
september 2008 | vol. 51 | no. 9 | communications of the acm 93

Doi:10.1145/1378727.1378749

abstract
In this article, we study the problem of distributed selection
from a theoretical point of view. Given a general connected
graph of diameter D consisting of n nodes in which each
node holds a numeric element, the goal of a k-selection al-
gorithm is to determine the kth smallest of these elements.
We prove that distributed selection indeed requires more
work than other aggregation functions such as, e.g., the
computation of the average or the maximum of all elements.
On the other hand, we show that the kth smallest element
can be computed efficiently by providing both a randomized
and a deterministic k-selection algorithm, dispelling the
misconception that solving distributed selection through
in-network aggregation is infeasible.

1. intRoDuction
There is a recent growing interest in distributed aggregation,
thanks to emerging application areas such as, e.g., data min-
ing or sensor networks.2,8,23,24 The goal of distributed aggrega-
tion is to compute an aggregation function on a set of distrib-
uted values, each value stored at a node in a network. Typical
aggregation functions are max, sum, count, average, median,
variance, kth smallest, or largest value, or combinations thereof
such as, e.g., “What is the average of the 10% largest values?”

The database community classifies aggregation functions
into three categories: distributive (max, min, sum, count), al-
gebraic (plus, minus, average, variance), and holistic (median,
kth smallest, or largest value). Combinations of these func-
tions are believed to support a wide range of reasonable ag-
gregation queries.*

It is well known that distributive and algebraic functions
can easily be computed using the so-called convergecast
operation executed on a pre-computed breadth first search
(BFS) tree: The root of the tree floods a message to the leaves
of the tree, asking the leaves to start the aggregation. The in-
ner nodes of the spanning tree wait until they have received
the aggregated data from all their children, apply the aggre-
gation function to their own data and the aggregated data,
and subsequently forward the aggregation result to their re-
spective parent. Convergecast is fast, as it terminates after at
most 2DT time, where DT denotes the depth of the spanning
tree. Note that the depth of a BFS tree is at most the diameter
D of the original graph G, thus a single convergecast costs
merely 2D time. An example for such a spanning tree in the
context of sensor networks is depicted in Figure 1. However,

it is believed that holistic functions cannot be supported by
convergecast. After all, the very name “holistic” indicates
that one “cannot look into” the set of values, more precisely,
that all the values need to be centralized at one node in order
to compute the holistic function. Bluntly, in-network aggre-
gation is considered to be practically impossible for holistic
functions.

For arbitrary k, a selection algorithm answers questions
about the kth smallest value in a set or network. The special
case of the k-selection problem where k = n/2 is the well-
known median problem. Generally speaking, selection solves
aggregation queries about order statistics and percentiles.
Surprisingly, little is known about distributed (network) se-
lection, although it is critical to the understanding of data
aggregation.

In this article, we shed some new light on the problem
of distributed selection for general networks with n nodes
and diameter D. In particular, we prove that distributed se-
lection is strictly harder than convergecast by giving a lower
bound of Ω(D logD n) on the time complexity in Section 5. In
other words, to the best of our knowledge, we are the first
to formally confirm the preconception about holistic func-
tions being strictly more difficult than distributive or alge-
braic functions. In addition, in Section 4.1, we present a nov-
el Las Vegas algorithm which matches this lower bound with
high probability, improving the best randomized algorithm.
As for many networks this running time is strictly below col-
lecting all values at one node, our new upper bound proves
that (contrary to common belief) in-network aggregation is
possible also for holistic functions; in fact, in network topol-
ogies where the diameter is large, e.g., in grids or in typical
wireless sensor networks, selection can be performed with-
in the same asymptotic time bounds as convergecast. As a
third result, in Section 4.2, we derandomize our algorithm
and arrive at a deterministic distributed selection algorithm
with a time complexity of O(D log 2D n) which constitutes a
substantial improvement over prior art.

2. RelateD WoRK
Finding the kth smallest value among a set of n elements is
a classic problem which has been extensively studied in the
past approximately 30 years, both in distributed and non-
distributed settings. The problem of finding the median,
i.e., the element for which half of all elements are smaller
and the other half is larger, is a special case of the k-selection
problem which has also received a lot of attention. Blum
et al.1 proposed the first deterministic sequential algorithm
that, given an array of size n, computes the kth smallest ele-
ment in O(n) time. The algorithm partitions the n elements
into roughly n/5 groups of five elements and determines the

Distributed Selection: A Missing
Piece of Data Aggregation
By Fabian Kuhn, Thomas Locher, and Roger Wattenhofer

* We encourage the reader to think of a natural aggregation (single value
 result) query that cannot be formulated by a combination of distributive,
 algebraic, and holistic functions.

