
From Web to Map: Exploring the World of Music

Olga Goussevskaia
ETH Zurich, Switzerland

golga@tik.ee.ethz.ch

Michael Kuhn
ETH Zurich, Switzerland
kuhnmi@tik.ee.ethz.ch

Michael Lorenzi
ETH Zurich, Switzerland
mlorenzi@student.ethz.ch

Roger Wattenhofer
ETH Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract

Ever growing music collections ask for novel ways of or-
ganization. The traditional browsing of folder hierarchies
or search by title and album tends to be insufficient to main-
tain an overview of a collection of orders of thousands of
tracks. Methods based on song similarity offer an alterna-
tive to keyword-based search. In this work we propose to
use a high-dimensional map of the “world of music” as a
data structure for music retrieval and exploration of per-
sonal collections. Our approach does not require expensive
analysis of audio signals and scales to hundreds of thou-
sands of tracks. The techniques presented in this work can
be used in a variety of applications, ranging from automatic
DJs to file sharing on mobile devices. As a concrete exam-
ple, we have developed a web-application that allows users
to visualize and navigate through their music collections
and create playlists by specifying trajectories.

1. Introduction

It is widely accepted that media usage is changing

rapidly these days. This process has been ignited by sev-

eral technological advances, in particular, the availability of

broadband internet, the world wide web, affordable mass

storage, and high-quality media formats, such as mp3. All

this enabled the digital music revolution about 10 years ago.

Many music lovers have now accumulated collections of

music that have reached sizes that make it hard to main-

tain an overview of the data by just browsing hierarchies of

folders and searching by song title or album. Search meth-

ods based on song similarity offer an alternative, allowing

users to abstract from manually assigned metadata, such as,

frequently imprecise or incorrect, genre information. In a

context where music collections grow and change rapidly,

the similarity-based organization has also the advantage of

providing easy navigation and retrieval of new items, even

without knowing the new songs by name. Moreover, it al-

lows personal collections to be seen not just as isolated lists,

but positioned in the global context of the “world of music”,

i.e., to relate personal music collections to larger collections

and newly-released music. This opens possibilities, such

as sophisticated recommendations, context-aware retrieval,

and discovery of new genres and tendencies.1

This work introduces the concept of a Euclidean map as

a basic data structure for music exploration and retrieval.

In contrast to existing approaches that go into similar di-

rections, the primary goal of our map is not visualization.

Rather, it aims at adequately reflecting, and compactly rep-

resenting similarity between songs and genres. Besides

providing intuitive examples, such as pictures of the map,

neighborhood lists of songs, and sample playlists, we also

provide a quantitative analysis of how well this map cap-

tures music similarity. We show, for example, that neither

two nor three, but rather ten or more dimensions are re-

quired to appropriately map the world of music.

We describe a 3-step process to derive such a map from

the information contained in the music community site

last.fm: First, we estimate song-to-song similarities using

collaborative filtering techniques. Second, we construct a

graph (the web of music) from these pairwise similarity val-

ues. Third, we map the graph to Euclidean space while

approximately preserving distances. For the last step, we

introduce a novel technique (called iterative embedding),

which improves on existing algorithms. The result is a map

comprised of more than 400K songs—an application foun-

dation, which to the extent of our knowledge is more com-

prehensive than other existing approaches.

We will sketch a multitude of possible application sce-

narios of such a map, covering music retrieval, explo-

1All this holds for media in general, not only for music. However, we

believe that music will again be at the forefront of development, as visual

media often experiences additional technological challenges.

ration and organization. To make things more concrete, we

have implemented a web application to illustrate some of

these functionalities. A working prototype is available at

www.musicexplorer.org.

2. Related Work

Music similarity has been addressed in numerous stud-

ies, and only a small subset of them is mentioned here.

There are three main strategies to obtain similarity informa-

tion: audio content analysis [11, 15, 18, 19, 20], metadata

analysis [2, 21, 22, 23], and collaborative filtering [4, 24].

Manually created metadata and audio content features

are usually difficult and expensive to obtain. Although

there are projects aiming at constructing publicly available

databases with detailed metadata of large amounts of music

titles, e.g. freedb.org, most of the existent approaches

present experiments on datasets of size ranging between 2K

and 20K titles [2, 15, 19, 20, 21, 23]. An example of exper-

iments on a bigger dataset is presented in [22].

