofer.

Chapter 2 is based on Chapters 4 and 6 of the book Blockchain Science –
Distributed Ledger Technology [123]. Co-author is Barbara Keller.

Chapter 3 is based on the publication Byzantine Agreement with Interval
Validity [84].

Chapter 4 is based on the publication Byzantine Preferential Voting [82].
Co-author is Yuyi Wang.

Chapter 5 is based on the publication The Append Memory Model: Why
BlockDAGs Excel Blockchains [85].

Chapter 6, Section 6.1 is based on the publication draft Towards the Im-
possibility of a Byzantine Shared Coin [83]. Co-author is Yuyi Wang.

Chapter 6, Section 6.2 and 6.3 are based on the publication draft Asyn-
chronous Byzantine Agreement with Reinforcement Learning [81]. Co-authors
are Janka Möller, Lazar Rakic and Oliver Richter.

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Introduction to Byzantine Agreement 4
2.2 Chapter Overview and Related Work 15

3 Interval Validity 23
3.1 Model . 24
3.2 Lower Bound for the kth Smallest Value 25
3.3 Algorithm for the kth Smallest Value 28
3.4 From the kth Smallest Value to the Median 35
3.5 Vector Consensus . 37
3.6 Discussion . 39

4 Byzantine Preferential Voting 40
4.1 Background and Motivation 41
4.2 Algorithm for Pareto Validity 44
4.3 Kemeny Median with Byzantine Nodes 47
4.4 Discussion . 57

5 The Append Memory Model 58
5.1 Model . 59
5.2 Asynchronous Deterministic Consensus 60
5.3 Consensus with Synchronous Nodes 67
5.4 Simulation via Message Passing 70
5.5 Append Memory with Randomized Access 73

X

CONTENTS XI

5.6 Discussion . 81

6 Asynchronous BA & DRL 83
6.1 Blackboard Broadcast . 84
6.2 BA with Reinforcement Learning 91
6.3 Byzantine Agreement with Self-Play 97
6.4 Discussion . 103

7 Conclusion 104

1
Introduction

“It’s amazing how clever people can be, but when you build a new
system it is very, very hard to imagine the ways in which it can be
attacked.”

— Sir Tim Berners-Lee, founder of the World Wide Web

Distributed systems have many advantages over their centralized coun-
terparts. Consider for example a central bank: if the central server of this
bank is attacked, it is not possible to make any payments until the problem
is fixed. In a distributed banking system, intact peers can restore the bank-
ing details and allow transactions even in the case of an attack. Another
example is the safety of self-driving cars. With a single sensor, the reading
of the measured value can be unreliable or even completely wrong. To im-
prove the accuracy of the measured value, a larger number of sensors can be
used. Distributed systems also have the potential of ensuring data privacy:
in case of a virus-tracking app, it is advisable to use a distributed version
that stores the information about interactions with other people on a local
device, instead of revealing it to the government. The presented examples
profit from many attractive properties of distributed systems: There exists
no trusted central authority and thus no single point of failure; the data can

1

CHAPTER 1. INTRODUCTION 2

be reconstructed by different parties and is, therefore, more reliable and; it
is possible to solve tasks without sharing your personal data with the peers.

The absence of a trusted authority introduces challenges when imple-
menting such a distributed system. Multiple participants need to commu-
nicate with each other and make decisions to solve a common task. The
problem of deciding on a common value in a distributed system is called
consensus. Some of the key results in distributed computing promise to
provide a distributed system that can tolerate arbitrary failures. Such fail-
ures are usually called Byzantine. The machines (nodes) of a distributed
system regularly check if they are in the same state. Whenever the nodes
disagree, they run a Byzantine agreement protocol to eliminate blunders by
some nodes and thus enforce agreement. If nodes continuously agree on
their state, the distributed system as a whole is correct.

For a distributed system to be applicable in practice, a Byzantine agree-
ment protocol should be fast and ensure that all nodes agree on a common
state. These criteria are known as the termination time and the agreement
property, respectively. However, the two properties are not enough. For in-
stance, a protocol may just agree to delete all the information in the system,
fulfilling both termination and agreement, but potentially also destroying
valuable data. To prevent such absurd “solutions”, we need a third prop-
erty, known as the validity property. Informally, the validity property must
make sure that the decision “makes sense”. In particular, if all nodes of a
distributed system propose the same state, they should settle for that state.

Many of the proposed solutions for Byzantine agreement rely on cryp-
tography by either considering computationally bounded adversaries or use
homomorphic encryption in the information theoretic setting. Encryption
schemes require more computational power from the peers and potentially
introduce new points of failure to the system. In this dissertation, we there-
fore consider a computationally unbounded adversary and even assume that
the Byzantine adversary can see the information that is transmitted over all
communication channels. It has been shown that it is impossible to solve
Byzantine agreement in such a system if one third of the participants are
Byzantine. We therefore assume that less than a third of the parties are
Byzantine and focus on deriving meaningful validity conditions. In partic-
ular, we want to see how reliable distributed systems can be if they have
to agree on real values, such as on a true sensor value in a car. We also go
a step further and consider a multi-dimensional setting where the decision
must be based on rankings. Such applications can for example be found in
large-scale machine learning systems, where a final decision has to be drawn
from a set of rankings. This work shows that while Byzantine nodes can
prevent the systems from agreeing on the true value, it is still possible to
agree on a fairly good value or ranking.

CHAPTER 1. INTRODUCTION 3

Besides validity conditions, there is a need in developing transparent
models for distributed agreement algorithms. Agreement algorithms are
usually deployed as subroutines and make it possible to reliably solve more
complicated tasks. A complicated model for agreement might lead to sys-
tems that make false assumptions on their subroutines. In this spirit, we
develop a novel model for analyzing blockchain protocols that is based on
a shared memory instead of a peer-to-peer communication. This model can
be simulated in a peer-to-peer setting and satisfies the same properties. The
advantage of the shared memory is that it becomes more transparent why
no asynchronous Byzantine agreement is possible in the blockchain when
the adversary is computationally unbounded. In such way, restricted com-
munication allows us to derive a simpler correctness analysis of blockchain
protocols and compare them against each other. We further consider the
asynchronous Byzantine agreement model, where the messages between the
peers of a system can be arbitrarily delayed. Our analysis shows that com-
plicated Byzantine agreement algorithms tend to make an analysis of all
conceivable Byzantine strategies nearly impossible. We therefore investigate
deep reinforcement learning methods to understand Byzantine behavior and
could enable the development of simple and efficient Byzantine agreement
algorithms in the future.

2
Preliminaries

In this chapter, the main concepts of Byzantine agreement in the message
passing and shared memory models that will be used throughout the dis-
sertation will be presented. This includes the concepts of synchronous and
asynchronous communications systems, various validity conditions used to
determine the quality of the consensus value, and the differences between
the shared memory and message passing models. Some selected algorithms
from the literature that will help the reader understand the algorithms dis-
cussed in this dissertation will also be presented. After the fundamentals
have been covered, the main results of each chapter in this thesis, together
with related work, will be provided in Section 2.2.

2.1 Introduction to Byzantine Agreement

In this work, we consider Byzantine agreement (BA) in a distributed system
of n nodes. This problem was originally introduced as the “Byzantine Gen-
erals Problem” by Pease, Shostak, and Lamport [72, 100]. In this problem,
every node has a unique ID i ∈ [n] and an input value vi given to it at the
beginning of the algorithm. The nodes can either communicate with each
other over an all-to-all network via authenticated channels or via a com-
mon memory. These communication types describe the message-passing

4

CHAPTER 2. PRELIMINARIES 5

and shared memory models. We assume that there are no network failures
and that if a message is sent via an authenticated channel or written to the
memory - the receiver always knows the sender. The goal of the algorithm
is to establish consensus on a common value in this distributed system.
This task is simple if all nodes execute any protocol correctly. Interesting
cases do however occur if we consider different types of node failures. We
will assume that a node can crash, i.e., stop participating in the protocol
at any point in time. Alternatively, nodes can show Byzantine behavior,
i.e., they can behave arbitrarily, can choose to send different messages to
different nodes or not to send any message at all. The Byzantine nodes
are assumed to be controlled by an omnipotent adversary. The adversary
knows the protocol and has knowledge about all message contents sent over
authenticated channels. Moreover, the Byzantine adversary can also control
message scheduling. The only restriction that we require from the Byzantine
adversary is that it can decide which nodes it will control at the beginning
of the algorithm and is not allowed to change this decision later on. Nodes
that neither crash nor are Byzantine will be called correct.

We will differentiate between two communication models that determine
how well the system is synchronized. We therefore make use of the def-
initions of synchronous and asynchronous communication for the message
passing model as follows:

Synchronous communication: The communication is divided into dis-
crete rounds. In a round, each node can send a value, receive values of
all other correct nodes, and perform a local computation. All messages
sent by a correct node in a round will be received by its recipients in
the same round.

Asynchronous communication: There is no upper bound on the delay
between sending and receiving a message. Every message sent by a
correct node will eventually arrive at the destination.

In the shared memory model, we will consider a setting where each node
is associated with a register in the memory. It can perform two operations:
it can either write a value to its own register in the memory or retrieve
the information from all registers by reading the memory. It is therefore
reasonable to assume that the messages that are written to the memory
instantly become available for other nodes to read. The nodes themselves
do not have to be synchronized, however, and can perform their operations
at different points in time. We therefore make use of the definitions similar
to Dolev et al. [47] and differentiate between synchronous and asynchronous
nodes:

CHAPTER 2. PRELIMINARIES 6

Synchronous nodes: There exists a constant ∆ > 0 such that any interval
between two operations executed locally by a single node is bounded
from above by ∆. The upper bound ∆ is known to all nodes.

Asynchronous nodes: The time between two operations of a node is not
bounded. However, in an infinite protocol run, each correct node must
perform infinitely many operations. Otherwise, the node is called
faulty.

The Byzantine agreement protocol must generally satisfy the following
standard conditions:

Agreement: All correct nodes agree on the same value upon termination.

Termination: All correct nodes must terminate after executing a finite
number of operations.

All-Same Validity: If all correct nodes have the same input value b, they
must agree on b at the end of the protocol.

Correct-Input Validity: The nodes agree on the value that at least one
of the correct nodes has proposed.

The All-Same validity condition is the weakest validity condition possi-
ble, as it only prevents a system from agreeing on a predefined value. In
this dissertation, we will therefore sometimes refer to the All-Same validity
condition simply as the validity condition. Observe further that the Correct-
Input validity is equivalent to the All-Same validity if the input values of
nodes are binary. However, in the multi-valued setting where all nodes have
different input values, the Correct-Input validity cannot be satisfied. This is
because any correct node is not differentiable from a Byzantine node which
follows the protocol using its own input value. We therefore introduce a
relaxed variant of the Correct-Input validity:

Any-Input Validity: The nodes agree on the value that at least one of
the nodes has proposed. This value is not required to be proposed by
a correct node.

Fisher, Lynch and Paterson [53] showed that it is impossible to achieve
consensus deterministically in an asynchronous communication model. The
presented consensus properties can therefore be weakened such that each of
the properties is only satisfied with high probability (w.h.p.). We call the
relaxed properties weak agreement, weak termination and weak validity (for
weak All-Same validity) respectively.

CHAPTER 2. PRELIMINARIES 7

In the following sections, we will present known results on the message
passing and the shared memory model that are used throughout the disser-
tation.

2.1.1 Synchronous BA in the Message Passing Model
Synchronous Byzantine agreement in the message-passing model has been
widely explored in distributed computing. The quality of algorithms in this
model has been estimated by considering the number of synchronous rounds
- the time complexity - or the total size of messages exchanged during the
protocol - the message complexity - for a worst-case run of the algorithm.
In [72,100], the authors showed that three nodes cannot establish agreement
in the presence of one Byzantine node, even if the communication system
is synchronous. Given n nodes, it was shown for the synchronous model
that at least t + 1 rounds are required to establish agreement [52], where
t < n/3 is the number of Byzantine nodes in the system. Berman et al.
later proposed the Phase Queen [24] and the Phase King Algorithms [25]
that both match this lower bound for binary input values.

The ideas from the Phase King Algorithm will be used several times
throughout this dissertation. It is based on the fact that t + 1 nodes can
be chosen as “leaders” in the algorithm, each leader associated with one
phase of the algorithm. The algorithm can use multivalued inputs and is
only required to satisfy the All-Same validity condition. Each phase of the
algorithm is divided into three communication rounds: in the first round,
the nodes share their input values and check whether All-Same validity
holds; in the second round, nodes that satisfy All-Same validity broadcast
this knowledge, and other nodes adjust their values if necessary; in the
last round only the leader that is called “king” in the protocol is allowed
to communicate, this leader simply shares its own value. The idea is that
after a round with a correct node as a king, all nodes will have the same
output value. In the case of a Byzantine king, the All-Same validity remains
preserved, but the correct nodes might have different values at the end of
the round if their input values were different. Algorithm 2.1 presents this
protocol in pseudocode.

Besides protocols based on leaders, where one node dictates the output
of the algorithm, there are also versions where all nodes participate by send-
ing redundant information. In particular, the nodes would exchange their
input values in a first round of the algorithm, forward all received values
in the next round, and forward all information they have received so far in
every following round. Such an algorithm corresponds to the so-called In-
teractive Consistency (IC) problem, where the nodes can agree on all input
values of all nodes in the system at the end of the algorithm. Algorithms

CHAPTER 2. PRELIMINARIES 8

Algorithm 2.1 Phase King Protocol for t < n/3 (code for node i)
1: for phase i = 1 to t+ 1 do

Communication Round:
2: Broadcast input value vi
3: receive guesses vj from all other nodes
4: if some value v is received ≥ n− t times then
5: Broadcast(“propose v”)
6: end if
7: if some “propose v” received > t times then
8: Adopt input value vi := v
9: end if

King Round (only the King node executes this round):
10: kingV alue = vking
11: Broadcast(“suggest kingV alue”)

Decision Round:
12: if “propose v” received < n− t times in Line 5 then
13: vi = kingV alue
14: end if
15: end for

for interactive consistency have been considered in [52, 100]. While such
algorithms can establish agreement within t+ 1 communication rounds, the
size of the broadcast messages increases by a factor of n in every round.
This strategy leads to exponential message complexity. While repeating the
forwarding step for t + 1 rounds is costly, already forwarding information
for one round can improve the quality of the output, as will be shown in
Chapter 3. The forwarding step is the so-called reliable broadcast that was
introduced in [29,112]. Algorithm 2.2 presents a reliable broadcast protocol
for the synchronous communication model in pseudocode. In the first round
of this protocol, one node – the sender – broadcasts a binary value. All nodes
that have received a value in the first round broadcast an echo message for
this value in the second round. If some node did not receive a value, but suf-
ficiently many echoes for this value, it broadcasts an echo for the forwarded
message in the third round. Note that the nodes might echo two different
values this way, because a Byzantine sender could send different values to
different nodes. Finally, if a node receives sufficiently many echoes for a
value in both rounds, it will accept this value. If there are n/4 < t < n/3
Byzantine nodes participating in the protocol, the correct nodes might ac-
cept more than one value from the sender. For t < n/4 Byzantine nodes,
at most one value from the sender will be accepted. The property of ac-

CHAPTER 2. PRELIMINARIES 9

Algorithm 2.2 Synchronous Reliable Broadcast (code for node u)
1: Broadcast own input bit msg(u)
2: for all received msg(v) do
3: Broadcast echo(u,msg(v))
4: end for
5: for all echo(w,msg(v)) received from at least n− 2t nodes w do
6: if not echoed bit msg(v) before then
7: Broadcast echo(u,msg(v))
8: end if
9: end for

10: for all echo(w,msg(v)) received from at least n− t nodes w do
11: Accept bit msg(v)
12: end for

cepting at most one value per sender is desirable in the Byzantine setting,
because one would not want to accept too many Byzantine values in to-
tal. Throughout this dissertation, we will therefore assume that reliable
broadcast is applied with t < n/4 Byzantine nodes.

Reliable broadcast guarantees the following properties for every broad-
cast input value:

• If a correct node has not broadcast a message, this message will not
be accepted.

• All correct messages will be accepted within one reliable broadcast
round.

In the synchronous communication model, Lines 5 to 12 can be repeated
several times. In this case, the protocol would also satisfy the following
property:

• If one correct node accepts a message reliably, all other correct nodes
will accept the same message by the end of the following round.

Observe that the above properties can also be satisfied by slightly sim-
plified protocols in the synchronous model. The reason for presenting this
version is that it can be directly used in the asynchronous communication
model. The only required adjustment is to let the nodes execute an echo
operation upon receiving n − 2t and n − t messages for each value respec-
tively instead of relying on synchronous rounds. Repeating Lines 5 to 12 is
not necessary in the asynchronous setting.

CHAPTER 2. PRELIMINARIES 10

2.1.2 Asynchronous BA in the Message Passing Model
For the asynchronous model, the FLP impossibility result [53] states that
there is no deterministic agreement protocol that can tolerate even one
Byzantine failure. The first solution to the asynchronous Byzantine agree-
ment problem was proposed by Ben-Or [23], who used a trivial shared coin.
This algorithm can tolerate up to t < n/5 Byzantine nodes and has constant
expected running time for t ∈ O(

√
n). Mostefaoui et al. [92] improved the

resilience of Ben-Or’s algorithm to satisfy the optimal bound of t < n/3
Byzantine failures by adjusting the reliable broadcast to echo values instead
of messages. The three papers by King and Saia [67–69] claim to have im-
proved the Byzantine shared coin to run in expected polynomial time using
spectral methods.

In Chapter 6, we will focus on the Ben-Or framework for solving asyn-
chronous Byzantine agreement and the corresponding concept of a shared
coin. The Ben-Or framework is often also referred to as a voting framework
and it is a two-step protocol: in the first step, the nodes check whether the
All-Same validity is satisfied and if true, the corresponding nodes terminate.
In the second step, a new input value is chosen for the next communication
round. This step is divided into two parts - the first part is a voting phase
where the nodes choose their new input value deterministically if they sus-
pect some other nodes to have terminated due to the validity condition;
the second part is a randomized decision, where undecided nodes choose
their new input value according to a global coin. An efficient implemen-
tation of this global coin is indispensable for voting protocols: if there is
an efficient global coin, asynchronous Byzantine agreement can be solved
efficiently using the Ben-Or framework. Algorithm 2.3 presents a possible
implementation of the Ben-Or framework.

As in the synchronous communication model, the quality of an algorithm
can be measured by either considering the message complexity or the round
complexity. While the former definition of message complexity directly ap-
plies in the asynchronous model, the definition of round complexity has to
be adjusted. A round can also be defined in an asynchronous model, see
e.g. [29]: in a round, the nodes broadcast a message, wait for sufficiently
many messages from other nodes, and perform some local computation. As
some nodes might be delayed when sending and receiving messages, the
rounds are defined locally with respect to the individual nodes. The Ben-
Or protocol that was proposed in [23] has an expected exponential round
complexity. This is because the predefined coin used in Step 11 of Algo-
rithm 2.3 is a fair coin that each node flips locally and independently of all
other nodes. In cases when All-same validity is not satisfied, the algorithm
only terminates if at least bn/2c+3f+1 nodes have the same coin outcome.

CHAPTER 2. PRELIMINARIES 11

Algorithm 2.3 Ben-Or Framework for t < n/10 (code for node u)
1: xu ∈ {0, 1} . input bit
2: r=1 . round
3: Broadcast propose(xu,r)
4: repeat
5: Wait until n− f propose messages of current round r arrived
6: if at least bn/2c + 3f + 1 propose messages contain same value x

then
7: xu = x, decided = true
8: else if at least bn/2c+ f + 1 propose messages contain same value

x then
9: xu = x

10: else
11: choose xu randomly, according to a predefined coin
12: end if
13: r = r+1
14: Broadcast propose(xu,r)
15: until decided (see Step 7)
16: decision = xu

In the literature, a global coin is either generated in a distributed way,
as in [23], or is provided to the nodes by a trusted third-party. We will
discuss this trusted third-party strategy next. A global coin can be seen as
an oracle which is requested every time a random decision is required by
the algorithm. This global coin is often given to the nodes as an encrypted
bitstring containing Ω(n) random coinflips at the beginning of the proto-
col. As we will show next, the encryption of such a bitstring is important,
since Byzantine nodes can otherwise prevent the Ben-Or framework from
terminating.

Lemma 2.4. Let the global coin be defined by a random bitstring which
is revealed to the nodes at the beginning of the Ben-Or framework. Then,
there is a Byzantine strategy that can prevent the Ben-Or framework from
terminating.

Proof. Let −1 and +1 be the binary input values of the Ben-Or framework.
As an example, we can let the nodes terminate in the first step of the Ben-Or
framework if they see a majority of n−2t for one of the binary input values,
and deterministically vote for a value if they see an n−3t majority for it. In
all other cases, the new input value is chosen according to the bitstring value
of the current round. The following argument can be adjusted to work for

CHAPTER 2. PRELIMINARIES 12

different thresholds as well: Assume that the algorithm starts with an input
where n−3t nodes have input value +1, and 3t other nodes have input value
−1. Further assume that the first bit of the bitstring is −1, and that the
second random bit of the bitstring is known to the Byzantine scheduler. If
the second random bit in the bitstring also is −1, then a Byzantine scheduler
can let n−3t nodes see n−3tmessages of +1, and therefore deterministically
choose the value +1 in the voting step. The remaining 3t correct nodes will
receive strictly less than n − 3t values of +1 and therefore have to rely on
the value of the shared coin, which is −1 in this round. This way we have
created the same input for the next round. If the second bit is +1, then a
Byzantine scheduler can make 3t correct nodes receive n − 3t messages of
+1 and thus choose the value +1 deterministically. The remaining correct
nodes will receive strictly less than n − 3t messages of +1 and will rely
on the value of the shared coin, thus choosing −1 as the new input value.
The Byzantine scheduler has thus generated a situation where the input is
opposite to the input of the previous round.

It remains an open question of whether asynchronous Byzantine agree-
ment can be solved efficiently in the message passing model without rely-
ing on cryptographic assumptions. If cryptographic assumptions are used,
Byzantine agreement can be solved in expected constant number of rounds.
The first such implementation is due to Rabin [105] and it uses Shamir’s
threshold secret sharing. Rabin’s algorithm relies on the fact that a dealer
provides the random bitstring. Chor et al. [39] proposed the first algorithm
where the nodes use verifiable secret sharing in order to generate random
bits. Later work has focused on improving these algorithms in terms of
resilience [35] and practicability [34].

In our model, we make no cryptographic assumptions and assume no
trusted oracles. In this dissertation, we therefore consider the second case
where the global coin is generated by the nodes in a distributed way. Due to
Lemma 2.4, our model cannot tolerate a bitstring, and therefore the nodes
need to generate a separate random value for each Ben-Or round. The
question of generating an efficient global coin therefore becomes a question of
implementing an efficient shared coin that can tolerate Byzantine values. All
existing shared coins in the public channel model have expected exponential
running time when Byzantine nodes are present in the system. We are
therefore in search or an efficient shared coin, i.e., a shared coin that can
generate each of the two outputs with at least polynomial probability:

Definition 2.5 (Polynomial-Time Shared Coin). Let L be the set of possible
local views of the nodes. A polynomial-time shared coin is a function s : L 7→

CHAPTER 2. PRELIMINARIES 13

{−1,+1}, where

Pr[∀i : s(li) = −1] ≥ 1
d · nc and Pr[∀i : s(li) = +1] ≥ 1

d · nc

for two constants d, c > 0, where li ∈ L, i ∈ [n], are the local views of the
same round.

In the message passing model, the shared coin is usually implemented
using reliable broadcast. Reliable broadcast was first proposed by Srikanth
and Toueg [112] as a method to simulate authenticated broadcast. There is
also another implementation which was proposed by Bracha [29]. Today, a
lot of variants of reliable broadcast exist, including for example the FIFO
broadcast [2]. A good overview of the broadcast routines is given by Cachin
et al. [33]. In order to achieve an efficient shared coin, King and Saia [69]
develop a stronger reliable broadcast routine called the blackboard model
in order to communicate large random values reliably. This model will be
discussed in Chapter 6.

2.1.3 BA in the Shared Memory Model
Other than in the message passing model, nodes in the shared memory
model do not communicate with each other, but instead only with the shared
memory. It can therefore be assumed that each node has a register in the
memory where it can write its values and that it has a read access to all
registers of the memory. This way, every value that was written to the
memory can be observed by all nodes that have access to it. The shared
memory model is not stronger than the message passing model, as the nodes
might overwrite their own values before other nodes in the system have
observed them. Alternatively, the nodes might only share one register and
all have write access to this register. In such a model, nodes might overwrite
each others’ values and thus make agreement hard.

The problem of sharing data among several processors in a system has
been extensively studied in the literature. Early solutions to this problem
required mutual exclusion [41, 45], i.e., only one process was allowed to
access and alter the memory at a time while the other processors were
denied access. The first discussion on the wait-free implementation of shared
objects goes back to Herlihy [58]. In this paper, he defined the consensus
number as the maximum number of nodes that can establish consensus in the
system using arbitrarily many shared objects. According to this definition, a
hierarchy of shared objects can be established. In particular, Herlihy showed
that the consensus number of read-write registers is 1, i.e., consensus cannot
be established by two processors using read-write registers.

CHAPTER 2. PRELIMINARIES 14

In Chapter 5, we will consider a shared memory model having n read
and write registers, where each node has write access to only one of the n
registers. If only crash failures are considered in such a system, there exists a
simple implementation of the shared coin from Definition 2.5. Algorithm 2.6
presents an implementation of such a consensus protocol that can tolerate
up to t < n/2 crash failures.

Algorithm 2.6 Shared Coin Tolerating Crash Failures (for node u)
1: nu = 0
2: cu = 0
3: while true do
4: Choose new local coin c = +1 with probability 1/2, else c = −1
5: Write cu = cu + c and nu = nu + 1 to u’s register in the shared

memory
6: Set C =

∑
u
cu

7: if
∑

u
nu ≥ n2 then

8: return sign(C)
9: end if

10: end while

The first polynomial algorithm for the shared memory model that uses a
shared coin was proposed by Aspnes and Herlihy [11] and required exchang-
ing O(n4) messages in total. Algorithm 2.6 requires exchanging O(n3) mes-
sages and it is a variant is due to Saks, Shavit, and Woll [108]. Bracha
and Rachman [30] later reduced the number of messages exchanged to
O(n2 logn). The tight lower bound of Ω(n2) on the number of coinflips
was proposed by Attiya and Censor [13] and improved the first non-trivial
lower bound of Ω(n2/ log2 n) by Aspnes [10].

It has been shown that it is possible to simulate the read and write
commands from the shared memory in the message passing model. This
is done by the so-called ABD simulation [12]. A write operation can for
example be simulated by a reliable broadcast round, where a node reliably
broadcasts a value and considers it written to the memory once it accepts
its own value. In a read operation, a node can request all accepted values
from other nodes and restore a total view. If the ABD simulation is applied
to Algorithm 2.6, one achieves a consensus algorithm with crash failures in
the message passing model with a message complexity of O(n3). Alistarh
et al. [5] improved the number of exchanged messages to O(n2 log2 n) using
a binary tree that restricts the number of communicating nodes according
to the depth of the tree.

CHAPTER 2. PRELIMINARIES 15

Byzantine agreement in the shared memory was first considered by Malkhi
et al. [79]. They used the concept of sticky bits [102] and access control lists
in order to restrict Byzantine power. Sticky bits are bits that remain in
the memory and cannot be overwritten. They also showed that Byzantine
agreement is impossible in their model if t > n/3 and provided a protocol
that could tolerate (

√
n−1)/2 Byzantine failures. Alon et al. [7] later showed

that the bound on the resilience is tight by using exponentially many sticky
bits.

2.2 Chapter Overview and Related Work

Chapter 3 - Byzantine Agreement with Interval Validity
Overview Byzantine agreement is well studied in the binary setting where
each node has the input value 0 or 1. Many applications must however
be able to handle real numbers R or natural numbers N. This setting is
referred to as multivalued Byzantine agreement [119]. Chapter 3 focuses
on synchronous Byzantine agreement, as defined in Section 2.1.1, on input
values that can be ordered. The idea is to establish agreement on a value
that was an input value of some correct node. Algorithms that solve this
problem have been proposed in [54,117,119]. These algorithms assume that
the majority of the nodes have the same input values. If there is no clear
majority, some leader node might decide on a value that all nodes will adopt,
or the nodes choose a preselected value. These algorithms need t+ 1 rounds
to establish agreement, which is optimal in the synchronous model. The
algorithms will however agree on an arbitrary value if there is no majority
among the input values.