1_CACM_V51.9.indb 93 8/14/08 1:39:35 PM

94 communications of the acm | september 2008 | vol. 51 | no. 9

research highlights

median element of each group. The median of these n/5
medians is then computed recursively. While this median
of medians is not necessarily the median among all n ele-
ments, it still partitions all elements well enough in that at
least (roughly) 30% of all elements are smaller, and also at
least 30% are larger. Thus, at least 30% of all elements can
be excluded and the algorithm can be applied recursively to
the remaining elements. A careful analysis of this algorithm
reveals that only O(n) operations are required in total. Sub-
sequently, Schönhage et al.19 developed an algorithm requir-
ing fewer comparisons in the worst-case.

As far as distributed k-selection is concerned, a rich col-
lection of algorithms has been amassed for various models
over the years. A lot of work focused on special graphs such
as stars and complete graphs.9,16 The small graph consisting
of two connected nodes where each node knows half of all n
elements has also been studied and algorithms with a time
complexity of O(log n) have been presented.3,15 For determin-
istic algorithms in a restricted model, this result has been
shown to be tight.15 Frederickson14 proposed algorithms for
rings, meshes, and also complete binary trees whose time
complexities are O(n), O(n) , and O(log3n), respectively.

Several algorithms, both of deterministic12,13,20 and proba-
bilistic nature,17,18,20 have also been devised for arbitrary con-
nected graphs. Some of these deterministic algorithms re-
strict the elements the nodes can hold in that the maximum
numeric item xmax has to be bounded by O(nO(1)). Given this
constraint, applying binary search results in a time complex-
ity of O(D log xmax) = O(D log n).13 Alternatively, by exponen-
tially increasing the initial guess of xk = 1, the solution can be
found in O(D log xk).12 To the best of our knowledge, the only
non-restrictive deterministic k-selection algorithm for gen-
eral graphs with a sublinear time complexity in the number
of nodes is due to Shrira et al.20 Their adaptation of the clas-
sic sequential algorithm by Blum et al. for a distributed set-
ting has a worst-case running time of O(Dn0.9114). In the same
work, a randomized algorithm for general graphs is pre-
sented. The algorithm simply inquires a random node for its
element and uses this guess to narrow down the number of
potential elements. The expected time complexity is shown
to be O(D log n). Kempe et al.7 proposed a gossip-based algo-
rithm that, with probability at least 1 − Œ, computes the kth

smallest element within O((log n + log Œ
1) + (log n + log log Œ

1))
rounds of communication on a complete graph.

If the number of elements N is much larger than the
number of nodes, in O(D log log min{k, N − k + 1}) expected
time, the problem can be reduced to the problem where
each node has exactly one element using the algorithm
proposed by Santoro et al.17,18 However, their algorithm de-
pends on a particular distribution of the elements on the
nodes. Patt-Shamir13 showed that the median can be ap-
proximated very efficiently, again subject to the constraint
that the maximum element must be bounded by a polyno-
mial in n.

3. moDel anD Definitions
In our system model, we are given a connected graph G = (V,
E) of diameter D with node set V and edge set E. The cardi-
nality of the node set is |V| = n and the nodes are denoted
u1, …, un. The diameter of a graph is the length of the longest
shortest path between any two nodes. Each node ui holds a
single element xi.

† Without loss of generality, we can assume
that all elements xi are unique. If two elements xi and xj were
equal, node IDs, e.g., i and j, could be used as tiebreakers.
The goal is to efficiently compute the k th smallest element
among all elements x1, …, xn, and the nodes can achieve this
goal by exchanging messages. Nodes ui and uj can directly
communicate if (ui , uj) ∈ E.

The standard asynchronous model of communication is
used. Throughout this article, the communication is consid-
ered to be reliable, there is no node failure, and all nodes
obediently follow the mandated protocol. We do not impose
any constraint on the magnitude of the stored elements.
However, we restrict the size of any single message such that
it can contain solely a constant number of both node IDs
and elements, and also at most O(log n) arbitrary additional
bits. By restricting the size of the messages, we strive to cap-
ture how much information has to be exchanged between
the nodes in order to solve the problem. Moreover, such a
restriction is quite natural as the message size is typically

† Our results can easily be generalized to the case where more than one ele-
ment is stored at each node. The time complexities are then stated in terms
of the number of elements N > n instead of the number of nodes.

figure 1: Data in sensor networks is aggregated on a pre-computed virtual spanning tree. typically, nodes receive data from their children
and forward the aggregation result to their parent in the tree.