Similarity measures based on collaborative filtering typ-

ically explore publicly available usage information and,

therefore, are more scalable. In [24] a similarity mea-

sure based on co-occurrence of songs in professional radio

streams is proposed. The final similarity values are then di-

rectly queried from a graph with 60.5K nodes, which, in

contrast to our map-approach, is not suitable for hardware-

constrained devices. Another example of applying user-

based similarity information can be found in [4].

The evaluation of music similarity methods can be

roughly classified in acoustic-based [1, 16, 19] and “sub-

jective” [3, 6, 21, 22]. Acoustic analysis is an objective

measure, however, it does not necessarily reflect the per-

ception of the listeners. A comprehensive comparison of

acoustic and subjective measures is presented in [3], which

indicates that deriving music similarity from co-occurrence

in personal music collections is the most reliable approach.

The visualization of music collections has been ad-

dressed in [11, 18]. Both approaches use self-organizing

maps and define similarity based on audio feature extrac-

tion. The work in [11] focused on creating a virtual real-

ity experience, as opposed to managing music repositories.

In [18], an interactive map to organize music collections on

mobile devices is presented. It differs from our approach in

that their map is audio-feature-based (as opposed to social-

oriented), and, similarly as [11], misses the advantages of

high-dimensional spaces in terms of accuracy.

Playlist generation has been addressed in a variety of

ways, such as by using traveling salesman algorithms [21],

by exploring graph neighborhoods [24], or by analysing

skipping behavior [20]. The idea of using trajectories on

a map to construct playlists with smooth transition was ex-

plored in [18] and [22]. Audioscrobbler, finally, uses col-

laborative filtering to recommend playlists. Our method

differs from the mentioned approaches in that it scales to

a larger universe of tracks, allows distributed operation on

hardware-constrained devices, and/or takes advantage of

high dimensional space to improve the quality of the simi-

larity measure. In [8] we developed a proof-of-concept mo-

bile application that incorporates these features and demon-

strates their usefulness in the outlined application scenarios.

3. From Perception to Web

To obtain similarity values between songs we rely on col-

laborative filtering techniques. The fact that two items are

related because they frequently co-appear in usage data has

shown to work well in previous studies [12, 13, 14]. Simi-

lar to how Amazon uses the fact that two items are related

because they have been purchased by the same person, we

assume that two songs are related if they are frequently lis-

tened to by the same user. We have gathered the required us-

age information from last.fm2, which is a music-community

site that counts over 20 million users, and records each

user’s listening patterns. In particular, for each user, the

50 most frequently listened songs can be queried. We will

refer to these lists as top-50 lists. We have crawled more

than 290K of these lists that contain a total of more than

1.5 million distinct songs. We assume that songs that co-

appear in such a list exhibit some degree of relatedness, in

the same way as items that are bought by the same person

do. Observe that exceptions to this rule are typically ran-

dom. I.e., it is about equally likely that a person listens to

Bach and U2, as it is that a person listens to Bach and Em-

inem. In the co-occurrence analysis, such “errors” therefore

result in random noise, which does not significantly affect

the outcome.

Observe that simply counting the number of co-

occurrences of two songs to calculate the pairwise similar-

ities overestimates the similarity of popular songs, as they

clearly have a higher probability of appearing in the same

top-50 list (due to their high number of individual occur-

rences). To overcome this problem, some sort of normal-

ization is required. Several coefficients have been proposed

that address this issue [17]. We have compared the per-

formance of cosine, dice, jaccard and overlap coefficients,

and found that the cosine coefficient performs best in our

setting. The cosine coefficient is defined as ni,j/
√

ninj ,

where ni denotes the number of occurrences of song i, and

ni,j is the number of co-occurrences of songs i and j.

Applying the inverse of the cosine measure (1/c) to all

pairs of songs results in a graph that contains an edge be-

tween any two songs that appear together in at least one

top-50 list. To get rid of random effects any edges origi-

2http://www.last.fm

nating from a co-occurrence value of less than 2 have been

removed. This step also eliminates any songs that occurred

only once. Even after this step, the graph is extremely big,

making it difficult to handle. Therefore, it has been spars-

ened using an edge weight threshold, which was defined

such that the overall connectivity (i.e. the size of the largest

connected component) was only marginally affected. The

result is a graph G which contains n = 430, 000 nodes and

m = 6, 300, 000 edges. Using this graph, the similarity

between songs is approximately given by the shortest path

between them.

