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abstract
In this article, we study the problem of distributed selection 
from a theoretical point of view. Given a general connected 
graph of diameter D consisting of n nodes in which each 
node holds a numeric element, the goal of a k-selection al-
gorithm is to determine the kth smallest of these elements. 
We prove that distributed selection indeed requires more 
work than other aggregation functions such as, e.g., the 
computation of the average or the maximum of all elements. 
On the other hand, we show that the kth smallest element 
can be computed efficiently by providing both a randomized 
and a deterministic k-selection algorithm, dispelling the 
misconception that solving distributed selection through 
in-network aggregation is infeasible.

1. intRoDuction
There is a recent growing interest in distributed aggregation, 
thanks to emerging application areas such as, e.g., data min-
ing or sensor networks.2,8,23,24 The goal of distributed aggrega-
tion is to compute an aggregation function on a set of distrib-
uted values, each value stored at a node in a network. Typical 
aggregation functions are max, sum, count, average, median, 
variance, kth smallest, or largest value, or combinations thereof 
such as, e.g., “What is the average of the 10% largest values?”

The database community classifies aggregation functions 
into three categories: distributive (max, min, sum, count), al-
gebraic (plus, minus, average, variance), and holistic (median, 
kth smallest, or largest value). Combinations of these func-
tions are believed to support a wide range of reasonable ag-
gregation queries.*

It is well known that distributive and algebraic functions 
can easily be computed using the so-called convergecast 
operation executed on a pre-computed breadth first search 
(BFS) tree: The root of the tree floods a message to the leaves 
of the tree, asking the leaves to start the aggregation. The in-
ner nodes of the spanning tree wait until they have received 
the aggregated data from all their children, apply the aggre-
gation function to their own data and the aggregated data, 
and subsequently forward the aggregation result to their re-
spective parent. Convergecast is fast, as it terminates after at 
most 2DT time, where DT denotes the depth of the spanning 
tree. Note that the depth of a BFS tree is at most the diameter 
D of the original graph G, thus a single convergecast costs 
merely 2D time. An example for such a spanning tree in the 
context of sensor networks is depicted in Figure 1. However, 

it is believed that holistic functions cannot be supported by 
convergecast. After all, the very name “holistic” indicates 
that one “cannot look into” the set of values, more precisely, 
that all the values need to be centralized at one node in order 
to compute the holistic function. Bluntly, in-network aggre-
gation is considered to be practically impossible for holistic 
functions.

For arbitrary k, a selection algorithm answers questions 
about the kth smallest value in a set or network. The special 
case of the k-selection problem where k = n/2 is the well-
known median problem. Generally speaking, selection solves 
aggregation queries about order statistics and percentiles. 
Surprisingly, little is known about distributed (network) se-
lection, although it is critical to the understanding of data 
aggregation.

In this article, we shed some new light on the problem 
of distributed selection for general networks with n nodes 
and diameter D. In particular, we prove that distributed se-
lection is strictly harder than convergecast by giving a lower 
bound of Ω(D logD n) on the time complexity in Section 5. In 
other words, to the best of our knowledge, we are the first 
to formally confirm the preconception about holistic func-
tions being strictly more difficult than distributive or alge-
braic functions. In addition, in Section 4.1, we present a nov-
el Las Vegas algorithm which matches this lower bound with 
high probability, improving the best randomized algorithm. 
As for many networks this running time is strictly below col-
lecting all values at one node, our new upper bound proves 
that (contrary to common belief) in-network aggregation is 
possible also for holistic functions; in fact, in network topol-
ogies where the diameter is large, e.g., in grids or in typical 
wireless sensor networks, selection can be performed with-
in the same asymptotic time bounds as convergecast. As a 
third result, in Section 4.2, we derandomize our algorithm 
and arrive at a deterministic distributed selection algorithm 
with a time complexity of O(D log 2D n) which constitutes a 
substantial improvement over prior art.