1_CACM_V51.9.indb 94 8/14/08 1:39:36 PM

september 2008 | vol. 51 | no. 9 | communications of the acm 95

limited in practical applications. Note that without this re-
striction on the message size, a single convergecast would
suffice to accumulate all elements at a single node, which
could subsequently solve the problem locally.

As both proposed algorithms are iterative in that they
continuously reduce the set of possible solutions, we need
to distinguish between nodes holding elements that are still
of interest from the other nodes. Henceforth, the first set of
nodes is referred to as candidate nodes or candidates. We call
the reduction of the search space by a certain factor a phase
of the algorithm. The number of candidate nodes in phase i
is denoted n(i).

We assume that all nodes know the diameter D of the
graph. Furthermore, it is assumed that a BFS spanning tree
rooted at the node initiating the algorithm has been com-
puted beforehand. These assumptions are not critical as
both the diameter and the spanning tree can be computed
in 2D time.14

The main complexity measure used is the time complex-
ity which is, for deterministic algorithms, the time required
from the start of an execution to its completion in the worst-
case for every legal input and every execution scenario. The
time complexity is normalized in that the slowest message is
assumed to reach its target after one time unit. As far as our
randomized algorithm is concerned, we determine the time
after which the execution of the algorithm has completed
with high probability, i.e., with probability at least 1 – 1

nc for a
constant c ≥ 1. Thus, in both cases, we do not assign any cost
to local computation.

4. alGoRithms
The algorithms presented in this article operate in sequen-
tial phases in which the space of candidates is steadily re-
duced. This pattern is quite natural for k-selection and
used in all other proposed algorithms including the non-
distributed case. The best known deterministic distributed
algorithm for general graphs uses a distributed version of
the well-known median-of-median technique, which we
briefly outlined in Section 2, resulting in a time complex-
ity of O(Dn0.9114) for a constant group size. A straightforward
modification of this algorithm in which the group size in
each phase i is set to O(n(i)) results in a much better time
complexity. It can be shown that the time complexity of this
variant of the algorithm is bounded by O(D(log n)log log n+O(1)).
However, since our proposed algorithm is substantially bet-
ter, we will not further discuss this median-of-median-based
algorithm. Due to the more complex nature of the deter-
ministic algorithm, we will treat the randomized algorithm
first.

4.1 Randomized algorithm
While the derivation of an expedient deterministic algo-
rithm is somewhat intricate, it is remarkably simple to come
up with a fast randomized algorithm. An apparent solution,
proposed by Shrira et al.,20 is to choose a node randomly
and take its element as an initial guess. After computing
the number of nodes with smaller and larger elements,
it is likely that a considerable fraction of all nodes no lon-
ger need be considered. By iterating this procedure on the

remaining candidate nodes, the kth smallest element can be
found quickly for all k.

A node can be chosen randomly using the following
scheme: A message indicating that a random element is to
be selected is sent along a random path in the spanning tree
starting at the root. If the root has l children u1, …, ul where
child ui is the root of a subtree with ni candidate nodes in-
cluding itself, the root chooses its own element with prob-
ability 1/(1 + ∑l

j=1nj). Otherwise, it sends a message to one
of its children. The message is forwarded to node ui with
probability ni/(1 + ∑l

j=1nj) for all i ∈ {1, ...,l}, and the recipi-
ent of the message proceeds in the same manner. It is easy
to see that this scheme selects a node uniformly at random
and that it requires at most 2D time, because the times to
reach any node and to report back are both bounded by D.
Note that after each phase the probabilities change as they
depend on the altered number of candidate nodes remain-
ing in each subtree. However, having determined the new
interval in which the solution must lie, the number of nodes
satisfying the new predicate in all subtrees can again be
computed in 2D time.

This straightforward procedure yields an algorithm that
finds the kth smallest element in O(D log n) expected time,
as O(log n) phases suffice in expectation to narrow down the
number of candidates to a small constant. It can even be
shown that the time required is O(D log n) with high prob-
ability. The key observation to improve this algorithm is that
picking a node randomly always takes O(D) time, therefore
several random elements ought to be chosen in a single phase
in order to further reduce the number of candidate nodes.
The method to select a single random element can easily
be modified to allow for the selection of several random ele-
ments by including the number of needed random elements
in the request message. A node receiving such a message lo-
cally determines whether its own element is chosen, and also
how many random elements each of its children’s subtrees
has to provide. Subsequently, it forwards the requests to all
of its children whose subtrees must produce at least one ran-
dom element. Note that all random elements can be found
in D time independent of the number of random elements,
but due to the restriction that only a constant number of ele-
ments can be packed into a single message, it is likely that
not all elements can propagate back to the root in D time.
However, all elements still arrive at the root in O(D) time if
the number of random elements is bounded by O(D).