4. From Web to Map

Due to the large size of our “web of music” even simple

operations, such as shortest-path calculations, are computa-

tionally expensive. In order to efficiently use such a large

graph in (possibly mobile or distributed) applications, we

go one step further and create the “map of music”, which

is an embedding of the graph into a Euclidean space. An

embedding is the assignment of coordinates to each node of

the graph. In our case, the goal is to approximately preserve

all pairwise distances. That is, an assignment of coordinates

is sought, such that the ratio dG(i, j)/dE(i, j) between the

graph distance dG and the embedding distance dE is ap-

proximately one for all node pairs (i, j) ∈ G.

To compute the similarity between two songs based on a

graph demands for a costly shortest path calculation if the

songs do not happen to be neighbors.3 This shortest path

evaluation does not only imply long calculation times but

also exhibits an extremely high memory footprint. Having

an embedding, the (Euclidean) distance between songs can

directly be computed from their coordinates, i.e. in O(1)
time and with O(1) memory consumption. No information

about any other songs or structures is required. Embed-

dings are thus particularly well suited for distributed and

mobile applications. Moreover, an embedding exhibits sev-

eral functional advantages, such as notion of direction, or

the possibility to span volumes. A more detailed discussion

of these advantages is provided in Section 5.

Most state-of-the-art algorithms for graph embedding

are not well suited for large graphs. Already a complexity of

O(n2) exceeds memory or computation time limits. How-

ever, there exist methods that overcome these problems. Ex-

amples are the MIS-filtration algorithm of Gajer et al. [7],

the high-dimensional embedding approach [9], or the land-

mark MDS algorithm (LMDS) [5].

We have decided to use LMDS, as it is not only fast4

3Observe that songs are typically not direct neighbors, as the graph

needs to be sparse. Non-sparse graphs, with, say Θ(n2) edges are too big

to be stored.
4The time complexity of LMDS is O(nld+ l3), where n is the number

of vertices, l the number of landmarks, and d the number of dimensions.

but also exhibits other appealing properties. First, the re-

sult closely resembles the widely used MDS embedding.

Second, adjusting the number of landmarks follows a time-

quality trade-off that allows to well adapt the resulting em-

bedding to the application’s needs. Third, LMDS behaves

well in dynamic settings. New nodes can be added to the

embedding by placing them according to their distances to

the landmark nodes, without changing the existing coordi-

nates.5 We improve on the basic LMDS algorithm by intro-

ducing the idea of iterative embedding, which will be dis-

cussed next.

4.1. Iterative Embedding

Iterative embedding is a major ingredient to the process

of mapping our music graph into a Euclidean space. The

basic idea is to successively improve the embedding using

a feedback loop that estimates the correctness of links us-

ing the coordinates calculated in the previous round. The

basic technique applies to any sort of embedding algorithm.

However, it assumes that the underlying data exhibits some

randomness in its link structure, i.e., that some links erro-

neously shortcut certain paths. This property is generally at-

tributed to small-world networks. Both the model of Watts

and Strogatz [26] and the model of Kleinberg [10] for such

graphs base on this kind of edges. We expect the music

graph to exhibit such characteristics, much like other natu-

rally grown graphs, such as social networks, the WWW, or

the graph of Wikipedia articles.

First the embedding algorithm is applied to the graph, re-

sulting in a set of coordinates. Based on these coordinates,

the fraction f of edges with maximum stress is removed.

For our experiments we assumed that random edges get

particularly long, meaning the stress increases as the ratio

dE/dG increases (other stress functions might be defined

for other settings). Identifying (and removing) this fraction

f of edges can be done in O(m log(m)) time. Next, a new

set of coordinates is calculated by embedding the graph af-

ter edge removal. This process is repeated k times, where

k should be chosen such, that f · k approximately matches

the expected number of random edges. Moreover, f should

not be chosen too large, as this might result in wrong edges

being removed. The effect of iterative embedding (f = 0.3)

on a 20×20 Kleinberg graph (grid augmented with random

edges) is illustrated in Figure 1.

For the Kleinberg graph we used a spring embedding

method that is supposed to be well suited for small-world

networks (based on ideas from [25]). However, the iterative

approach is generic and works in conjunction with any em-

bedding method. The effect of iterative embedding on the

music graph is illustrated in the following section.