2. RelateD WoRK
Finding the kth smallest value among a set of n elements is 
a classic problem which has been extensively studied in the 
past approximately 30 years, both in distributed and non-
distributed settings. The problem of finding the median, 
i.e., the element for which half of all elements are smaller 
and the other half is larger, is a special case of the k-selection 
problem which has also received a lot of attention. Blum 
et al.1 proposed the first deterministic sequential algorithm 
that, given an array of size n, computes the kth smallest ele-
ment in O(n) time. The algorithm partitions the n elements 
into roughly n/5 groups of five elements and determines the 
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 result) query that cannot be formulated by a combination of distributive, 
 algebraic, and holistic functions.
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median element of each group. The median of these n/5 
medians is then computed recursively. While this median 
of medians is not necessarily the median among all n ele-
ments, it still partitions all elements well enough in that at 
least (roughly) 30% of all elements are smaller, and also at 
least 30% are larger. Thus, at least 30% of all elements can 
be excluded and the algorithm can be applied recursively to 
the remaining elements. A careful analysis of this algorithm 
reveals that only O(n) operations are required in total. Sub-
sequently, Schönhage et al.19 developed an algorithm requir-
ing fewer comparisons in the worst-case.

As far as distributed k-selection is concerned, a rich col-
lection of algorithms has been amassed for various models 
over the years. A lot of work focused on special graphs such 
as stars and complete graphs.9,16 The small graph consisting 
of two connected nodes where each node knows half of all n 
elements has also been studied and algorithms with a time 
complexity of O(log n) have been presented.3,15 For determin-
istic algorithms in a restricted model, this result has been 
shown to be tight.15 Frederickson14 proposed algorithms for 
rings, meshes, and also complete binary trees whose time 
complexities are O(n), O( n ) , and O(log3n), respectively.

Several algorithms, both of deterministic12,13,20 and proba-
bilistic nature,17,18,20 have also been devised for arbitrary con-
nected graphs. Some of these deterministic algorithms re-
strict the elements the nodes can hold in that the maximum 
numeric item xmax has to be bounded by O(nO(1)). Given this 
constraint, applying binary search results in a time complex-
ity of O(D log xmax) = O(D log n).13 Alternatively, by exponen-
tially increasing the initial guess of xk = 1, the solution can be 
found in O(D log xk).12 To the best of our knowledge, the only 
non-restrictive deterministic k-selection algorithm for gen-
eral graphs with a sublinear time complexity in the number 
of nodes is due to Shrira et al.20 Their adaptation of the clas-
sic sequential algorithm by Blum et al. for a distributed set-
ting has a worst-case running time of O(Dn0.9114). In the same 
work, a randomized algorithm for general graphs is pre-
sented. The algorithm simply inquires a random node for its 
element and uses this guess to narrow down the number of 
potential elements. The expected time complexity is shown 
to be O(D log n). Kempe et al.7 proposed a gossip-based algo-
rithm that, with probability at least 1 − Œ, computes the kth 

smallest element within O((log n + log Œ
1 ) + (log n + log log Œ

1 )) 
rounds of communication on a complete graph.

If the number of elements N is much larger than the 
number of nodes, in O(D log log min{k, N − k + 1}) expected 
time, the problem can be reduced to the problem where 
each node has exactly one element using the algorithm 
proposed by Santoro et al.17,18 However, their algorithm de-
pends on a particular distribution of the elements on the 
nodes. Patt-Shamir13 showed that the median can be ap-
proximated very efficiently, again subject to the constraint 
that the maximum element must be bounded by a polyno-
mial in n.

3. moDel anD Definitions
In our system model, we are given a connected graph G = (V, 
E) of diameter D with node set V and edge set E. The cardi-
nality of the node set is |V| = n and the nodes are denoted 
u1, …, un. The diameter of a graph is the length of the longest 
shortest path between any two nodes. Each node ui holds a 
single element xi.