By using this simple pipelining technique to select O(D)
random elements in O(D) time, we immediately get a more
efficient algorithm, which we will henceforth refer to as Arand.
When selecting O(D) elements uniformly at random in each
phase, it can be shown that the number of candidates is re-
duced by a factor of O(D) in a constant number of phases with
high probability with respect to O(D), as opposed to merely a
constant factor in case only a single element is chosen. This
result, together with the observation that each phase costs
merely O(D) time, is used to prove the following theorem.

Theorem 4.1. In a connected graph of diameter D ≥ 2 con-
sisting of n nodes, the time complexity of algorithm Arand is O(D
logD n) w.h.p.

1_CACM_V51.9.indb 95 8/14/08 1:39:36 PM

96 communications of the acm | september 2008 | vol. 51 | no. 9

research highlights

In particular in graphs where D is large, algorithm Arand
is considerably faster than the algorithm selecting only
a single random element in each phase. In Section 5, we
prove that no deterministic or probabilistic algorithm
can be better asymptotically, i.e., Arand is asymptotically
optimal.

4.2 Deterministic algorithm
The difficulty of deterministic iterative algorithms for k-
selection lies in the selection of elements that provably al-
low for a reduction of the search space in each phase. Once
these elements have been found, the reduced set of can-
didate nodes can be determined in the same way as in the
randomized algorithm. Thus, the deterministic algorithm,
referred to as Adet, has to compute a set of O(D) elements that
partitions all elements similarly to the random set used by
algorithm Arand in each phase.

A simple idea to go about this problem is to start send-
ing up elements from the leaves of the spanning tree, accu-
mulating the elements from all children at the inner nodes,
and then recursively forwarding a selection of t elements to
the parent. The problem with this approach is the reduction
of all elements received from the children to the desired t
elements. If a node ui receives t elements from each of its
ci children in the spanning tree, the t elements that parti-
tion all cit nodes into segments of approximately equal size
ought to be found. However, in order to find these elements,
the number of elements in each segment has to be counted
starting at the leaves. Since this counting has to be repeated
in each step along the path to the root, the time required
to find a useful partitioning into k segments requires O(D
(D + Ct)) time, where C := maxi∈{1, … ,n} ci. This approach suffers
from several drawbacks: It takes at least O(D2) time just to
find a partitioning, and the time complexity depends on the
structure of the spanning tree.

Our proposed algorithm Adet solves these issues in the fol-
lowing manner. In any phase i, the algorithm splits the en-
tire spanning tree into O(D) groups, each of size O(n(i)/
D). Figure 2 depicts an example tree split into 4 groups. Re-
cursively, in each of those groups a particular node initiates
the same partitioning into O(D) groups as long as the group
size is larger than O(D). The goal of this recursive partition-
ing is to find, for each group, O(D) elements that reduce
the search space by a factor of O(D). Groups of size at most
O(D) can simply report all their elements to the node that
initiated the grouping at this recursion level. Once such an
initiating node u has received all O(D) elements from each
of the O(D) groups it created, it sorts those O(D) elements,
and subsequently issues a request to count the nodes in
each of the O(D) intervals induced by the received elements.
Assume that all the groups created by node u together
contain n(i)

u nodes in phase i. The intervals can locally
be merged into O(D) intervals such that each interval con-
tains at most O(n(i)

u/ D) nodes. These O(D) elements are
recursively sent back to the node that created the group to
which node u belongs. Upon receiving the O(D) elements
from its O(D) groups and counting the number of nodes in
each interval, the root can initiate phase i + 1 for which it
holds that n(i+1)<n(i)/O(D).

Given that the number of candidates reduces by a factor
of O(D) in each phase, it follows that the number of phases
is bounded by O(logD n). It can be shown that each phase
costs O(D logD n) time, which proves the following bound on
the time complexity.

Theorem 4.2. In a connected graph of diameter D ≥ 2 consisting
of n nodes, the time complexity of algorithm Adet is O(D log 2

D n).

5. loWeR BounD
In this section, we sketch how to prove a time lower bound
for generic distributed selection algorithms which shows
that the time complexity of the simple randomized algo-
rithm of Section 4.1 for finding the element of rank k is as-
ymptotically optimal for most values of k. Informally, we call
a selection algorithm generic if it does not exploit the struc-
ture of the element space except for using the fact that there
is a global order on all the elements. Formally, this means
that the only access to the structure of the element space is
by means of the comparison function. Equivalently, we can
assume that all elements assigned to the nodes are fixed but
that the ordering of elements belonging to different nodes is
determined by an adversary and is initially not known to the

figure 2: an example tree of diameter 12 consisting of 24 nodes is
split according to algorithm Adet into 4 groups, each consisting of at
most 7 nodes.

