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ABSTRACT
Speaker change detection (SCD) is an important task in dialog
modeling. Our paper addresses the problem of text-based SCD,
which differs from existing audio-based studies and is useful in
various scenarios, for example, processing dialog transcripts where
speaker identities are missing (e.g., OpenSubtitle), and enhancing
audio SCD with textual information. We formulate text-based SCD
as a matching problem of utterances before and after a certain
decision point; we propose a hierarchical recurrent neural network
(RNN) with static sentence-level attention. Experimental results
show that neural networks consistently achieve better performance
than feature-based approaches, and that our attention-based model
significantly outperforms non-attention neural networks.1

1 INTRODUCTION
Speaker change detection (SCD), or sometimes known as speaker
segmentation, aims to find changing points of speakers in a dialog.
Specifically, a speaker change occurs when the current and the
next sentences are not uttered by the same speaker [10]. Detecting
speaker changes plays an important role in dialog processing, and
is a premise of dialog understanding, speaker clustering [14], etc.

In this paper, we address the problem of text-based speaker
change detection, which differs from traditional SCD with audio
input [4, 9]. Text-based SCD is important for several reasons:
• Evidence in the speech processing domain shows that text

information can improve speech-based SCD [7]. However, there
lacks specialized research for text-based SCD.
• In some scenarios, researchers may not have access to raw

audio signals for SCD. Vinyals et al. [17] and Li et al. [5], for ex-
ample, train sequence-to-sequence neural networks to automati-
cally generate replies in an open-domain dialog system. They use
OpenSubtitle [16] as the corpus, but assume every two consecutive
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sentences are uttered by different speakers (which brings much
noise to their training data).
• The fast development of dialog analysis puts high demands

on understanding textual data [17–19]—in addition to audio fea-
tures alone—because human-computer conversation involves deep
semantics, requiring complicated natural language processing. Text-
based SCD could also serve as a surrogate task for general speaker
modeling, similar to next utterance classification (NUC) being a
surrogate task for general dialog generation [8].

Using only text to detect speaker changes brings new challenges.
Previous audio-based SCD depends largely on acoustic features, e.g.,
pitch [9] and silence points [4], which provide much information
of speaker changes. With textual features alone, we need deeper
semantic understanding of natural language utterances.

In this paper, we formulate text-based SCD as a binary sentence-
pair classification problem, that is, we would like to judge whether
the speaker is changing between each consecutive sentence pair
(which we call a decision point). We also take into consideration
previous and future sentences around the current decision point as
context (Figure 1), serving as additional evidence.2

We propose a hierarchical RNN with static sentence-level at-
tention for text-based speaker change detection. First, we use a
long short term memory (LSTM)-based recurrent neural network
(RNN) to capture the meaning of each sentence. Another LSTM-
RNN integrates sentence information into a vector, before and after
the decision point, respectively; the two vectors are combined for
prediction. To better explore the context, we further apply an atten-
tion mechanism over sentences to focus on relevant information
during context integration. Compared with widely-used word-level
attention, our sentence-level attention is more efficient because
there could be hundreds of words in the context within only a few
sentences. Also, our attention is static in that only the nearest two
sentences around the decision point search for relevant information;
it differs from dynamic attention [1], which buries more important
sentences under less important context.

Our model was evaluated on transcripts of nearly 3,000 episodes
of TV talk shows. In our experiments, modern neural networks
consistently outperform traditional methods that use handcrafted
features. Ablation tests confirm the effectiveness of context; the
proposed hierarchical RNN with sentence-level static attention
can better utilize such contextual information, and significantly
outperforms non-attention neural networks. The results show that
our tailored model is especially suited to the task of text-based
speaker change detection.

2Because our task is based on text (and is not online speaker change detection), we
actually have access to the “future context” after the decision point.
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Figure 1: The proposed neural network. (a) LSTM-RNN sen-
tence encoder. (b) Context encoderwith another LSTM-RNN.
(c) Sentence-level static attention. (d) C.f. Dynamic attention.
Notice that we consider text-based speaker change detection
in this paper, so we have future utterances as context.

2 RELATEDWORK
Traditional speaker change detection (SCD) deals with audio in-
put and is a key step for speaker diarization (determining “who
spoke when?”) [10]. A typical approach is to compare consecutive
sliding windows of input with spectral features, pitch, or silence
points [4, 9]. Our paper differs from the above work and focuses
on textual input, which is useful in various scenarios, for example,
processing dialog transcripts where speaker identities are miss-
ing (e.g., OpenSubtitle) [5], and enhancing audio SCD with textual
information [7].