† Without loss of generality, we can assume 
that all elements xi are unique. If two elements xi and xj were 
equal, node IDs, e.g., i and j, could be used as tiebreakers. 
The goal is to efficiently compute the k th smallest element 
among all elements x1, …, xn, and the nodes can achieve this 
goal by exchanging messages. Nodes ui and uj can directly 
communicate if (ui , uj) ∈ E.

The standard asynchronous model of communication is 
used. Throughout this article, the communication is consid-
ered to be reliable, there is no node failure, and all nodes 
obediently follow the mandated protocol. We do not impose 
any constraint on the magnitude of the stored elements. 
However, we restrict the size of any single message such that 
it can contain solely a constant number of both node IDs 
and elements, and also at most O(log n) arbitrary additional 
bits. By restricting the size of the messages, we strive to cap-
ture how much information has to be exchanged between 
the nodes in order to solve the problem. Moreover, such a 
restriction is quite natural as the message size is typically 

† Our results can easily be generalized to the case where more than one ele-
ment is stored at each node. The time complexities are then stated in terms 
of the number of elements N > n instead of the number of nodes.

figure 1: Data in sensor networks is aggregated on a pre-computed virtual spanning tree. typically, nodes receive data from their children 
and forward the aggregation result to their parent in the tree.
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limited in practical applications. Note that without this re-
striction on the message size, a single convergecast would 
suffice to accumulate all elements at a single node, which 
could subsequently solve the problem locally.

As both proposed algorithms are iterative in that they 
continuously reduce the set of possible solutions, we need 
to distinguish between nodes holding elements that are still 
of interest from the other nodes. Henceforth, the first set of 
nodes is referred to as candidate nodes or candidates. We call 
the reduction of the search space by a certain factor a phase 
of the algorithm. The number of candidate nodes in phase i 
is denoted n(i).

We assume that all nodes know the diameter D of the 
graph. Furthermore, it is assumed that a BFS spanning tree 
rooted at the node initiating the algorithm has been com-
puted beforehand. These assumptions are not critical as 
both the diameter and the spanning tree can be computed 
in 2D time.14

The main complexity measure used is the time complex-
ity which is, for deterministic algorithms, the time required 
from the start of an execution to its completion in the worst-
case for every legal input and every execution scenario. The 
time complexity is normalized in that the slowest message is 
assumed to reach its target after one time unit. As far as our 
randomized algorithm is concerned, we determine the time 
after which the execution of the algorithm has completed 
with high probability, i.e., with probability at least 1 – 1

nc for a 
constant c ≥ 1. Thus, in both cases, we do not assign any cost 
to local computation.

4. alGoRithms
The algorithms presented in this article operate in sequen-
tial phases in which the space of candidates is steadily re-
duced. This pattern is quite natural for k-selection and 
used in all other proposed algorithms including the non-
distributed case. The best known deterministic distributed 
algorithm for general graphs uses a distributed version of 
the well-known median-of-median technique, which we 
briefly outlined in Section 2, resulting in a time complex-
ity of O(Dn0.9114) for a constant group size. A straightforward 
modification of this algorithm in which the group size in 
each phase i is set to O( n(i)) results in a much better time 
complexity. It can be shown that the time complexity of this 
variant of the algorithm is bounded by O(D(log n)log log n+O(1)). 
However, since our proposed algorithm is substantially bet-
ter, we will not further discuss this median-of-median-based 
algorithm. Due to the more complex nature of the deter-
ministic algorithm, we will treat the randomized algorithm 
first.

4.1 Randomized algorithm
While the derivation of an expedient deterministic algo-
rithm is somewhat intricate, it is remarkably simple to come 
up with a fast randomized algorithm. An apparent solution, 
proposed by Shrira et al.,20 is to choose a node randomly 
and take its element as an initial guess. After computing 
the number of nodes with smaller and larger elements, 
it is likely that a considerable fraction of all nodes no lon-
ger need be considered. By iterating this procedure on the 

remaining candidate nodes, the kth smallest element can be 
found quickly for all k.