1_CACM_V51.9.indb 96 8/14/08 1:39:37 PM

september 2008 | vol. 51 | no. 9 | communications of the acm 97

nodes. For the lower bound, we use a simpler synchronous
communication model where time is divided into rounds
and in every round each node can send a message to each
of its neighbors. Note that since the synchronous model is
strictly more restrictive than the asynchronous model, a low-
er bound for the synchronous model directly carries over to
the asynchronous model. We show that if in any round only
one element can be transmitted over any edge, such an algo-
rithm needs at least Ω(D logD n) rounds to find the median
with reasonable probability.

Generalizing the lower bound to finding the element of
rank k for arbitrary k ∈ {1, …, n} is straight-forward. We can
assume that k ≤ n/2 because finding the element of rank k is
equivalent to finding the element of rank n + 1 − k with re-
spect to the inverse global order. We can now just inform the
algorithm about the rank of all but the first 2k elements (ad-
ditional information cannot make the problem harder). The
problem now reduces to finding the median of 2k elements.

Let us start with an outline of our proof strategy. The
lower bound is proven in two steps. We first consider proto-
cols between two nodes where each of the nodes starts with
half of the elements. Assuming that the two nodes can send
each other messages containing at most B ≥ 1 elements in
each round, we show that Ω(logB n) rounds are needed to
find the median. In a second step, we obtain the desired
lower bound for general graphs by means of a reduction: We
 construct a graph G(D) for every diameter D ≥ 3 such that ev-
ery T-round median algorithm on G(D) can be turned into a
T/(D − 2)-round two-party protocol in which the two nodes
have to communicate D − 2 elements per message.

We therefore start by studying protocols between two
nodes u and u such that u and u each have N ≥ 1 elements
u0  u1  . . .  uN−1 and u0  u1  . . .  uN−1 respectively,
where  is the global order according to which we want to
find the median. We denote the sets of elements of u and u
by Su and Su, respectively. Each message M = (S, X) between
the two nodes is further assumed to contain a set S of at

most B elements and some arbitrary additional informa-
tion X. Assume M is a message from u to u. In this case, X
can be everything which can be computed from the results
of the comparisons between all the elements u has seen so
far, as well as all the additional information u has received
so far. The only restriction on X is that it cannot be used to
transmit information about the values of elements not in S
or in one of the earlier messages. We call a protocol between
u and u which only sends messages of the form M = (S, X) as
described above, a generic two-party protocol.

The general idea is as follows. We define N different parti-
tions, each assigning N of the 2N elements to u, and the other
N elements to u (i.e., N different orders between the elements
in Su and Su) in such a way that each partition results in a dif-
ferent median element. We choose as input one of the N
partitions uniformly at random. In order to compute the me-
dian, we then have to find out which of the N partitions was
chosen. We show that in each communication round, the
probability for reducing the number of possible partitions by
more than a factor of lB is exponentially small in l.

For simplicity, assume that N = 2l is a power of 2. Let
X0, …, Xl−1 ~ Bernoulli(1/2) be l independent Bernoulli vari-
ables, i.e., all Xi take values 0 or 1 with equal probability. The
partition of the 2N elements among u and u is determined
by the values of X0, …, Xl−1. If Xl−1 = 0, the N/2 smallest of the
2N elements are assigned to u and the N/2 largest elements
are assigned to u. If Xl−1 = 1, it is the other way round. In the
same way, the value of Xl−2 determines the assignment of
the smallest and largest N/4 of the remaining elements: If
Xl−2 =0, u gets the elements with ranks N/2 + 1, …, 3N/4 and
u gets the elements with ranks 5N/4 + 1, …, 3N/2 among all
2N elements. Again, the remaining elements are recursively
assigned analogously depending on the values of Xl−3, …, X0
until only the two elements with ranks N and N + 1 (i.e., the
two median elements) remain. The element with rank N is
assigned to u and the element with rank N + 1 is assigned
to u. Figure 3 illustrates the described process.

figure 3: the 2N elements minus the two medians are assigned to u and u according to l = log n independent Bernoulli variables X0, …, Xl−1. one
of the two medians is assigned to u and the other to u. in order to find the medians, u and u must compute the values of X0, …, Xl−1.