Nowadays, text-based dialog analysis has been increasingly im-
portant, as surface acoustic features are insufficient for semantic
understanding in conversations. Previous research has addressed
a variety of tasks, ranging from dialog act classification [13] to
user intent modeling [3]. In our previous study, we address the
problem of session segmentation in text-based human-computer
conversations [15]. Without enough annotated data, we apply a
heuristic matching approach, thus the task being unsupervised. Li
et al. [7] enhance audio-based SCD with transcribed text, and they
are also in the unsupervised regime. By contrast, this paper adopts a
supervised setting as we have obtained massive, high-quality labels
of speaker identities from the Cable News Network website.

As described in Section 1, we formulate our task as a sentence-
pair classification problem. Previous studies have utilized convo-
lutional/recurrent neural networks (CNNs/RNNs) to detect the re-
lationship (e.g., paraphrase and logical entailment) between two
sentences [2]; Rocktäschel et al. [11] equip RNN with attention
mechanisms. These studies do not consider contextual information.
In our scenario, the context appears on both sides of the decision
point, and we carefully design the neural architecture to better use
such contextual information.

3 APPROACH
In this section, we describe the proposed approach in detail. Fig-
ure 1 shows the overall architecture of our model, which has three
main components: a sentence encoder, a context encoder, and an
attention-based matching mechanism.

3.1 Sentence Encoder
We use a recurrent neural network (RNN) with long short term
memory (LSTM) units to encode a sentence as a vector (also known
as a sentence embedding), shown in Figure 1a.

An RNN is suited for processing sequential data (e.g., a sentence
consisting of several words) as it keeps a hidden state, changing
at each time step based on its previous state and the current input.
But vanilla RNNs with perceptron-like hidden states suffer from
the problem of vanishing or exploding gradients, being less effective
to model long dependencies. LSTM units alleviate the problem by
better balancing input and its previous state with gating mecha-
nisms. For convenience, we use LSTM’s final state (corresponding
to the last word in a sentence) as the sentence embedding.

Formally, letx (t ) be the embedding of the t-th word in a sentence,
and h(t−1) be the last step’s hidden state. We have

[i (t ) ; f (t ) ;o(t )] = σ (Wx (t ) +Uh(t−1) + b) (1)

д(t ) = tanh(Wдx
(t ) +Uдh

(t−1) + bд ) (2)

c (t ) = i (t ) ⊗ д(t ) + c (t−1) ⊗ f (t ) (3)

h(t ) = o(t ) ⊗ tanh(c (t ) ) (4)

whereW ’s and U ’s are weights, and b’s are bias terms. ⊗ denotes
element-wise product, σ the sigmoid function. i (t ) , f (t ) , and o(t )

are known as gates, and h(t ) is the current step’s hidden state.

3.2 Context Encoder
Another LSTM-RNN encodes contextual information over sentence
vectors, shown in Figure 1b. Since we model our task as a match-
ing problem, we apply the RNN to the decision point’s both sides
separately, the resulting vectors of which are concatenated as an
input of prediction.

It should be noticed that our LSTM-RNN goes from faraway sen-
tences to the nearest ones (called critical sentences) on both sides of
the current decision point. We observe that nearer sentences play
a more important role for prediction; that an RNN is better at keep-
ing recent input information by its nature. Hence, our treatment is
appropriate.

Besides, our neural network is hierarchical in that it composites
sentences with words, and discourses with sentences. It is similar
to the hierarchical autoencoder in [6]. Other studies apply a single
RNN over a discourse, also achieving high performance in tasks
like machine comprehension [12]. In our scenario, however, the
sentences (either context or critical ones) are not necessarily ut-
tered by a single speaker. Experiments in Section 4.3 show that
hierarchical models are more suitable for SCD.

3.3 Our Attention Mechanism
We use an attention mechanism to better utilize contextual in-
formation. Attention-based neural networks are first proposed to
dynamically focus on relevant words of the source sentence in ma-
chine translation [1]. In our scenario, we would like to match a
critical sentence with all utterances on the other side of the deci-
sion point (Figure 1c). That is to say, the attention mechanism is
applied to the sentence level, different from other work that uses
word-level attention. Our method is substantially more efficient
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because a context of several utterances could contain hundreds of
words.