In Chapter 3, we present a protocol that establishes agreement on a
value that is an approximation to the kth smallest of all correct input values.
Given totally orderable inputs, we are looking for an output close to the kth

largest or smallest value, and depending on the number of Byzantine nodes
we can tolerate a solution in an interval around this value. We will refer to
this condition as interval validity. In Section 3.3, we present an algorithm
that will achieve consensus on a value that satisfies interval validity. Our
algorithm is optimal in that it tolerates the maximum possible number of
t < n/3 Byzantine nodes. Our algorithm is also optimal in how close the
chosen value is to the kth value thanks to a matching lower bound.

Related Work Similar approaches have been considered for the special
case of the median: Doerr et al. [46] consider the Power of Two Choices to
establish agreement on a value which is close to the median in the asyn-
chronous message passing model. In their protocol, each node requests the

CHAPTER 2. PRELIMINARIES 16

values of two nodes chosen uniformly at random among all nodes and up-
dates its value to the median of the two requested values and its own. The
authors showed that for t ∈ O(

√
n) the system stabilizes with a consensus

value that is between the (n/2−c
√
n logn)-largest and the (n/2+c

√
n logn)-

largest value. The same problem was considered for the synchronous mes-
sage passing model by Stolz et al. [114]. In this paper, the authors proposed
an algorithm that computes an approximation of the median within t + 1
rounds. Their approximation is not optimal compared to the bounds of any
deterministic algorithm for this model. We will use these ideas to derive an
approximation to the kth smallest value and show that our method can be
adjusted to solve the median problem optimally.

Dolev et al. [48] proposed a deterministic algorithm for approximate
Byzantine agreement in the asynchronous message passing model. In this
relaxed setting, nodes do not establish consensus on an exact value, since
this is impossible [53]. They instead converge towards a consensus value
in every round. In the proposed algorithm, the values of all nodes con-
verge towards the mean of the correct values. Fekete [51] later improved the
running time of the algorithm and proposed an algorithm for approxima-
tion that achieves exact consensus in the synchronous model, if it iterates
for t + 1 rounds. Approximate agreement can guarantee that the values of
correct nodes will be inside an arbitrarily small interval after sufficiently
many iterations but cannot solve the exact Byzantine agreement problem
unless the lower bounds for exact consensus are satisfied. Another relax-
ation of the Byzantine agreement problem is k-set agreement, where the
nodes try to agree on values that are within some common set of size at
most k [36, 86,103].

In the spirit of [87, 88, 120], we will present how our method can be
applied to Byzantine vector consensus. This is a generalization of multival-
ued agreement that allows multidimensional input values. Previous work
mostly concentrated on finding a value that is within the convex hull of
all correct values. While this method is efficient for approximate agree-
ment in the asynchronous message passing model, the exact agreement in
the synchronous message passing model requires an exponential number of
computations to determine the convex hull in the presence of Byzantine
nodes. Xiang and Vaidya [124, 125] introduced two relaxations of the con-
vex hull - the k-relaxed and the (δ, p)-relaxed Byzantine vector consensus.
The former requires the consensus value to be inside the projections of the
convex hull onto any k dimensions of the vectors and the latter requires
the value to be within distance δ to the convex hull. They show that their
relaxation cannot be used to improve the number of Byzantine nodes that
can be tolerated by the system. We will relax the validity condition from
the convex hull to a box and apply our proposed kth smallest value algo-

CHAPTER 2. PRELIMINARIES 17

rithm. This adjustment allows us to achieve exact consensus in O(d(t+ 1))
rounds, where d represents the dimension. It can furthermore tolerate up
to dn/3e − 1 Byzantine nodes.

Chapter 4 - Byzantine Preferential Voting
Overview This chapter introduces a version of multi-dimensional Byzan-
tine agreement, where the input values of the nodes are preference rankings
of three or more candidates. We show that consensus on preferences, which
is an important question in social choice theory, complements already known
results from Byzantine agreement. In addition, preferential voting raises
new questions about how to approximate consensus vectors. We propose a
deterministic algorithm to solve Byzantine agreement on rankings under a
generalized validity condition, which we call Pareto validity. Pareto validity
states that, if all correct nodes prefer one candidate over the other, then
the consensus ranking should rank these two candidates in the same way.
Note that this validity condition nicely generalized the All-Same validity
condition proposed in Section 2.1. The results for Pareto validity are then
extended by considering a special voting rule which chooses the Kemeny me-
dian as the consensus vector. The Kemeny rule was first proposed in [62,63].
The corresponding Kemeny median satisfies many desirable properties for
a consensus ranking which will be presented in Section 4.1. Note that this
voting rule was shown to be NP-hard to compute for an increasing number
of candidates and already for four voters in [18, 50]. At least three differ-
ent 2-approximation algorithms for the Kemeny median have been proposed
in [4] and [44]. In [4], the approximation ratio was improved to 4/3 using
randomization and later derandomized in [121]. A good overview over the
Kemeny rule and an extended introduction into social choice theory can be
found in [32]. In Section 4.3, we derive a lower bound on the approximation
ratio of the Kemeny median that can be guaranteed by any deterministic
algorithm. We then provide an algorithm that approximates the solution of
the Kemeny rule in the presence of Byzantine voters and prove that this al-
gorithm computes the best possible approximation. To our knowledge, this
is the first non-trivial generalization of multi-valued Byzantine agreement
to multiple dimensions which can tolerate a constant fraction of Byzantine
nodes.

Related Work Byzantine agreement with more than two input values
has mostly been considered in approximate agreement [48, 51], where the
input values of the nodes converge towards some value over rounds. More
recent results seek to establish agreement on a value that makes sense for
applications. In [46], the values converge towards a value at most

√
n logn

CHAPTER 2. PRELIMINARIES 18

positions away from the median. In [84,114] an exact algorithm to establish
agreement on a value that is at most t/2 positions away from the median or t
positions away from a minimum or a maximum was proposed. In [87,88,120],
Byzantine agreement was further generalized to several dimensions. There,
the nodes converge to a vector inside the convex hull of all correct input
vectors. In [37,118] the authors consider voting in Byzantine systems, they
do however only focus on single winners that are determined by applying
the plurality rule to the top alternatives of the rankings, a setting which
corresponds to standard Byzantine agreement. All previous approaches for
multiple dimensions struggle to derive an algorithm which either can toler-
ate a constant fraction of Byzantine nodes independent on the number of
dimensions, or find a solution that is not trivial.

In social choice theory, Byzantine behavior can be interpreted as manip-
ulation of a ballot in an election, in which the manipulating party has full
knowledge about all votes. Bartholdi et al. [19] defined manipulation as a
preference profile where one single voter can change its ranking such that
this voter’s most preferred candidate wins the election. Groups of voters
have also been considered in this context, but mostly from the perspective
of how hard it is for a group of nodes to manipulate the voting result given
a certain voting rule [26, 42]. Other types of Byzantine behavior have been
considered with respect to the robustness of proposed voting rules. In [20],
the authors investigate the robustness of Borda’s mean and median in the
presence of outlier ballots. In [104], the robustness of scoring rules is con-
sidered under arbitrary noise which is described in terms of pairwise swaps
of candidates in the ranking of one voter.

Chapter 5 - The Append Memory Model
Overview This chapter presents a novel shared memory model that sim-
plifies the analysis of consensus on a Chain and a DAG. In this new model,
referred to as the append memory model, nodes are allowed to write new
values to the unordered memory, but not to overwrite already existing val-
ues. We show that although this model differs from the standard shared
memory model with n shared read-write registers that was introduced in
Section 2.1.3, many known results from the shared memory model still hold
in the append memory model. In Section 5.2, we therefore show that asyn-
chronous consensus cannot be solved in this append memory model, as the
nodes cannot uniquely define the ordering of concurrently appended com-
mands. In Section 5.5, it is shown that this result also holds for the asyn-
chronous communication model with randomized memory access. We fur-
ther show that our proposed model is not stronger than the message passing
model, as it can be simulated in the message passing at a high message com-

CHAPTER 2. PRELIMINARIES 19

plexity cost (see Section 5.4). The advantage of the append memory model
is that it simplifies the analysis of Blockchain protocols. In Section 5.5, we
will therefore compare the analysis of the DAG and the Chain in the append
memory. We will show that Byzantine agreement on the DAG can achieve
almost optimal resilience of < 1/2, while Byzantine agreement on the Chain
highly depends on the append rate of the correct nodes. Our results suggest
that the DAG is not only a better model for Byzantine agreement because
of its simplicity compared to the Chain, but also because it achieves an
optimal resilience.

The analysis in Chapter 5 deviates from the previous work in several
ways. Many papers try to directly solve Nakamoto consensus in the mes-
sage passing model, thereby oversimplifying the communication model [55]
or falsely calling a synchronous communication system (partially) asyn-
chronous [66, 98]. Instead, we focus on deriving a shared memory model
for Blockchain protocols, which allows us to assimilate the local views of the
nodes and thereby derive simpler protocols for Blockchain and DAG. Note
that the append memory is not as strong as the concept of sticky bits [79]
since it does not make use of registers that implicitly solve consensus for
two parallel writes.

Related Work The recent wave of interest in blockchain systems was
sparked by Satoshi Nakamoto’s Bitcoin protocol [93] – a distributed cryp-
tocurrency system based on peer-to-peer communication and the construc-
tion of a Blockchain. The Nakamoto consensus needs to satisfy two main
properties: consistency and liveness. The first rigorous analysis of Nakamoto
consensus on a Blockchain was given by Garay et al. [55]. In their work, they
analyzed the blockchain in the synchronous communication network, assum-
ing that all messages of the current round arrive at the beginning of the next
round. They showed that Nakamoto consensus solves Byzantine agreement
with validity under the assumption that the Byzantine nodes have strictly
less than 1/3 of the hashing power of the network. They further propose a
more elaborate consensus protocol on the Blockchain for which they show a
resilience of up to 1/2. Many following attempts were made in order to for-
malize Nakamoto consensus in a more general model: Pass et al. [98] extend
the synchronous model of [55] and consider a δ-synchronous network, where
δ is an upper bound on message delay known to all nodes in the network.
Pass and Shi [99] later simplified the previous model mostly for didactic
purposes. Another formalization of consistency of Nakamoto consensus was
given by Kiffer et al. [66], who use a Markov chain-based analysis to prove
consistency in a synchronous setting.

CHAPTER 2. PRELIMINARIES 20

All aforementioned papers note that the analysis of Nakamoto consen-
sus generally is involved, and therefore needs complicated models in order
to describe their system rigorously. The first simple analysis of Nakamoto
consensus was provided by Ling Ren [106]. Instead of focusing on the def-
inition of the communication model, [106] focuses on a correct analysis of
the chain growth and therefore differentiates between blocks which are “non-
tailgaters” and “loners”. The former describes blocks which were mined after
seeing the last correct block in the system, while the latter denotes blocks
which are non-tailgaters and are not non-tailgated. This way, both, forks in
the Blockchain introduced by the Byzantine nodes, as well as forks produced
by the correct nodes, are taken care of. Ren further shows that Nakamoto
consensus satisfies consistency and liveness under the honest majority as-
sumption, provided that the block generation rate of the correct nodes is
much larger than the communication delay.

Other structures for reaching Nakamoto consensus have also been con-
sidered in the literature. In [111], it was shown that the so-called inclusive
Blockchain, which relies on the DAG structure, can provide safety in the
Blockchain protocol even if the system is asynchronous for a short period of
time. The DAG structure is usually considered under one of the tie-breaking
rules, such as the GHOST protocol [111] or the pivot chain [74] rule.

Observe that, while many protocols also considered Byzantine agree-
ment besides Nakamoto consensus, consistency and liveness actually do not
necessarily require consensus as a building block. This was first shown by
Gupta [57]. In follow-up work, Guerraoui et al. [56] show that Nakamoto
consensus has a consensus number 1. Other than the protocols mentioned
previously, such systems work in the fully asynchronous setting but do not
satisfy consistency at any point of time in the protocol, and would therefore
require checkpointing techniques in order to be applied in cryptocurrency
systems.

Chapter 6 - Asynchronous Byzantine Agreement and Deep
Reinforcement Learning
Overview In this chapter, we consider the asynchronous Byzantine agree-
ment problem based on the Ben-Or framework that was introduced in Sec-
tion 2.1.2. The chapter is inspired by some recent papers that challenge the
unwritten law by trying to expose and expel Byzantine nodes. This strategy
is usually applied in protocols with computationally bounded adversaries,
where the nodes are asked to sign their messages and the Byzantine behav-
ior can be exposed by a single node who forwards Byzantine messaged to
all nodes. In the case of a computationally unbounded adversary, a single
node cannot expose Byzantine behavior due to the “word against word” sit-

CHAPTER 2. PRELIMINARIES 21

uations. The basic idea to overcome this problem is to let all nodes produce
many random bits. Because of the central limit theorem, the sum of these
random bits will deviate from the expectation, and this deviation can be
used for a decision. Byzantine nodes can in that case for example try to
prevent the decision and in the process probably exhibit “unlikely random-
ness”. Based on this evidence they can then be exposed and expelled.

We first focus on an efficient shared coin implementation for this frame-
work, by relying on the blackboard model from [69]. Using the blackboard
model, we define a reliable broadcast routine which implies strong similar-
ity properties on the local views of the nodes. We show that this model
can be directly used to generate a shared coin that has expected polyno-
mial running time in the crash failure model. Moreover, we discuss the
possibility to rely on the so-called blackboard broadcast in order to solve
asynchronous Byzantine agreement. Our results suggest that the algorithms
proposed in [67–70] can be used to generate an efficient shared coin in the
crash failure setting, but the arguments are not sufficient for the Byzantine
setting. We furthermore discuss the role of Byzantine values and Byzan-
tine scheduling strategies as necessary conditions to prevent asynchronous
Byzantine agreement from terminating within expected polynomial running
time.

We then investigate the possibility of using Deep Reinforcement Learning
(DRL) in order to find possible new Byzantine strategies and develop more
robust algorithms. In particular, we show that DRL can be used to simulate
Byzantine behavior that is needed in order to make the standard versions
of the Ben-Or algorithm inefficient. We observe that the behavior that a
trained Byzantine agent learns corresponds to the worst-case strategies that
have been discussed in Section 2.1.2. We then discuss the possibility of
using self-play in order to not only train the Byzantine agent, but also the
algorithm. These preliminary results show that DRL is indeed a good tool
for simulating Byzantine behavior and that it can help understand future
Byzantine agreement algorithms better.

Related Work Deep Reinforcement Learning has recently been applied
to various graph network problems, for example, in [6, 94], and has shown
promising results. In [94], Nakashima et al. used DRL with Graph Con-
volutional Networks for channel allocation in WLANs. In [6], Almasan et
al. apply Graph Neural Networks in combination with DRL to a routing
optimization problem. In this dissertation, we will use the Deep Q-Network
(DQN) algorithm that is based on Q-learning. Q-learning was first intro-
duced by Watkins [122]. It has been developed since and has found its
application in fault-tolerant control in the work of Hua et al. [60]. Later it

CHAPTER 2. PRELIMINARIES 22

was also applied to fault handling in self-organizing system by Mismar et
al. [90].

In this dissertation, we are interested in a simulation of Byzantine nodes
using DRL. An example of how DRL can be used for simulations is given
by Lee et al. [73], who simulated crowd navigation. Hou et al. [59] later
use DQN to simulate worst-case adversarial behavior in blockchain incentive
mechanisms, which is closely related to our goals. In their paper, the authors
use DRL to identify attack strategies on incentive protocols beyond selfish
mining and show that classical selfish mining attacks are not as effective
when multiple attackers are present in the system.

Reinforcement learning has also been recently applied to various com-
binatorial optimizations problems, see for example [17, 22, 65, 71, 101, 128].
Such methods often assume a distribution of the inputs or learn a spe-
cific algorithm type and are thus not generalizable. In order to develop
general strategies, self-play has been proposed in the literature. In self-
play, an algorithm agent is competing against an adversary agent, who is
looking for worst-case input values. Such approaches have been tested for
many complex games, such as Go, Chess or AlphaZero, and could defeat
human professional players [109,110]. Bansal et al. [16] and Baker et al. [15]
considered self-play in multi-agent environments where the agents compete
against each other. The former paper considers a soccer goal shooting task,
while the latter focuses on hide-and-seek games. Both papers show that
their agents can produce behaviors that are more complicated than their
environments. Besides computer games, self-play has also been applied to
theoretical problems, such as combinatorial optimization problems [126] or
graph coloring [61].

Byzantine faults are also of interest in distributed machine learning,
where the goal is to split computations among several machines for scal-
ability reasons and let the machines collaborate in order to learn a com-
mon model [1, 28, 43, 75, 76]. The first papers that consider Byzantine fail-
ures [27, 38] focus on the stochastic gradient descent (SGD). Blanchard et
al. [27] propose Krum - an aggregation rule that satisfies certain resilience
properties - and show that SGD converges under this rule when 2t+ 2 < n.
Chen et al. [38] show that choosing the geometric median of means of the
gradients is sufficient to make the SGD converge for 2(1 + ε)t ≤ n. Some
follow-up results to their work consider the non-convex loss functions [89]
or the possibility to avoid saddle-points [127].

3
Byzantine Agreement with Interval
Validity

There exist several situations where nodes of a distributed system do not
propose the same state. For example, all nodes of a distributed stock mar-
ket system may have seen a different transaction first, and therefore propose
their own transaction as the next one to be included in the common ledger.
Other situations could occur when all nodes of a distributed auction system
offer a slightly different price, or the nodes of a distributed flight control
system are equipped with a height sensor and all sensors report slightly dif-
ferent altitudes, e.g., represented as floating point numbers. With Byzantine
nodes participating in the decision, it would be not advisable to simply agree
on any value.

A majority decision will also not help in systems where each node might
propose a different outcome. Luckily, many distributed systems seem to
have in common that the inputs of the Byzantine agreement algorithm can
be ordered: some transactions have an earlier timestamp than others and
altitude sensors will likely report at least slightly different heights. If the
inputs are ordered, we can try to decide on a value that is not an outlier, as
outliers coming from Byzantine nodes should be avoided. Instead, we want
to decide on a value which makes sense: If we want our plane to operate

23

CHAPTER 3. INTERVAL VALIDITY 24

safely, we can think of avoiding outliers by choosing the median value. If
we are interested in the price of honest bidders for our apartment, we are
looking for a high bid, but not a goofy outlier.

The median is in some sense the safest value in a Byzantine setting,
as it is robust against Byzantine attacks from both sides, i.e., it does not
matter whether the Byzantine nodes propose high or low values. This chap-
ter presents an algorithm that finds the optimal median in the Byzantine
setting. The ability to choose the largest or smallest value in Byzantine en-
vironments also finds various applications. The need for a generalization to
the kth largest or smallest value is less obvious, but it is interesting in several
cases as well. As an example, consider a distributed system with at most
t Byzantine (arbitrarily malicious) nodes. In addition to these Byzantine
nodes, it is assumed that there are nodes that are not Byzantine but also
not correct. These nodes will generally follow the protocol, but they will
not be completely honest about their input, e.g., agents who always bid a
too high value. We do not want our result to be affected by these nodes. By
going for the kth smallest or largest value instead of the maximal/minimal/-
median value, we can adapt nicely to such situations. In this chapter we will
assume that the implementation is aware of such malfunctioning behavior
of the system and chooses k accordingly before starting the algorithm.

3.1 Model

In this chapter, we consider Byzantine agreement in the synchronous mes-
sage passing model, as it was introduced in Section 2.1.1. At the beginning
of the computation, each node has an input value from a totally orderable
domain, for example R. The goal is to make all nodes agree on a common
value that is close to the kth smallest value of all correct input values by
communicating in synchronous rounds. For simplicity, we assume that all
input values are different. It is not necessarily a drawback if the Byzantine
nodes propose values close to the kth smallest value, while values that are
far away should be omitted. In order to handle values that are too far away
from the kth smallest value, we introduce a new validity condition called
interval validity. Let S be a sorted array containing the n− t correct input
values and refer to S[k] as the kth smallest value in this array. In each round,
it is assumed that every node stores the values of all received messages in
a sorted array R of size n− t+ f . Note that R[k] is not the same value as
S[k], since R also stores f Byzantine values. The validity condition for the
kth smallest value is defined as follows

Definition 3.1 (Interval Validity). Sort all input entries of correct nodes
in an array S. A valid value is a value v that is close to the kth smallest

CHAPTER 3. INTERVAL VALIDITY 25

value of all correct nodes:

S
[
k − dt/2e

]
≤ v ≤ S

[
k + bt/2c

]
This validity condition does not guarantee that v is an input value of a

correct node. We only require it to not be further away than dt/2e positions
from the actual kth value in S. For t = 0 the validity condition holds only
for S[k] = v, which is the exact kth smallest value. Note that this is not the
same definition of interval validity as used in [21].

For brevity, we denote the subarray of S which starts with the ath value
and ends with the bth S[a, b] . In contrast,

[
S[a], S[b]

]
denotes the interval

enclosed by the two values, i.e., correct and Byzantine values which lie inside
the boundaries. The same notation is used for R, which also will be referred
to as the local array of a node.

For the computation of the kth smallest value, we use the geometric
median. It is defined as the central value of an array of ordered numbers.
For an even number of nodes, this value usually corresponds to the mean of
the two central values. We adjust the definition of the median to agree on
the smaller of the two central values in the case where a node receives an
even number of values:

Definition 3.2 (Median). Given an array A of n values, the median is
defined as A

[
bn/2c

]
, i.e., the value at position bn/2c in the array A.

This alternative definition enables the nodes to choose a valid median
value.

3.2 Lower Bound for the Approximation of the
kth Smallest Value

In this section, we show that no deterministic algorithm can approximate
the kth smallest value better than by dt/2e positions in the presence of t
Byzantine nodes. The quality of the approximation is calculated by the
number of positions by which the approximate kth smallest value is shifted
from the actual kth smallest value with respect to the array S. Two cases
will be considered separately, the case where k ∈

[
dt/2e + 1, n − b3t/2c

]
and the case where k is outside of these bounds. In the first case, the lower
bound on the approximation value is dt/2e. In the second case, we need to
guarantee that the approximation value is inside the interval of all correct
nodes. Otherwise, the Byzantine nodes might choose values that deviate
arbitrarily from the values of the correct nodes. With this restriction, the
approximation of the kth smallest value can be up to t positions away from
the actual value.

CHAPTER 3. INTERVAL VALIDITY 26

Figure 3.3: In this example we look for the 4th smallest value in a system
with (n−t) = 7 correct nodes and t = 3 Byzantine nodes. The correct nodes
are shown in black, the Byzantine nodes in orange. All values are ordered
according to the axis. On the first axis, the Byzantine nodes choose their
value to be larger than all correct values. On the last axis, the Byzantine
values are all smaller than the correct values. In between, the Byzantine
nodes choose some values to be larger and some to be smaller. All four
cases are not differentiable to the correct nodes since all nodes just see
n values. The correct nodes do not know the position of the Byzantine
nodes. Therefore, any of the circled correct nodes might be a candidate for
the actual 4th smallest value. Thus, the nodes must agree on a value that
minimizes the distance to each of the four candidates.

4th value

4th value

4th value

4th value

interval of possible 4th smallest values

these two
options
minimize
the failure

Theorem 3.4. Assume k ∈
[
dt/2e+ 1, n−b3t/2c

]
. Then, no deterministic

algorithm can choose a value that is closer than dt/2e to the actual kth

smallest value when t Byzantine nodes are present in the system.

Proof. We consider t + 1 cases for which the values that the correct nodes
received only differ in t values that were sent by the Byzantine nodes. We
will show that the correct nodes are not able to distinguish the given views,
while the kth smallest values in any two views differ by up to t positions.
Figure 3.3 shows such an example for t = 4 with t different values that
might potentially be the kth smallest value.

Let max(S) and min(S) respectively denote the maximum and minimum
value of the correct nodes. We assume that a Byzantine node always sends

CHAPTER 3. INTERVAL VALIDITY 27

the same value to all other nodes, i.e., all nodes receive all t Byzantine
values, and values that were sent by the same node are equal. In the first
case, the t Byzantine nodes send values that are larger than max(S) to every
correct node. In this case, the new kth smallest value has the same position
as before, i.e., the kth smallest value is R[k].

In the second case, we assume that one Byzantine node sends a value
that is smaller than min(S) and the other t−1 Byzantine nodes send values
that are larger than max(S). This way, the kth smallest value is at position
k + 1 in the array R.

In the third case, we assume that two Byzantine values are smaller than
min(S). This will shift the kth smallest value by 2 positions in R etc.

In the last case, all t Byzantine nodes broadcast values that are smaller
than min(S). Here, the Byzantine nodes shift the kth smallest value to
position k + t in the new array, i.e., it is R[k + t].

In any of the cases, a node knows that its array contains exactly t Byzan-
tine values, but the cases are indistinguishable to the node. The kth smallest
value can therefore be any value from the subarray R[k, k + t]. Choosing a
value closer to k would decrease the mistake in the first case and increase
it in the last. A value closer to k + t does the opposite. The value that
minimizes the mistake is the median value which is at most dt/2e positions
away from all solutions. Note that for odd values of t the value must be
rounded up since the median of R[k, k+ t] lies between two values. It is thus
not possible for a deterministic algorithm to be better than dt/2e positions
away from the optimal solution.

Theorem 3.5. For k outside
[
dt/2e + 1, n − b3t/2c

]
, any deterministic

algorithm can be forced to choose a value further away than dt/2e but at
most t positions away from the actual kth smallest value.

Proof. We consider the same t+ 1 cases as in the proof of Lemma 3.4. The
median of the subarray R[k, k + t] minimizes the mistake of approximating
S[k]. If k ≤ dt/2e the median of this subarray may be a smaller value than
S[1] which is the smallest correct value. The median does not satisfy the
requirements for the approximation of the kth value in this case since the
values outside of

[
S[1], S[n−t]

]
can be arbitrarily small or large. The closest

value inside the interval of correct values is at position t+ 1. Therefore, the
value at position t + 1 is the one that minimizes the mistake to any S[k]
with k ≤ dt/2e. Analogously, the closest correct value for k > n − b3t/2c
is at position n − t. The guess of the kth smallest value may deviate from
the actual value by more than dt/2e. If we are looking for the minimal or
maximal values, i.e., S[1] or S[n− t], this value may deviate by t, since all

CHAPTER 3. INTERVAL VALIDITY 28

Byzantine nodes may choose values smaller than the smallest correct value
or larger than the largest correct value.

3.3 Algorithm for the kth Smallest Value

In this section, we present an algorithm that selects an approximation of the
kth smallest value in the presence of Byzantine nodes. We will show that this
algorithm gives the best approximation to S[k] for all values of k ∈ [0, n− t].
As in the previous section, two cases are distinguished for which the bounds
of the approximation differ: In the case where k ∈

[
dt/2e + 1, n − b3t/2c

]
,

the algorithm finds a value that satisfies Definition 3.1. For k outside of[
dt/2e+1, n−b3t/2c

]
the solution can not be guaranteed to satisfy Definition

3.1. In this case, the solution will instead be at most t positions away from
the actual kth smallest value. We will also prove that our algorithm produces
an optimal solution by showing that it matches the bounds from Section 3.2.

The main idea of the algorithm is to perform a step at the beginning
where each node selects a new input value that is close to the actual kth

smallest value that we are looking for. Denoting this value the new input
value of the node, we reduce the problem of establishing agreement with
a special result to a multivalued agreement where nodes can agree on any
value inside the interval of all correct values, i.e., inside

[
S[1], S[n− t]

]
. We

use the ideas of the Phase King Algorithm proposed by Berman et al. [25]
to establish agreement on any value. One distinguished correct node, the
King, can decide on the value that all correct nodes have to adapt. The
same authors showed that t+1 rounds suffice to establish agreement on any
input value in the presence of Byzantine nodes. A similar idea was used
in [114], where a distinguished node, the Jack, proposed the value that all
nodes should adapt.

Algorithm 3.6 presents our method in pseudocode. It is divided into
three routines: In the first routine, every node has an input that is broadcast
to every other node. Each node sorts the received messages in increasing
order and stores them in a local array R. It picks a local approximation of
the kth smallest value from R and sets it to be the new input value. In the
second routine, every node broadcasts its selected kth smallest value and
stores the received values in a sorted array. Then, all nodes exchange their
interval bounds to determine the interval in which the kth smallest value
should lie from their perspective. The nodes also pick the median of the
corresponding array to be their local guess for S[k]. The third routine is
where the consensus is established. We use the Phase King Algorithm to
make the nodes agree on one of the local guesses from Routine 2. Hereby we
assume that there are (t + 1) predetermined King nodes known to each of

CHAPTER 3. INTERVAL VALIDITY 29

the correct nodes in the system, and each such King is assigned to exactly
one phase of Routine 3 in the algorithm.