1_CACM_V51.9.indb 97 8/14/08 1:39:37 PM

98 communications of the acm | september 2008 | vol. 51 | no. 9

research highlights

Consider the two elements ua* and ub* with ranks N and
N + 1, respectively, and let a* and b* be the ranks of the ele-
ments N and N + 1 within the sets Su and Su. We consider the
median problem to be solved as soon as either u knows a*
or u knows b*. The elements are partitioned in such a way
that the random variables Xi directly determine the base-2
representations of a* and b*. If X0 = 0, the most significant
bit of the bit representation of a* is 1, whereas the most
significant bit of the bit representation of b* is 0. If X0 = 1,
the most significant bit of a* is 0 and the most significant
bit of b* is 1. The other bits of the base-2 representations of
a* and b* are determined analogously: If Xi = 0, the (i + 1)
st-most significant bit of a* is 1 and the (i + 1)st-most sig-
nificant bit of b* is 0 and vice versa if Xi = 1. Consider two
arbitrary elements ua ∈ Su and ub ∈ Su with ranks a and b
within the two sets Su and Su, respectively. The outcome of
the comparison of ua and ub (i.e., whether ua  ub or ub  ua)
is determined by the first variable Xi that is equal to the cor-
responding bit in the base-2 representation of ua or differ-
ent from the corresponding bit in the base-2 representation
of ub, whatever occurs first. If Xi = 0, we have that ua  ub,
otherwise ub  ua.

Clearly, u and u can only learn about a* and b* from com-
parisons between their own elements and elements they
have received from the other node and from additional in-
formation that the nodes sent to each other. Consider a ge-
neric two-party algorithm A that computes the median. As-
sume that after a certain time of the execution of A, ua1, …,
uar are the elements that u has sent to u and ub1, …, ubs are the
elements that u has sent to u. Let î be the largest index such
that there is an element ubj for which the first î bits are differ-
ent from the corresponding variable Xi or such that there is
an element ubj for which the first î bits are equal to the cor-
responding variable Xi. By the above observation, any com-
parison between an element in Su and an element that u has
sent to u and any comparison between an element in Su and
an element that u has sent to u is determined by the values of
X0, …, Xî+1. Intuitively, u and u cannot have any information
about the values of Xî+2, …, Xl−1. Thus, u and u have to guess
the remaining bits by sending each other the right elements.
It can be shown that the probability for guessing at least x
bits correctly in a single round is at most 2B/2x. The number
of newly learned bits in each round can be upper bounded
by independent random variables. Using a Chernoff-type
 argument, one can then show that log8B(N)/c rounds are
needed to learn all l bits X0, …, Xl−1 with probability at least
1 – 1/N

1–1/c
2 , implying the following theorem.

Theorem 5.1. Every, possibly randomized, generic two- party
protocol to find the median needs at least Ω(log2B N) rounds in
expectation and with probability at least 1 − 1/Nd for every con-
stant d < 1/2.

Based on the lower bound for two-party protocols, we can
now prove a lower bound for generic selection algorithms on
general graphs. In the following, we assume that every node
of a graph with n nodes starts with one element and that we
have to find the kth smallest of all n elements. In every round,
every node can send one element to each of its neighbors.

For every n ≥ D ≥ 3, we construct a graph G(D) with n nodes
and diameter D such that we can reduce the problem of find-
ing the median by a two-party protocol to the problem of
finding the element of rank k in G(D).

We first describe a lower bound of Ω(D logD n) for find-
ing the median and then generalize to finding the ele-
ment of an arbitrary rank k. For simplicity, assume that
n − D is an odd number. Let N = (n − D + 1)/2. We consider
the graph G(D) defined as follows: The graph G(D) con-
sists of two nodes u and u that are connected by a path
of length D − 2 (i.e., it contains D − 1 nodes). In addition,
there are nodes u1, …, uN and u1, …, uN such that ui is con-
nected to u and ui is connected to u for all i ∈ {1, …, N}.
We can certainly assume that n = w(D) because Ω(D) is a
trivial lower bound (even finding the minimum element
requires Ω(D) rounds). We can therefore assume that only
the leaf nodes ui and ui for i ∈ {1, …, N} hold an element
and that we need to find the median of these 2N elements.
We can simply assign dummy elements to all other nodes
such that the global median is equal to the median of the
leaf elements. Since only the leaves start with an element,
we can assume that in the first round, all leaves ui send
their element to u and all leaves ui send their element to
u, as this is the only possible useful communication in the
first round. By this, the problem reduces to finding the
kth smallest element of 2N elements on a path of length
D − 2 if initially each of the two end nodes u and u of the
path holds N elements. Note that the leaf nodes of G(D) do
not need to further participate in a distributed selection
protocol since u and u know everything their respective
leaves know and can locally simulate all actions of their
leaf nodes.