5This only works as long as the new nodes do not significantly affect

existing graph distances.

(a) Output of the original

spring embedding algorithm.

(b) After 6 rounds.

(c) After 12 rounds. (d) After 30 rounds.

Figure 1. Iterative Embedding on the Kleinberg
Graph: The original algorithm (a) cannot re-
construct the underlying grid. After 30 itera-
tions, however, the grid structure can clearly
be seen (f).

4.2. Evaluation of the Resulting Map

To evaluate the quality of our embedding we used the

genre information available at the allmusic website6. All-
music is one of the largest music databases available on the

Web. It provides a 3-level hierarchy of more than 700 music

genres, as well as lists of “representative songs” assigned

to each genre, as illustrated in Figure 2. This genre infor-

mation is manually edited by community experts. We were

able to match approximately 7000 songs between the allmu-
sic and the last.fm databases. We used this subset of songs

with known genre information in our experiments.

We define the distance dS of two genres in this hierarchy

as the level of their least common ancestor (LCA). Based

on the hierarchy, and this distance definition we can define

two quality measures:

(1) Distance comparison QL: The more distant two

songs are in the genre hierarchy, the larger their distance

should also be in the Euclidean space. QL thus summa-

rizes the average similarity increase as a function of genre

distance:

QL =
1

HS
·

∑
h∈{0...HS−1}

(
d̄h+1 − d̄h

d̄h

)
, (1)

6http://www.allmusic.com

Genre

GenreS2

S1

Rock

Hard Rock

Heavy Metal

Representative songs

Representative songs

LCA(S1,S2)

Level 3

Level 2

Level 1

Level 0

Figure 2. Music Taxonomy: Example of a
genre hierarchy. The distance between two
genres is the level of their LCA. E.g. two
songs i and j belonging to genres s1 and s2
have genre distance dS(i, j) = 2.

Figure 3. Embedding smoothness QR

where d̄h is the average similarity of pairs of items (i, j)
that have genre distance dS(i, j) = h. We thereby assume

that the similarity of unrelated songs is (typically) overesti-

mated, such that higher values of QL indicate better quality.

(2) Embedding smoothness QR: A good embedding

should cluster songs of similar genres together. In partic-

ular, for each genre there should exist only one cluster, and

we expect these clusters to have convex shape. Therefore,

a straight line between two random points (or songs) i and

j in the embedding should reflect a gradual and systematic

genre transition from i to j, as illustrated in Figure 3. An

ideal gradual transition means that, once the line has crossed

a cluster of a genre, it does not intersect the same or another

cluster of this genre. The measure counts the number of

violations of this rule, i.e. it counts how often an already

visited genre reoccurs on a random straight line:

QR = avg(#re-occurrences on a random line). (2)

To implement QR, the line between two random songs

is sampled at 50 uniformly distributed points. To each of

these points, the genre of the closest song is assigned.

We applied iterative embedding to the music graph

in conjunction with LMDS and estimated the improve-

ment over pure LMDS using the distance-comparison qual-

ity measure QL, defined in (1). The result for an 10-

dimensional embedding on 430K nodes, with parameter

f = 0.5%, is illustrated in Figure 4(a). The figure shows

a continuous quality improvement up to approximately iter-

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0 10 20 30 40 50 60

Q
L

q
u
a
l
i
t
y

m
e
a
s
u
r
e

Number of rounds

(a) Quality improvement using iter-

ative embedding.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2 4 6 8 10 12 14 16 18 20

Q
R

q
u
a
l
i
t
y

m
e
a
s
u
r
e

Number of dimensions

(b) Improvement of the embed-

ding smoothness QR with increas-

ing number of dimensions.

Figure 4. Map creation: Quality analysis.

ation 30. We expect that at this point most of the random

edges have been removed. Further iterations thus result in

the removal of relevant edges and hence in a reduced em-

bedding quality.