Throughout the algorithm, we assume that the correct nodes know the
total number of nodes n and the upper bound on the number of Byzantine
nodes t present in the system. Since Byzantine behavior is arbitrary, we also
have to consider the case where some Byzantine nodes decide not to send any
value to a correct node in the first routine of the algorithm. Such a correct
node would have to choose the approximation of the kth smallest value from
a smaller set with fewer Byzantine nodes, thus not satisfying the required
approximation for the kth smallest value. One possibility to prevent this
case is to fill up the array R with dummy values which are assumed to be
worst-case input values, i.e., all smaller than S[1]. We can however reach a
better local approximation of the kth smallest value by adjusting the number
of Byzantine nodes and choosing the kth smallest value directly from the
smaller interval. We therefore define f ≤ t, which denotes the number of
values that are suspected to be Byzantine in the array of received values R.
We assume that each correct node receives n− t+ f values in a round and
can calculate f since it knows n and t. Note that this number f depends on
the node and the communication round since Byzantine nodes can deviate
arbitrarily from the protocol.

Algorithm 3.6 The kth Smallest Value Algorithm

Routine 1: Choosing values close to the kth smallest value
Input: input value x of node v
Output: new input value x∗ in the vicinity of the kth smallest value

every node v executes the following commands :
1: Broadcast x
2: Receive input values from every other node, store all values in the sorted

array R
3: x∗ := median of the subarray R[k, k + f]
4: if x∗ ≤ R[f] then . k is too small and R[k] can be an arbitrarily small

Byzantine value
5: x∗ := R[f + 1]
6: else if x∗ > R[n− t] then . k is too large and R[k] can be an

arbitrarily large Byzantine value
7: x∗ := R[n− t]
8: end if
9: return x∗

CHAPTER 3. INTERVAL VALIDITY 30

Algorithm 3.6 The kth Smallest Value Algorithm, continued

Routine 2: Determining interval with the actual kth smallest value
Input: x∗ from Routine 1
Output: trusted interval T for every node and a guess for the kth value sk

every node v executes the following commands :
10: Broadcast x∗
11: Receive new input values from all other nodes and store them in the

sorted array R
12: Broadcast(R[f + 1], R[n− t])
13: Receive bounds (R[f + 1], R[n− t]) from all other nodes
14: for every new input value x∗ that is in at least n − t intervals[

R[f + 1], R[n− t]
]
do

15: add x∗ to the sorted array T and call it the trusted array
16: end for
17: Guess for the kth value sk := median(T)
18: return trusted array T , guess for the kth value sk

Routine 3: Phase King algorithm for the kth smallest value
Input: guess for the kth value sk, trusted array T
Output: consensusValue
19: for phase i = 1 to t+ 1 do

Communication Round:
20: Broadcast(guess for the kth value sk)
21: receive guesses x from all other nodes
22: if some value x is received ≥ n− t times then
23: Broadcast(“propose x”)
24: end if
25: if some “propose x” received > t times then
26: guess for the kth value sk := x
27: end if

King Round (only the King node executes this round):
28: kingValue = guess for the kth value sk
29: Broadcast(“suggest kingValue”)

Decision Round:
30: if sk == kingValue or kingValue ∈

[
T [min], T [max]

]
then

31: Broadcast(“support kingValue”)
32: end if
33: if “propose x” received < n − t times and “support kingValue”

received > t times then
34: sk = kingValue
35: end if
36: end for

CHAPTER 3. INTERVAL VALIDITY 31

3.3.1 Correctness of the Algorithm
In this section, we will prove the correctness of Algorithm 3.6 and show that
the algorithm performs optimally in the proposed model.

Theorem 3.7 (Correctness and Validity). Algorithm 3.6 achieves Byzan-
tine agreement in the presence of t < n/3 Byzantine nodes with a valid
consensus value according to Definition 3.1.

Theorem 3.8 (Termination and Optimality). Algorithm 3.6 terminates
in O(t + 1) rounds with message complexity O((t + 1)n2) and achieves an
optimal approximation to the kth smallest value.

3.3.2 Proof of Theorem 3.7
We start by considering Routine 1 and 2 of the algorithm. These are pre-
processing steps that force all correct nodes to choose their new input values
such that they satisfy the desired validity conditions of the algorithm. Recall
that the values in all arrays and subarrays are sorted.

Lemma 3.9. After the first routine of the algorithm, every node has chosen
a new input value that is inside the interval[

S
[
k − df/2e

]
, S
[
k + bf/2c

]]
⊆
[
S
[
k − dt/2e

]
, S
[
k + bt/2c

]]
.

Proof. Every node selects its input value as the median of its local subarray
R[k, k + f]. It is sufficient to show that S[k] is inside any such interval.
This is because the algorithm chooses the median of this interval as a guess
for S[k]. Therefore, it ensures any value from the interval to be at most
df/2e ≤ dt/2e positions away from S[k].

To prove that S[k] is inside the interval we assume that the Byzantine
nodes choose values smaller than S[k]. Values larger than S[k] do not influ-
ence the position of the kth value. Every value smaller than S[k] shifts the
kth value by one position and f Byzantine nodes can shift the kth value by
at most f positions. This way, S[k] will always be inside the chosen interval[
S[k], S[k + f]

]
⊆
[
S[k], S[k + t]

]
. By the observation above the chosen

median of the interval will be at most df/2e positions away from S[k].

This lemma shows that the new input values x∗ which are generated by
Routine 1 are valid values according to Definition 3.1 for k ∈

[
dt/2e+ 1, n−

b3t/2c
]
. Other values of k will be considered separately in Section 3.3.3.

Lemma 3.10. In Routine 2, the nodes decide on a trusted interval T which
is a subinterval of[
S
[
k − dt/2e

]
, S
[
k + bt/2c

]]
.

CHAPTER 3. INTERVAL VALIDITY 32

Proof. Every correct node cuts off the t rightmost and leftmost values of R.
The received values from correct nodes are valid values according to Lemma
3.9. There are at most t Byzantine nodes, and therefore also at most t
values that are either too large or too small. Step 12 of Routine 2 would
remove such values. A value is added to T if it is contained in at least n− t
intervals, at least n− 2t of which came from correct nodes. Thus, all values
in T are valid according to Definition 3.1.

Lemma 3.11. The interval T is non-empty for each correct node.

Proof. We know that all correct nodes will receive the same n − t correct
values. Some of the nodes might remove at most t largest and smallest
entries after sorting the values. Therefore, at least n− 3t > 0 central values
are left inside the interval T for each correct node. Moreover, this implies
that the median of all correct values x∗ from Routine 2 will be inside every
correct interval T .

The analysis of Routine 3 is similar to the analysis of the Jack algorithm
proposed in [114]. We emphasize the important points of the analysis in the
following part.

Lemma 3.12. If the King adapts the proposed value from Step 23, it will
be accepted by all nodes.

Proof. Only one value x can be proposed simultaneously in Routine 3 by
correct nodes. Assume there is another value y that is proposed by some
correct node. From any n− t messages that a node received in Step 20, at
least n−t−f ≥ n−2t values were broadcast by correct nodes. If two correct
nodes propose two different values x and y in Step 23, there must have been
2(n − 2t) = 2n − 4t > n − t correct nodes which broadcast either of the
values in Step 20. This is a contradiction since each correct node broadcasts
only one value. If the King adapts the proposed solution, it has received the
proposals from more than t nodes, i.e., at least one correct node. Each such
correct node saw other guesses for the kth smallest value x at least n − t
times. This means that at least n−2t > t correct nodes broadcast the value
and will support the kingValue in Step 31 of Routine 3.

Note that the trimming procedure in Routine 2 may also cut off correct
input values. Nevertheless, the chosen median guess is not cut off in suffi-
ciently many correct intervals. We will show that the median of the trusted
array T is inside the trusted interval of at least (t+ 1) correct nodes.

Lemma 3.13. If the correct King proposes its own value, all correct nodes
will agree on this value.

CHAPTER 3. INTERVAL VALIDITY 33

Proof. In Routine 2, any correct node decides on a value that is the median
of the array of values that it has seen in at least n − t bounds. f of the
received bounds could have been malicious, while n−t−f > t of the bounds
came from correct nodes. This way, also the value of the King was inside
at least t + 1 correct bounds. The corresponding nodes will support the
kingValue in step 31 of Routine 3.

In the next part, we will show that the decision value is valid according
to Definition 3.1 and also satisfies the standard validity conditions from
Section 2.

Lemma 3.14 (Interval Validity). The decision value of all nodes is a valid
value in the sense of Definition 3.1.

Proof. By Lemma 3.13, the correct kingValue will be accepted by all nodes.
The nodes might however have established agreement in one of the previous
rounds. We need to show that any value that was accepted by all nodes is
a value that was inside at least one trusted interval of a correct node. Any
value that was adapted in Step 34 of Routine 3 has been supported by more
than t nodes in Step 31, i.e., by at least one correct node and thus was inside
its trusted interval. Since any value in the trusted interval of correct nodes
is correct, the accepted value must have been correct as well.

Lemma 3.15 (Any-Input Validity). The algorithm satisfies Any-Input va-
lidity.

Proof. To show that Any-Input validity holds, we need to consider the first
routine of the algorithm. There, the correct nodes choose their new input
value. This new input value is a median of values that a node received from
all other nodes, i.e., a valid value according to the definition of Any-Input
validity. In the next two rounds, the nodes establish agreement on the new
input values, where they choose a value that is inside an array of some of
the nodes. This value must therefore have been suggested by at least one,
possibly Byzantine, node, which proves the statement.

Lemma 3.16 (All-Same Validity). Algorithm 3.6 satisfies All-Same valid-
ity.

Proof. For All-Same validity assume that all correct nodes have the same
input value x. In the first routine, the Byzantine values will be either equal
to x, or they will be not considered in Step 3. Therefore, the new input
values x∗ in Routine 2 must be equal to the value x, i.e., x∗ = x. If a
Byzantine node chooses a value unequal to x∗ in Routine 2, it will land on
the right or the left side of the sorted array, and will thus be outside any

CHAPTER 3. INTERVAL VALIDITY 34

interval bounds (R[f + 1], R[n− t]) making the nodes set sk = x∗ = x. All
correct nodes will propose x in the third routine, which will immediately
lead to agreement.

3.3.3 Proof of Theorem 3.8
In this section, we prove that the algorithm terminates after a finite number
of rounds with an optimal approximation for the kth smallest value.

Lemma 3.17 (Termination). For t < n/3, Algorithm 3.6 requires O(t+ 1)
rounds of communication and terminates with a valid value.

Proof. The algorithm terminates after sufficiently many nodes have accepted
the King’s value. Since there are (t+ 1) predetermined Kings at the begin-
ning of the algorithm, there will be one King that is not Byzantine in at
least one of the phases of the algorithm. By Lemma 3.13, all correct nodes
will accept the King’s value because it is inside the interval of every correct
node. This way, all correct nodes will decide on a valid value after at most
(t+ 1) phases. In the case when a Byzantine node proposes a valid value to
sufficiently many correct nodes, the algorithm might establish agreement in
one of the earlier phases.

The next lemma shows that Algorithm 3.6 achieves the best possible
approximation for the kth smallest value.

Lemma 3.18 (Optimality). Algorithm 3.6 finds the best possible approxi-
mation for the kth smallest value.

Proof. For k ∈
[
dt/2e+ 1, n−b3t/2c

]
, each correct node chooses in Routine

1 of Algorithm 3.6 the best possible approximation to the kth smallest value
according to the proof of Theorem 3.4. In the next steps, the decision value
is chosen as a value inside the bounds of all correct node values. Therefore,
the decision value is between the smallest and the largest approximation of
the kth value, and gives a value that is at most dt/2e positions away from
S[k].

In the case where k is outside of the interval
[
dt/2e + 1, n − b3t/2c

]
,

Algorithm 3.6 performs differently. For k ≤ dt/2e, each node in the algo-
rithm needs to choose its guess sk as the (f + 1)-st value of each node. For
k ∈ [n−t−f+1, n−t], each node chooses the (n−t)-th value. According to
Theorem 3.5, the local values of the nodes are chosen optimally. With these
values, the algorithm will achieve the best possible approximation.

Thus, Algorithm 3.6 also finds the best approximation for the kth small-
est values outside the interval

[
dt/2e+ 1, n− b3t/2c

]
.

CHAPTER 3. INTERVAL VALIDITY 35

Lemma 3.19 (Message Complexity). The message complexity of Algorithm
3.6 is O

(
(t+ 1) · n2).

Proof. In the first two routines of the algorithm, the nodes exchange a con-
stant amount of values with each other node which gives an upper bound
of O(n2) messages for the first part. In Routine 3, all nodes exchange their
messages with all other nodes in each of the t + 1 phases. This gives a
message complexity of O

(
(t+ 1) · n2) for the last rounds and also the total

message complexity.

It should be noted that the problem of finding the kth smallest value can
also be solved using Interactive Consistency (IC) [52,100]. In this problem,
all nodes have to agree on the same vector of n values among which n − t
have to be equal to the input values of each of the correct nodes. Each node
can then choose the kth smallest value in this vector as its decision value and
thus find an optimal approximation to the kth smallest value. IC protocols
either need to rely on witness techniques, e.g., the Reliable Broadcast [29,
112], or require parallel execution of the Byzantine Agreement Protocols for
each of the input values in order to guarantee that Byzantine nodes cannot
send around different values to different nodes. The witnessing technique
requires exponential message complexity [52]. The parallel execution of an
Agreement Protocol increases the message complexity of a given algorithm
by a factor of n, for the King algorithm this leads to message complexity in
the order of O(n4). In contrast to this method, our algorithm shows that
it is possible to agree on a value with special requirements, such as the kth

smallest value, without increasing the time or message complexity of the
standard multivalued Byzantine agreement protocols.

This concludes the analysis of Algorithm 3.6 and shows that the algo-
rithm performs best possible in the distributed setting. In the next part, we
will apply the idea of Algorithm 3.6 to find the median of all correct nodes
in the distributed setting.

3.4 From the kth Smallest Value to the Median

The median can be computed similarly to the kth smallest value. The main
difference is that the Byzantine nodes can shift the kth smallest value by
broadcasting values that are smaller than S[k]. In contrast, the median can
be shifted in any direction by broadcasting larger and smaller values than the
median itself. As will be shown in the next theorem, each node therefore has
to search for the median inside a symmetric interval R

[
k−df/2e, k+bf/2c

]
.

As a validity condition we require the consensus value to be inside the

CHAPTER 3. INTERVAL VALIDITY 36

interval
[
S
[
m− dt/2e

]
, S
[
m+bt/2c

]]
, wherem is the position of the median

of S according to Definition 3.2. This validity condition was first proposed
in [114]. Only the first routine of Algorithm 3.6 needs to be adjusted as
presented in Algorithm 3.20.

Algorithm 3.20 Distributed Median Algorithm

Routine 1: Choosing values close to the median
Input: input value x of node v
Output: new input value x∗ in the vicinity of the kth smallest value

every node v executes the following commands :
1: Broadcast x
2: Receive input values from every other node, store all values in the sorted

array R
3: x∗ := median of R
4: if x∗ ≤ R[f] then
5: x∗ := R[f + 1]
6: else if x∗ > R[n− f] then
7: x∗ := R[n− f]
8: end if
9: return x∗

Theorem 3.21. In Algorithm 3.20 the nodes agree on a value that lies
within the interval

[
S
[
m−dt/2e

]
, S
[
m+ bt/2c

]]
, where m is the median of

S.

Proof. As before, we only need to show that every correct node will decide
on a median that is within the interval

[
S
[
m − df/2e

]
, S
[
m+ bf/2c

]]
of

all correct nodes after the first phase of the algorithm. The Byzantine nodes
can shift the median in both directions. Note that placing one value at a
position before the median and another one after does not shift the median
in the array. The worst case is when all f Byzantine values lie on one side
of the actual median. In this case, the median is shifted df/2e ≤ dt/2e
positions away from its actual position. It is guaranteed that the guess of
the kth smallest value sk is not further away than df/2e positions from the
actual median since every node picks the median of R as its new input value.
Thus, all correct nodes will choose their new input value inside the interval[
S
[
m− dt/2e

]
, S
[
m+ bt/2c

]]
.

CHAPTER 3. INTERVAL VALIDITY 37

With Routine 2 and 3 as in Algorithm 3.6, the presented Distributed
Median Algorithm computes an approximation for the median which is op-
timal.

3.5 Vector Consensus

3.5.1 Motivation
Vector consensus is a generalization of the one-dimensional consensus where
the nodes have more than one input value and the values of single com-
ponents are comparable. The idea is to determine a representative vector
that is close to the vectors of all correct nodes. There are a number of
applications that require vector consensus. One example is the distributed
facility location problem, where nodes need to minimize their distance to a
median location. Another example are voting protocols, where the voters
need to determine a representative median voter. Using the definition of the
geometric median in multiple dimensions does however seem difficult since
there is no explicit formula to compute a median and only iterative solutions
provide an approximation.

In this section, we use the Distributed Median Algorithm to general-
ize consensus to multiple dimensions. Similar approaches can be found
in [87,88,120]. In these papers, the authors generalize the idea of removing
the t leftmost and rightmost values of the sorted array to several dimen-
sions. They therefore compute the convex hull of every n − t nodes, show
that the intersection of all such convex hulls is non-empty and determine a
central point inside the intersection. The number of possible convex hulls
does however become exponential for large t and computing a central point
inside the intersection is therefore costly [120]. The papers instead propose
approximate algorithms that can also be applied to asynchronous consensus.
In this section, we want to derive an exact version of the vector agreement,
while restricting our computation to a linear number of rounds in t. We
relax the condition of the consensus value from being inside the convex hull
to a value that is inside the range of all correct values in each component.
In addition, we have to drop the Any-Value validity condition from Chapter
2, while the All-Same validity condition still holds.

3.5.2 Generalization to d Dimensions
First, we introduce a new validity condition for the general case:

Definition 3.22 (Box Validity). Let v1, . . . , vn−t ∈ Rd be the input values
of all correct nodes. A vector w ∈ Rd satisfies box validity, if for each

CHAPTER 3. INTERVAL VALIDITY 38

component i ∈ [d] holds

min(v1
i , . . . , v

n−t
i) ≤ wi ≤ max(v1

i , . . . , v
n−t
i)

We generalize the one-dimensional case by applying Algorithm 3.20 to
compute the median of each coordinate separately.

Algorithm 3.23 Vector Consensus

Input: n input vectors v1, . . . , vn ∈ Rd
Output: consensusValue m ∈ Rd

1: for i = 1 to d do
2: use Algorithm 3.20 to compute the medianmi of the values v1

i , . . . , v
n
i

3: end for
4: return (m1, . . . ,md)

Lemma 3.24. The algorithm terminates in the presence of t < n/3 Byzan-
tine nodes with a value that is valid according to Definition 3.22.

Proof. The algorithm can tolerate up to (n−1)/3 Byzantine values since ev-
ery component is considered separately. In every component, the t leftmost
and rightmost values are cut off, and the median is computed according to
Algorithm 3.20. Assume some Byzantine value was outside of the interval
in some other dimension of the vector. It is not possible for the algorithm
to determine whether the node that is an outlier in some component is ac-
tually Byzantine. Therefore, we do not need to remove this component of
the vector from the set of all nodes. This way we can compute the medians
in each component without restricting the number of Byzantine nodes. Ob-
serve that the computed median is at most dt/2e positions away from the
correct median in each component and is in the range of all correct values
in this component. Thus, the value is guaranteed to satisfy box validity.

Lemma 3.25. Algorithm 3.23 satisfies All-Same validity.

Proof. Assume all correct nodes decided for the same vector. Then, the
correct nodes will propose the same value to agree on in each iteration of
Algorithm 3.23. By Lemma 3.16 the nodes will agree on the same values in
each component, and therefore on the same vector in the end.

With this algorithm, it is possible to make the nodes agree on a vector
that is not too far away from all vectors that were proposed by the correct
nodes. The number of Byzantine nodes does not change with the dimension
of the input vectors, and the number of rounds is bounded by the number
of Byzantine nodes.

CHAPTER 3. INTERVAL VALIDITY 39

3.6 Discussion

In this chapter, we presented a variation of the multivalued agreement prob-
lem, where the nodes are required to agree on a particular value from the
interval of all correct nodes. We showed that no deterministic algorithm can
solve this problem in the presence of Byzantine nodes, but can only approx-
imate the value with an accuracy of dt/2e positions away from the actual
value. We proposed an algorithm for consensus on the kth smallest value
in the synchronous message passing model that matches this bound. Using
the same algorithm, we were able to improve the result of [114] and find the
best possible approximation of the median of all correct nodes. While the
algorithm performs optimally in the one-dimensional case, the idea seems
not to be applicable to find a representative value for multi-dimensional
consensus. In a vector space, the ordering of the input vectors is not well-
defined and it becomes computationally expensive to find a representative
vector in the presence of Byzantine nodes [87, 88, 120]. In the next chap-
ter, we will define a more accurate median rule for a special case of vectors
which correspond to rankings of alternatives. We will extend the results
from Algorithm 3.23 and show that it is indeed possible to find non-trivial
versions of multidimensional Byzantine agreement that can tolerate up to
n/3 Byzantine nodes.

4
Byzantine Preferential Voting

In distributed machine learning, different data is often collected and owned
by different parties, each of which will locally train its own machine learning
model. If a new data item needs to be judged, the parties could collaborate
in order to make a collective decision. As an example, a hospital may be
authorized to use its own collected patient data to train an image recognition
model, but not to share that data with other hospitals because of patient
privacy limitations. For some critical cases, the hospitals would still want
to collaborate and decide on the correct diagnosis together.

In order to obtain a robust collective decision, we need to take the follow-
ing two aspects into account. On the one hand, it is possible that some of
the involved parties experience hardware or software difficulties, or simply
play dirty. Our decision will be robust if we can withstand even Byzan-
tine parties, who are controlled by a single omnipotent adversary trying to
maliciously disturb the process. On the other hand, non-Byzantine parties
should use all available information to come up with the best possible deci-
sion. In standard multi-valued Byzantine agreement algorithms, each party
will provide only one input, however, machine learning algorithms usually
provide information about the second-best and third-best guess. For exam-
ple, when doing image recognition in medicine, the result can be a ranking of
possible diagnoses: glioblastoma � metastasis � . . . � inflammatory. Such

40

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 41

rankings convey much more information than just the top-ranked alterna-
tive (glioblastoma). While the different honest parties might completely
disagree on the top alternative, the second alternative might serve as a
tiebreaker, and we can therefore hope to receive more meaningful results
from the voting process by considering rankings.

4.1 Background and Motivation

In search of a fair rule to elect candidates, philosophers and mathemati-
cians started developing various voting mechanisms and rules already at the
beginning of the 18th century. In the middle of the 20th century, Kenneth
Arrow [8,9] was one of the first to formalize existing rules and analyze possi-
bility and impossibility results in an axiomatic fashion, thereby introducing
the field of Computational Social Choice. In this section, we use this for-
malism in order to show how well Byzantine agreement connects to voting
theory.

We start by considering the special case of n voters voting on only two
candidates c1 and c2. In this setting, each voter (node) ranks the two
candidates such that its preferred candidate (input value) is ranked first. A
vote for a candidate c1 means that the voter strictly prefers c1 to c2, here
denoted c1 � c2. A central authority then applies a social choice function
(SCF) to a given preference profile in order to determine the winner (decision
value), or set of winners in case of a tie. An SCF f can be qualified based
on the following properties:

• f is anonymous if interchanging two voters (swapping their names)
does not change the result

• f is neutral if renaming the candidates (changing their names) does
not change the result

• f is positively responsive if in a case where the decision is a tie (c1 is
among the winners) and a voter changes its ranking from c2 � c1 to
c1 � c2, candidate c1 becomes the unique winner

One example of an SCF is the majority rule. It chooses the candidate that
wins most pairwise comparisons against every other candidate. Note that
such a winner always exists in elections with two candidates, but not nec-
essarily in the general case with an arbitrary number of candidates. Social
choice theory shows that the majority rule satisfies all desirable properties
for the special case of voting on two candidates:

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 42

Theorem 4.1 (May’s Theorem [80]). For two candidates and any num-
ber of voters, the majority rule is the unique SCF that satisfies anonymity,
neutrality, and positive responsiveness.

Interestingly, most known algorithms for binary Byzantine agreement
indirectly exploit the properties of May’s theorem. Some of them make use
of leaders who suggest their decision value to all nodes, e.g., the King and the
Queen algorithms [24,25]. The leader in these algorithms temporarily plays
what is known as a dictator in voting theory. Another type of algorithm,
e.g., the shared coin algorithm in [14, p. 314], is biased towards one of the
outcomes and thus violates neutrality. In general, we can say that most
of the proposed algorithms try to use the majority value as the decision
value if a majority exists, or an arbitrary input value otherwise, see for
example [23,29]. Such settings may satisfy anonymity and neutrality, but in
cases where the correct nodes are undecided, i.e., there is a tie between the
two input values, Byzantine nodes have a large influence on the majority
value. Thus, if a correct node decides to swap two candidates in its ranking
in order to make one of the candidates win, a Byzantine node can perform
an opposite swap in its own ranking and return the profile to the previous
state. This shows that positive responsiveness cannot be satisfied for these
algorithms in the presence of Byzantine nodes.

May’s theorem does not apply to the general case with more than two
candidates. In fact, the majority rule gives surprisingly bad results for
three or more candidates. To illustrate this, let m denote the number of
candidates. Assume that n/2+1 voters rank the candidates as c1 � c2 . . . �
cm, and that all other voters rank the candidates as c2 � c3 � . . . � c1.
In this case, candidate c1 wins every pairwise comparison according to the
majority rule, even though c2 seems to be the candidate that is approved
by more voters.

Moreover, a lot of information is lost when a single winner is sought.
When it comes to preferential voting, social choice theory therefore often
wants not only the input to be rankings but also the output. More formally:
Definition 4.2 (Social Welfare Function). A Social Welfare Function (SWF)
is a map from a preference profile to a set of consensus rankings.
For an SWF g, the following three properties are usually considered:

• g is dictatorial if there is one distinguished voter whose input ranking
is chosen as the single consensus ranking

• g is independent of irrelevant alternatives (IIA) if the consensus rank-
ing of two candidates ci and cj only depends on the relative preference
of these candidates in each voter’s ranking, and not on the ranking of
some third candidate ck

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 43

• g is weakly Paretian if it satisfies the weak Pareto condition [97]: for
two candidates ci and cj which are ranked ci � cj by all voters, con-
sensus ranking has to rank ci � cj as well

In contrast to IIA and weak Pareto, dictatorship is a highly undesirable
property in voting theory. Unfortunately, a corresponding result to May’s
theorem for SWF’s on three or more candidates is the famous impossibility
result by Arrow:

Theorem 4.3 (Arrow’s Impossibility Theorem [8]). If there are at least
three candidates which the members of the society are free to order in any
way, then every SWF that is weakly Paretian and IIA must be dictatorial.

From the viewpoint of Byzantine agreement, an SWF should not be
dictatorial since one does not want a dictator to be a Byzantine node. Con-
sequently, any reasonable Byzantine agreement protocol must either violate
IIA or weak Pareto. We say that IIA or weak Pareto are satisfied in the
Byzantine setting if they are satisfied with respect to the input rankings of
the correct nodes only. Under this assumption, the IIA condition implies
that the consensus ranking should remain the same if the input of every
correct node does not change, no matter what the Byzantine nodes do.
However, a Byzantine node can pretend to be a correct node but change its
ranking in two executions in which the correct nodes have the same inputs.
This change may lead to a different consensus ranking and thus violate IIA.
For the weak Pareto condition consider the case with two candidates: if
every non-Byzantine voter ranks c1 � c2, the consensus ranking should also
rank c1 � c2. This corresponds to a well-known validity condition in Byzan-
tine agreement – the All-Same validity: If all correct nodes have the same
input value, all correct nodes have to decide on this value. We use the weak
Pareto condition to impose a validity rule on Byzantine Agreement with
rankings:

Pareto Validity for any pair of candidates ci and cj : if all correct nodes
rank ci � cj , then the consensus ranking should rank ci � cj as well.

Given m candidates, Pareto validity can be viewed as All-Same validity
applied on each of the

(
m
2

)
pairs of candidates in a ranking. Note that

Byzantine agreement on a ranking is at least as hard as binary Byzantine
agreement: Consider a case where the nodes agree on the ranking of the
candidates c3, . . . cm which they rank last, but not on the two first candidates
c1 and c2. The Pareto condition is then satisfied for every binary relation
which contains at least one of the candidates c3, . . . cm. Agreement in this
case is then reduced to binary Byzantine agreement on the two candidates
c1 and c2, under the All-Same validity condition.