Assume that we are given an algorithm A that finds the
median on G(D) in time T + 1. We sketch how to construct a
two-party protocol A' that sends at most D − 2 elements per
message and finds the median in time [T/(D − 2)], The Ω(logD
N) lower bound for such an algorithm A' then implies that
T = Ω(D logD N). Because information needs at least D − 2 to
travel from u to u and vice versa, everything u and u can com-
pute in round t (i.e., after receiving the message from round
t − 1) is a function of their own elements and the content of
the messages of the other node up to round t − (D − 2). For ex-
ample, u’s messages of the first D − 2 rounds only depend on
Su, the messages of rounds D − 1, …, 2(D − 2) can be computed
from Su and u’s messages in the first D − 2 rounds, and so
on. To obtain a two-party protocol A' from A, we can proceed
as follows. In the first round of A', u and u send their mes-
sages of the first D − 2 rounds of A to each other. Now, u and
u can both locally simulate all communication of the first
D − 2 rounds of A. This allows to compute the messages of
the next D − 2 rounds of A. In general, in round r of the two-
party protocol A', u and u can send each other their messages
of rounds (r − 1) (D − 2) + 1, …, r (D − 2) of A and can afterwards
locally simulate the respective rounds of A. The time com-
plexity of A' then becomes [T/(D − 2)].

Theorem 5.2. For every n ≥ D ≥ 3, there is a graph G(D) with
n nodes and diameter D such that every, possibly randomized,
generic algorithm to find the kth smallest element requires

1_CACM_V51.9.indb 98 8/14/08 1:39:37 PM

september 2008 | vol. 51 | no. 9 | communications of the acm 99

Ω(D logD min{k, n − k}) rounds in expectation and with prob-
ability at least 1 − 1/(min{k, n − k})d for every constant d < 1/2.
In particular, finding the median requires at least Ω(D logD n)
rounds.

Similar proof techniques have been used in the area of com-
minication complexity where people try to find bounds on
the total number of bits that have to be transmitted to solve
a certain communication problem.22 In particular,21 intro-
duces a simulation technique to run two-party protocols
in paths and more general graphs in order to extend lower
bound for computations between two nodes to computa-
tions on more general topologies. In contrast to communi-
cation complexity, our focus is on minimizing the number
of communication rounds rather than minimizing the num-
ber of transmitted bits.

6. conclusion
In this article, we studied the k-selection problem, a promi-
nent data aggregation problem, and proved upper and lower
bounds on its (time) complexity. Our results are presented
in an entirely abstract way, i.e., it remains to show that our
algorithms have a notable impact on the performance of ag-
gregation functions in real networks and thus prove to be
relevant in practical applications. Apparently, it is usually
not possible to simply implant a distributed algorithm in
an application domain, as additional constraints imposed
by the application need to be respected. In wireless sen-
sor networks, e.g., aggregation needs to adhere to wireless
channel characteristics. We believe that our work can shed
additional light on the achievable aggregation rate and ca-
pacity10,11 in wireless networks, or, combined with other al-
gorithmic work on data gathering such as, e.g.,5,6 may even
provide basic aggregation functionality for various applica-
tion domains. We hope that our results and techniques may
eventually find their way into several application areas, pro-
viding aggregation support for, e.g., streaming databases or
multi-core architectures.

acknowledgments
We would like to thank Pascal von Rickenbach and Roland
Flury for their help with the illustrations. Moreover, we
would like to express our gratitude to Hagit Attiya for pro-
viding valuable feedback, which helped us greatly to im-
prove this article, and also for finding the time to write a
technical perspective.

The original version of this paper is entitled “Tight
Bounds for Distributed Selection” and can be found in the
Proceedings of the 19th ACM Symposium on Parallelism in
 Algorithms and Architectures (San Diego, CA, June 2007).

 1. Blum, M., Floyd, R. W., Pratt, V.,
Rivest, R. L., and Tarjan, R. E. Time
bounds for selection. Journal of
Computer and System Sciences,
7:448–461, 1973.

 2. Burri, N., von Rickenbach, P., and
Wattenhofer, R. Dozer. Ultra-low
power data gathering in sensor

networks. In International
Conference on Information
Processing in Sensor Networks
(IPSN), 2007.

 3. Chin, F. Y. L. and Ting, H. F. An
improved algorithm for finding the
median distributively. Algorithmica,
2:77–86, 1987.