Figure 5 visualizes the main genre clusters of the em-

bedding before and after 30 iterations. To be able to vi-

sualize the clusters, the embedding was projected into a 3-

dimensional space (by taking the first three dimensions of

each coordinate). The center of each cluster (ellipse) was

placed at the center of mass of songs belonging to the cor-

responding genre. The ellipse’s axes (“diameters”) were set

to half the value of standard deviation in each of the three

dimensions. It can be seen that after the iterative embed-

ding is applied, different clusters are better separated (even

in three dimensions). In 5(a) one can see that “Blues” and

“Rock”, as well as “Jazz” and “World” clusters (and “R&B”

and “Rap”) are merged, whereas in 5(b) these pairs of clus-

ters are clearly separated. Although this visualization is lim-

ited due to dimensionality reduction, it serves as an addi-

tional indicator of the improvement achieved with iterative

embedding. Moreover, it illustrates the good overall quality

of the embedding.

Note that the dimensionality of the target space signif-

icantly affects the quality of an embedding and follows

a trade-off: The more dimensions the lower the distor-

tion of the embedding becomes. However, a larger num-

ber of dimensions implies higher memory and computing

time requirements for an application that operates on the

coordinates. In an attempt to find the optimal number of

dimensions for our purposes, we have used the embed-

ding smoothness quality measure, defined in (2), as it best

matches the objectives of our application. Figure 4(b) re-

veals that increasing the dimensionality significantly im-

proves the quality up to approximately 10D. This is in con-

trast to previous work that focuses on embedding in at most

three dimensions and aims exclusively at visualization.

Note that the axes of the resulting Euclidean space are

not assigned any semantical meaning, in contrast to con-

ventional notion of an axis being associated to some prop-

Electronica

World

RockBlues

R & B

Rap

Country

Jazz

(a) Output of the original LMDS algorithm.

Electronica

World

Country

Rock

Blues

Jazz

R & B

Rap

(b) After 30 rounds of iterative embedding.

Figure 5. Non-iterative LMDS (a) is unable to
separate the genre clusters, whereas after 30
rounds of iterative embedding, the clusters
become clearly disjoint.

erty, such as force or time. Table 1 illustrates the 10-

neighborhood of two songs. The fact that the closest neigh-

bors of each song belong to the same artist or to very similar

artists shows that (1) the co-occurrence measure is in fact

able to find similar items, and (2) that the step from web

to map was successful, i.e. that the Euclidean map groups

similar items together.

5. Applications

Working on an embedding rather than on a graph exhibits

several performance advantages, as has been discussed in

Section 4. Applications can also profit from new function-

alities, enabled by elements defined in a Euclidean space,

such as trajectories, volumes and the notion of direction.

These elements constitute the building blocks for an appli-

cation. A good embedding places songs in the Euclidean

space such that similar songs are grouped together. There-

fore, regions in space can be typically associated with cer-

tain music properties, such as genre, age group, or rhythm.

When a user’s personal collection of songs is mapped to

this “space of music”, the region(s) it occupies can be com-

pactly represented as a volume (or a union of several vol-

umes). Similarly, a volume can be used to define the region
of interest of a user. Trajectories, on the other hand, allow

Pink Floyd (Time) Miles Davis (So What)
Pink Floyd (On the Run) Horace Silver (Song For My...)

Pink Floyd (Any Colour...) Bill Evans (All of You)

Pink Floyd (The Great G...) Miles Davis (Freddie Fre...)

Pink Floyd (Eclipse) Nat King Cole (The More I...)

Pink Floyd (Us and Them) Miles Davis (So Near)

Pink Floyd (Brain Damage) Miles Davis (Flamenco Sk...)

Pink Floyd (Speak to Me) Charles Mingus (Eat That Ch...)

Pink Floyd (Money) Jimmy Smith (On the Sunny...)

Pink Floyd (Breathe) Julie London (Daddy)

Pink Floyd (One of These...) Bill Evans (My Man’s Gone...)

Table 1. Closest neighbors of Time (Pink
Floyd) and So What (Miles Davis)

to smoothly interpolate between songs or regions. Finally,

using sense of direction allows to extrapolate such trajecto-

ries. Given a sequence of songs, we can define how this list

could be extended.

As a concrete example we next present Music Ex-
plorer—a web tool, available at www.musicexplorer.org that

serves as a proof of concept of the presented ideas. After-

wards, we discuss several application scenarios that further

motivate the ideas presented in this work.

5.1. Music Explorer

Music Explorer is an ongoing project that aims to as-

sist users in exploring the world of music in general, and

their own music in particular (see Figure 6). At the time of

writing, two main features have been implemented: playlist
generation and visualization. It is equally possible to op-

erate on the entire database (i.e. the roughly 430K songs

contained in the embedding), as well as on the personal col-

lection of songs, uploaded from the user’s machine.