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 44

Unfortunately, there is no straightforward way to apply a binary Byzan-
tine agreement protocol to solve Byzantine agreement on rankings. Other
than binary relations on two candidates, preference profiles can form cy-
cles, they can for example contain all three relations ci � cj , cj � ck, and
ck � ci which are each preferred by a majority of nodes. The smallest
preference profile which produces such a cycle of binary relations is called a
Condorcet cycle. It contains three rankings ci � cj � ck, cj � ck � ci and
ck � ci � cj which induce the three relations from above. Simply agreeing
on each pair of candidates can thus lead to a circular decision which does
not form a ranking. In order to get rid of cycles, one could think of ap-
plying the quicksort algorithm on the candidates sorted with respect to the
majority. This procedure will however violate Pareto validity: Consider a
candidate ci that Pareto dominates candidate cj . Assume that the quick-
sort algorithm compares both candidates to some third candidate ck first.
Then cj might win against ck and ci might lose, thus swapping ci and cj
in the consensus ranking. This consideration makes the problem of finding
a consensus ranking in the presence of Byzantine nodes rather an instance
of multi-valued agreement, as we discuss in Section 4.2, which makes the
problem both interesting and challenging.

4.2 A Deterministic Algorithm for Pareto Validity

This section focuses on Byzantine agreement protocols for rankings that
satisfy Pareto validity. By using a similar idea to single transferable vot-
ing [116] and a multi-valued Byzantine agreement algorithm, a ranking sat-
isfying Pareto validity can be obtained in (m − 1) · (t + 1) rounds: In the
first t+1 rounds, we let the voters apply the King algorithm [25] in order to
agree on the top candidate. After this, every node removes this candidate
from its ranking. In the next step, they will agree on the top candidate
from the reduced rankings, and so on. While this procedure is simple, the
number of rounds depends not only on the number of nodes but also on the
number of candidates.

In the following, we present a deterministic algorithm that solves this
problem in only t + 1 phases using the same number of messages. We
do this by modifying the King algorithm to broadcast rankings instead of
single candidates. For convenience, we assume that a broadcast operation
also includes sending a message to oneself. In the proposed algorithm, we
select t+1 different nodes and assign each of them to one of the t+1 phases
of the algorithm. Such a node is called the dictator of the corresponding
phase. This dictator then suggests its own, possibly adjusted, ranking to
all nodes, which will always be accepted if the dictator is a correct node.

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 45

This way, dictators decide on the ranking of all pairs of candidates which
do not satisfy the Pareto validity. Algorithm 4.4 presents this procedure in
pseudocode.

Algorithm 4.4 Byzantine agreement protocol on rankings (for t < n/3)
Every node v executes the following algorithm

1: for phase 1 to t+ 1 do
Communication Round:

2: Broadcast own input ranking rv
3: for all pairs of candidates ci and cj do
4: if ci is ranked above cj in at least n− t rankings then
5: Broadcast “propose ci � cj”
6: end if
7: end for
8: if some “propose ck � cl” received at least t+ 1 times then
9: Adjust own ranking rv according to Lemma 4.6

10: end if
11: if some “propose ck � cl” received at least n− t times then
12: Fix the pair ck � cl
13: end if

Dictator Round:
14: Let node w be the predefined dictator of the current phase
15: The dictator broadcasts its ranking rdictator := rw

Decision Round:
16: if rdictator agrees with rv in all fixed pairs ci � cj from Step 12

then
17: rv := rdictator
18: end if
19: end for
20: Return rv

Since we are dealing with rankings, it is not trivial to see that the nodes
always will be able to agree on a proper ranking at the end of the algorithm.
The following lemmas state that the nodes can adjust their rankings in
Step 9 of Algorithm 4.4 in order to guarantee Pareto validity and that
the outcome of the algorithm thus will be a proper ranking. For t < n/4
Byzantine nodes one can see that the algorithm is correct since the correct
nodes will not be able to propose binary relations which form a Condorcet
cycle in this case. In order to show that the algorithm can tolerate t <
n/3 Byzantine nodes a well, we need to exploit the fact that no Byzantine

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 46

node can propose relations that form a Condorcet cycle at any point of the
algorithm.

Lemma 4.5. There is no Condorcet cycle that can be proposed by the correct
nodes if t < n/3.

Proof. Assume by means of contradiction that the three relations ci � cj ,
cj � ck and ck � ci were each proposed by at least t+ 1 nodes in Step 4 of
Algorithm 4.4. Each binary relation was proposed by at least one correct
node who must have seen n− t nodes having a ranking with such a pair.

Let t1 be the number of all Byzantine nodes who proposed ci � cj , t2 the
number of those who proposed cj � ck and t3 those nodes who proposed
ck � ci. Further, let t1∩2 denote the number of Byzantine nodes who
proposed ci � cj � ck. The following inequality then holds: t1+t2−t1∩2 ≤ t.

The number of correct nodes who proposed ci � cj � ck is then (n− t−
t1) + (n − t − t2) + t1∩2 − (n − t) = n − t − t1 − t2 + t1∩2. The number of
correct nodes who proposed ck � ci is n− t− t3 ≥ n− 2t. However, the two
sets must have a nonempty intersection, since

n− t− t1− t2 + t1∩2 +n− 2t− (n− t) = n− 2t− t1− t2 + t1∩2 ≥ n− 3t > 1.

Therefore, there must be at least one correct node who proposed ci � cj � ck
and ck � ci simultaneously. This is a contradiction.

Note that by the properties of the King algorithm, no two opposite binary
relations can be proposed in Step 4 simultaneously. Lemma 4.5 additionally
shows that a Condorcet cycle cannot be proposed in Step 4 and that all
proposed pairs can form a ranking. It remains to be proven that the nodes
will always be able to adjust their rankings to incorporate the proposed
pairs.

Lemma 4.6. In Step 9 a correct node will always be able to incorporate the
proposed pairs into its own ranking.

Proof. This is constructed based on the following strategy: Divide the can-
didates into two sets. The first set contains all candidates which appear in
at least one of the pairs proposed by the t + 1 nodes in Step 9. This set
of nodes will be ranked first. The second set will contain all candidates for
which the node has not received any propose message. These candidates
will be ranked second and will be dominated by all candidates from the
first set. Next, we can rank all candidates in the first set according to the
proposed relations, possibly leaving some pairs of candidates not ranked. In
the last step, all candidates which have not been ranked in each of the sets
can be ranked by choosing binary relations from the local ranking of the

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 47

node. This strategy outputs a ranking of candidates in which all proposed
binary relations are satisfied.

The next lemma summarizes the correctness results of Algorithm 4.4 and
states that the consensus ranking will be valid.

Lemma 4.7. At the end of Algorithm 4.4 all nodes will have agreed on the
same ranking which additionally satisfies Pareto validity.

4.3 Kemeny Median with Byzantine Nodes

Weakly Paretian voting rules are often not sufficient to pick a fair ranking
from a set of individual preference rankings. In search of the best possible
consensus ranking, we have to add restrictions on the voting rules without
violating the known impossibility results of Arrow [8]. This leads us to
majoritarian SWFs, one of which is the Kemeny rule. In the following, we
will introduce this rule and use it to derive a better consensus ranking in the
presence of Byzantine nodes. Since Byzantine nodes have an influence on
the final ranking, the corresponding solutions can be qualified with respect
to their approximation ratio which we define in Section 4.3.1. In Section
4.3.2, we will derive lower bounds on the approximation ratio of the Kemeny
median in the presence of Byzantine nodes and further provide a matching
upper bound in Section 4.3.3.

Definition 4.8 (Kendall’s τ distance [64]). The Kendall’s τ distance mea-
sures the distance between two rankings r and p on candidates c1, . . . , cm by
counting all pairs of candidates on which they disagree:

τ(r, p) , |{(ci, cj) | ci �r cj and cj �p ci}|.

This metric τ on ballots can be extended to a distance function between a
ranking r and a profile P:

τ(r,P) ,
∑
p∈P

τ(r, p).

Definition 4.9 (Kemeny median). For a given profile P, the Kemeny me-
dian is the ranking r which minimizes τ(r,P).

The Kemeny median satisfies many nice properties and to some extent
guarantees that the chosen ranking is “fair”. The most prominent quality is
probably monotonicity: if voters increase a candidate’s preference level, the
ranking result either does not change or the promoted choice increases in
overall popularity. This quality makes the median solution more robust to

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 48

Byzantine behavior. The Kemeny rule is also a Condorcet method, it only
depends on the number of voters who prefer one alternative over the other
and is reinforcing.

Kendall’s τ distance, which is used in the Kemeny rule, essentially cap-
tures the nature of multidimensionality in our consensus problem. Although
it is not straightforward to properly define dimensions for metric spaces,
there exist some widely used definitions such as the equilateral dimension.
The equilateral dimension is described by the maximum number of points
which lie at equal distance from each other. Using the equilateral dimension
makes a lot of sense in many cases, it is for example not difficult to see that
the equilateral dimension of a d-dimensional Euclidean space is d+ 1. Here
we also use the equilateral dimension in order to argue that by using the
Kemeny rule we are actually solving a multi-dimensional consensus prob-
lem. For any m, we can construct rankings ri, i = 1, . . . , bm/2c at equal
distance as follows: ri ranks every candidate j as the j-th element in the
ranking and only swaps the candidates 2i−1 and 2i. Any pair of rankings in
this construction has the same distance 2 to each other and the equilateral
dimension of Kendall’s τ metric space is therefore at least bm/2c.

4.3.1 Byzantine Setting
The Kemeny median cannot be computed exactly in the presence of Byzan-
tine nodes since they might suggest rankings that have a large distance to
the Kemeny median of the correct nodes, thus moving the median ranking
away from the actual median. A notion for approximate median rankings is
therefore introduced as follows:

Definition 4.10 (α-approximation of Kemeny median). Let κ be a Kemeny
median of a preference profile P. An α-approximation of κ is a preference
ranking κα satisfying

τ(κα,P) ≤ α · τ(κ,P)

As an example consider binary agreement (m = 2): Here τ counts the
number of correct nodes who disagree with the consensus value. Any bi-
nary Byzantine agreement algorithm that satisfies All-Same validity will
also satisfy α < n− t− 1.

Unlike binary agreement, it is not straightforward to see what a Byzan-
tine node would choose as its ranking when the Kemeny rule determines
the consensus ranking. Since the input vectors of nodes are rankings, each
voter has to propose a strict order between candidates and the correspond-
ing preference relation is transitive. A possible strategy for the Byzantine
nodes could then be to choose exactly the opposite ranking of the Kemeny

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 49

median of all correct nodes. The following lemma shows that this strategy
is optimal.

Lemma 4.11. The opposite ranking of the Kemeny median always gives a
worst possible solution which a Byzantine nodes can choose.

Proof. Note that the sum of the weights of all edges in a tournament graph
produced by the rankings of correct nodes only is (n− t) ·

(
m
2

)
. The tourna-

ment graph formed by a ranking r and the tournament graph formed by the
opposite ranking r̄ are complementary graphs with respect to the tourna-
ment graph of all correct rankings. Consider the weights of all possible rank-
ings. Each ranking that minimizes the Kendall’s τ distance must have an
opposite ranking that maximizes the same distance, i.e., τ(r,P) + τ(r̄,P) =
(n− t) ·

(
m
2

)
. This shows that the opposite ranking of the Kemeny median

also is the ranking furthest away from it and can always be chosen as a
Byzantine value.

This strategy works for Byzantine nodes, but such a solution is not
unique for most preference profiles. To see this, assume that all correct
nodes agree on the preference ci � cj such that this pair will always belong
to the Kemeny median of the correct rankings. Then, the Byzantine nodes
can pick either ci � cj or cj � ci for their ranking since this strategy does
not have any influence on the Kemeny median of all rankings. It is therefore
difficult for the correct nodes to detect which of the rankings might have
been Byzantine.

4.3.2 Lower Bounds on the Approximation Ratio
In this section, we discuss preference profiles that are vulnerable to Byzan-
tine nodes. The first case is based on reducing the rankings to binary agree-
ment and gives the highest approximation ratio for t < n/3. Binary agree-
ment does however assume that there are two groups of voters who com-
pletely disagree in their preferences. This is somewhat unlikely in practical
situations when m is sufficiently large. In the second case, we therefore ex-
clude such binary instances and provide a lower bound based on Condorcet
cycles within a preference profile which converges to the same value for large
m. The approximation ratio usually depends on the ratio n/t, which will
be denoted k for the sake of simplicity.

For our analysis, we represent the preference profile P as a weighted
tournament graph, i.e., a graph where the nodes represent the candidates
and weighted edges represent how many voters prefer one candidate to the
other. The sum of the forward and the backward edges should be equal
to the total number of voters in the corresponding preference profile. The

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 50

ranking of a node is a directed Hamiltonian path following the order of the
ranking, and all other edges are derived from the transitivity. For any two
candidates, we denote the edge between these candidates a majority edge
if its backward edge has a smaller weight. The backward edge we then
call a minority edge. A Kemeny median of a weighted tournament graph
is the ranking that minimizes the sum of the weights of all backward edges
of the graph. Note that rankings restrict the power of Byzantine nodes in
the sense that Byzantine nodes only can send transitive tournament graphs
where every edge has weight 1.

Lower Bound for the Binary Case We first consider all possible pref-
erence profiles, in which the worst case is the binary case. This case cor-
responds to a class of tournament graphs where the Byzantine nodes can
redirect all edges by adding t rankings to the preference profiles of the cor-
rect nodes. Theorem 4.13 gives a lower bound for the binary case.

c1

c2

cm

n
/2

n
/
2
−
t

+

c1

c2

cm

t =

c1

c2

cm

n
/2

n
/
2

=

c1

c2

cm

n
/2
−
tn

/
2

+

c1

c2

cm

t

Figure 4.12: Two indistinguishable views on m candidates for binary re-
lations
Note that the labels of the edges correspond to all edges in the same color. The
left tournament graph is reached if n/2 nodes choose the order c1 � c2 � . . . � cm
and n/2 − t nodes choose cm � cm−1 � . . . � c1. The right profile can be
reached from a profile where n/2 nodes choose the order cm � cm−1 � . . . � c1
and n/2 − t nodes choose c1 � c2 � . . . � cm. The Byzantine nodes can make
all correct nodes see the tournament graph in the center by adding t preference
vectors cm � cm−1 � . . . � c1 or c1 � c2 � . . . � cm respectively.

Theorem 4.13. There exists a tournament graph corresponding to a pref-
erence profile for which the Byzantine nodes may change the edge weights
such that no deterministic algorithm can output a ranking which is better
than a k

k−2 -approximation of the Kemeny median of all correct nodes, where
k = n/t. For t close to n/3, this gives a 3-approximation.

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 51

Proof. This tournament graph is equivalent to binary agreement. Consider
therefore one pair of candidates: t Byzantine nodes are only able to change
the median, i.e., the majority edge, between these two candidates if they can
swap the majority and minority edge by supporting the minority edge with
their ranking. Assume the worst case, where the forward and the backward
edge both have the same weight n/2 after the Byzantine nodes have added
their preferences. In this worst case, the tournament graph of correct nodes
had the weight n/2 for the majority edge. Since the correct nodes will not be
able to determine the actual majority edge, they might agree on a minority
edge with weight n/2 − t instead. The corresponding approximation ratio
is then n/2

n/2−t = k
k−2 . This result can be easily generalized to m candidates

by using opposite rankings.
Figure 4.12 shows a simple generalization of this argument to m candi-

dates and proves that the lower bound of k
k−2 holds for all m.

Lower Bound Excluding the Binary Case In the following, we present
another lower bound using Condorcet cycles which can result in ambiguous
views as well. We start with one directed cycle formed by three nodes on
the tournament graph and assume that every majority edge has a weight
of more than (n + t)/2, thus discarding the possibility to reduce any pair
of forward and backward edges in the tournament graph to binary agree-
ment. The main difficulty in finding a good example comes from the fact
that not every tournament graph has an underlying preference profile. We
therefore present the necessary properties that preference profiles induce on
tournament graphs and show how the best lower bound can be derived.

Start by considering a cycle on the three candidates c1, c2, c3 with major-
ity edges (c1, c2), (c2, c3) and (c3, c1) and assume that this cycle is generated
from all rankings, i.e., both the correct and the Byzantine ones. Let the
weights on majority edges (c1, c2), (c2, c3) and (c3, c1) be x, y and z respec-
tively. The weights of the forward and the backward edges between any two
candidates sum up to the number of all rankings n, such that the weights
on corresponding minority edges are n − x, n − y and n − z respectively.
Since we exclude cases which reduce to binary agreement and due to the
definition of majority edges, we can assume x ≥ y ≥ z > (n + t)/2 or
x ≥ z ≥ y > (n + t)/2. Otherwise, adding t to the minority edge would
switch the majority and minority edge, e.g., for x ≤ (n+ t)/2 we would get
n− x+ t ≥ (n− t)/2 + t = (n+ t)/2 ≥ x.

In order to calculate the weights of the worst case, we need to consider
some additional properties of tournament graphs. One important property
is that all weights satisfy the triangle inequality, which states that for any

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 52

triplet i, j, k it holds that

wi,j + wj,k ≥ wi,k,

where wi,j denotes the weight on the directed edge (ci, cj). According to
the triangle inequality and the lower bound on x + y + z, the edges of the
cycle c1, c2, c3 satisfy

3/2 · (n+ t) ≤ x+ y + z ≤ 2n.

Note that Byzantine nodes can only change the tournament graph by
adding new edges which also satisfy the triangle inequality. The worst case
holds if all Byzantine nodes broadcast the same ranking. With six possible
rankings on three candidates, we can formulate the worst case as an opti-
mization problem: Let C be the tournament graph formed by all nodes and
C−b the tournament graph formed by the correct nodes only. The variable
b denotes the ranking added by the adversary, the variable c denotes the
ranking chosen by the correct nodes and m is the Kemeny median of C−b.
The strategy for the Byzantine nodes then reads as follows:

max
b

min
c

τ(c, C−b)
τ(m,C−b)

s.t. x+ y + z ≤ 2n (4.1)
(n+ t)/2 < z, y ≤ x

The optimal strategy for the correct nodes can be computed by consid-
ering all six strategies b of the Byzantine nodes. This gives the following
results:

• When y − z > t, the optimal strategy is to choose the ranking c1 �
c2 � c3, which corresponds to the Kemeny median of C−b for any b.

• When z − y > t, the optimal strategy is to choose the ranking c3 �
c1 � c2, which corresponds to the Kemeny median of C−b for any b.

The interesting case is when |y − z| ≤ t. By calculating all possible
subcases of this case, it can be verified that choosing c to be the median of
C always will give the best approximation for the median of C−b. For all
these subcases, the strategies c1 � c2 � c3 and c3 � c1 � c2 are the rankings
with the best approximation ratio of the Kemeny median. In the special
case y−z = 0, the underlying correct tournaments C−b can however become
indistinguishable from each other, thus making both solutions, c1 � c2 � c3
and c3 � c1 � c2, equally possible to be chosen by the correct nodes.

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 53

c1c2

c3

c4

cm

n− 2t− 2

n+t+2
2

n−t+2
2

n−t−2
2

n−3t−2
2

t+ 2

n− t

n− t

n− t

c1c2

c3

c4

cm

n− 2t− 2

n−t+2
2

n+t+2
2

n−3t−2
2

n−t−2
2

t+ 2

n− t

n− t

n− t

Figure 4.14: Indistinguishable views on m candidates for directed cycles
We have two views which show the profiles of correct nodes only. The left tour-
nament graph results from a profile where n−t

2 − 1 nodes choose c1 � c2 � cm �
. . . � c3, n−3t

2 − 1 nodes choose cm � . . . � c3 � c1 � c2 and t + 2 nodes
choose c2 � cm � . . . � c3 � c1. The right tournament graph results from
n−3t

2 − 1 nodes choosing c1 � c2 � cm � . . . � c3, n−t
2 − 1 nodes choosing

cm � . . . � c3 � c1 � c2 and t + 2 nodes choosing c2 � cm � . . . � c3 � c1. If
the Byzantine nodes add t profiles cm � . . . � c3 � c2 � c1 to the left view, and
t profiles c2 � c1 � cm � . . . � c3 to the right view, the resulting profiles become
indistinguishable to the correct nodes.

In order to compute the largest approximation ratio, the two optimal
strategies can be compared for the six Byzantine strategies. Hereby, the
tournament graph C−b can induce new triangle inequalities which restrict
the edge weights x, y and z. The largest approximation ratio that we can
reach this way holds for the choices b1 : c3 � c2 � c1 and b2 : c2 � c1 � c3.
The corresponding tournament graphs C−b1 and C−b2 add the inequality
n − 2t > x to Equation (4.1). We present the tournament graph for the
lower bound in Figure 4.14. The corresponding approximation ratio and
the generalization to m candidates are discussed in the next theorem.

Theorem 4.15. There exists a preference profile containing directed major-
ity cycles in the corresponding tournament graph, for which the Byzantine
nodes can add t rankings such that no deterministic algorithm can output a
ranking with a better approximation ratio to the actual median than k/(k−2),
for m large.

Proof. Considering a tournament graph formed by one directed cycle of can-
didates c1, c2, c3, i.e., a directed cycle formed by majority edges. Assume
all correct nodes receive a view where n−2t−2 nodes prefer c1 to c2, where

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 54

(c1, c2) is a majority edge. Then (n + t)/2 + 1 nodes prefer c2 to c3 and
(n + t)/2 + 1 nodes prefer c3 to c1. For n > 3t + 4, the edge (c1, c2) is in
the median ranking of all nodes. Since the edges (c2, c3) and (c3, c1) cannot
both be in the median ranking, the nodes have to decide for one of the
rankings. In the worst case, one of these two edges was supported by all t
Byzantine nodes while the other edge was not supported by any Byzantine
node. This leads to two views that are not distinguishable for the correct
nodes, as shown in Figure 4.14. The approximation ratio for these views is

n+ t+ 2
n− t+ 2 ≈

k + 1
k − 1 <

5
3

An extension to m candidates gives an approximation ratio of

m · n+ 2n+ t+ 2
m · (n− 2t) + 2n− 3t+ 2 ≈

k

k − 2

for large m.

The received approximation ratio converges to the same approximation ra-
tio as in the binary case for large m, even though we have excluded the
binary case from the tournaments. This lower bound underlines the fact
that Byzantine agreement on rankings is more complex than binary Byzan-
tine agreement.

4.3.3 Algorithm for Kemeny Median Approximation
In this section, we present a synchronous algorithm for computing a con-
sensus median which matches the lower bound on the approximation ratio
presented in the previous section. A simple idea is to use interactive consis-
tency [29, 112]: For t + 1 rounds, the nodes exchange all information they
have received this far and after the (t + 1)-st round they compute the Ke-
meny median from a set of rankings which they have received often enough.
This algorithm guarantees that the set of rankings will be the same for
each node and therefore that all nodes will decide on the same ranking.
The main drawback of interactive consistency is that it has a large message
complexity. The message complexity of this strategy is in Θ(mnt) which is
exponential for t ∈ Θ(n). Also other approaches, such as agreeing on each
ranking upfront require the nodes to reliably broadcast their rankings at
least once, which results in a message complexity of at least O(n3) (each
node has to forward every received ranking to all other nodes).

Instead of exchanging large amounts of information, we present an ap-
proach where we can directly exploit the fact that the Byzantine nodes
cannot change a Kemeny median of the preference profile of the correct

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 55

nodes by more than a transitive tournament graph with edge weights t.
This strategy is presented in Algorithm 4.16.

Algorithm 4.16 Byzantine agreement for the Kemeny median (for t < n/3)
Every node v executes the following algorithm

1: broadcast own ranking rv
2: compute the Kemeny median of the received preference profile, call it
mv

3: apply Algorithm 4.4 with mv as an input value

Algorithm 4.16 has the same order of round and message complexity as
Algorithm 4.4 as stated in the next theorem.

Theorem 4.17. Algorithm 4.16 terminates within t + 3 phases exchang-
ing O(tn2m logm) messages. The computed consensus ranking satisfies the
lower bounds from Section 4.3.2 and Pareto validity.

In the following two lemmas we will prove that the computed solution
in Step 3 of Algorithm 4.16 satisfies the bounds from Section 4.3.2.

Lemma 4.18. In Step 2 of Algorithm 4.16, every correct node chooses a
median ranking that matches the bounds from Section 4.3.2.

Proof. Instead of all nodes in the previous section, we can consider that
the Byzantine nodes change just one node’s view. Since the number of
Byzantine nodes remains the same and the rankings of all correct nodes
are received by every node in the synchronous communication model, the
Byzantine nodes can in the worst case only reach the lower bound for any
correct node, but not exceed it.

Lemma 4.19. The computed median ranking by Step 3 of the algorithm
satisfies the approximation ratios from Section 4.3.2.

Proof. Observe that the consensus ranking is derived from a preference pro-
file formed by the medians mv. Unless some correct node disagrees on an
edge in this profile, the edge will be inside the consensus median since Algo-
rithm 4.4 satisfies Pareto validity. This edge may not be inside the median
ranking of all correct nodes, but the approximation ratio still satisfies the
bounds due to Lemma 4.18.

If the correct nodes disagree on an edge in the preference profile of me-
dians, there was at least one correct node who either chose the opposite
edge (binary case) for its median ranking or a different edge in a directed
cycle (non-binary case). Consider the binary case first. There, the forward

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 56

and the backward edge chosen as the Kemeny median mv will both satisfy
the lower bound, since there is a correct node choosing either of the cases.
For the non-binary case, we need to consider directed cycles formed by the
median rankings. Every directed cycle in a tournament graph implies that
there is a directed sub-cycle formed by three candidates ci, cj , ck. The cor-
responding preference profile of correct median rankings must contain the
three opposite rankings ci � cj � ck, cj � ck � ci and ck � ci � cj . This,
however, implies that all three median rankings could have been derived
from the preference profile of the rankings rv by modifying edge weights by
t. The only case from which such a situation can result is when the forward
and backward edge weights of each of the three pairs of candidates differed
by at most t in the preference profile of rankings rv. This case, again, is
equivalent to the binary case and satisfies the lower bound.

Note that the computed median can have a larger Kendall’s τ distance to
the preference ranking of all correct nodes than any mv has in the algorithm
since the Byzantine nodes can propose their own rankings as dictators in
Algorithm 4.4. Such a ranking would still satisfy the lower bound. In the
following lemma we will show that the computed median also satisfies Pareto
validity.

Lemma 4.20. Algorithm 4.16 satisfies Pareto validity.

Proof. Assume, all nodes agree on a preference profile ci � cj . Then, there
is a directed edge between ci and cj of weight n−t. Such an edge always be-
longs to a Kemeny median, since there cannot be any directed cycle formed
by correct nodes only with weights n− 2t > (n− t)/2 on all three majority
edges due to the triangle inequality. This way, all correct nodes will have the
preference ci � cj in their median ranking mv. Since Algorithm 4.4 satisfies
Pareto validity, the consensus median ranking will also satisfy ci � cj .

It remains to show that Algorithm 4.16 terminates and has the same
order of message complexity as Algorithm 4.4.

Lemma 4.21. Algorithm 4.16 terminates within t + 3 rounds exchanging
O(tn2m logm) messages.

Proof. Note that Algorithm 4.4 terminates after t + 1 rounds. Algorithm
4.16 has two additional rounds in which the messages are exchanged. This
way, our algorithm terminates within t+3 rounds. The message complexity
of Algorithm 4.4 is O(tn2m logm), since in every round, each of the n nodes
sends a messages of size m logm to n other nodes. In the additional two

CHAPTER 4. BYZANTINE PREFERENTIAL VOTING 57

steps of Algorithm 4.16 2n2m logm messages are exchanged which gives the
same message complexity O(tn2m logm) for the second algorithm.

4.4 Discussion

In this chapter, we introduced a new Byzantine agreement problem which
extends binary Byzantine agreement to rankings. We showed that rules for
choosing a consensus ranking in voting theory fit well with requirements
from Byzantine agreement. We further considered a special voting rule, the
Kemeny median, for which we provided an optimal Byzantine agreement
protocol that can tolerate up to t < n/3 Byzantine nodes. It is not clear
whether the chosen median rule is the best voting rule for this setting, in
particular, since such a rule simply does not exist due to impossibility results
in voting theory. It therefore would be interesting to consider a larger pool
of voting rules in the future, such as approval voting or the Godgson’s rule,
and compare them with respect to their Byzantine resilience.

5
The Append Memory Model

Blockchain systems are world-scale systems that are designed to establish
a distributed database for transactions via a peer-to-peer communication.
Consequently, blockchain research is carried out in the message passing
model. In this chapter, we examine blockchain systems from a shared mem-
ory point of view. In the course of our studies, we found out that shared
memory simplifies reasoning for protocols and as such, is a valuable model
that can help us understand the fundamentals of blockchains.

In particular, we will introduce a new shared memory model called the
append memory model. It is a variant of the shared memory model, where
data can only be appended (but not modified) in the memory. On the one
hand, append memory is stronger than standard shared memory since all
written commands appear in the memory. On the other hand, it is also
weaker because two concurrent writes to the same register in the shared
memory result in only one value being written, whereas in the append mem-
ory model such ties cannot be broken. We will show that the append memory
model obeys some of the same fundamental impossibility results of asyn-
chronous consensus and that Byzantine agreement cannot be established in
less than t+ 1 rounds in the synchronous model.