References

Fabian Kuhn (kuhn@inf.ethz.ch) Postdoc
researcher, Institute of Theoretical
Computer Science, ETH Zurich, Switzerland

Thomas Locher (lochert@tik.ee.ethz.ch)
PhD student, Computer Engineering
and Networks Laboratory, ETH Zurich,
Switzerland

Roger Wattenhofer (wattenhofer@tik.
ee.ethz.ch) Professor, Head of Distributed
Computing Group, Computer Engineering
and Networks Laboratory, ETH Zurich,
Switzerland

© 2008 ACM 0001-0782/08/0900 $5.00

 4. Frederickson, G. N. Tradeoffs for
selection in distributed networks.
In Proceedings of the 2nd Annual
ACM Symposium on Principles of
Distributed Computing (PODC), pp.
154–160, 1983.

 5. Goel, A. and Estrin, D. Simultaneous
optimization for concave costs: Single
sink aggregation or single source buy-
at-bulk. Algorithmica, 43(1–2):5–15,
2005.

 6. Jia, L., Lin, G., Noubir, G., Rajaraman, R.,
and Sundaram, R. Universal
approximations for TSP, Steiner
Tree, and set cover. In 37th Annual
ACM Symposium on Theory of
Computing (STOC), pp. 386–395,
2005.

 7. Kempe, D., Dobra, A., and Gehrke, J.,
Gossip-based computation
of aggregate information. In
Proceedings of the 44th Annual
IEEE Symposium on Foundations of
Computer Science (FOCS), 2003.

 8. Madden, S., Franklin, M. J., Hellerstein,
J. M., and Hong, W. TAG: a tiny
aggregation service for ad-hoc sensor
networks. In Proceedings of the 5th
Annual Symposium on Operating
Systems Design and Implementation
(OSDI), pp. 131–146, 2002.

 9. Marberg, J. M. and Gafni, E. An
optimal shout-echo algorithm for
selection in distributed sets. In
Proceedings of the 23rd Allerton
Conference on Communication,
Control, and Computing, 1985.

 10. Moscibroda, T. The worst-case
capacity of wireless sensor networks.
In 6th International Conference on
Information Processing in Sensor
Networks (IPSN), 2007.

 11. Moscibroda, T. and Wattenhofer, R.
The complexity of connectivity in
wireless networks. In 25th Annual
Joint Conference of the IEEE
Computer and Communications
Societies (INFOCOM), 2006.

 12. Negro, A., Santoro, N., and Urrutia,
J. Efficient distributed selection with
bounded messages. IEEE Transactions
of Parallel and Distributed Systems,
8(4):397–401, 1997.

 13. Patt-Shamir, B. A note on efficient
aggregate queries in sensor networks.
In Proceedings of the 23rd Annual
ACM Symposium on Principles of

Distributed Computing (PODC), pp.
283–289, 2004.

 14. Peleg, D. Distributed Computing: A
Locality-Sensitive Approach. SIAM
Monographs on Discrete Mathematics
and Applications, 2000.

 15. Rodeh, M. Finding the median
distributively. Journal of Computer
and System Science, 24(2):162–166,
1982.

 16. Rodem, D., Santoro, N., and
Sidney, J. Shout-echo selection
in distributed files. Networks,
16:235–249, 1986.

 17. Santoro, N., Scheutzow, M., and
Sidney, J. B. On the expected
complexity of distributed selection.
Journal on Parallel and Distributed
Computing, 5(2):194–203, 1988.

 18. Santoro, N., Sidney, J. B., and
Sidney, S. J. A distributed selection
algorithm and its expected
communication complexity.
Theoretical Computer Science,
100(1):185–204, 1992.

 19. Schönhage, A., Paterson, M. S., and
Pippenger, N. Finding the median.
Journal of Computer and System
Sciences, 13:184–199, 1976.

 20. Shrira, L., Francez, N., and Rodeh. M.
Distributed k-selection: From a
sequential to a distributed algorithm.
In Proceedings of the 2nd Annual
ACM Symposium on Principles of
Distributed Computing (PODC),
pp. 143–153, 1983.

 21. Tiwari, P. Lower bounds on
communication complexity in
distributed computer networks.
Journal of the ACM (JACM),
34(4):921, 1987.

 22. Yao, A. Some complexity questions
related to distributive computing.
In Proceedings of the Annual ACM
Symposium on Theory of Computing
(STOC), pp. 209, 1979.

 23. Yao, Y. and Gehrke, J. The Cougar
approach to in-network query
processing in sensor networks. ACM
SIGMOD record, 31(3):9–18, 2002.

 24. Zhao, J., Govindan, R., and Estrin, D.
Computing aggregates for
monitoring wireless sensor networks.
In Proceedings of the 1st IEEE
International Workshop on Sensor
Network Protocols and Applications
(SNPA), 2003.

1_CACM_V51.9.indb 99 8/14/08 1:39:38 PM