A node can be chosen randomly using the following 
scheme: A message indicating that a random element is to 
be selected is sent along a random path in the spanning tree 
starting at the root. If the root has l children u1, …, ul where 
child ui is the root of a subtree with ni candidate nodes in-
cluding itself, the root chooses its own element with prob-
ability 1/(1 + ∑l

j=1nj). Otherwise, it sends a message to one 
of its children. The message is forwarded to node ui with 
probability ni/(1 + ∑l

j=1nj) for all i ∈ {1, ...,l}, and the recipi-
ent of the message proceeds in the same manner. It is easy 
to see that this scheme selects a node uniformly at random 
and that it requires at most 2D time, because the times to 
reach any node and to report back are both bounded by D. 
Note that after each phase the probabilities change as they 
depend on the altered number of candidate nodes remain-
ing in each subtree. However, having determined the new 
interval in which the solution must lie, the number of nodes 
satisfying the new predicate in all subtrees can again be 
computed in 2D time.

This straightforward procedure yields an algorithm that 
finds the kth smallest element in O(D log n) expected time, 
as O(log n) phases suffice in expectation to narrow down the 
number of candidates to a small constant. It can even be 
shown that the time required is O(D log n) with high prob-
ability. The key observation to improve this algorithm is that 
picking a node randomly always takes O(D) time, therefore 
several random elements ought to be chosen in a single phase 
in order to further reduce the number of candidate nodes. 
The method to select a single random element can easily 
be modified to allow for the selection of several random ele-
ments by including the number of needed random elements 
in the request message. A node receiving such a message lo-
cally determines whether its own element is chosen, and also 
how many random elements each of its children’s subtrees 
has to provide. Subsequently, it forwards the requests to all 
of its children whose subtrees must produce at least one ran-
dom element. Note that all random elements can be found 
in D time independent of the number of random elements, 
but due to the restriction that only a constant number of ele-
ments can be packed into a single message, it is likely that 
not all elements can propagate back to the root in D time. 
However, all elements still arrive at the root in O(D) time if 
the number of random elements is bounded by O(D).

By using this simple pipelining technique to select O(D) 
random elements in O(D) time, we immediately get a more 
efficient algorithm, which we will henceforth refer to as Arand. 
When selecting O(D) elements uniformly at random in each 
phase, it can be shown that the number of candidates is re-
duced by a factor of O(D) in a constant number of phases with 
high probability with respect to O(D), as opposed to merely a 
constant factor in case only a single element is chosen. This 
result, together with the observation that each phase costs 
merely O(D) time, is used to prove the following theorem.

Theorem 4.1. In a connected graph of diameter D ≥ 2 con-
sisting of n nodes, the time complexity of algorithm Arand is O(D 
logD n) w.h.p.

1_CACM_V51.9.indb   95 8/14/08   1:39:36 PM



96    communications of the acm    |   september 2008  |   vol.  51  |   no.  9

research highlights 

 

In particular in graphs where D is large, algorithm Arand 
is considerably faster than the algorithm selecting only 
a single random element in each phase. In Section 5, we 
prove that no deterministic or probabilistic algorithm 
can be better asymptotically, i.e., Arand is asymptotically 
optimal.

4.2 Deterministic algorithm
The difficulty of deterministic iterative algorithms for k-
selection lies in the selection of elements that provably al-
low for a reduction of the search space in each phase. Once 
these elements have been found, the reduced set of can-
didate nodes can be determined in the same way as in the 
randomized algorithm. Thus, the deterministic algorithm, 
referred to as Adet, has to compute a set of O(D) elements that 
partitions all elements similarly to the random set used by 
algorithm Arand in each phase.