Considering t sentences (context size being t − 1) before and
after the decision point, respectively, we have 2t sentences in total,
namely s (1)p →s

(2)
p →· · ·→s

(t )
p s

(t )
f ←· · ·←s

(2)
f ←s

(1)
f , where

subscripts p and f refer to previous and future utterances around
the current decision point; the arrows indicate RNN’s directions.

In our attention mechanism, a critical sentence, e.g., s (t )p , focuses

on all sentences on the other side of the decision point s (1)f , · · · , s
(t )
f ,

and aggregates information weighted by a probabilistic distribution
αp ∈ Rt , i.e.,

α̃
(i )
p = u

⊤
a tanh

(
Wa

[
s
(t )
p ; s (i )f

] )
(5)

α
(i )
p = softmax

(
α̃
(i )
p

)
=

exp
{
α̃
(i )
p

}

∑t
j=1 exp

{
α̃
(j )
p

} (6)

Here, s (t )p is concatenated with s
(i )
f , processed by a two-layer per-

ceptron (with parametersWa and ua ). α̃i is a real-valued measure,
normalized by softmax to give the probability αi . The aggregated
information, known as an attention vector, is

mp =

t∑
i=1

α
(i )
p · s

(i )
f (7)

Likewise, the other critical sentence s (t )f yields an attention vec-
tormf . They are concatenated along with LSTM’s output of the
critical sentences for prediction. In otherwords, the input of softmax
is [s (t )p ; s (t )f ;mp ;mf ].

It should be pointed out that, our attention is static, as only criti-
cal sentences search for relevant information using Equations (5)–
(7). It resembles a variant in [11], but differs from common attention
where two LSTMs interact dynamically along their propagations
(Figure 1d). Such approach may bury the critical sentences; it leads
to slight performance degradation in our experiment, as we shall
see in Section 4.3.

4 EXPERIMENTS
4.1 Dataset Collection
We crawled transcripts of nearly 3,000 TV talk shows from the Cable
News Network (CNN) website,3 and extracted main contents from
the original html files. The transcripts contain speaker identities,
with which we induced speaker changes in the dialog.

The crawled dataset comprises 1.5M utterances.We split training,
validation, and test sets by episodes (TV shows) at a ratio of 8:1:1. In
other words, each episode appears in either the training set, or the
val/test sets. This prevents utterance overlapping between training
and prediction, and thus is a more realistic setting than splitting by
utterances.

We notice that, our corpus is larger than previous ones by magni-
tudes: the 1997 HUB4 dataset, for example, is 97 hours long, whereas
our TV shows are estimated to be 3,000 hours (each episode roughly

3http://transcripts.cnn.com (CNN here should not be confused with a convolutional
neural network.)

Model Acc. F1 P R

Random guess 61.8 25.4 26.0 25.0
Logistic regression w/ (uni+bi)-gram 80.5 50.9 73.0 39.0
DNN w/ (uni+bi)-gram 76.6 56.5 54.4 58.8
CNN w/o context 77.8 57.8 56.8 58.9
RNN w/o context 83.3 63.9 72.5 57.1
RNN w/ context (non-hierarchical) 83.7 65.7 72.6 60.0
RNN w/ context (hierarchical) 85.1 69.2 74.6 64.6

+ static attention 89.2 78.4 81.5 75.6
Table 1: Model performance (in %). Here, LSTM units are
used in RNN, but omitted in the table for brevity. The con-
text size is 8, chosen by validation (deferred to Figure 2).

lasting for an hour), which are more suitable for training deep neu-
ral networks.

In the dataset, speaker changes count to 25%. We thus used F1-
measure in addition to accuracy as metrics, i.e., F1 = 2P · R/(P +
R), where P =

#correctly detected changes
#detected changes is the precision, and R =

#correctly detected changes
#all changes is the recall.

4.2 Settings
We set all neural layers, including word embeddings, to 200 dimen-
sional. Since our dataset is large, we randomly initialized word
embeddings, which were tuned during training. We used the Adam
optimizer with mini-batch update (batch size being 100). Other
hyperparameters were chosen by validation: dropout rate from
{0.1, 0.3} and initial learning rate from {3 × 10−4, 9 × 10−4}.