To allow for an intuitive browsing of a collection, Music
Explorer provides a visualization in 2D space. This space

clearly exhibits a loss in accuracy as compared to the origi-

nal 10D embedding (recall Figure4(b)). In particular, points

that were originally far away can become close (and might

even overlap) when projected into a 2D plane. However, the

World of Music
Map

Songs from the user’s PC

Visualization
Playlists
Recommendations

Provide
Coordinates

Upload
Own

Collection

Figure 6. Music Explorer: www.musicexplorer.org

Figure 7. Music Explorer: visualization of a
user’s collection in 2D.

result is an intuitively understandable representation, which

we believe justifies this loss in accuracy when it comes to

merely browsing a collection.

As a result of the applied LMDS embedding algorithm

and the underlying principal component analysis, the first

two dimensions of the embedding contain most informa-

tion. The reduction from 10 to 2 dimensions thus becomes

trivial—we take the first two coordinates of the 10D space.

To account for the restricted monitor size, we allow to

zoom in and out of the map. Thereby, from top to bottom

level of zooming, tracks are displayed in order of decreasing

popularity. To ease navigation even at high zoom-levels,

we further provide a satellite view that shows the current

position with respect to the entire map. Figure 7 shows a

screenshot of the visualization in Music Explorer.

Playlists can be created by selecting a start and an end

song on the map (note that although the visualization is

done in 2D, playlists are created in 10D). Playlist gener-

ation is a direct application of trajectories: by following a

straight line between start and end songs and by considering

additional constraints (e.g. distinct artists only), appropriate

songs are selected, resulting in a playlist of desired size or

duration. Two example playlists are shown in Table 2. It

can be seen that the playlists presents a gradual transition in

genre between the start points (Milestones by Miles Davis,

and Lose Yourself by Eminem) and the end points (You’re
Crazy by Guns N’ Roses, and Toxic by Britney Spears).

5.2. Towards a New World of Music?

Music Explorer is a proof-of-concept application that

does not exploit the full potential of such a map. We be-

lieve that an accurate Euclidean representation of perceived

music similarity can have a big impact on how people deal

with music in the future. We outline some possible direc-

tions to conclude this paper.

Due to the low memory footprint, mobile environments

1. M. Davis (Milestones) 1. Eminem (Lose Yourself)

2. M. Davis (Someday...) 2. Eminem (Stan)

3. J. Coltrane (Wise One) 3. Eminem (Mockingbird)

4. R. Johnson (Kind H...) 4. D. Bedingfield (Gotta Get...)

5. J. Hendrix (Are You...) 5. Nelly (Dilemma ft Kelly...)

6. Queen (Good Old...) 6. Pink (Most Girls)

7. J. Hendrix (Gypsy...) 7. G. Stefani (What You...)

8. AC/DC (Let Me Put...) 8. C. Aguilera (Genie in a...)

9. AC/DC (Givin The...) 9. B. Spears (Breathe on Me)

10. GnR (You’re Crazy) 10. B. Spears (Toxic)

Table 2. Example playlists.

are a typical example that profit from a map. Besides port-

ing the described playlist generation technique to mobile

mp3 players, our map could, for example, also facilitate an

autonomous mobile file sharing application: Whenever two

mobile devices come into connection range (by, e.g., Blue-

tooth), they exchange their users’ regions of interest (de-

fined as volumes) and exchange whatever songs are in the

volume intersection but not available on both devices. The

only information the devices require for such applications

are the coordinates of each song.

In an analogous manner, also peer-to-peer file sharing

systems could profit from a map. Moreover, by monitoring

the transmitted coordinate information, it might be possi-

ble to improve the overlay-network structure in peer-to-peer

systems. An increased routing efficiency is likely to be ob-

served if peers of similar interest (i.e. users that listen to

similar music) get placed close in the overlay network.

A map might also give way for innovations at home.

Instead of selecting artists, albums, or songs, users might

steer their music experience with simple instructions, such

as “play anything hip-hip”, “not this, and not closely related

songs”, or “go towards Detroit house, be there in one hour”.

Finally, the map of music might act as a catalyst for

novel innovations in the entertainment and event industry.