A simple idea to go about this problem is to start send-
ing up elements from the leaves of the spanning tree, accu-
mulating the elements from all children at the inner nodes, 
and then recursively forwarding a selection of t elements to 
the parent. The problem with this approach is the reduction 
of all elements received from the children to the desired t 
elements. If a node ui receives t elements from each of its 
ci children in the spanning tree, the t elements that parti-
tion all cit nodes into segments of approximately equal size 
ought to be found. However, in order to find these elements, 
the number of elements in each segment has to be counted 
starting at the leaves. Since this counting has to be repeated 
in each step along the path to the root, the time required 
to find a useful partitioning into k segments requires O(D 
(D + Ct) ) time, where C := maxi∈{1, … ,n} ci. This approach suffers 
from several drawbacks: It takes at least O(D2) time just to 
find a partitioning, and the time complexity depends on the 
structure of the spanning tree.

Our proposed algorithm Adet solves these issues in the fol-
lowing manner. In any phase i, the algorithm splits the en-
tire spanning tree into O( D) groups, each of size O(n(i)/
D). Figure 2 depicts an example tree split into 4 groups. Re-
cursively, in each of those groups a particular node initiates 
the same partitioning into O( D) groups as long as the group 
size is larger than O( D). The goal of this recursive partition-
ing is to find, for each group, O( D) elements that reduce  
the search space by a factor of O( D). Groups of size at most 
O( D) can simply report all their elements to the node that 
initiated the grouping at this recursion level. Once such an 
initiating node u has received all O( D) elements from each 
of the O( D) groups it created, it sorts those O(D) elements, 
and subsequently issues a request to count the nodes in 
each of the O(D) intervals induced by the received elements.  
Assume that all the groups created by node u together  
contain n(i)

u nodes in phase i. The intervals can locally  
be merged into O( D) intervals such that each interval con-
tains at most O(n(i)

u/ D) nodes. These O( D) elements are 
recursively sent back to the node that created the group to 
which node u belongs. Upon receiving the O(D) elements 
from its O( D) groups and counting the number of nodes in 
each interval, the root can initiate phase i + 1 for which it 
holds that n(i+1)<n(i)/O( D).

Given that the number of candidates reduces by a factor 
of O( D) in each phase, it follows that the number of phases 
is bounded by O(logD n). It can be shown that each phase 
costs O(D logD n) time, which proves the following bound on 
the time complexity.

Theorem 4.2.  In a connected graph of diameter D ≥ 2  consisting 
of n nodes, the time complexity of algorithm Adet is O(D log 2 

D n).

5. loWeR BounD
In this section, we sketch how to prove a time lower bound 
for generic distributed selection algorithms which shows 
that the time complexity of the simple randomized algo-
rithm of Section 4.1 for finding the element of rank k is as-
ymptotically optimal for most values of k. Informally, we call 
a selection algorithm generic if it does not exploit the struc-
ture of the element space except for using the fact that there 
is a global order on all the elements. Formally, this means 
that the only access to the structure of the element space is 
by means of the comparison function. Equivalently, we can 
assume that all elements assigned to the nodes are fixed but 
that the ordering of elements belonging to different nodes is 
determined by an adversary and is initially not known to the 

figure 2: an example tree of diameter 12 consisting of 24 nodes is 
split according to algorithm Adet into 4 groups, each consisting of at 
most 7 nodes.
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nodes. For the lower bound, we use a simpler synchronous 
communication model where time is divided into rounds 
and in every round each node can send a message to each 
of its neighbors. Note that since the synchronous model is 
strictly more restrictive than the asynchronous model, a low-
er bound for the synchronous model directly carries over to 
the asynchronous model. We show that if in any round only 
one element can be transmitted over any edge, such an algo-
rithm needs at least Ω(D logD n) rounds to find the median 
with reasonable probability.