For the discussion of blockchain protocols, we will assume probabilistic
access to the append memory. This model variant is a clean version of mes-

58

CHAPTER 5. THE APPEND MEMORY MODEL 59

sage passing proof-of-work blockchains; it allows us to neatly examine one of
the main open blockchain research questions: Are DAG-based blockchains
superior to tree-based blockchains? In order to understand their difference,
we compare Byzantine agreement on a classic tree-based blockchain and a
DAG-based blockchain. We show that the DAG achieves an almost optimal
resilience (close to t < n/2). An orthodox chain, on the other hand, toler-
ates less than t < n/(1 + λ(n− t)) Byzantine failures, where λ is the access
rate of a node to the memory.

5.1 Model

The considered model consists of n nodes (in the literature often also re-
ferred to as processors), v1, . . . , vn, that communicate via a shared memory
as defined in Section 2.1.3 and aim to establish a relative order on the mes-
sages written to the memory. The shared memory consists of n registers,
each associated with exactly one node in the system. Each of the registers Ri
is unbounded in space and formally supports two operations - Ri.read() and
Ri.append(msg). We will therefore name this shared memory the append
memory. The Ri.read() operation can be executed by any node in the sys-
tem and it returns a complete view of the register Ri. The Ri.append(msg)
operation can only be executed by the node vi and it appends the message
msg to the current state of the memory without removing any previous in-
formation from Ri. Since the idea of this memory is to establish a relative
order of the messages written to the memory, we assume that a message msg
from vi contains some value from this node and a reference to a previous
state of the memory that is defined by the underlying protocol. We further
assume that the appended messages, just like the registers, are unbounded
in space.

In the above definition of the append memory, the n registers can also
be viewed as one single register M to which all nodes append their values,
with the exception that the single register cannot establish any order on
the appended messages. These messages are instead weakly ordered using
references to previous states from the underlying protocol. We will there-
fore also define the M .read() operation, which is going to read the whole
memory. It corresponds to executing Ri.read() for all i. Analogously, the
M .append(msgi) operation appends a new message at any place inM , which
corresponds to executingRi.append(msg) in the previous definition. Observe
that the single registers Ri may establish a total ordering of all messages
corresponding to the node vi. This ordering can also be incorporated in the
single register view by forcing all nodes to refer to their previous appends
in the protocol.

CHAPTER 5. THE APPEND MEMORY MODEL 60

In this chapter, we will consider binary Byzantine agreement with syn-
chronous and asynchronous processors according to the definitions in Sec-
tion 2.1. We will further assume that the considered protocols have to satisfy
termination, agreement, and validity (i.e. All-Same validity) or alternatively
their weak versions. Note that these definitions do not put any restriction
on the access to the memory. In the synchronous and the asynchronous
shared memory definitions, the nodes decide locally and independently of
other nodes when the memory will be accessed next. In Section 5.5, we will
consider an alternative model inspired by the proof of work, where access
to the memory is restricted by a Poisson process. We will assume that all
nodes can read the memory at any time. An append operation, however,
will require a token that is given to the node by some authority who controls
the access:

Randomized Memory Access: The access probability to the append mem-
ory model for each node v inside the time interval ∆ is a Poisson
distributed random variable Xv with rate λ. All random variables
Xv, v ∈ {v1, . . . , vn} are independent and therefore the access rate
to the memory by all nodes is described by the random variable
Y :=

∑
v
Xv ∼ Pois(λn)

Note that the proposed append memory model deviates from the stan-
dard shared memory models in several ways: the append memory cannot
order the access threads from different nodes, as the ability to do so would
directly imply consensus. This assumption is inherited from the message
passing model, where two nodes that received the same two messages might
have received them in opposite order. Moreover, the nodes in the append
memory have the ability to read the whole memory content with one mem-
ory access. This assumption also comes from message passing systems where
the nodes receive messages (appends) from other nodes while participating
in the protocol and thus reconstruct the whole memory content. Also the
randomized memory access is unusual for shared memory models, where the
access is usually controlled by the memory itself. Since the append mem-
ory withdraws the power of ordering messages from the memory, an access
strategy on the protocol side is required in order to be able to establish a
weak ordering. of a node to the memory.

5.2 Impossibility of Asynchronous Deterministic Con-
sensus in the Append Memory

The append memory provides a common history of the appended commands
to all nodes participating in the consensus. In this section, we will show that

CHAPTER 5. THE APPEND MEMORY MODEL 61

it is impossible to reach consensus in the append memory if the processors
in the system are asynchronous and at least one of the processors may crash.
With respect to the append memory, the definition of asynchronous nodes
says that an arbitrary amount of time can pass between a read and an ap-
pend operation, meaning that a node might append to an obsolete state of
the memory. Dolev et al. also provide a definition for synchronous and asyn-
chronous communication, and show possibility and impossibility results for
different communication and processor settings. Their impossibility results
hold for the message passing model and rely on the fact that the buffers of
the nodes may receive messages in a different order. Such an assumption
cannot be made in the append memory since the append memory establishes
a common view of the system to all nodes and the states of the system are
defined by the point of time at which a node reads the memory.

We will follow the outline of the impossibility proof of Loui and Abu-
Amara [78] who showed that it is impossible to reach consensus in the shared
memory with read-write protocols. Among other results, the authors pro-
vide a proof of impossibility for t-resilient read-write protocols, where the
number of read and write operations in the system is unbounded. Our anal-
ysis will deviate from the one by Loui and Abu-Amara because our append
memory does not allow processors to overwrite the memory cells.

Theorem 5.1. There exists no t-resilient consensus protocol in the append
memory for all n > 2.

5.2.1 Definitions
A consensus protocol is a system that consists of n nodes V = {v1, . . . vn}.
Each node is equipped with an initial bit which is the nodes’ input value.
Since the nodes communicate via an append memory, all nodes have read
access to the append memory M . We say that the state of a node is defined
by the nodes’ current value and its last read of the append memory, i.e., if
a node last read the memory at time τ , its local view of the memory will
be M(τ). The state of the node from the last read operation is denoted
by si = (M(τ), vali). A configuration C of the system is defined as the
set of the states {s1, . . . , sn} of all n nodes in the system together with the
current view of the memory M(τ∗). We therefore define this configuration
to be C := {s1, . . . , sn} ×M(τ∗). The initial configuration of the system
consists of the initial bits of the nodes and an empty view of the memory
and M(0) = {∅}, denoted C0. Each node supports the read and append
operations. We will call an execution of a read or an append operation by
a node v an event ev. We assume that the nodes are asynchronous. In this
system, an event ev can always be applied to a configuration C, if the event

CHAPTER 5. THE APPEND MEMORY MODEL 62

is a read operation. If the event is an append operation, it can only be
applied to C if it follows the construction rules of the append memory. Let
the current state of node v in the configuration C be si = (M(τ), vali). An
event ev applied to C at time τ ′ transitions C to a new configuration ev(C)
in the following way:

(a) ev is a read operation of the append memory with M(τ) (M(τ ′):
node v will possibly update its value vali and transition to a new state
s′i = (M(τ ′), vali). The corresponding configuration C will transition
to the configuration ev(C) where ev(C) = {s1, . . . , si−1, s

′
i, si+1, . . . , sn}×

M(τ ′).

(b) ev is a read operation of the append memory at time τ ′ > τ , with
M(τ) = M(τ ′): node v will not change its state and therefore ev(C) =
C holds.

(c) ev is an append operation executed at time τ ′ for the viewM(τ) of the
append memory: according to the definition of the append memory,
a value from the node v can be appended to an obsolete state of the
memory as long as it does not contradict the order of messages of v
in the current append memory state M(τ∗). A state is considered
obsolete with respect to a weak ordering defined by the underlying
protocol. LetM(τ ′) be the state of the append memory after event ev
has been applied to it. Then, the new state of the system is described
by ev(C) = {s1, . . . , sn} ×M(τ ′).

We say that a configuration C′ is accessible from another configuration
C if there is a sequence e1, . . . , ej of applicable events, such that C′ =
ei (ei−1 (. . . e1(C))). In the following, we define a computation graph G for
an algorithm A which describes the accessible configurations: The vertices
of G contain all possible initial configurations of the protocol as well as all
configurations accessible from these states. There is a directed edge from
a configuration C to another configuration C′, iff there exists an event e
which is applicable to C such that C′ = e(C) holds. In this case e will be
the label of the edge from C to C′. Note that Property (b) allows self-loops
at each configuration of the computation graph. Note that a configuration
C′ is accessible from a configuration C if there is a directed path from C to
C′ in G.

Next, we define a computation of A as a (not necessarily finite) sequence
of configurations C0, C1, C2, . . ., such that for each pair of consecutive con-
figurations Ci, Ci+1 there exists a directed edge from Ci to Ci+1 in the
computation graph G. A configuration is said to have a decision state if one
of the nodes in the configuration has decided on one of the values in {0, 1}.

CHAPTER 5. THE APPEND MEMORY MODEL 63

A computation terminates in a configuration Cj if every correct node in Cj
has reached a decision state.

Since algorithm A solves consensus, in some of the configurations there
will be nodes which have reached a decision state. Also, the algorithm has
to satisfy the consensus properties from Section 2.1:

• A satisfies agreement, if every configuration has at most one decision
state.

• A satisfies termination, if for every initial configuration C0 every com-
putation terminates.

• A satisfies validity, if for the input configuration where every node has
input value 0, i.e., C(0)

0 := {(∅, 0), (∅, 0), . . . , (∅, 0)}×{∅}, every com-
putation terminates with every correct node deciding 0. Analogously,
every computation starting in C(1)

0 := {(∅, 1), (∅, 1), . . . , (∅, 1)}×{∅}
terminates with every correct node deciding 1.

Let C(C) be the set of decision values which are accessible from config-
uration C under A. We say that C is bivalent, if C(C) = {0, 1}. C is called
univalent if |C(C)| = 1. In particular, C is 0-valent if C(C) = 0 and it is
1-valent if C(C) = 1.

So far, we have only addressed correct nodes in the definition. We call
a node correct if for an infinite computation the node takes infinitely many
steps. Otherwise, the node is faulty. A computation that that has no events
by some node v is called v-free. An algorithmA is 1-resilient, if for any v ∈ V
and any reachable configuration C in G all v-free computations terminate.

5.2.2 Proof of Theorem 5.1
The proof of Theorem 5.1 is organized as follows: We will first show in
Lemma 5.2 that for any algorithm A which satisfies the properties of con-
sensus there is a bivalent initial configuration C0. In Lemma 5.2 we will
show that for any bivalent configuration C and any node v there exists an-
other reachable bivalent configuration C′, such that on the directed path
from C to C′ v performs an event. Finally, we will show how these lemmas
can be used in order to establish an infinite computation starting in C0 in
which every correct node performs infinitely many events.

Lemma 5.2. There exists a bivalent initial configuration of the system if
t ≥ 1.

Proof. Assume by contradiction that any configuration of the input values
is a univalent configuration. Since the consensus algorithm has to satisfy

CHAPTER 5. THE APPEND MEMORY MODEL 64

the validity condition (i.e. if all correct nodes have the same input value,
they decide on this input value) there exist 0- and 1-valent initial configu-
rations. In particular, the configuration where all nodes have input value
0 is 0-valent and the configuration where all input values are 1 is 1-valent.
Assume that there is one node that can crash in the system. Then, the con-
figuration where all nodes have input values 0 is not indistinguishable from
the configuration where all input values are 0 besides the input value of the
crashed node, which is 1. Since the nodes have to achieve consensus inde-
pendent of the crashed nodes and no input configuration is bivalent, both
these initial configurations must be 0-valent. We can continue constructing
more 0-valent configurations by replacing one input value 0 by input value
1 at a time. Finally, we will have constructed a 0-valent initial configura-
tion that only has input values 1. This is a contradiction to the validity
condition.

Lemma 5.3. Let C be a bivalent configuration and ep be an applicable event
to C. Let D be the set of configurations reachable from C that do not contain
any events from p. Then, there is a bivalent configuration C′ ∈ ep(D)
reachable from C.

Proof. Observe first that the event ep is applicable to every configuration in
D: if ep is a read command, it is trivially applicable to every configuration
in D. On the other hand, if ep is an append command and it can either
be appended to the configuration C, or it can be appended to any future
configuration as the nodes are asynchronous and there can be an arbitrary
delay between a read and an append command in the system.

Let e(D) be the set of all configurations that result from D by applying
the event ep to them. For the rest of the analysis, assume by contradiction
that there are only univalent configurations in ep(D).

We will first show that ep(C ∪ D) contains both, 0- and 1-valent con-
figurations: By definition, C must contain 0- and 1-valent configurations
since it is bivalent. Assume w.l.o.g. that ep(C) is a 0-valent configuration.
Note that all configurations that are reachable from ep(C) must also be 0-
valent. Therefore, there must exist a configuration D ∈ D which is 1-valent.
Then, the configuration ep(D) ∈ ep(D) is also 1-valent. The corresponding
configuration graph is depicted in Figure 5.4.

Further, there exist two configurations D0 and D1 in C ∪ D such that
D1 = eq(D0) and such that E0 := e(D0) is 0-valent and E1 := e(D1) is
1-valent. This follows by an induction argument on the path from C to D.
The corresponding situation is depicted in Figure 5.5.

We will differentiate between four cases for the events ep and eq:

CHAPTER 5. THE APPEND MEMORY MODEL 65

C

bivalent

C∗ = ep(C)

0-valent

D

D∗ = ep(D)

1-valent

ep

ep

D

Figure 5.4: Illustration of a bivalent configuration C, where C∗ := ep(C)
and D∗ := ep(D) are respectively 0- and 1-valent configurations reachable
from C.

D0

D1

E0 0-valent
E1 1-valent

E∗0 = eq(E0)

eq

ep
ep

eq

Figure 5.5: Illustration of the proof of Lemma 5.3 with E∗0 := eq(E0)

CHAPTER 5. THE APPEND MEMORY MODEL 66

ep and eq are read events: If both events are read events, then the corre-
sponding events are commutative since they do not change the view of
the memory. Consider the configuration eq(E0). Since E0 is a 0-valent
configuration, eq(E0) must also be 0-valent. However, since ep and eq
are commutative, eq(E0) is equal to the configuration E1, which is a
1-valent configuration. This is a contradiction.

ep and eq are append events: We need to show that the append events
are also commutative. Note that the append events are consecutive
and that neither of the nodes p or q has a read event in between. if
both nodes previously read the same view of the memory, they will
append to the same view in the memory. Any later read operation
will not be able to differentiate which of the appends was written
to the memory first. The same property holds if the nodes append to
different views of the memory. Since the nodes are asynchronous, they
can always append to previous views of the memory and therefore it is
not possible to determine the order of the appends. Since the events
are commutative, the same analysis applies as in the first case.

ep is a read and eq an append event: Note that if ep is a read config-
uration, it does not change the view of the memory, i.e., in configu-
rations D0 and E0 the view of the memory is identical. Therefore, if
eq is applied to either of the configurations, the configurations of all
nodes excluding p are the same in D1 and eq(E0). As the node p might
crash during the execution of the algorithm and since the algorithm
is deterministic, by applying the same set of events, the remaining
nodes must end up in the same configurations independent of whether
they started in D1 or in eq(E0). This is a contradiction since the
corresponding configurations have different valencies.

ep is an append and eq is a read event: In this case we can assume that
node q crashes after reaching the configurations E0 or E1. The rest of
the analysis is analogous to the previous case.

Proof of Theorem 5.1 Let A be a deterministic algorithm that solves
consensus in the append memory and can tolerate crash failure. We will
prove Theorem 5.1 by showing that there exists a scheduling of events under
which A will not terminate. Note that there exists an initial configuration
C0 that is bivalent according to Lemma 5.2. From this configuration on,
we consider a sequence of events in which each node takes infinitely many
turns: let v1 . . . vn be some ordering of all nodes in the system. By Lemma

CHAPTER 5. THE APPEND MEMORY MODEL 67

5.3 there exists a path from the bivalent configuration C0 to a bivalent con-
figuration C1, in which the node v1 executes an event ev1 . By applying
Lemma 5.3, we find another path from the bivalent configuration C1 to a
bivalent configuration C2, in which the node v2 executes an event. Lemma
5.3 can be applied infinitely many times in a round-robin fashion to the
nodes in the sequence v1 . . . vn. Since each new configuration Ci is a biva-
lent configuration, A will not terminate for any node in the system. This
concludes the impossibility proof.

5.3 Consensus in the Append Memory with
Synchronous Nodes

In this section, we will discuss possibility and impossibility results for the
introduced append memory when the nodes in the system are synchronous.
We will first show that the lower bound on the number of rounds needed to
solve Byzantine agreement is t + 1. We will achieve this bound by slightly
adapting the proof of Aguilera and Toueg [3] which was originally introduced
for the synchronous consensus in the message passing model with crash
failures. The advantage of this proof in comparison to the lower bounds
in [49, 52] is that the authors use the notation of univalent and bivalent
configuration which we have introduced in the previous section. Other than
in the mentioned papers, our lower bound will only hold for the Byzantine
model. The previous papers assume that a crashed node can send messages
to a subset of the nodes in the system before crashing. This cannot happen
in the append memory since the nodes only communicate with one authority
(which has control over the memory). Therefore, all values that have reached
the memory will be available to all correct nodes after a time interval of ∆.
This implies that agreement with crash failures can be solved in the append
memory with synchronous nodes within one round only.

In the case of Byzantine failures, the situation becomes different. A
Byzantine node can exploit the small asynchrony of ∆ in the reads of the
nodes such that its append commands will be read by a subset of the nodes
in the same round. This gives us the possibility to apply the results from
Aguilera and Toueg [3] as we will explain in the next section. In Section
5.3.2, we will provide a matching upper bound which is based on the upper
bounds for interactive consistency in the work of Dolev and Strong [49].

5.3.1 Lower Bound on the Number of Rounds
In this section, we will make use of the notation presented in Section 5.2.1.
Since we consider a round based algorithm, a configuration C will be asso-

CHAPTER 5. THE APPEND MEMORY MODEL 68

ciated with the configuration at the end of a round. A round is defined as a
communication step with the memory, which includes at most one append
and one read operation per node. A transition from one configuration to
the next can be described by a combination of append and read operations
from all n nodes.

We start the proof by stating that there is an initial bivalent configura-
tion C0. We therefore can use the statement in Lemma 5.2. The difference
in the proof is that instead of assuming that a node crashes at the beginning
of the algorithm we can assume that this node is Byzantine and does not
participate in the protocol.

For the rest of the analysis, we assume that at most one node will exhibit
Byzantine behavior in a single round.

Lemma 5.6. For any round i with 0 < i ≤ t, where t denotes the number
of Byzantine nodes in the system, holds: if at the end of round i − 1 the
system was in a bivalent configuration, there is a computation in which at
the end of round i the system is again in a bivalent configuration.

Proof. We will prove this lemma by induction over i. In Lemma 5.2 we
showed the base case, i.e., that there exists an initial bivalent configuration.

By the induction hypothesis, we assume that C is the bivalent configura-
tion at the end of round i−1. By assumption, at most one node can exhibit
Byzantine behavior per round, we call this node bi−1. The power of bi−1 in
the append memory lies in the fact that it can delay its own messages such
that only part of the nodes will see its message in the memory in round i,
and the other nodes will only be able to see it with the next read in round
i+ 1.

Assume for contradiction that all configurations at the end of round i are
univalent. Since C is bivalent, there must exist transitions to 0 and 1-valent
configurations. Let the configuration which is reached by a transition where
all nodes perform their actions correctly be 1-valent w.l.o.g. We denote
this configuration C1. Moreover, let C0 be a 0-valent configuration which
results through some transition from C. Note that the transitions C → C0

and C → C1 only differ in the actions of bi−1, since all other nodes behave
correctly and deterministically. Similar to Lemma 5.2, we can construct a
sequence of neighboring configurations that differ in the view of one node
only such that they have to have the same valency. The construction is
the same as in [3]: Let S denote the (possibly empty) set of nodes that
see the append of bi in the memory in the configuration C0. Consider a
configuration C′ which results from C0 by letting an additional node v /∈ S
see the append of bi. Note that C0 and C′ are indistinguishable if v fails
in round i and therefore both have to be 0-valent. We can continue adding

CHAPTER 5. THE APPEND MEMORY MODEL 69

nodes one by one to S and apply the previous argument repeatedly to show
that the configuration C1 also has to be 0-valent. This is a contradiction
to C1 being 1-valent, and thus there must exist a bivalent configuration in
round i.

Note that Lemma 5.6 implies that Byzantine agreement in the append
memory cannot be solved with synchronous nodes in less than t+ 1 rounds.
In particular, the lemma shows that there exists a bivalent initial configura-
tion and a t-round computation such that the system ends up in a bivalent
configuration at the end of round t. Therefore, the nodes need at least
t + 1 rounds in order to reach a univalent configuration and thus achieve
agreement.

5.3.2 A Simple Deterministic Algorithm with Synchronous
Nodes

The idea for the synchronous deterministic algorithm in the append memory
is similar to the interactive consistency idea in Byzantine Agreement [49]. In
interactive consistency algorithms, in every round nodes forward complete
views of the system to all other nodes. After t + 1 rounds, a decision can
be made about whether to accept a proposed input value. This results
in exponential information exchange. In our case, the views of the nodes
are almost the same, since all nodes have access to the append memory.
The only differences in the views of the memory can appear through the
Byzantine strategy that was described in the previous section. Algorithm 5.7
shows a possible implementation of Byzantine agreement with synchronous
nodes.

Algorithm 5.7 Byzantine Agreement with Synchronous Nodes (code for
node v)
Input: append memory M , input value val(v)

1: for round r = 1, . . . , t+ 1 do
2: M .append(val(v), Lr−1), where L0 := {∅}
3: Wait for ∆ time
4: M .read and let Lr be the set of all appended commands in Round r
5: end for
6: Let a value val(w) be accepted, if there exists a chain of t + 1 dis-

tinct nodes v, w1, w2, . . . , wt such that (val(v),∅) is listed in (w1, L1),
(w1, L1) is in (w2, L2), . . . , and (wt−1, Lt−1) is in (wt, Lt)

7: Decide on the majority of all accepted values in val(w)

CHAPTER 5. THE APPEND MEMORY MODEL 70

Theorem 5.8. Algorithm 5.7 solves Byzantine Agreement in the append
memory for t < n/2 Byzantine nodes within O(t∆) time.

Proof. In order to prove the theorem, we need to show that Algorithm
5.7 satisfies termination, agreement, and validity. Termination is trivially
satisfied since all nodes execute the algorithm for O(t∆) time and decide.
We will show that agreement is satisfied because all nodes will agree on
whether to accept each input value or not, i.e., their decision will be based
on the same input set. Validity will follow from agreement by showing
that additionally to equivalent views, all nodes will accept all correct input
values.

Note at first that every correct value will be accepted in Step 6, since
there are n− t > t+ 1 correct nodes: Each correct node will see all correct
values appended in the previous round. Therefore, each correct append will
be listed in n − t correct appends of the next round, i.e., there will be at
least t! chains starting in any correct value which satisfy the condition in
Step 6.

Consider next a Byzantine input value b1. Assume that no correct node
contains this value in the set L1, otherwise, the value will be accepted. b1
cannot be accepted if no other Byzantine node contains this value in its set
L1. Assume next that the node b2 contains b1 in its set L1. Then, either
a correct or some other Byzantine node has to contain this append in their
set L2. Since the chain in Step 6 needs to have t+ 1 distinct elements and
since there are at most t Byzantine nodes, at least one correct node has
to contain some append from the Byzantine chain for the value b1 to get
accepted. If one correct node has a value from the Byzantine chain in its
set Li, every correct node will read this set and either accept the value b1,
if i = t, or extend the chain by referring to the correct append in the set
Li+1. Therefore, a byzantine value will be accepted by the algorithm iff at
least one correct node extends the chain of Byzantine appends.

5.4 Simulation of the Append Memory with Message
Passing

In this section, we show how the append memory can be simulated through
the message passing model using a simulation similar to the ABD simula-
tion [12]. This completes our theoretical analysis of the append memory
and shows that it is a suitable abstraction for different Blockchain and
DAG algorithms. In particular, the previous two sections already imply
that asynchronous consensus is impossible in the append memory model as
well and that the lower bound on the number of rounds for deterministic

CHAPTER 5. THE APPEND MEMORY MODEL 71

Byzantine agreement in the synchronous model is the well-known bound of
t + 1 rounds. This already shows that our append memory abstraction is
not stronger than the results achieved in the message passing model. Here
we will show that the message passing model can naturally simulate the
append memory model if the nodes sign their messages and assuming that
these signatures cannot be forged.

Algorithm 5.9 and 5.10 respectively present the simulation of the append
and the read abstractions. Note that the correct nodes need to be available
at all times, i.e., they always have to respond to append and read messages
from other nodes. We will use signatures in order for the nodes to be able
to prove that another node sent them a message. We will denote a message
val(v) signed by node v by (val(v))v.

Algorithm 5.9 Simulation of M .append() (code for node v)
Input: append value val(v), local memory view Mv

1: Broadcast append(val(v))v
2: upon receiving a message from node w do
3: Append message from w to Mv

4: Broadcast ack(append(val(w))w)v
5: end upon
6: upon receiving ack(append(val(v))v)w from > n/2 nodes w do
7: terminate append operation
8: end upon

Algorithm 5.10 Simulation of M .read() (code for node v)
1: Broadcast M .read()
2: upon receiving M .read() from node w do
3: Send local view Mv to w
4: end upon
5: upon receiving Mw from > n/2 nodes w do
6: Append all newly seen values in the local views Mw to Mv and

terminate
7: end upon

Lemma 5.11. Algorithm 5.9 correctly simulates an M .append(val(v))
operation in the append memory.

Proof. Note at first that an M .append(val(v)) operation from a correct
node will always reach all other correct nodes. Therefore, all correct nodes

CHAPTER 5. THE APPEND MEMORY MODEL 72

will append a correct value to their local view of M , and node v will receive
> n/2 acks for its message.

Since Byzantine nodes cannot forge the signatures of the correct nodes,
their local view will either contain a message from some correct node or no
message at all.

Lemma 5.12. Algorithm 5.10 correctly simulates an M .read() operation
in the append memory.

Proof. By requesting the views of the memory from more than n/2 nodes
in the system, a node will receive all append commands added to the local
views of the memory by all correct nodes. This is because an append of a
node only terminates if > n/2 nodes appended the corresponding value to
their local view of the memory and by requesting the memory view from
> n/2 nodes, the append operation will be visible in at least one memory
view.

Observe that Byzantine nodes can append multiple values in parallel by
sending different messages to different nodes. This is not a contradiction
to the correctness of the simulation as such behavior is also possible in the
append memory. Since nodes that see two values from a Byzantine party
in the append memory cannot distinguish which of the values has been
appended first, both values have to be accepted by the correct nodes. The
same is achieved in Step 6 of Algorithm 5.10, where all correct nodes accept
all values.

Note that we made use of signatures in order to make sure that a Byzan-
tine party cannot pretend to have received a different value from the correct
node than the value sent by the correct node itself. The above algorithms
would also work without signatures. In that case, nodes can only append a
value to their own local memory, if they have seen it in at least f + 1 differ-
ent views of the memories. Such an adjustment would, however, reduce the
resilience of our protocol.

Our analysis shows that the append memory abstracts away the unnec-
essary communication overhead which often makes the discussion of algo-
rithms in the message passing model difficult and heavy in terms of message
complexity. Observe that the size of the local view of the memory increases
over with each append operation. Thus, a simulation of an algorithm where
all nodes participate, such as Algorithm 5.7, would lead to exponential in-
formation exchange.

CHAPTER 5. THE APPEND MEMORY MODEL 73

5.5 Append Memory with Randomized Access

The benefit of a randomized access strategy to the append memory is that al-
gorithms in the permissioned and permissionless settings of Byzantine agree-
ment can be considered. In the first setting, the number of nodes and the
corresponding signatures are known to all participants, while in the latter
setting, only the upper bound on the fraction of Byzantine nodes is known.
In this section, we will focus on the permissioned setting when deriving the
bounds. All the presented results can, however, be trivially extended to the
permissionless setting as well.

We will first discuss the randomized access to the append memory with
respect to the synchronous or asynchronous nodes. We will show that the
impossibility result from Section 5.2 can also be applied to this model:

Theorem 5.13. There exists no deterministic protocol that can solve Byzan-
tine agreement with asynchronous nodes in the append memory with random-
ized access.