We had several baselines with handcrafted features: we extracted
unigram and bigram features of the critical sentences as two vec-
tors, which are concatenated for prediction. We applied logistic
regression and a 3-layer deep neural network (DNN) as the clas-
sifier; the former is a linear model whereas the latter is nonlinear.
DNN’s hidden dimension was set to 200, which is the same as our
neural network.

A convolutional neural network (CNN) is also included for com-
parison. It adopts a window size of 3, and a max-pooling layer
aggregates extracted features. All competing neural models (in-
cluding DNN and CNN) were tuned in the same manner, so our
comparison is fair.

4.3 Performance
Table 1 presents the performance of our model as well as base-
lines. As shown, all modern neural networks (CNNs/RNNs with
word embeddings) are consistently better than methods using hand-
crafted features of unigrams and bigrams. Because we have applied
a 3-layer DNN to these features, we believe the performance im-
provement is not merely caused by using a better classifier, but the
automatic feature/representation learning nature of modern neural
networks.

For neural network-based sentence encoders, we compared LSTM-
RNN with CNN. Results show that LSTM-RNN outperforms CNN
by 6% in terms of both accuracy and F1-measure.

To cope with context, the simplest approach, perhaps, is to use an
RNN to go through surrounding utterances of the critical sentences,
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Figure 2: Effect of the context size and different attention
mechanisms. The context size is the number of utterances,
excluding the critical sentence, on each side of the decision
point; a size of 0 refers to no context.

denoted as non-hierarchical in Table 1. Using contextual informa-
tion yields an F1 improvement of 2%. This controlled experiment
validates the usefulness of context for SCD. The hierarchical RNN
introduced in Sections 3.1 and 3.2 further improves the F1-measure
by 3%. With sentence-level static attention, our model achieves the
highest performance of 89.2% accuracy and 78.4% F1-measure.

We would like to have in-depth analysis regarding how the
context size and different attention mechanisms affect our model.
The context size was chosen by validation from {1, 2, 4, 8}.4 As
shown in Figure 2, even a single context sentence (on each side of
the decision point) improves the performance by 2%; with more
surrounding utterances, the performance grows gradually. More-
over, attention-based neural networks significantly outperform
non-attention models by a margin of 10%. We also tried a dynamic
sentence-by-sentence attention mechanism, similar to most exist-
ing work [1]. As analyzed in Section 3.3, such model buries critical
sentences and thus slightly hurts the performance by 1–2% F1-
measure (green dashed line in Figure 2). The experiments verify the
effectiveness of our hierarchical RNN with sentence-level, static
attention.
Case study. Table 2 showcases a dialog snippet. In the example,
our model makes an error as it fails to detect the change between
Sentences 4–5. However, it is even hard for humans to judge this
particular change, because the word absolutely also goes fluently
into the next sentence. For other utterances with more substance,
the neural network correctly joins Sentences 1–2 and 5–6, as well
as segments Sentences 2–3 and 3–4, showing that our proposed
model can effectively capture the semantics of these sentences.

5 CONCLUSION
In this paper, we proposed a static sentence-level attention LSTM-
RNN for text-based speaker change detection. Our model uses an
LSTM-RNN to encode each utterance into a vector, based on which
another LSTM-RNN integrates contextual information, before and
after a particular decision point, respectively. A static sentence-level
attention mechanism is also applied to enhance information inter-
action. We crawled dialog transcripts from Cable News Network

4Due to efficiency concerns, we did not try larger context sizes.

ID Utterances Speaker Changes? Correct?Predicted Truth

1 there ’s no question the deficit halts
on both sides of the aisles .

No No ✓

2
cbo , wall street , everyone will have
a say into this , including workers
and future retirees . Yes Yes ✓

3 and your saying it ’s both
parties ? Yes Yes ✓

4 absolutely .
No Yes ✗

5 the key , though , is the first six
months .

No No ✓

6
you say it ’s not going to get
through in these first couple
months .

Table 2: Case study. Colors indicate speaker identities (they
are used to infer groundtruth speaker changes, but cannot
be seen during prediction).

TV talk shows for evaluation. Experimental results demonstrate
the effectiveness of our approach. In particular, in-depth analysis
validates that contextual information is indeed helpful for speaker
change detection, and that our tailored model can make better use
of context than other neural networks.
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