Generalizing the lower bound to finding the element of 
rank k for arbitrary k ∈ {1, …, n} is straight-forward. We can 
assume that k ≤ n/2 because finding the element of rank k is 
equivalent to finding the element of rank n + 1 − k with re-
spect to the inverse global order. We can now just inform the 
algorithm about the rank of all but the first 2k elements (ad-
ditional information cannot make the problem harder). The 
problem now reduces to finding the median of 2k elements.

Let us start with an outline of our proof strategy. The 
lower bound is proven in two steps. We first consider proto-
cols between two nodes where each of the nodes starts with 
half of the elements. Assuming that the two nodes can send 
each other messages containing at most B ≥ 1 elements in 
each round, we show that Ω(logB n) rounds are needed to 
find the median. In a second step, we obtain the desired 
lower bound for general graphs by means of a reduction: We 
 construct a graph G(D) for every diameter D ≥ 3 such that ev-
ery T-round median algorithm on G(D) can be turned into a 
T/(D − 2)-round two-party protocol in which the two nodes 
have to communicate D − 2 elements per message.

We therefore start by studying protocols between two 
nodes u and u such that u and u each have N ≥ 1 elements 
u0  u1  . . .  uN−1 and u0  u1  . . .  uN−1 respectively, 
where  is the global order according to which we want to 
find the median. We denote the sets of elements of u and u 
by Su and Su, respectively. Each message M = (S, X) between 
the two nodes is further assumed to contain a set S of at 

most B elements and some arbitrary additional informa-
tion X. Assume M is a message from u to u. In this case, X 
can be everything which can be computed from the results 
of the comparisons between all the elements u has seen so 
far, as well as all the additional information u has received 
so far. The only restriction on X is that it cannot be used to 
transmit information about the values of elements not in S 
or in one of the earlier messages. We call a protocol between 
u and u which only sends messages of the form M = (S, X) as 
described above, a generic two-party protocol.

The general idea is as follows. We define N different parti-
tions, each assigning N of the 2N elements to u, and the other 
N elements to u (i.e., N different orders between the elements 
in Su and Su) in such a way that each partition results in a dif-
ferent median element. We choose as input one of the N 
partitions uniformly at random. In order to compute the me-
dian, we then have to find out which of the N partitions was 
chosen. We show that in each communication round, the 
probability for reducing the number of possible partitions by 
more than a factor of lB is exponentially small in l.

For simplicity, assume that N = 2l is a power of 2. Let  
X0, …, Xl−1 ~ Bernoulli(1/2) be l independent Bernoulli vari-
ables, i.e., all Xi take values 0 or 1 with equal probability. The 
partition of the 2N elements among u and u is determined 
by the values of X0, …, Xl−1. If Xl−1 = 0, the N/2 smallest of the 
2N elements are assigned to u and the N/2 largest elements 
are assigned to u. If Xl−1 = 1, it is the other way round. In the 
same way, the value of Xl−2 determines the assignment of 
the smallest and largest N/4 of the remaining elements: If 
Xl−2 =0, u gets the elements with ranks N/2 + 1, …, 3N/4 and 
u gets the elements with ranks 5N/4 + 1, …, 3N/2 among all 
2N elements. Again, the remaining elements are recursively 
assigned analogously depending on the values of Xl−3, …, X0 
until only the two elements with ranks N and N + 1 (i.e., the 
two median elements) remain. The element with rank N is 
assigned to u and the element with rank N + 1 is assigned 
to u. Figure 3 illustrates the described process.