Proof. Note that the definition of asynchronous nodes states that arbitrary
time can pass between any two local operations of a node. The random-
ized access to the append memory as defined in Section 5.1 only gives out
tokens to nodes, such that the nodes can use the token in order to ap-
pend commands to the memory. As the time between any two operations
is unbounded, we can assume that the time between receiving a token and
appending a message to the memory is also unbounded. In the worst case,
the delays are significantly larger than the append rate to the memory, such
that the access order of the memory defined by the random access rule be-
comes insignificant. Therefore, the proof of Theorem 5.1 can also be applied
to this setting.

The proof of Theorem 5.13 only works because the rate for memory
access is independent of the delay resulting from the asynchrony of nodes.
This suggests that it is reasonable to consider randomized access to the
append memory model together with synchronous nodes. Then, the access
rate to the memory can be connected to the maximum delay given between
any two operations of the nodes.

In the following sections, we will assume that the input values of the
nodes are −1 or +1. The decision value will then be determined as the
sign of the sum of all accepted values. Note that by the definition of the
random access, each node vi is associated with a random variable Xi ∼
Pois(λ) which denotes the expected number of appends by node vi during
∆. Let X :=

∑n

i=1 Xi be the variable denoting how many appends appear

CHAPTER 5. THE APPEND MEMORY MODEL 74

in expectation during the time ∆ in the memory. Note that the variable X
is also Poisson distributed with X ∼ Pois(λn).

In Section 5.5.1, we will discuss the best possible scenario for the append
memory, where each append is equipped with an absolute timestamp. This
example will serve as a baseline for the resilience that can be achieved in
our model. In Section 5.5.2, we will show that the chain rule, which is
often used as a base structure in Blockchain protocols, only tolerates up to
t < n/(1+λ(n− t)) Byzantine nodes. Finally, in Section 5.5.3, we will show
that Byzantine agreement in the append memory model with DAGs gives
optimal resilience.

5.5.1 Byzantine Agreement with Absolute Timestamps
In this section, we assume that all appends to the memory will be equipped
with an absolute timestamp handed out by a central authority upon ap-
pending a command to the memory. This way, all appends in the memory
will have a unique ordering which is visible to all nodes. Algorithm 5.14
shows how Byzantine agreement can be solved in this model. Although
agreement and termination will follow trivially, the validity condition can
only be satisfied with high probability. In particular, the probability to
satisfy the validity condition will depend on the number of appends to the
memory and the difference between the number of correct and Byzantine
nodes in the system.

Algorithm 5.14 Byzantine Agreement with Absolute Timestamps (code
for node v)
Input: append memory M , input value val(v)

1: M .read()
2: while there are less than k writes in the memory do
3: M .read()
4: upon granted access to the memory do
5: M .append(val(v))
6: end upon
7: end while
8: Order all appends by the timestamps
9: Decide on the sign of the sum of the first k appends

CHAPTER 5. THE APPEND MEMORY MODEL 75

Theorem 5.15. Algorithm 5.14 satisfies agreement, termination and weak
validity.

Proof. Algorithm 5.14 satisfies agreement, because the timestamps uniquely
determine the first k writes into the memory, and because all nodes have
the same view of the memory. By choosing k to be an odd number, the sum
of the first k values will be either positive or negative, thus determining
the decision value. Termination is satisfied since there eventually will be k
writes to the memory such that all nodes will leave the while loop in Step
2.

The validity condition can only be satisfied with high probability, as
there is always a negligible probability that the first writes will all be from
Byzantine nodes. In order to show validity of Algorithm 5.14, we will con-
sider the sum of all written values as the sum of binomially distributed
random variables. For a large number of nodes n, this sum can be approx-
imated by the normal distribution due to the central limit theorem. We
can use the tail bounds for the normal distribution in order to finally show
that the majority of the k coinflips will be from correct nodes with high
probability.

Assume that the validity assumption holds, i.e., that all correct nodes
have the same input bit +1. W.l.o.g. we can assume that all Byzantine
nodes will write the value −1 to the memory. Otherwise, the Byzantine
strategy would not be optimal. Note that with probability pcorr = n−t

n
, each

append to the memory is from correct node, while with probability pbyz = t
n
,

it is Byzantine. Next, we only consider the first k appends to the memory.
Then, the probability for each append to be correct or Byzantine will follow
the Binomial distribution. Let Yi be the random variable defining the value
of the i-th append in the memory. With above probabilities, we have Pr[Yi =
+1] = n−t

n
and Pr[Yi = +1] = t

n
. We are interested in the probability for

the sum of all random variables to be smaller than 0, i.e., the case when
a majority of all appended values is Byzantine. Since the nodes in the
algorithm wait for at least k coinflips to be appended, the sum of the coinflips
converges to the normal distribution N

(
k · n−2t

n
, k −

(
k · n−2t

n

)2
)
. We can

now compute the probability for the Byzantine nodes to reach a negative
sum by appending negative values to the memory when given access:

Pr

[
k∑
i=1

Yi < 0

]
< Pr

[
k∑
i=1

Yi − µ < µ

]
< exp

(
− µ2

2σ2

)
where exp

(
− µ2

2σ2

)
= exp

(
− k2(n−2t

n
)2

2·(k−k2(n−2t
n

)2)

)
< exp(1

2 · k · (
n−2t
t

)2). Note
that in the worst case, #corr − #byz = n − 2t = Ω(1), k = Ω(n log(n))

CHAPTER 5. THE APPEND MEMORY MODEL 76

appends to the memory are needed in order to satisfy validity with high
probability. If the difference however is equal to #corr−#byz = Ω(n), k =
Ω(log(n)) appended values to the memory are sufficient to satisfy validity
with high probability.

5.5.2 Byzantine Agreement with Chains
In this section, we will review the results of Garay and Kiayias [55] and
Ren [106]. We will show that Byzantine agreement on the chain can also
be achieved for t < n/2 Byzantine nodes if the nodes use a randomized
strategy in order to break ties. Algorithm 5.16 shows an example of such
an implementation in the append memory. The idea of the algorithm is
to let nodes append their values to the longest chain based on their view
of the append memory. Since access to the memory is randomized, with a
certain probability, there is a longest chain that consists of a majority of
correct input values, such that the decision value satisfies validity. We will
differentiate between two tie-breaking rules for the algorithm:

Deterministic tie-breaking: In this rule the correct nodes choose the
first longest chain in the memory [55].

Randomized tie-breaking: In this rule, the correct nodes choose one of
the longest chains uniformly at random [106].

Algorithm 5.16 Byzantine Agreement with Chains
Input: append memory M , input value val(v)

1: M .read()
2: while there is no longest chain of length at least k in the memory do
3: M .read()
4: upon granted access to the memory do
5: Let C be the set of the last states in the longest chains of M
6: Choose c ∈ C according to a tie-breaking rule
7: M .append(c, val(v))
8: end upon
9: end while

10: Decide on the sign of the sum of the first k appends in the longest chain

Both these strategies were mentioned in [55], however, no analysis was
given for the second rule. For the deterministic rule, the following upper
bound on the number of Byzantine nodes holds:

CHAPTER 5. THE APPEND MEMORY MODEL 77

Theorem 5.17. Algorithm 5.16 with deterministic tie-breaking cannot solve
weak Byzantine agreement for t ≥ n/3 Byzantine nodes.

The proof of this theorem is based on the following idea: Since the nodes
choose the longest chain according to a deterministic rule, one can assume
that all ties will be broken in favor of the adversary. Therefore, one can
assume that every append to the memory from a Byzantine node will cause
a fork in the chain, i.e., it will append its value to the same append as the
last correct node, thus producing two longest chains. With this strategy,
every second append to the longest chain will on average be Byzantine. If
the Byzantine nodes form a majority, they can change the decision value of
the correct nodes even if the validity condition is satisfied for t ≥ n/3.

Next, we will consider the randomized rule for tie-breaking in Algorithm
5.16. In this case, the previous Byzantine strategy will not be successful,
since the correct nodes will only include every second Byzantine append to
the memory and the average ratio of Byzantine nodes in the longest chain
will be 1/3.

In the next theorem, we provide a simple bound on the resilience of
Byzantine agreement on the chain and show that it is dependent on the rate
λ of the Poisson process. The theorem connects the resilience of Byzantine
agreement and the access rate of the nodes:

Theorem 5.18. Algorithm 5.16 with a randomized tie-breaking rule has a
resilience of

t

n
≤ 1

1 + λ · (n− t) .

That is, for λ · (n − t) = 1, the resilience is ≤ 1/2 while for λ · (n − t) = 2
it is ≤ 1/3.

Proof. For simplicity, we will restrict ourselves to an average analysis in this
proof: The rate λ · (n− t) is a measure for how many appends from correct
nodes to the memory will take place on average within the interval ∆. In
the worst-case scenario, when the delay between any two operations of the
correct nodes is δ, appends by correct nodes inside the same interval ∆ will
be concurrent and therefore generate a fork. Thus, all, but one such correct
append can be considered wasted, as it will not be part of the longest chain.

Assume for contradiction that t
n
> 1

1+λ·(n−t) . The Byzantine strategy
that can be applied in this case is to play the role of a tie-breaker among
the concurrent correct appends. This is possible due to the contradiction
assumption - the Byzantine party will also have access to the memory in the
same interval ∆. The Byzantine party can append its value simultaneously
to the first correct append in the longest chain, and thereby prolong the
chain by one additional append. Thus, all following correct appends from

CHAPTER 5. THE APPEND MEMORY MODEL 78

the same time interval will append their values to an “outdated” state of
the memory, and therefore not make it into the longest chain. With this
strategy, the longest chain of size k will have k/2 Byzantine values appended
to it. Even if all correct nodes have the same input value, k/2 Byzantine
values inside the longest chain of size k are enough to flip the decision value
of the correct nodes. This would violate the validity condition.

While the above analysis is simple, it is only derived for the average case.
Note that, in order to derive a similar bound with high probability, intervals
in which the correct nodes have strictly less than λ · (n − t) concurrent
appends need to be estimated and compared to the number of intervals
where the correct nodes have at least λ · (n− t) appends and the Byzantine
party has also at least one append. Such an analysis has been conducted by
Ren [106] who showed that Nakamoto consensus can achieve a resilience of
almost 1/2 if the rate is much smaller than the delay, i.e., when λ� ∆.

Unlike in the analysis of Ren [106], in Byzantine agreement, we use a
fixed interval in order to decide on the agreement value. We would therefore
need to take a closer look at what kind of strategies Byzantine nodes can
apply just before the decision takes place. We will omit such an analysis for
the chain at this point since it is very similar to the analysis of the DAG
that will be presented in the next section.

5.5.3 Byzantine Agreement with DAGs
Contrary to the chain, the DAG follows an inclusive strategy: The DAG
is a directed acyclic graph that starts at some dummy append, e.g., at the
empty state of the memory. All further values that are appended by the
nodes only specify the latest seen appends to the memory. That is, if a node
sees that another node has appended a value val(v) to the dummy value in
the memory, it will list val(v) as its preceding value instead of the dummy
append. Listing preceding appends can be viewed as drawing an arrow from
the new append to all previous ones which do not have any incoming arrows
yet. This strategy generates a directed acyclic graph. Note that the idea
of the DAG is very similar to Algorithm 5.7, where all nodes refer to all
values they read in the previous round. Since an implementation of rounds
requires the nodes to always participate in the broadcast, DAG can be seen
as a lighter version of it, where a round consists of parallel appends to the
memory. The randomized access to the memory thereby bounds the number
of appends from Byzantine parties in each round. Algorithm 5.19 presents
a possible implementation of Byzantine agreement on the DAG.

The correctness of Algorithm 5.19 is based on one of the tie-breaking
rules in Step 2, such as the heavies chain defined in the Ghost protocol [111]

CHAPTER 5. THE APPEND MEMORY MODEL 79

Algorithm 5.19 Byzantine Agreement with DAG
Input: append memory M , input value val(v)

1: M .read()
2: while there is no longest (heaviest) containing at least k values do
3: M .read()
4: upon granted access to the memory do
5: Let C be the set of the last states of M , which do not have child

nodes
6: M .append(C, val(v))
7: end upon
8: end while
9: Order the values of the DAG with respect to the longest chain

10: Decide on the sign of the sum of the first k values in the ordering

or simply the longest chain [74]. In this section, we are interested in the
impact of the worst-case construction of the DAG for Byzantine agreement.
In the previous section, it was noted that the worst-case construction of a
chain is reached by letting correct nodes generate forks and the Byzantine
nodes break the ties. When the nodes are building a DAG, such a construc-
tion does not work here, as there will be correct nodes which will include
all forked values into the ordering at a later point in time.

The analysis of the DAG therefore focuses on two main issues: The first
issue is the rate at which the nodes are appending values. If the rate is
too large, the nodes will likely not have the same views when appending to
the memory and therefore it will not be possible to determine the global
order of the appends. If the rate is small enough, [74,111] show that w.h.p.
there will be a longest chain such that the nodes can decide on an identical
view and thus on the ordering of the values in the DAG. The second issue
is that Byzantine nodes have the possibility to alter the algorithm by not
referencing all values they see in the DAG. While the views of the correct
nodes can be identical, a Byzantine strategy can increase the number of
Byzantine values among the first k values that are considered for decision.

Lemma 5.20. In Algorithm 5.19, the views of the DAG upon decision may
contain up to Ω(log(n)) additional Byzantine values with high probability.

Proof. Note that all Byzantine parties can be controlled by one single ad-
versary and that they can withhold their values for a small period of time
when the correct nodes are not appending. If the Byzantine nodes apply
the strategy for their values among the first k appends, this strategy will
not change the ratio between the correct and the Byzantine nodes among

CHAPTER 5. THE APPEND MEMORY MODEL 80

these first writes. Instead, the Byzantine nodes can append a chain of values
in the last interval of size ∆ just before the decision, thus prolonging the
longest(or heaviest) chain and adding their own values to the first k values
of the DAG.

We can bound the length of the time interval T during which no correct
node appends a value to the memory by the Poisson distribution as follows:

Pr [T > ∆ · log(n)] = exp
(
−λ(n− t)

t∆ ·∆ · log(n)
)
≤ 1
nλ/2

That is, with high probability there will be an append by a correct node at
the end of the interval T .

Next, we calculate the length of the chain that the Byzantine nodes can
produce within the time interval T . The size of this chain corresponds to the
number of values that Byzantine nodes can insert into the sequence of the
first k appends, in addition to the values that are included in the sequence
due to the Byzantine rate. Let X denote the Poisson random variable with
rate µ = λt

n
log(n) ≤ 1

2λ log(n), which corresponds to the Byzantine rate
inside the time interval T . We can use the Poisson tail in order to bound
the number of Byzantine writes during this time interval:

Pr
[
X ≥ µ+ λ2 log(n)

]
≤ exp

(
λ log2(n)

µ+ λ log(n)

)
≤ exp

(2
3 log2(n)

)
The above equation states that with high probability, the Byzantine nodes
will add less than 2λ log(n) values to the memory within a time interval
T .

Theorem 5.21. Algorithm 5.19 satisfies validity, termination and agree-
ment with high probability.

Proof. Termination and agreement of Algorithm 5.19 are guaranteed at Step
2 and from the fact that there will be a longest or heavies chain as was shown
in [74,111].

In order to show validity, we consider the same probability distribution
as in the proof of Theorem 5.15. Due to Lemma 5.20, the amount of correct
writes has to be at least 2λ log(n) in order for the correct nodes to satisfy
validity:

Pr

[
k∑
i=1

Yi < 2λ log(n)

]
= Pr

[
k∑
i=1

Yi − µ < 2λ log(n)− µ

]

CHAPTER 5. THE APPEND MEMORY MODEL 81

≤ exp

(
−
(√

k
(
n− 2t
n

)
− 1√

2k
λ log(n)

)2
)

We next analyse when the above probability becomes exponentially small,
which would imply validity with high probability. In the worst case, for
#corr −#byz = Ω(1), the number of appends in the memory has to be at
least k = Ω(λn log(n)). In the case #corr −#byz = Ω(n), k = Ω(λ log(n))
values are sufficient. Note that other than in Theorem 5.15, the number of
values that are needed for a decision with DAG also depends on the rate λ,
which follows from Lemma 5.20.

The proof shows that the resilience of Byzantine agreement with DAG is
independent of the rate λ. Moreover, this analysis shows that the DAG can
tolerate up to t < n/2 Byzantine nodes, which corresponds to the optimal
bound for Byzantine agreement.

Finally, we would like to emphasize that Nakamoto consensus, unlike
Byzantine agreement, does not require finality. In [111], the authors mention
that the resilience of Nakamoto consensus on the DAG does not change if
the nodes are temporarily asynchronous. The above analysis, in particular
Lemma 5.20, shows that this result is not true for Byzantine agreement.
In Algorithm 5.19, there is a predetermined number of appends, on which
the nodes base their decision. In the case of a temporal asynchrony, the
Byzantine nodes could make sure to add more Byzantine values into the set
of the first k appends. Therefore, temporarily asynchronous nodes would
reduce the resilience of Byzantine agreement on the DAG.

5.6 Discussion

This chapter discusses a new shared memory model, called append mem-
ory, that is designed to simplify Blockchain protocols. The strength of the
append memory is that it assimilates the local views of the nodes and thus
allows simple analysis of the corresponding consensus protocols. In par-
ticular, this model abstracts away the sending of messages between nodes
in the message passing model which leads to unnecessary complications in
Blockchain protocol design. Therefore also discussing the synchronous and
asynchronous communication models becomes simpler in this model. On
the positive side, this model is not too strong, since it can be simulated
in a message passing system as was shown in Section 5.4. The presented
impossibility result of asynchronous consensus in Section 5.2.1 suggests that
the impossibility of asynchronous consensus is more connected to the shared
structure that the nodes construct, rather than the fact that the nodes in

CHAPTER 5. THE APPEND MEMORY MODEL 82

the Nakamoto consensus communicate via a message passing model and
thus underlie the FLP impossibility result [53]. In Sections 5.5.2 and 5.5.3
we transferred the known protocols for the Blockchain and BlockDAG into
the append memory model. We thereby considered Blockchain protocols for
solving Byzantine agreement that have to satisfy agreement, termination,
and validity. In this model, we could constructively prove that the resilience
of the Blockchain protocol depends on the rate λ, while the resilience of the
BlockDAG protocol almost achieves the optimal bound of t < n/2 Byzantine
nodes. These results suggest that the append memory model is a suitable
model to discuss various Blockchain protocols.

Besides solving Byzantine agreement, the append memory model can
also be used in order to consider more general problems, such as state ma-
chine replication or distributed ledger technologies. Note that for the latter
application, often a permissionless setting is considered. In the permission-
less setting, the number of nodes in the system is unbounded, instead, the
append rate of the values underlies the Poisson distribution. The results for
the randomized access in Section 5.5.2 and 5.5.3 were discussed in the per-
missioned setting only. In fact, these results also hold in the permissionless
setting. The upper bounds on the resilience of the protocol in such a set-
ting can therefore be connected to the append rate of the respective nodes
(correct or Byzantine). While this model does not affect the definitions of
termination, agreement, and validity, it is not clear what the validity condi-
tion would mean for infinitely many nodes or whether it would be satisfied
at all.

6
Asynchronous Byzantine Agreement
and Deep Reinforcement Learning

An important goal of distributed computing is to build computer systems
that can tolerate the existence of faulty, or even malicious participants. At
the core of such a fault-tolerant system, there is often a problem related
to asynchronous Byzantine agreement. Modern Byzantine agreement al-
gorithms will employ variants of asymmetric cryptography, in particular
digital signatures. Such signatures can be used to detect malicious behav-
ior, as they may serve as a proof that some malicious node sent around
contradictory information. If some node has been proven guilty, it can be
banished. Once the Byzantine nodes are removed, Byzantine agreement can
be solved relatively easily.

Cryptography is however not essential to reach agreement, and there are
classic randomized algorithms that do not rely on computational assump-
tions [23, 31]. Without cryptography, it is difficult to expose the Byzantine
participants, since there often will be “word against word” situations. In-
deed, without cryptography, there is an unwritten law of distributed com-
puting to not even try to uncover the Byzantine nodes, but rather try to
break the Byzantine power by randomness and sheer luck. Unfortunately,
such non-cryptographic Byzantine agreement algorithms typically require

83

CHAPTER 6. ASYNCHRONOUS BA & DRL 84

exponential time to reach agreement. In this chapter, we try to understand
to what degree this exponential bound is inevitable.

6.1 Blackboard Broadcast

In this section, we analyze the blackboard matrix (BB-matrix) introduced by
King and Saia [69] for broadcasting n2 coinflips generated by n nodes more
reliably. This model is powerful since it keeps the views of every single node
as close to the others as possible. As such, this model reduces the number of
hidden coinflips from a constant to a polynomial fraction of the total number
of coinflips compared to the standard broadcast. We will use the blackboard
model in order to generalize the standard reliable broadcast method to a
stronger broadcast routine which can assimilate the views of the nodes. We
call this routine blackboard broadcast. The blackboard broadcast (BBB) is
based on the FIFO reliable broadcast which is defined as follows:

Definition 6.1 (FIFO Reliable Broadcast). The FIFO (reliable) broadcast
defines an order in which the messages are accepted in the system. If a node
u broadcasts message m1 before m2, then any node v will accept message
m1 before m2.

Algorithm 6.2 FIFO Reliable Broadcast
1: Broadcast own round r message x(u, r)
2: upon receiving first message x(v, r) from node v for round r do
3: Broadcast echo(u, x(v, r))
4: end upon
5: if not echoed any x′(v, r) before then
6: upon receiving echo(w, x(v, r)) from t+ 1 nodes w but not x(v, r)

do
7: Broadcast echo(u, x(v, r))
8: end upon
9: end if

10: upon receiving echo(w, x(v, r)) from n− t nodes w do
11: if accepted x(v, r − 1) then
12: Accept(x(v, r))
13: end if
14: end upon

One way in which the FIFO reliable broadcast can be implemented is
presented in Algorithm 6.2. Blackboard broadcast strengthens the assump-
tions of the FIFO reliable broadcast by exploiting it for multiple rounds:

CHAPTER 6. ASYNCHRONOUS BA & DRL 85

Instead of broadcasting a whole value at once, the local information is di-
vided into small pieces which the nodes broadcast in rounds. After a pre-
defined number of rounds, each node combines all received pieces into one
broadcast value from each of the nodes. The following definition describes
the conditions that are satisfied by the blackboard broadcast.

Definition 6.3 (Properties of the Blackboard Broadcast). Given n nodes,
among which t < n/3 can be Byzantine, BBB is a routine for broadcasting
input values while satisfying the following conditions:

1. All correct nodes receive the same n− t input values.

2. The remaining t values might differ in the last FIFO accepted piece of
information.

The implementation strategy of BBB can be described as follows: a node
divides its local value into small pieces, it sends one piece of information in
a round. The node does not proceed to the next round until it has collected
all pieces of information from n− t nodes in all previous rounds. Algorithm
6.6 describes this procedure.

The correctness of Algorithm 6.6 will be proven next. After this, we will
prove that the algorithms satisfies the properties from Definition 6.3.

Lemma 6.4. At the end of Phase 1, matrix BB(u) will contain n−t columns,
each having n accepted pieces of information.

Proof. The matrix BB(u) only contains accepted entries at the end of Phase
1. Each row of the matrix represents a round of communication and each
column represents a node. A node only increments its round when it has
accepted all pieces of information from the previous rounds from n− t dif-
ferent nodes (including itself). After the last round, the BB(u) matrix holds
n− t full columns and t columns where the top part is filled and the rest of
the values are unknown.

Lemma 6.5. All nodes will finish Phase 2 of Algorithm 6.6.

Proof. Every value of any correct BB matrix will eventually be accepted
by every correct node. Since the nodes keep updating their BB matrix in
Step 12, all correct nodes will eventually contain all correct matrices as
submatrices and participate in their FIFO broadcast. Once the first correct
node accepts (t+ 1) matrices, all nodes will eventually accept the matrices,
and therefore Phase 2 of the algorithm will eventually be completed.

CHAPTER 6. ASYNCHRONOUS BA & DRL 86

Algorithm 6.6 Blackboard Broadcast (BBB)
1: Let x(v) be the input value of node v
2: Split x(v) into r pieces x(1, v), . . . , x(r, v), such that x(v) = x(1, v) +
. . .+ x(r, v)

Phase 1: Build BB-matrix row by row
3: for round i = 1 to r do
4: FIFO-broadcast x(i, v)
5: Echo x(j + 1, w) only if accepted x(j, w)
6: Wait until accepted x(i, w) from n− t nodes w
7: end for
8: Save all accepted messages as a matrix BB(v)

Phase 2: Update BB-matrix
9: FIFO-broadcast BB(v)

10: repeat
11: Participate in FIFO-broadcast of any x(k,w) as in Step 5
12: Update accepted entries in BB(v)
13: Echo BB(w) only if BB(w) ⊆ BB(v) and BB(w) has n− t full columns
14: until accepted (t+ 1) BB-matrices

Phase 3: Decide on values of the nodes
15: Broadcast updated matrix BB(v)
16: Wait for n− t other updated matrices
17: Update every entry in BB(v) that was inside of at least one BB-matrix
18: return Sum of each column of BB(v)

Lemma 6.7. At the end of Phase 3, all correct BB matrices share the same
(n− t)× (n) submatrix.

Proof. In order to show that there will be a common submatrix, we need
to consider Phase 2 again. There, each node accepts t + 1 blackboard ma-
trices. Among these matrices, there will be a matrix BB(v) from a correct
node. Since the matrices were FIFO broadcast, at least n−2t correct nodes
have accepted all values from BB(v) and will therefore broadcast a matrix
containing these values in Step 15. Every node also receives matrices from
at least n− t correct nodes, n− 2t of which will contain all values from ma-
trix BB(v). The statement of the lemma follows from the assumption that
t < n/2 and Lemma 6.4.

CHAPTER 6. ASYNCHRONOUS BA & DRL 87

Lemma 6.8. At the end of the algorithm, the remaining t columns will only
differ in the latest value a node has received.

Proof. Assume one node has accepted a value in round i. Then at least
n − 2t correct nodes have participated in a FIFO broadcast of this value.
By the condition in Step 5 these correct nodes must have accepted the value
from the same node in the previous round. This means, at least n − 2t
correct nodes have accepted the value from the previous round. Therefore,
every correct node will accept this value in Phase 3 of the algorithm.

As the second property in Definition 6.3 states, BBB helps to assimilate
the local views of the nodes: assume for comparison that input values ±1
are broadcast using the standard broadcast abstraction first. If an adversary
controls the scheduling, it can make the views of the nodes differ by a total
sum of |t| by hiding t values from some correct nodes but revealing this
information to the remaining correct nodes. If the correct nodes use BBB
to broadcast the same input values, and broadcast pieces of size 1/|r| in
each round (where r is the total number of rounds), the local views of the
nodes will only differ by a sum of at most |t/r|, meaning that the adversary
can hide proportionally fewer values using scheduling. Note that each node
can also broadcast n generated coinflips in n rounds using BBB instead of
dividing some random value into small pieces. This strategy is sufficient to
generate a shared coin in the crash failure model since the BB-matrix will
contain n2−n coinflips that are seen by all nodes. BBB can however not be
used to directly establish Byzantine agreement. This is because Byzantine
nodes still control t(n− t) values in the BB-matrix. They can therefore make
sure that the sum of all values is close to the threshold needed for a decision.

It can also be argued that BBB makes Byzantine nodes detectable: for
the correct nodes to be undecided, Byzantine nodes need to cancel the sum
of the correct values. Since the values controlled by Byzantine nodes are
less than 1/3 of all values in the BB-matrix, their sum would need to deviate
more from the threshold used for the decision of the correct nodes, thus
making them detectable. This detectability was also exploited by King and
Saia [67–69], who suggested to repeatedly build BB-matrices, until the nodes
who expose their Byzantine behavior can be removed from the protocol.
They also claim that they only need a polynomial expected number of BB-
matrices in order to reach agreement. In the following section, we will briefly
discuss the two algorithms used in [69] and why detectability of Byzantine
nodes as it was performed in this paper is tricky when a Byzantine party
controls the scheduling.

CHAPTER 6. ASYNCHRONOUS BA & DRL 88

6.1.1 Detectability of Byzantine Parties using BBB
In [69] the authors propose two algorithms to solve asynchronous Byzantine
agreement in expected polynomial time by detecting Byzantine nodes. They
make use of the blackboard broadcast in order to broadcast large randomly
generated values, in their matrix each node generates n random values that
are either +1 or −1. The blackboard broadcast is executed for m ∈ Θ(n)
rounds. This way, a new matrix M is constructed, where each column
corresponds to a node (like in the BB-matrix), while every row corresponds
to one round of blackboard broadcast. The main idea of [69] is to show that
in a constant fraction of the rows of M, the sum of the Byzantine values
will deviate from the expected value in order to prevent correct nodes from
agreement. This deviation is used to add scores to the Byzantine nodes
which eventually will lead to a removal of these nodes from the algorithm.
In the first proposed algorithm, the authors use spectral methods and assign
weights using the top right singular vector ofM. In the second algorithm,
a brute force search through all submatrices of M of size cm × i, where
0 < i ≤ t, is performed. If the sum of all values in such a submatrix exceeds
a threshold, the weight of the corresponding nodes is increased. In the
following, we will discuss a possible Byzantine strategy that has not been
addressed in the analysis of [69].