Imagine more comprehensive systems that directly and au-

tonomously interact with the audience. During a party, for

example, the system could receive people’s favorite music

by means of interest regions provided by their mobile de-

vices. Sophisticated devices could provide even more feed-

back. Using motion sensors, for example, they could mea-

sure the fraction of dancers in a given moment. Such in-

formation could then be used to find the optimal mixture of

music for a given audience.

References

[1] J. Aucouturier and F. Pachet. Music Similarity Measures:

What’s the Use? In ISMIR, 2002.

[2] J. Aucouturier and F. Pachet. Scaling up Music Playlist Gen-

eration. In ICME, 2002.

[3] A. Berenzweig, B. Logan, D. P. W. Ellis, and B. P. W. Whit-

man. A Large-Scale Evaluation of Acoustic and Subjective

Music-Similarity Measures. Comput. Music J., 28(2), 2004.
[4] M. R. David Gleich, Leonid Zhukov and K. Lang. The

World of Music: SDP layout of high dimensional data. In

InfoVis, 2005.
[5] V. de Silva and J. B. Tenenbaum. Global versus local meth-

ods in nonlinear dimensionality reduction. In NIPS, 2002.
[6] D. P. W. Ellis, B. Whitman, A. Berenzweig, and

S. Lawrence. The quest for ground truth in musical artist

similarity. In ISMIR, 2002.
[7] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A multi-

dimensional approach to force-directed layouts of large

graphs. Comput. Geom., 29(1), 2004.
[8] O. Goussevskaia, M. Kuhn, and R. Wattenhofer. Exploring

Music Collections on Mobile Devices. In MobileHCI, 2008.
[9] D. Harel and Y. Koren. Graph Drawing by High-

Dimensional Embedding. Graph Drawing.
[10] J. M. Kleinberg. The small-world phenomenon: an algo-

rithm perspective. In STOC, 2000.
[11] P. Knees, M. Schedl, T. Pohle, and G. Widmer. An Innova-

tive Three-Dimensional User Interface for Exploring Music

Collections Enriched with Meta-Information from the Web.

In ACM Multimedia, 2006.
[12] M. Kuhn and R. Wattenhofer. The Theoretic Center of Com-

puter Science. SIGACT News, 38(4), 2007.
[13] M. Kuhn and R. Wattenhofer. The Layered World of Scien-

tific Conferences. In APWeb, 2008.
[14] G. Linden, B. Smith, and J. York. Amazon.com recommen-

dations: Item-to-item collaborative filtering. IEEE Internet
Computing, 7(1), 2003.

[15] B. Logan. Content-based playlist generation: Exploratory

experiments. In ISMIR, 2002.
[16] B. Logan and A. Salomon. A music similarity function

based on signal analysis? In ICME, 2001.
[17] Y. Matsuo, J. Mori, M. Hamasaki, K. Ishida, T. Nishimura,

H. Takeda, K. Hasida, and M. Ishizuka. Polyphonet: an

advanced social network extraction system from the web. In

WWW, 2006.
[18] R. Neumayer, M. Dittenbach, and A. Rauber. PlaySOM

and PocketSOMPlayer, Alternative Interfaces to Large Mu-

sic Collections. In ISMIR, 2005.
[19] E. Pampalk, S. Dixon, and G. Widmer. On the evaluation of

perceptual similarity measures for music. In DAFx, 2003.
[20] E. Pampalk, T. Pohle, and G. Widmer. Dynamic playlist

generation based on skipping behavior. In ISMIR, 2005.
[21] E. Pampalk, T. Pohle, and G. Widmer. Generating

similarity-based playlists using traveling salesman algo-

rithms. In DAFx, 2005.
[22] J. Platt. Fast embedding of sparse music similarity graphs.

In NIPS, volume 16, 2004.
[23] J. Platt, C. Burges, S. Swenson, C. Weare, and A. Zheng.

Learning a Gaussian Process Prior for Automatically Gen-

erating Music Playlists. NIPS, 14.
[24] R. Ragno, C. J. C. Burges, and C. Herley. Inferring similar-

ity between music objects with application to playlist gener-

ation. In MIR, 2005.
[25] F. van Ham, J. van Wijk, and T. Eindhoven. Interactive Vi-

sualization of Small World Graphs. InfoVis.
[26] D. J. Watts and S. H. Strogatz. Nature.