figure 3: the 2N elements minus the two medians are assigned to u and u according to l = log n independent Bernoulli variables X0, …, Xl−1. one 
of the two medians is assigned to u and the other to u. in order to find the medians, u and u must compute the values of X0, …, Xl−1.
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Consider the two elements ua* and ub* with ranks N and 
N + 1, respectively, and let a* and b* be the ranks of the ele-
ments N and N + 1 within the sets Su and Su. We consider the 
median problem to be solved as soon as either u knows a* 
or u knows b*. The elements are partitioned in such a way 
that the random variables Xi directly determine the base-2 
representations of a* and b*. If X0 = 0, the most significant 
bit of the bit representation of a* is 1, whereas the most 
significant bit of the bit representation of b* is 0. If X0 = 1, 
the most significant bit of a* is 0 and the most significant 
bit of b* is 1. The other bits of the base-2 representations of 
a* and b* are determined analogously: If Xi = 0, the (i + 1)
st-most significant bit of a* is 1 and the (i + 1)st-most sig-
nificant bit of b* is 0 and vice versa if Xi = 1. Consider two 
arbitrary elements ua ∈ Su and ub ∈ Su with ranks a and b 
within the two sets Su and Su, respectively. The outcome of 
the comparison of ua and ub (i.e., whether ua  ub or ub  ua) 
is determined by the first variable Xi that is equal to the cor-
responding bit in the base-2 representation of ua or differ-
ent from the corresponding bit in the base-2 representation 
of ub, whatever occurs first. If Xi = 0, we have that ua  ub, 
otherwise ub  ua.

Clearly, u and u can only learn about a* and b* from com-
parisons between their own elements and elements they 
have received from the other node and from additional in-
formation that the nodes sent to each other. Consider a ge-
neric two-party algorithm A that computes the median. As-
sume that after a certain time of the execution of A, ua1, …, 
uar are the elements that u has sent to u and ub1, …, ubs are the 
elements that u has sent to u. Let î be the largest index such 
that there is an element ubj for which the first î bits are differ-
ent from the corresponding variable Xi or such that there is 
an element ubj for which the first î bits are equal to the cor-
responding variable Xi. By the above observation, any com-
parison between an element in Su and an element that u has 
sent to u and any comparison between an element in Su and 
an element that u has sent to u is determined by the values of 
X0, …, Xî+1. Intuitively, u and u cannot have any information 
about the values of Xî+2, …, Xl−1. Thus, u and u have to guess 
the remaining bits by sending each other the right elements. 
It can be shown that the probability for guessing at least x 
bits correctly in a single round is at most 2B/2x. The number 
of newly learned bits in each round can be upper bounded 
by independent random variables. Using a Chernoff-type 
 argument, one can then show that log8B(N)/c rounds are 
needed to learn all l bits X0, …, Xl−1 with probability at least 
1 – 1/N

1–1/c
2 , implying the following theorem.

Theorem 5.1. Every, possibly randomized, generic two- party 
protocol to find the median needs at least Ω(log2B N) rounds in 
expectation and with probability at least 1 − 1/Nd for every con-
stant d < 1/2.

Based on the lower bound for two-party protocols, we can 
now prove a lower bound for generic selection algorithms on 
general graphs. In the following, we assume that every node 
of a graph with n nodes starts with one element and that we 
have to find the kth smallest of all n elements. In  every round, 
every node can send one element to each of its neighbors. 

For every n ≥ D ≥ 3, we construct a graph G(D) with n nodes 
and diameter D such that we can reduce the problem of find-
ing the median by a two-party protocol to the problem of 
finding the element of rank k in G(D).

We first describe a lower bound of Ω(D logD n) for find-
ing the median and then generalize to finding the ele-
ment of an arbitrary rank k. For simplicity, assume that 
n − D is an odd number. Let N = (n − D + 1)/2. We consider 
the graph G(D) defined as follows: The graph G(D) con-
sists of two nodes u and u that are connected by a path 
of length D − 2 (i.e., it contains D − 1 nodes). In addition, 
there are nodes u1, …, uN and u1, …, uN such that ui is con-
nected to u and ui is connected to u for all i ∈ {1, …, N}. 
We can certainly assume that n = w(D) because Ω(D) is a 
trivial lower bound (even finding the minimum element 
requires Ω(D) rounds). We can therefore assume that only 
the leaf nodes ui and ui for i ∈ {1, …, N} hold an element 
and that we need to find the median of these 2N elements. 
We can simply assign dummy elements to all other nodes 
such that the global median is equal to the median of the 
leaf elements. Since only the leaves start with an element, 
we can assume that in the first round, all leaves ui send 
their element to u and all leaves ui send their element to 
u, as this is the only possible useful communication in the 
first round. By this, the problem reduces to finding the 
kth smallest element of 2N elements on a path of length 
D − 2 if initially each of the two end nodes u and u of the 
path holds N elements. Note that the leaf nodes of G(D) do 
not need to further participate in a distributed selection 
protocol since u and u know everything their respective 
leaves know and can locally simulate all actions of their 
leaf nodes.