Byzantine Stopping Strategy In the blackboard model, there are t
columns that can be hidden by the Byzantine nodes. We can define a
Byzantine strategy as follows: the Byzantine nodes can fix some t nodes
that will be called controlled, wait until most of these nodes reach a certain
threshold, and hide all other values from these nodes. They then can adjust
their own values such that the sum of all coinflips is close to 0. If the
Byzantine nodes see all possible coinflips until the n-th round, it is easy to
decide at which point to stop these values. If the Byzantine nodes only see
the next coinflip, which can be implemented, we need to argue that w.h.p.
the Byzantine nodes will be able to stop a large fraction of these t fixed
nodes.

The problem of one node being stopped at a certain point can be de-
scribed as an 1-dim simple random walk. In order for the controlled nodes
to be removed by the algorithm, the Byzantine nodes only need to get the
sum of these nodes above the standard deviation of the correct nodes. The
deviation of the sum of the correct (not controlled) nodes is −c′n with con-
stant probability. Therefore, each of the t controlled nodes needs to get
above a value of c′n/t on average, which is just a constant for t ∈ Θ(n).

Let c be a sum that a Byzantine node wants to generate in some con-
trolled node. Let τ(c) denote the time point, i.e., a row in the BB-matrix, in

CHAPTER 6. ASYNCHRONOUS BA & DRL 89

which the sum of a node reaches c for the first time. The probability for a
node not to reach this sum for the first time after i steps is

P [τ(c) = i] = c

i
·
(

i

(i+ c)/2

)
· 1

2i ≤
c

i
·
(
i

i/2

)
· 1

2i ≈
c

i
· 2i√

i
· 1

2i = c

i
√
i

The probability to reach c for the first time after the n-th step is:

P [τ(c) ≥ n] =
∞∑
i=n

c

i
·
(

i

(i+ c)/2

)
· 1

2i ≤
∞∑
i=n

c

i
· 2i√

i
· 1

2i =
∞∑
i=n

c

i
√
i

≤
∫ ∞
n

c

x
√
x
dx = c√

x

∣∣∣∣∞
n

= c√
n

The largest sum that the Byzantine scheduler can generate for a node with
high probability is c = n

1
2−α, where 0 < α < 1/2 is a small constant.

Plugging this c into the above inequality gives

P [τ(n1/2−α) ≥ n] ≤ n1/2−α
√
n

= 1
nα

and the probability to succeed within the first n iterations becomes

P [τ(n1/2−α) < n] = 1− 1
nα

We will next show that almost all correct nodes can be stopped at a
value of n1/2−α with high probability. This will help us to find a lower
bound on the subset of nodes that can be stopped in a constant fraction of
BBB iterations.

Theorem 6.9. After the first m iterations in the blackboard model, (1 −
1/nα/2)2 ·t of the controlled nodes can be stopped at a value of n1/2−α w.h.p.,
where 0 < α̃ ≤ 1/4 is a small constant.

Proof. We use the Chernoff bound to show this result. The probability to
stop one node within n iterations is 1− 1

nα
. The expected number of stopped

nodes at the end of n iterations is then µ = t ·
(
1− 1

nα

)
. Let t := ε · n1/2+γ

for some constants 0 < γ ≤ 1/2 and 0 < ε < 1. This assumption does not
restrict the setting, as Byzantine agreement can be solved in an expected
constant number of rounds for t ∈ Ω(

√
n). WLOG we can assume that

α ≥ γ, otherwise we can replace α by γ in the theorem statement. We next
define a random variable Xi to be 1 if a controlled node could be stopped

CHAPTER 6. ASYNCHRONOUS BA & DRL 90

and 0 otherwise. Let X =
∑t

i=1 Xi denote the number of stopped nodes.
Now we can apply the Chernoff bound with δ = 1/(n(α+γ)/4):

P
[
X <

(
1− 1/nα/2)2

· t
]
≤ P [X < (1− δ) · µ] ≤ exp

(
−δ

2 · µ
2

)
= exp

(
−1

2 ·
(1
n(α+γ)/4

)2
·
(

1− 1
nα

))
· t

≤ exp
(
−1

2 ·
1

n(α+γ)/2 ·
nα − 1
nα

· εn1/2+γ
)

≤ exp
(
−1

3 ·
1

n(α+γ)/2 · n
α · εnγ

)
by defining ε̃ := 1

3ε, we get

P
[
X <

(
1− 1/nα/2)2

· t
]
≤ exp(−ε̃nα/2)

The above strategy shows that among the controlled t nodes by the
adversary, more than a large constant fraction can be stopped in a round.
Note that the probability not to stop this fraction of nodes is exponentially
small. Therefore, this property also holds for consecutive m ∈ O(n) rounds
with high probability.

We will next show that inside the matrixM, there will be a large sub-
matrix where each entry has a sum larger than n1/2−α. We can show this
using a similar strategy to Lemma 5.5 in [69].

Theorem 6.10. Let M′ be the m × t submatrix of M controlled by the
Byzantine nodes and c1, c2 < 1 constants that are arbitrarily close to 1.
Then, w.h.p., there exists a submatrix in M′ of size c1 · m × c2 · t, where
each entry has been stopped by the Byzantine strategy.

Proof. Let x be a variable defining the number of columns in the desired
submatrix, and y define the number of rows. Assume that the chosen x and
y are maximal, i.e., given x columns, there exists no submatrix of M′ of
size (y+ 1)×x that satisfies the property of the theorem. Then, due to this
maximality condition, the following inequality has to hold:

x ·m+ y · (t− x) > (1− 1/nα/2)2 · t

The idea behind this strategy is the following: if in x columns and y−1 rows
all entries were stopped by the Byzantine adversary, then there can be no

CHAPTER 6. ASYNCHRONOUS BA & DRL 91

more stopped entries in this submatrix; Otherwise, x could be extended by
one more column. Note that the inequality gives us a possibility to derive
lower bounds on the size of the submatrix: every pair of values x and y
that do not satisfy the above inequality are a lower bound for the size of the
largest submatrix.

Note that the above inequality is violated for any constant fractions of t
and m, given that n is sufficiently large. Therefore, the theorem statement
holds.

A large constant fraction of controlled nodes will be stopped at values of
at least n1/2−α. This way, Byzantine nodes can make sure that a subset of
correct nodes has a large sum. Alternatively, the submatrix of the correct
nodes will contribute to a large norm ofM. While it has been shown in [70]
that, with this strategy, the submatrix of the Byzantine nodes will also have
a large norm, many questions about which nodes will be detected first by
the algorithm remain open.

The analysis of asynchronous Byzantine agreement via the blackboard
broadcast is fairly complicated, which makes it difficult to eliminate all pos-
sible Byzantine strategies. In the next section, we will focus on possibilities
to develop Byzantine agreement algorithms in a more automated way by
using deep reinforcement learning and self-play.

6.2 Byzantine Agreement with Reinforcement
Learning

In this section, asynchronous Byzantine agreement has been simulated using
a neural network as the omnipotent adversary. A Byzantine agent was
therefore trained using deep reinforcement learning by letting it control t <
n/10 nodes. If successful, the trained Byzantine agent should be able to
reach the exponential running time of the Ben-Or algorithm (Algorithm 2.3).
The purpose of this study is thus to investigate whether deep reinforcement
learning can be used to adopt effective tactics to postpone agreement. Before
explaining the implementation, we will first introduce the reinforcement
learning problem following the descriptions from [115].

Consider an agent interacting with an environment. Assume that the
agent first observes the states sτ ∈ S and then takes an action aτ ∈ A
for which it receives a reward rτ ∈ R. Here, τ = 0, 1, 2, 3, . . . denotes the
discrete time steps. The agent acts according to her policy π(a|sτ) which is a
conditional probability distribution over the actions given the current state
sτ . The agents’ goal is to maximize the expected (discounted) reward defined
as Rτ =

∑∞
k=τ γ

k−τrk+1, with 0 ≤ γ ≤ 1, where γ is the discount factor.

CHAPTER 6. ASYNCHRONOUS BA & DRL 92

We further assume that the states satisfy the Markov Property. That is, the
response at time step τ + 1 only depends on the action and state at time
τ . The corresponding reinforcement learning task is thus a (finite) Markov
Decision Process (MPD). This process is fully described by the one-step
dynamics, i.e., the transition probabilities

Pass′ = P(sτ+1 = s′|sτ = s, aτ = a)

and the expected next reward

Rass′ = E(rτ+1|sτ = s, aτ = a, sτ+1 = s′).

We can now define the action-value function for policy π as

Qπ(s, a) = Eπ(Rτ |sτ = s, aτ = a).

In particular, we are interested in the optimal action-value function Q∗(s, a)
= maxπ Qπ(s, a) that satisfies the Bellman Equation

Q∗(a, s) = E(rτ+1 + γmax
a′

Q∗(s, a′)|sτ = s, aτ = a)

There are several methods to solve the reinforcement learning task, e.g., via
the state-value or the policy iteration. In the following part, we will focus
on Q-learning.

Q-learning The above Bellman Equation for the Q-function can be solved
using an iterative process, which was shown to converge to the optimal value
in [40]. Consider an agent in stage k observing sk, taking action ak, receiving
reward rk, and observing next state sk+1. The agent can update its action-
value function according to

Qk(s, a) =


(1− αk)Qk−1(s, a)

+ αk[rk + γmaxa′ Qk−1(sk+1, a
′)] , if a = ak and s = sk

Qk−1(s, a) , otherwise

where αk is a predefined learning rate.

Deep Reinforcement Learning In Deep Reinforcement Learning, a
neural network is used to approximate the Q-function [91], i.e., Q(s, a; θ) ≈
Q∗(s, a). To find the parameters one can use the loss function

Lk(θk) = Es,a[(yk −Q(s, a; θk))2]

with yk = Es,a[r + γmaxa′ Q(s′, a′; θk−1)|s, a].
For this purpose, we use the DQN algorithm, which is based on Q-

learning.

CHAPTER 6. ASYNCHRONOUS BA & DRL 93

6.2.1 Implementation
To implement our approach, we use the DQN algorithm by Stable Base-
lines [96] with a 2 hidden layer Multi Layer Perceptron (MLP) network and
64 nodes in each hidden layer. The DQN algorithm uses an ε-greedy strategy,
meaning that a random action is chosen with probability ε and, otherwise,
the action maximizing the current Q-function is chosen. The DQN algo-
rithm starts with ε = 1 and reduces it to ε = 0.02 over the exploration
fraction of the entire training period, then it keeps ε = 0.02 constant for the
rest of the training. For the environment, we follow the formalism of the
Gym-package [95].

In our case, the environment is given by the Ben-Or algorithm. In the
following, we will refer to a full run of a Byzantine agreement algorithm as
a game or an episode, and to one time step as step. We will refer to the
adversary controlling all Byzantine nodes as the Byzantine agent or simply
the agent.

The Ben-Or algorithm does not have distinct rounds and therefore every
phase directly corresponds to a step in the game. As in most asynchronous
algorithms, the correct nodes only await n− f messages, meaning that they
can consist of anything between only those of correct nodes or those of n−2t
correct and t Byzantine nodes. The Byzantine agent observes n−t messages
from all correct nodes and then decides which values (at most t) she wants
to replace with a value of her choice. The correct nodes then receive the
modified n−t messages. As we only consider simple broadcast methods, the
agent can send a different modification to each correct node. The Ben-Or
algorithm relies on the chance that all correct nodes get the same value from
the coin, but there are three interesting variations that we will introduce
below.

Fair Coin In this case, we study the Ben-Or algorithm stated in Sec-
tion 2.1.2 where Step 11 is a fair coin that is flipped locally by the nodes.
The Byzantine agent observes the (binary) messages sent by the correct
nodes. The agent can only send the same modified message-vector to all
correct nodes. This implies that her goal must be to let the correct nodes
flip a coin, otherwise, all nodes will decide within two steps. After each step,
the agent receives a reward if she lets the correct nodes flip a coin. The
game is over when a correct node has decided (Step 7 of Algorithm 2.3).
bn/2c+ 2t+ 1 correct nodes may flip the same value by chance, in this case,
the agent has won the game and receives an additional reward.

Predefined Coin Here, we consider a modification of Step 11 of Algo-
rithm 2.3, where the coin is not random but a predefined value that was

CHAPTER 6. ASYNCHRONOUS BA & DRL 94

chosen at the beginning of the algorithm where Pr[xu = 0] = 1/2 and
Pr[xu = 1] = 1/2. This case corresponds to the bitstring idea discussed
in Lemma 2.4. The Byzantine agent observes the value of the coin of the
current and the next rounds in addition to the messages sent by the correct
nodes. We restrict the view of the bitstring to two rounds since the proof
of Lemma 2.4 showed that a look-ahead of two values is sufficient for the
algorithm to not terminate. In this case, it is not optimal for the agent
to let all correct nodes flip the coin since all of them will receive the same
value. The agent is therefore allowed to send different modifications of the
messages to different correct nodes. It is important to note that the Ben-Or
algorithm does not need to terminate in this setting. However, this does
not lead to problems during training as the agent always explores with a
certain probability and therefore makes mistakes, which lead to termination
of the game. We further differentiate between the following two settings in
this case:

Predefined initial value: This is the case, where the initial values of the
nodes are predefined. Assume that the first value of the predefined
coin is xc = 1. Then, we need to have initial values with a majority
of 0’s, otherwise, agreement will be achieved in the following Ben-
Or round. More precisely, the number of zeros needs to be between
bn/2c + 1 and bn/2c + 2t, such that the agent can let some correct
nodes flip a coin, and some enter Step 9 of Algorithm 2.3. Whether the
agent sends the majority of the nodes to flip the coin or not depends
on the value of the next coin.

Agent selects initial values: This version is largely the same as the above,
with the difference that the Byzantine agent selects the initial values
of the correct nodes. The agent observes a vector of 0’s in the first step
and decides for each entry. The agent therefore needs to be informed
whether or not she observes the first step.

6.2.2 Training
For training, we mostly use the default values for the parameters of the
Stable Baseline’s DQN Algorithm [96]. The exploration fraction is increased
form 0.1 (default) to 0.2, leading to a longer period of exploration. The total
length of the training period differs for the various versions. To monitor and
evaluate the performance of the learner (agent), we will consider the learning
curve and the deterministic validation performance.

The learning curve shows the (smoothed) rewards the agent achieved
in each episode throughout the training. On one hand, the agent should
be able to learn, i.e., the rewards should increase with the progression in

CHAPTER 6. ASYNCHRONOUS BA & DRL 95

the learning process. On the other hand, the agent should show a stable
performance, meaning that there should be no large fluctuations in rewards
between episodes.

In the following, we will discuss the performance of all three versions of
the Ben-Or algorithm discussed in the previous section.

Fair Coin The agent is trained to only control one Byzantine node and
there are 10 correct nodes in total. This is because Algorithm 2.3 requires
t < n/10. The training of the agent lasts for 1, 000, 000 steps in total.

Learning curve: The learning curve (Figure 6.11a) shows a continued
learning process of the agent throughout the training. There is no
global maximum reward anymore, since the termination of the game
is partly stochastic, due to the coin.

Deterministic validation performance: The game is considered to be
won, when the algorithm terminates due to bn/2c + 2t + 1 correct
nodes having received the same coin value. Thereafter, the agent has
no influence anymore, since she can only send the same message to all
correct nodes. We let the trained agent play 1000 games and she wins
all of them. The agent’s actions are simple: she works towards an
equal number of 0’s and 1’s in the messages she sends to the correct
nodes. If she allowed a majority of seven identical values, no correct
node would flip a coin and the algorithm would terminate within the
next two steps (see Step 7, Algorithm 2.3).

Predefined Coin with Predefined Initial Values In this case, the
agent is trained for 2, 000, 000 steps, with one Byzantine and 10 correct
nodes as in the previous settings.

Learning curve: The learning curve shows a quick and steep learning pro-
cess (Figure 6.11b). However, the rewards fluctuate a lot after the
exploration fraction. As pointed out in Section 6.2.1, the algorithm
does not need to terminate at all. If it does, it is either due to the
exploration or a mistake by the agent. It is therefore even more crucial
to focus on deterministic validation performance.

Deterministic validation performance: Because the algorithm can run
forever, given that the agent has learned, we impose a maximum num-
ber of 10, 000 phases after which we stop the game and consider the
agent to have won. The trained agent wins 1000/1000 games. In this
case, the agent’s actions follow the principle by which we set the initial
value, as described in the proof of Lemma 2.4. The agent sends part

CHAPTER 6. ASYNCHRONOUS BA & DRL 96

(a) Fair coin (b) Predefined coin

(c) Predefined coin, agent selects initial
values

Figure 6.11: Ben-Or algorithm: learning curves smoothed by a moving
average of 50 episodes, using code from [113].

of the correct nodes to flip the coin, where their number depends on
two aspects:

• The agent cannot allow a majority of more than bn/2c + 2t to
form since she would then have no influence in the next round.

• The value of the next coin - if the next coin will have the same
value as the current coin, the agent wants the majority not to flip
the coin. If the next coin will have the opposite value from the
current, the agent lets the majority of the correct nodes flip the
coin.

Predefined Coin where the Agent Selects Initial Values In this
case, the agent’s training consists of 5, 000, 000 steps in the setting of 10
correct nodes and one Byzantine node.

CHAPTER 6. ASYNCHRONOUS BA & DRL 97

Learning curve: The learning curve (Figure 6.11c) looks similar to the
previous case. Again, we observe large fluctuations in the reward but
want to emphasize the importance of deterministic validation.

Deterministic validation performance: The maximum number of phases
is set to 10, 000 and the agent is considered to have won thereafter.
Our trained agent wins 1000/1000 games. It is interesting to study the
agent’s behavior in the first step of a game, as she develops a similar
strategy to the previous case during the rest of the game. For the first
step, she selects a vector of initial values, where 4 correct nodes have
the value of the first coin, hence, creating a majority for the opposite
value to that of the first coin. This is consistent with the initial state
described in the proof of Lemma 2.4.

Our results show that deep reinforcement learning is suitable for tackling
the asynchronous Byzantine agreement problem. In particular, the networks
learn the basic strategies for Byzantine parties that are needed to reach the
maximum possible runtime of the Ben-Or algorithm in its different versions.
In order to find possible efficient algorithms for solving asynchronous Byzan-
tine agreement using deep reinforcement learning, we also need to train an
agent that plays the role of the algorithm in our setting. By letting the
algorithm constructor play against the Byzantine agent, one can strive to
find efficient consensus algorithms. One possible setting that can be used
to implement competing parties is the so-called self-play. The implementa-
tion of self-play for the asynchronous Byzantine agreement problem will be
discussed in the next section.

6.3 Byzantine Agreement with Self-Play

In this section, we discuss the implementation of an asynchronous Byzantine
agreement algorithm using self-play. We will use a multi-agent environment
with n agents, each representing a node in the system. Since the possible
actions of the correct and Byzantine parties in such an algorithm are un-
bounded, the framework is restricted to model the rounds from blackboard
broadcast as described in Section 6.1. We are interested to see whether the
correct nodes can learn a policy in a deep reinforcement learning framework
to reach agreement and how the Byzantine nodes can prevent them. In this
section, we simulate a minimal example with four agents, three of which are
correct and one is Byzantine.

In our algorithm, every node broadcasts a message (node ID, round and
input value). The Byzantine node can “control” one node per round by
hiding its input value in that round. If the Byzantine node is strategic, it

CHAPTER 6. ASYNCHRONOUS BA & DRL 98

will reveal the hidden value to some correct nodes, such that the local views
of the BB-matrix differ. In the following rounds, the Byzantine node can
either continue to hide the same node or start hiding some other node while
revealing all previously hidden values. In addition to hiding other value,
the Byzantine node can also choose its own input value. Since the correct
nodes do not advance to the next round of the blackboard matrix before they
have received values from 3 nodes in all previous rounds, we can assume that
the asynchronous algorithm actually runs in synchronous rounds, where the
past views of the nodes can alter over time. This outline corresponds to the
properties of the blackboard broadcast according to Definition 6.3.

6.3.1 The Environment
The above setting was implemented in the Python programming language,
using the framework Ray [107] for distributed applications and RLlib [77]
for deep reinforcement learning as well as constructing the gym-like multi-
agent environment. We consider four agents, three of which are correct and
have IDs 0, 1, 2, while the fourth node with ID 3 is Byzantine. The actions,
observations, and rewards in this setting are defined as follows:

Action space - correct node this environment maps {0, 1} to {−1, 1} -
the input values that are written to the blackboard matrix and then
later observed by the agents. In addition, each correct node has the
possibility to lock its action and thus repeatedly write the same value
to the blackboard in the following rounds. Locking signals that the
correct node is going to terminate its actions in the current round. The
two corresponding actions are to terminate with output value −1 or 1.
After termination, the value of this node cannot be changed anymore.
Observe that this information is not explicitly communicated to the
other nodes, instead, other nodes can learn that a node has terminated
by observing that its values do not change over the next rounds.

Action space - Byzantine node this environment maps the 64 possible
actions of the Byzantine party, {0, 1, . . . , 63}, to a list of five elements
written as [−1, 0, 0, 0, 0], [−1, 0, 0, 0, 1], . . . , [1, 3, 1, 1, 0]. The first value
in the list can be in {−1, 1} and it represents the input value of the
Byzantine node. The second value is chosen from {0, 1, 2, 3}, and it
determines which node the Byzantine agent decides to hide in the
current round, referring to the nodes by their IDs. The next three
values model the scheduling and are used as a hide mask. The values
are chosen from {0, 1}, where 0 means that the Byzantine node hides
the controlled node value in the current round for the respective node,
and 1 means the opposite. Consider for example the action 62 →

CHAPTER 6. ASYNCHRONOUS BA & DRL 99

[1, 3, 1, 1, 0]. This action means that the Byzantine node chooses its
input value to be 1, and chooses to hide its own value from the third
correct node (corr_2).

Observation space - correct node a matrix where the number of rows
corresponds to the maximum number of rounds, and the number of
columns corresponds to the number of nodes.

Observation space - Byzantine node a matrix where the number of
rows is equal to the maximum number of rounds times the number
of nodes, and the number of columns is equal to the number of nodes.
The Byzantine node is given the observation of a blackboard matrix
it sees, as well as all the views of the correct nodes of the up-to-date
blackboard matrix.

Termination The environment terminates during the correct nodes’ turn
if either the maximum number of rounds is reached or all correct nodes
want to terminate, either due to All-Same validity or the agreement
conditions.

Rewards For each new round that the agents execute, the Byzantine nodes
receive a reward of +1 and correct nodes receive a penalty of −1.
If the correct nodes violate the All-Same validity or the agreement
properties, they receive a fixed penalty which is equal to the maximum
number of rounds. Note that, due to the termination property, some
correct nodes may terminate earlier. In that case, such nodes are
assigned the remainder of the reward or penalty after the termination
of the environment.

6.3.2 Example of an Environment Rollout
In the beginning, each of the correct nodes is assigned a random input value
from {−1, 1}, these values are added to the first row of the initial blackboard
matrix. The Byzantine agent receives the initial values as an observation,
renders the agent ready in the RLlib setup, and allows the agent to act first.
After the Byzantine action, correct nodes receive the observation and are
allowed to act.

On a Byzantine agents’ turn, the Byzantine agent decides which node to
hide, and from which correct nodes to hide the corresponding value. Since
some correct nodes may see the hidden value in that round and some may
not, the local views of the blackboard matrix for the correct nodes differ
(due to scheduling). After the Byzantine action, correct nodes receive their
observations - views of the blackboard matrix, where some of the input

CHAPTER 6. ASYNCHRONOUS BA & DRL 100

values may be hidden, i.e., are 0. Once all correct nodes have received their
observations, they are considered ready to play in the environment.

On a correct nodes’ turn, each correct agent that has not locked a value
yet decides on its input value for the current round. Having chosen the
value, the agents write it to the blackboard matrix. Agents that decided
to terminate simply write the locked value to the blackboard matrix and
do not participate in the learning process anymore. The Byzantine node
then receives another observation with these values and the observations
of the correct nodes from the previous rounds. This is done to extend the
information space of the Byzantine node, such that it has access to the
previous rounds and its previous actions, hoping to facilitate its learning
process.

Note that the self-play environment allows random actions of the re-
spective agents, and therefore the algorithm of the correct nodes is also
randomized. This fact is important since a deterministic strategy would not
terminate, as we already discussed in Section 6.2.

6.3.3 Simulation Results
In order to implement self-play, we are using a Proximal Policy Optimization
algorithm implemented in the RLlib. The model has two hidden layers of
64 neurons each. With the RLlib multi-agent setup, we have trained both,
the correct and Byzantine policy. The results of these initial simulations are
presented in the following.

In the experiment, we used an observation of the true blackboard values,
as well as access to the previous observations of the correct nodes. The
number of iterations for training was set to 200, each iteration containing
8000 timesteps, such that the total number of timesteps in each run was
1600000. The maximum number of rounds for the correct nodes to terminate
was 100. In this experiment, the input values for the correct nodes were
chosen uniformly at random from the eight possible assignments, such that
the probability of all correct nodes to start with the same value was 1/4.
To address the possible issues when having randomly-assigned initial values
for the correct nodes, we have repeated the simulation multiple times and
received similar results.

Figure 6.12 depicts the evolution of the mean policy reward for the nodes,
over the course of 200 training iterations. It can be seen that both strategies
converge smoothly towards a value close to three rounds.

Figure 6.13 shows the distribution of rounds in 1000 environment test
rollouts. Note that this figure only shows the first 20 rounds, as in 99.6%
of these tests the correct nodes establish agreement within this time frame.
The remaining 0.4% fail to establish agreement on the same value and there-

CHAPTER 6. ASYNCHRONOUS BA & DRL 101

Figure 6.12: Mean policy reward.

fore receive the maximum penalty of 100. Throughout all tests, the All-Same
validity was always satisfied and the average episode length was close three
rounds.

Byzantine adversary has mainly converged to choosing two actions: the
action number 17, which chooses the input value −1 and hides the value
of the third correct node from the first and the second node; and action
number 37, where the input value of the Byzantine party is 1 and it chooses
to hide the value of the first node from the second. Figure 6.14 shows the
distribution of Byzantine actions before the first round in which the correct
nodes choose their actions. Note that the first actions along the x-axis, i.e.
the actions in the left part of the graph, are those where the Byzantine
node chooses −1 as its input, while the actions on the right side represent

Figure 6.13: Episode length distribution for the first 20 rounds.

CHAPTER 6. ASYNCHRONOUS BA & DRL 102

(a) Byzantine nodes’ actions when the correct nodes start with [−1, −1, −1].

(b) Byzantine nodes’ actions when the correct nodes start with [1, −1, 1].

(c) Byzantine nodes’ actions when the correct nodes start with [1, 1, 1].

Figure 6.14: Byzantine nodes’ actions for different initial input values of
correct nodes.

the input value 1. In two of the scenarios, where the correct nodes start
out with all same validity, the Byzantine party always chooses the opposite
input value. In the scenario, where two of the correct nodes start with 1 and
one starts with −1, the Byzantine party learns to choose actions number 17
and 37. The earlier action flips the majority value that one of the correct
nodes sees, while the latter action tricks one of the correct nodes to think
that All-Same validity is satisfied.

Based on the shown statistics, we can conclude that it is possible to use
a self-play scenario in order to simulate Byzantine agreement. We could
show that both, the correct and the Byzantine strategies are not exploitable
anymore. Another interesting result in this respect is that the strategies of
the correct and the Byzantine nodes could be visualized and interpreted in
the small setup with four nodes. In particular, we can see the actions that
the correct and the Byzantine parties apply in each round, we can relate

CHAPTER 6. ASYNCHRONOUS BA & DRL 103

them to majority flipping strategies and see that both, the correct and the
Byzantine nodes make use of randomness.

6.4 Discussion

In this chapter, we have verified that asynchronous Byzantine agreement can
be solved if we assume that the Byzantine nodes are restricted to have power
over scheduling but not Byzantine values. This case corresponds to the crash
failure model. When Byzantine nodes have power over the scheduling, they
can make sure that the correct nodes do not have the same local views.
Previous work has mostly focused on Byzantine strategies which are based
on different local views of the nodes. The blackboard broadcast that was
first proposed in [67] introduces a powerful tool, which can assimilate the
nodes’ views thus making this initial problem obsolete. While this strategy
is sufficient to solve consensus with crash failures, Byzantine scheduling still
seems to be problematic. The novel idea to try to detect Byzantine nodes in
the non-cryptographic setting seems to be promising. However, as we have
shown in Section 6.1, a simple stopping strategy of the controlled nodes can
become a problem for detection algorithms.

We therefore investigated the possibility of using deep reinforcement
learning in order to see their potential in verifying existing asynchronous
Byzantine agreement algorithms or even develop new strategies. In Sec-
tion 6.2 we have shown that Byzantine behavior can be learned by a rein-
forcement learning framework. These results provide a foundation for ap-
plying self-play in the asynchronous Byzantine agreement setting. Another
important aspect of implementing self-play is the blackboard broadcast, as
it restricts the action space for Byzantine parties to only 64 actions. The
presented preliminary results show that it is significantly harder to learn the
Byzantine strategy in a setup, where the correct nodes can exploit random-
ized actions. While these results are tested on small-scale agreement prob-
lems, they are a basis to investigate more complicated Byzantine strategies
in the future.

7
Conclusion

In this dissertation, different communication models for the Byzantine agree-
ment problem over public channels have been investigated. In particular,
new validity conditions have been introduced for synchronous Byzantine
agreement problem, such as the interval validity or the Pareto validity.
These validity conditions can be used in a distributed system to agree on
a reasonable value. The analysis of the corresponding Byzantine agreement
algorithms shows that besides looking for agreement on any value, it is also
important to consider the optimization problem of how “close” the agree-
ment value is to the desired result. While it is possible to solve such tasks
by agreeing on every input value and then deciding on the approximation
value, it could be shown that standard multi-valued synchronous Byzantine
agreement algorithms can be extended to achieve these more specific valid-
ity conditions. Using such modifications, it could be shown that agreement
can be achieved in an almost optimal number of 3(t+1) rounds with almost
optimal message complexity. In the particular case of rankings, the opti-
mal bound of t < n/3 Byzantine nodes could also be achieved. This is not
obvious, as the resilience of classic multi-dimensional Byzantine agreement
algorithms highly depends on the number of dimensions. Going forward, it
would be interesting to investigate to which extent rankings can be applied
in approximate agreement in the asynchronous model and how well the re-

104

CHAPTER 7. CONCLUSION 105

sults would approximate the desired ranking, e.g., the Kemeny median. This
step is natural, as many proposed multi-dimensional algorithms also solve
approximate agreement in the asynchronous communication model. Our
results on Byzantine agreement on rankings can also be of interest to social
choice theory. There, the goal is to establish agreement on a ranking that
represents the intention of the voters. There, the typically considered adver-
sary are selfish voters. Selfish behavior is however not the only behavior that
needs to be considered in elections. Voters can also expose random, unpre-
dictable, or even Byzantine behavior. We believe that including Byzantine
behavior will help to develop more robust voting rules for elections and we
hope that this work can serve as a starting point.

This work has also focused on simplifying the analysis for Blockchain pro-
tocols. In particular, a special shared memory model has been presented,
that helps to abstract away peer-to-peer communication and thus define
boundaries for possibility and impossibility results of Byzantine agreement
in blockchain systems. Through the append memory, it could be shown that
the DAG structure is more resilient than the chain structure when message
delays in the system increase. It was further shown that the DAG structure
satisfies optimal resilience and therefore cannot be further improved. We
believe that the simplicity of the append memory model improves the under-
standing of possibility and impossibility results in blockchain protocols and
will help to unify their discussion in a single model. It would moreover be
interesting to investigate how other blockchain protocols behave in the ap-
pend memory system and whether their analysis also simplifies significantly
through our model.

In addition to the above, this dissertation has also considered the fun-
damental problem of asynchronous Byzantine agreement with binary in-
put values and the All-Same validity condition. It was shown that compli-
cated Byzantine agreement algorithms open doors to Byzantine strategies
for which it becomes even more complicated to prove the correctness of al-
gorithms. In particular, many reliable communication rounds with random
values as inputs allowed the Byzantine nodes to “decide” on the input values
of the controlled correct nodes. Such strategies call for developing simple al-
gorithms for Byzantine agreement or use new analysis methods to test their
correctness. We therefore investigated whether using deep reinforcement
learning to simulate Byzantine behavior can help us verify the correctness
of algorithms. Our experiments show positive results for small instances
of four or five nodes. The results also touch upon the complicated models
such as self-play for solving Byzantine agreement. As the tested instances
are fairly small, the implemented networks cannot yet be used as a general
testing framework. In the future, we suggest to simulate larger instances of

CHAPTER 7. CONCLUSION 106

asynchronous Byzantine agreement algorithms and thus possibly find novel
simple algorithms for solving this task.

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Lev-
enberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: A System for Large-Scale Machine Learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), Savannah, GA, Nov. 2016. USENIX Association.

[2] I. Abraham, Y. Amit, and D. Dolev. Optimal Resilience Asynchronous
Approximate Agreement. In Proceedings of the 8th International Con-
ference on Principles of Distributed Systems, OPODIS’04, pages 229–
239, 2005.

[3] M. K. Aguilera and S. Toueg. A simple bivalency proof that t-
resilient consensus requires t+1 rounds. Information Processing Let-
ters, 71(3):155 – 158, 1999.

[4] N. Ailon, M. Charikar, and A. Newman. Aggregating Inconsistent In-
formation: Ranking and Clustering. Journal of the ACM, 55(5):23:1–
23:27, 2008.

[5] D. Alistarh, J. Aspnes, V. King, and J. Saia. Communication-Efficient
Randomized Consensus. In Distributed Computing, pages 61–75.
Springer Berlin Heidelberg, 2014.

[6] P. Almasan, J. Suárez-Varela, A. Badia-Sampera, K. Rusek, P. Barlet-
Ros, and A. Cabellos-Aparicio. Deep reinforcement learning meets
graph neural networks: exploring a routing optimization use case.
arXiv preprint arXiv:1910.07421, 2019.

107

BIBLIOGRAPHY 108

[7] N. Alon, M. Merritt, O. Reingold, G. Taubenfeld, and R. Wright.
Tight bounds for shared memory systems accessed by byzantine pro-
cesses. Distributed Computing, 18:99–109, November 2005.

[8] K. J. Arrow. Social Choice and Individual Values. CT: Cowles Foun-
dation, New Haven, 1st edition, 1951.

[9] K. J. Arrow. Social Choice and Individual Values. John Wiley, New
York, 2nd edition, 1963.

[10] J. Aspnes. Lower bounds for distributed coin-flipping and randomized
consensus. J. ACM, 45(3):415–450, 1998.

[11] J. Aspnes and M. Herlihy. Fast randomized consensus using shared
memory. J. Algorithms, 11(3):441–461, September 1990.

[12] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in
message-passing systems. J. ACM, 42(1):124–142, January 1995.

[13] H. Attiya and K. Censor. Tight Bounds for Asynchronous Randomized
Consensus. Journal of the ACM, 55(5):20:1–20:26, November 2008.

[14] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Sim-
ulations and Advanced Topics. John Wiley & Sons, Inc., Hoboken,
NJ, USA, 2004.

[15] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch. Emergent tool use from multi-agent autocurricula.
arXiv preprint arXiv:1909.07528, 2019.

[16] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch.
Emergent complexity via multi-agent competition. arXiv preprint
arXiv:1710.03748, 2017.

[17] T. D. Barrett, W. R. Clements, J. N. Foerster, and A. I. Lvovsky.
Exploratory combinatorial optimization with reinforcement learning.
arXiv preprint arXiv:1909.04063, 2019.

[18] J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting Schemes for which
It Can Be Difficult to Tell Who Won the Election. Social Choice and
Welfare, 6(2):157–165, 1989.

[19] J. J. Bartholdi, C. A. Tovey, and M. A. Trick. The Computational
Difficulty of Manipulating an Election. Social Choice and Welfare,
6(3):227–241, 1989.

BIBLIOGRAPHY 109

[20] G. W. Bassett and J. Persky. Robust voting. Public Choice,
990(3):299–310, 1999.

[21] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The price of
validity in dynamic networks. In Proceedings of the 2004 ACM SIG-
MOD International Conference on Management of Data, SIGMOD,
June 2004.

[22] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural com-
binatorial optimization with reinforcement learning. arXiv preprint
arXiv:1611.09940, 2016.

[23] M. Ben-Or. Another Advantage of Free Choice: Completely Asyn-
chronous Agreement Protocols. In Proceedings of the Second Annual
ACM Symposium on Principles of Distributed Computing, PODC ’83,
pages 27–30, 1983.

[24] P. Berman and J. A. Garay. Asymptotically Optimal Distributed Con-
sensus. In Automata, Languages and Programming: 16th International
Colloquium, ICALP, 1989.

[25] P. Berman, J. A. Garay, and K. J. Perry. Towards Optimal Distributed
Consensus. In 30th Annual Symposium on Foundations of Computer
Science, FOCS, October 1989.

[26] N. Betzler, R. Niedermeier, and G. J. Woeginger. Unweighted coali-
tional manipulation under the borda rule is np-hard. In IJCAI, vol-
ume 11, pages 55–60, 2011.

[27] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer. Ma-
chine learning with adversaries: Byzantine tolerant gradient descent.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 119–129. Curran Associates, Inc., 2017.

[28] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers. Found. Trends Mach. Learn., 3(1).

[29] G. Bracha. Asynchronous Byzantine Agreement Protocols. Informa-
tion and Computation, 75(2):130–143, 1987.

[30] G. Bracha and O. Rachman. Randomized consensus in expected
o(n2logn) operations. In Proceedings of the 5th International Work-
shop on Distributed Algorithms, WDAG ’91, pages 143–150, Berlin,
Heidelberg, 1992. Springer-Verlag.

BIBLIOGRAPHY 110

[31] G. Bracha and S. Toueg. Asynchronous Consensus and Broadcast
Protocols. Journal of the ACM, 32(4):824–840, 1985.

[32] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procac-
cia. Handbook of Computational Social Choice. Cambridge University
Press, 1st edition, 2016.

[33] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable
and Secure Distributed Programming. Springer Publishing Company,
Incorporated, 2nd edition, 2014.

[34] C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Con-
stantinople: Practical Asynchronous Byzantine Agreement Using
Cryptography. Journal of Cryptology, 18:219–246, 2000.

[35] R. Canetti and T. Rabin. Fast Asynchronous Byzantine Agreement
with Optimal Resilience. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Theory of Computing, STOC ’93, pages 42–51,
1993.

[36] S. Chaudhuri. More Choices Allow More Faults: Set Consensus Prob-
lems in Totally Asynchronous Systems . Information and Computation
, 105(1):132 – 158, 1993.

[37] H. Chauhan and V. K. Garg. Democratic Elections in Faulty Dis-
tributed Systems. In Distributed Computing and Networking. ICDCN
2013., 2013.

[38] Y. Chen, L. Su, and J. Xu. Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent. arXiv preprint
arXiv:1705.05491, 2017.

[39] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults. In 26th
Annual Symposium on Foundations of Computer Science (sfcs 1985),
pages 383–395, October 1985.

[40] P. D. Christopher Watkins. Technical note: Q-learning. Machine
Learning, 8:279–292, 05 1992.

[41] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with
"readers" and "writers". Communications of the ACM, 14(10):667–668,
October 1971.

BIBLIOGRAPHY 111

[42] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh. Complexity
of and algorithms for borda manipulation. In AAAI, volume 11, pages
657–662, 2011.

[43] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. au-
relio Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng.
Large Scale Distributed Deep Networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 25, pages 1223–1231. Curran Associates,
Inc., 2012.

[44] P. Diaconis and R. L. Graham. Spearman’s Footrule as a Measure of
Disarray. Journal of the Royal Statistical Society. Series B (Method-
ological), 39:262–268, 1977.

[45] E. W. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the ACM, 8(9), 1965.

[46] B. Doerr, L. A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler.
Stabilizing Consensus with the Power of Two Choices. In Proceedings
of the Twenty-third Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA, 2011.

[47] D. Dolev, C. Dwork, and L. Stockmeyer. On the Minimal Synchronism
Needed for Distributed Consensus. J. ACM, 34(1):77–97, January
1987.

[48] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl.
Reaching Approximate Agreement in the Presence of Faults. Journal
of the ACM, 33(3):499–516, 1986.

[49] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine
agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

[50] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank Aggrega-
tion Methods for the Web. In Proceedings of the 10th International
Conference on World Wide Web, WWW ’01, pages 613–622, 2001.

[51] A. D. Fekete. Asymptotically optimal algorithms for approximate
agreement. Distributed Computing, 4(1):9–29, 1990.

[52] M. J. Fischer and N. A. Lynch. A Lower Bound for the Time to Assure
Interactive Consistency. Information Processing Letters, 14(4):183 –
186, 1982.

BIBLIOGRAPHY 112

[53] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
Distributed Consensus with One Faulty Process. Journal of the ACM,
32(2):374–382, 1985.

[54] M. Fitzi and M. Hirt. Optimally Efficient Multi-valued Byzantine
Agreement. In Proceedings of the Twenty-fifth Annual ACM Sympo-
sium on Principles of Distributed Computing, PODC, July 2006.

[55] J. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone Pro-
tocol: Analysis and Applications. In Advances in Cryptology - EU-
ROCRYPT 2015, pages 281–310, 2015.

[56] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovič, and D.-A.
Seredinschi. The consensus number of a cryptocurrency. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC ’19, pages 307–316, 2019.

[57] S. Gupta. A non-consensus based decentralized financial transaction
processing model with support for efficient auditing. 2016.

[58] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang.
Syst., 13(1):124–149, January 1991.

[59] C. Hou, M. Zhou, Y. Ji, P. Daian, F. Tramer, G. Fanti, and
A. Juels. Squirrl: Automating attack discovery on blockchain incen-
tive mechanisms with deep reinforcement learning. arXiv preprint
arXiv:1912.01798, 2019.

[60] C. Hua, S. X. Ding, and Y. A. Shardt. A new method for fault tolerant
control through q-learning. IFAC-PapersOnLine, 51(24):38 – 45, 2018.
10th IFAC Symposium on Fault Detection, Supervision and Safety for
Technical Processes SAFEPROCESS 2018.

[61] J. Huang, M. Patwary, and G. Diamos. Coloring big graphs with
alphagozero. arXiv preprint arXiv:1902.10162, 2019.

[62] J. G. Kemeny. Mathematics without Numbers. Daedalus, 88(4):577–
591, 1959.

[63] J. G. Kemeny and J. L. Snell. Mathematical models in the social
sciences. Introductions to higher mathematics. Blaisdell, Waltham
(Mass.), 1962.

[64] M. G. Kendall. A New Measure of Rank Correlation. Biometrika,
30(1/2):81–93, 1938.

BIBLIOGRAPHY 113

[65] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combi-
natorial optimization algorithms over graphs. In Advances in Neural
Information Processing Systems, pages 6348–6358, 2017.

[66] L. Kiffer, R. Rajaraman, and a. shelat. A better method to ana-
lyze blockchain consistency. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS, pages
729–744, 2018.

[67] V. King and J. Saia. Byzantine Agreement in Polynomial Expected
Time. In Proceedings of the Forty-fifth Annual ACM Symposium on
Theory of Computing, STOC ’13, 2013.

[68] V. King and J. Saia. Faster Agreement via a Spectral Method for De-
tecting Malicious Behavior. In Proceedings of the Twenty-fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, 2014.

[69] V. King and J. Saia. Byzantine Agreement in Expected Polynomial
Time. J. ACM, 63(2), March 2016.

[70] V. King and J. Saia. Correction to byzantine agreement in expected
polynomial time, JACM 2016. CoRR, abs/1812.10169, 2018.

[71] W. Kool, H. Van Hoof, and M. Welling. Attention, learn to solve
routing problems! arXiv preprint arXiv:1803.08475, 2018.

[72] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Prob-
lem. ACM Transactions on Programming Languages and Systems,
4(3):382–401, July 1982.

[73] J. Lee, J. Won, and J. Lee. Crowd simulation by deep reinforcement
learning. In Proceedings of Motion, Interaction and Gamesm Limassol,
Cyprus, November 8-10, 2018.

[74] C. Li, P. Li, D. Zhou, W. Xu, F. Long, and A. Yao. Scaling nakamoto
consensus to thousands of transactions per second. arXiv preprint
arXiv:1805.03870, 2018.

[75] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling Distributed
Machine Learning with the Parameter Server. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’14, page 583–598, 2014.

BIBLIOGRAPHY 114

[76] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication
Efficient Distributed Machine Learning with the Parameter Server. In
Advances in Neural Information Processing Systems 27, pages 19–27.
Curran Associates, Inc., 2014.

[77] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. E. Gonzalez, M. I. Jordan, and I. Stoica. RLlib: Abstractions for
distributed reinforcement learning. In International Conference on
Machine Learning (ICML), 2018.

[78] M. C. Loui and H. H. Abu-Amara. Memory requirements for agree-
ment among unreliable asynchronous processes. Advances in Comput-
ing research, 4(163-183):31, 1987.

[79] D. Malkhi, M. Merritt, M. Reiter, and G. Taubenfeld. Objects Shared
by Byzantine Processes. In Distributed Computing, pages 345–359,
2000.

[80] K. O. May. A Set of Independent Necessary and Sufficient Conditions
for Simple Majority Decision. Econometrica, 20(4):680–684, 1952.

[81] D. Melnyk, J. Möller, L. Rakic, O. Richter, and R. Wattenhofer. Asyn-
chronous byzantine agreement with reinforcement learning. unpub-
lished manuscript, 2020.

[82] D. Melnyk, Y. Wang, and R. Wattenhofer. Byzantine Preferential
Voting. InWeb and Internet Economics (WINE), pages 327–340, 2018.

[83] D. Melnyk, Y. Wang, and R. Wattenhofer. Towards the impossibility
of a byzantine shared coin. unpublished manuscript, 2020.

[84] D. Melnyk and R. Wattenhofer. Byzantine Agreement with Interval
Validity. In 37th Annual IEEE International Symposium on Reliable
Distributed Systems, SRDS, 2018.

[85] D. Melnyk and R. Wattenhofer. The Append Memory Model: Why
BlockDAGs Excel Blockchains. In 32nd ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), Philadelphia, Penn-
sylvania, USA, July 2020.

[86] H. Mendes and M. Herlihy. Tight Bounds for Connectivity and Set
Agreement in Byzantine Synchronous Systems. In 31st International
Symposium on Distributed Computing (DISC 2017).

BIBLIOGRAPHY 115

[87] H. Mendes and M. Herlihy. Multidimensional Approximate Agreement
in Byzantine Asynchronous Systems. In Proceedings of the Forty-fifth
Annual ACM Symposium on Theory of Computing, STOC, 2013.

[88] H. Mendes, M. Herlihy, N. Vaidya, and V. K. Garg. Multidimensional
agreement in Byzantine systems. Distributed Computing, 28(6):423–
441, 2015.

[89] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault. The hidden
vulnerability of distributed learning in byzantium. arXiv preprint
arXiv:1802.07927, 2018.

[90] F. B. Mismar and B. L. Evans. Deep q-learning for self-organizing
networks fault management and radio performance improvement. 2018
52nd Asilomar Conference on Signals, Systems, and Computers, Oct
2018.

[91] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller. Playing atari with deep rein-
forcement learning. CoRR, abs/1312.5602, 2013.

[92] A. Mostefaoui, H. Moumen, and M. Raynal. Signature-free Asyn-
chronous Byzantine Consensus with t < n/3 and O(n2) Messages. In
Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing, PODC ’14, pages 2–9, 2014.

[93] S. Nakamoto and A. Bitcoin. A peer-to-peer electronic cash system.
2008.

[94] K. Nakashima, S. Kamiya, K. Ohtsu, K. Yamamoto, T. Nishio, and
M. Morikura. Deep reinforcement learning-based channel allocation
for wireless lans with graph convolutional networks. arXiv preprint
arXiv:1905.07144, 2019.

[95] OpenAI. Gym. https://github.com/openai/gym, Dec. 2019.

[96] OpenAI. Stable-baselines. https://github.com/hill-a/stable-
baselines, Dec. 2019.

[97] V. Pareto. Manuale di Economia Politica con una Introduzione alla
Scienza Sociale. Società Editrice Libraria, 1919.

[98] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain pro-
tocol in asynchronous networks. In Advances in Cryptology – EURO-
CRYPT, pages 643–673, 2017.

https://github.com/openai/gym
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

BIBLIOGRAPHY 116

[99] R. Pass and E. Shi. Rethinking large-scale consensus. In 2017 IEEE
30th Computer Security Foundations Symposium (CSF), pages 115–
129, August 2017.

[100] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the
Presence of Faults. Journal of the ACM, 27(2):228–234, April 1980.

[101] T. Pierrot, G. Ligner, S. E. Reed, O. Sigaud, N. Perrin, A. Laterre,
D. Kas, K. Beguir, and N. de Freitas. Learning compositional neural
programs with recursive tree search and planning. In Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, 8-14 December
2019, Vancouver, BC, Canada, pages 14646–14656, 2019.

[102] S. A. Plotkin. Sticky bits and universality of consensus. In Proceedings
of the Eighth Annual ACM Symposium on Principles of Distributed
Computing, PODC, pages 159 – 175, 1989.

[103] R. D. Prisco, D. Malkhi, and M. Reiter. On k-Set Consensus Prob-
lems in Asynchronous Systems. IEEE Transactions on Parallel and
Distributed Systems, 12(1), 2001.

[104] A. D. Procaccia, J. S. Rosenschein, and G. A. Kaminka. On the ro-
bustness of preference aggregation in noisy environments. In Proceed-
ings of the 6th international joint conference on Autonomous agents
and multiagent systems, page 66, 2007.

[105] M. O. Rabin. Randomized byzantine generals. In 24th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1983), pages 403–409,
November 1983.

[106] L. Ren. Analysis of nakamoto consensus. IACR Cryptology ePrint
Archive, page 943, 2019.

[107] RLlib. Ray. https://github.com/ray-project/ray, May 2020.

[108] M. Saks, N. Shavit, and H. Woll. Optimal time randomized consen-
sus – making resilient algorithms fast in practice. In Proceedings of
the Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’91, pages 351–362. Society for Industrial and Applied Mathe-
matics, 1991.

[109] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural net-
works and tree search. nature, 529(7587):484, 2016.

https://github.com/ray-project/ray

BIBLIOGRAPHY 117

[110] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering the
game of go without human knowledge. Nature, 550(7676):354–359,
2017.

[111] Y. Sompolinsky and A. Zohar. Secure High-Rate Transaction Process-
ing in Bitcoin. In Financial Cryptography and Data Security, pages
507–527, 2015.

[112] T. Srikanth and S. Toueg. Simulating Authenticated Broadcasts to
Derive Simple Fault-Tolerant Algorithms. Distributed Computing,
2(2):80–94, June 1987.

[113] Stable-Baselines. https://colab.research.google.com/drive/1L_
IMo6v0a0ALK8nefZm6PqPSy0vZIWBT#scrollTo=mPXYbV39DiCj, Dec.
2019.

[114] D. Stolz and R. Wattenhofer. Byzantine Agreement with Median Va-
lidity. In 19th International Conference on Priniciples of Distributed
Systems, OPODIS, 2015.

[115] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[116] N. Tideman. The Single Transferable Vote. Journal of Economic
Perspectives, 9(1):27–38, 1995.

[117] S. Toueg. Randomized Byzantine Agreements. In Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Comput-
ing, PODC, August 1984.

[118] L. Tseng. Voting in the presence of byzantine faults. In 2017 IEEE
22nd Pacific Rim International Symposium on Dependable Computing
(PRDC), January 2017.

[119] R. Turpin and B. A. Coan. Extending binary Byzantine agreement to
multivalued Byzantine agreement . Information Processing Letters ,
18(2):73 – 76, February 1984.

[120] N. H. Vaidya and V. K. Garg. Byzantine Vector Consensus in Com-
plete Graphs. In Proceedings of the 2013 ACM Symposium on Prin-
ciples of Distributed Computing, PODC, 2013.

[121] A. van Zuylen and D. P. Williamson. Deterministic Algorithms for
Rank Aggregation and Other Ranking and Clustering Problems, pages
260–273. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

https://colab.research.google.com/drive/1L_IMo6v0a0ALK8nefZm6PqPSy0vZIWBT#scrollTo=mPXYbV39DiCj
https://colab.research.google.com/drive/1L_IMo6v0a0ALK8nefZm6PqPSy0vZIWBT#scrollTo=mPXYbV39DiCj

BIBLIOGRAPHY 118

[122] C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis,
University of Cambridge, England, 1989.

[123] R. Wattenhofer. Blockchain Science: Distributed Ledger Technology.
CreateSpace Independent Publishing Platform, 2019. third edition.

[124] Z. Xiang and N. H. Vaidya. Relaxed Byzantine Vector Consensus.
In 20th International Conference on Principles of Distributed Systems
(OPODIS 2016).

[125] Z. Xiang and N. H. Vaidya. Brief Announcement: Relaxed Byzantine
Vector Consensus. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA, July 2016.

[126] R. Xu and K. J. Lieberherr. Learning self-game-play agents for com-
binatorial optimization problems. In Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019, pages 2276–
2278. International Foundation for Autonomous Agents and Multia-
gent Systems, 2019.

[127] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett. Defending against
saddle point attack in byzantine-robust distributed learning. arXiv
preprint arXiv:1806.05358, 2018.

[128] W. Zhang and T. G. Dietterich. Solving combinatorial optimization
tasks by reinforcement learning: A general methodology applied to
resource-constrained scheduling. Journal of Artificial Intelligence Re-
seach, 1:1–38, 2000.

Index

ABD simulation, 14, 70
absolute timestamps, 74
absolute timestamps algorithm, 74
agreement, 6
agreement with chains, 76
agreement with chains algorithm,

76
agreement with DAGs, 78, 79
agreement with DAGs algorithm,

79
all-same validity, 6, 33, 38
anonymous voting rule, 41
any-input validity, 6, 33
append memory, 18, 58–60
append simulation, 71
Arrow impossibility, 43
asynchronous agreement, 10, 60
asynchronous communication, 5
asynchronous nodes, 6

Ben-Or algorithm, 11
binary preference profile, 50
bivalent configuration, 63, 68
blackboard broadcast, 85, 86
blackboard model, 21, 84
box validity, 37, 38
Byzantine agreement, 4

computation, 62

Condorcet cycle, 44
configuration, 61
consensus protocol, 61
correct-input validity, 6

deep reinforcement learning, 92
detectability, 88
dictatorial voting rule, 42

fair coin, 93, 95
FIFO reliable broadcast, 84
FLP impossibility, 10

global coin, 11

independence of irrelevant alter-
natives (IIA), 42

interactive consistency, 7
interval validity, 24, 33

k-th smallest value, 25, 28
k-th smallest value algorithm, 29,

30
Kemeny median, 47
Kemeny median algorithm, 55
Kemeny median approximation, 48,

54
Kemeny rule, 17, 47
Kendalls τ distance, 47

119

INDEX 120

king algorithm, 8

majority voting rule, 41
May’s theorem, 42
median, 25, 35
median algorithm, 36
message complexity, 7
message passing, 7, 10

neutral voting rule, 41
non-binary preference profile, 51

Pareto validity, 43, 44, 47, 56
Pareto validity algorithm, 45
positive responsiveness, 41
predefined coin, 93, 95

Q-learning, 92

randomized memory access, 60, 73
read simulation, 71
reinforcement learning, 91
reliable broadcast, 9

self-play, 97, 100
shared coin, 12, 14, 21
shared memory, 13, 14, 58
social choice function, 41
social welfare function, 42
synchronous agreement, 7, 67
synchronous communication, 5
synchronous nodes, 6, 69
synchronous nodes algorithm, 69

termination, 6
time complexity, 7
tournament graph, 49

validity, 6, 24, 37
vector consensus, 37
vector consensus algorithm, 38

weak agreement, 6, 77

weak Pareto, 43
weak termination, 6
weak validity, 6

	Introduction
	Preliminaries
	Introduction to Byzantine Agreement
	Chapter Overview and Related Work

	Interval Validity
	Model
	Lower Bound for the kth Smallest Value
	Algorithm for the kth Smallest Value
	From the kth Smallest Value to the Median
	Vector Consensus
	Discussion

	Byzantine Preferential Voting
	Background and Motivation
	Algorithm for Pareto Validity
	Kemeny Median with Byzantine Nodes
	Discussion

	The Append Memory Model
	Model
	Asynchronous Deterministic Consensus
	Consensus with Synchronous Nodes
	Simulation via Message Passing
	Append Memory with Randomized Access
	Discussion

	Asynchronous BA & DRL
	Blackboard Broadcast
	BA with Reinforcement Learning
	Byzantine Agreement with Self-Play
	Discussion

	Conclusion