Assume that we are given an algorithm A that finds the 
median on G(D) in time T + 1. We sketch how to construct a 
two-party protocol A' that sends at most D − 2 elements per 
message and finds the median in time [T/(D − 2)], The Ω(logD 
N) lower bound for such an algorithm A' then implies that 
T = Ω(D logD N). Because information needs at least D − 2 to 
travel from u to u and vice versa, everything u and u can com-
pute in round t (i.e., after receiving the message from round 
t − 1) is a function of their own elements and the content of 
the messages of the other node up to round t − (D − 2). For ex-
ample, u’s messages of the first D − 2 rounds only depend on 
Su, the messages of rounds D − 1, …, 2(D − 2) can be computed 
from Su and u’s messages in the first D − 2 rounds, and so 
on. To obtain a two-party protocol A' from A, we can proceed 
as follows. In the first round of A', u and u send their mes-
sages of the first D − 2 rounds of A to each other. Now, u and 
u can both locally simulate all communication of the first  
D − 2 rounds of A. This allows to compute the messages of 
the next D − 2 rounds of A. In general, in round r of the two-
party protocol A', u and u can send each other their messages 
of rounds (r − 1) (D − 2) + 1, …, r (D − 2) of A and can afterwards 
locally simulate the respective rounds of A. The time com-
plexity of A' then becomes [T/(D − 2)].

Theorem 5.2. For every n ≥ D ≥ 3, there is a graph G(D) with 
n nodes and diameter D such that every, possibly randomized, 
generic algorithm to find the kth smallest element requires 
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Ω(D logD min{k, n − k}) rounds in expectation and with prob-
ability at least 1 − 1/(min{k, n − k})d for every constant d < 1/2. 
In particular, finding the median requires at least Ω(D logD n) 
rounds.

Similar proof techniques have been used in the area of com-
minication complexity where people try to find bounds on 
the total number of bits that have to be transmitted to solve 
a certain communication problem.22 In particular,21 intro-
duces a simulation technique to run two-party protocols 
in paths and more general graphs in order to extend lower 
bound for computations between two nodes to computa-
tions on more general topologies. In contrast to communi-
cation complexity, our focus is on minimizing the number 
of communication rounds rather than minimizing the num-
ber of transmitted bits.

6. conclusion
In this article, we studied the k-selection problem, a promi-
nent data aggregation problem, and proved upper and lower 
bounds on its (time) complexity. Our results are presented 
in an entirely abstract way, i.e., it remains to show that our 
algorithms have a notable impact on the performance of ag-
gregation functions in real networks and thus prove to be 
relevant in practical applications. Apparently, it is usually 
not possible to simply implant a distributed algorithm in 
an application domain, as additional constraints imposed 
by the application need to be respected. In wireless sen-
sor networks, e.g., aggregation needs to adhere to wireless 
channel characteristics. We believe that our work can shed 
additional light on the achievable aggregation rate and ca-
pacity10,11 in wireless networks, or, combined with other al-
gorithmic work on data gathering such as, e.g.,5,6 may even 
provide basic aggregation functionality for various applica-
tion domains. We hope that our results and techniques may 
eventually find their way into several application areas, pro-
viding aggregation support for, e.g., streaming databases or 
multi-core architectures.
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