
Distributed Stable Matching with Similar
Preference Lists
Pankaj Khanchandani1 and Roger Wattenhofer1

1 ETH Zurich, Switzerland
kpankaj@ethz.ch (contact author), wattenhofer@ethz.ch

Abstract
Consider a complete bipartite graph of 2n nodes with n nodes on each side. In a round, each
node can either send at most one message to a neighbor or receive at most one message from a
neighbor. Each node has a preference list that ranks all its neighbors in a strict order from 1 to n.
We introduce a non-negative similarity parameter ∆ < n for the preference lists of nodes on one
side only. For ∆ = 0, these preference lists are same and for ∆ = n− 1, they can be completely
arbitrary. There is no restriction on the preference lists of the other side. We show that each
node can compute its partner in a stable matching by receiving O(n(∆ + 1)) messages of size
O(log n) each. We also show that this is optimal (up to a logarithmic factor) if ∆ is constant.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases distributed stable matching, similar preference lists, stable matching,
stable marriage

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In 1962, Gale and Shapley proposed an algorithm [5] to find a stable matching between a
set of n men and n women, where each participant has a preference list ranking all the
participants of opposite gender in a strict order. The algorithm computes a match for each
man (and each woman) so that any pair of man and woman who are not matched do not
both prefer each other to their current matches. The Gale-Shapley algorithm is one of the
most influential results in 20th century science, and forms the basis of the 2012 Sveriges
Riksbank Prize in Economic Sciences in Memory of Alfred Nobel.

The Gale-Shapley algorithm is also one of the very first distributed algorithms, as all
the unmatched men can send their proposals simultaneously. Despite its distributed design,
there are worst-case problem instances which basically execute sequentially as there are
Θ(n2) steps with only a single unmatched man [8]. These worst-case problem instances
however feel very contrived, as participants need completely divergent preferences. One
might expect that real world preference lists will be somewhat similar.

In this paper, we want to know whether similar preference lists allow for designing faster
distributed algorithms. Towards this, we introduce a parameter ∆ which is the smallest
number so that the difference between the maximum and minimum ranks assigned to any
man is at most ∆. A smaller value of ∆ implies that the difference in the positions of a man
in the preference lists of any two women is also smaller and the preference lists of women are
relatively similar. The preference lists of men are still allowed to be arbitrary, independent
of ∆.

Each participant is represented by a node in our distributed model and computation pro-
ceeds in synchronous rounds. If we use the traditional message passing model of distributed

© Pankaj Khanchandani and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Distributed Stable Matching with Similar Preference Lists

computing, a man can send his proposals to all the n women simultaneously, where n can
be arbitrarily large. This does not seem to be a realistic social construct. Instead, in this
paper we use a communication model where each node can either send or receive at most
one message in a single round. It is an exciting open question whether a node can compute
its stable partner by receiving o(n2) values or messages of size O(log n) each.

We give an algorithm so that any node computes its partner in a stable matching by
receiving O(n(∆ + 1)) messages of size O(log n) each. We also show that any node requires
Ω(n/ log n) messages to compute its partner. Thus, our algorithm is nearly optimal for
constant ∆.

2 Related Work

The seminal paper by Gale and Shapley [5] has inspired lots of research on stable matching.
The book of Gusfield and Irving [6] extensively survey the problem and its many variants.
Irving et al. give a version where the preference lists of one set of participants (say women)
are derived from a master preference list so that the men present in the master list occur
in the preference lists of women in the same order as in the master list [7]. This results in
similar preference lists but the order of a group of men remains same across all the women.
The similarity measure ∆ that we use does not enforce a strict order on any particular group
of men. To the best of our knowledge, this measure has not been discussed before.

Distributed stable matching with a goal of keeping the preference lists private to an
individual has also been studied [2, 3]. In our work, our focus is to solve the problem
rather collaboratively, minimizing the information required by each node to compute its
stable partner. Kipnis and Patt-Shamir consider a distributed version in which a man is
not required to rank all the women and give a lower bound on the information required by
a node using an incomplete bipartite graph [9]. To understand the hardness of the problem
when topology is not a limiting factor, we consider that each man ranks all the women and
vice-versa or a complete bipartite graph.

Amira et al. consider a variant where a complete bipartite graph has weighted edges [1].
The preference list of a node is then derived according the order of weights of edges that are
incident at the node. They give an algorithm in which any node can compute its partner
using only O(n

√
n) values. For the problem instances that they consider, the preference lists

of women is dependent on the preference lists of men or the other way around. In our case,
the preference lists of men can be completely arbitrary and that of women can be chosen
independently, only subject to the parameter ∆. Also, the values required by a node to
compute a stable matching can be larger or smaller depending on the parameter ∆.

In parallel algorithms with Θ(n) processes, a process might still need to access Ω(n2)
values before a stable partner is computed [12, 13]. Distributed algorithms for approximate
stable matching have also been studied. For example, Floréen et al. consider the case where
the preference lists have bounded length and give a local algorithm for a stable matching with
only few unstable edges [4]. Ostrovsky et al. give an algorithm for almost stable matching
that terminates in poly-logarithmic rounds for arbitrary preferences [11].

3 Model

LetM = {m1, m2, . . . , mn} be the set of men andW = {w1, w2, . . . , wn} be the set of women.
In a matching, any man is matched to at most one woman and any woman is matched to at
most one man. A perfect matching is a matching where all the men and women are matched.

P. Khanchandani and R. Wattenhofer XX:3

Given a perfect matching, a pair of man and woman that are not matched to each other is
called a blocking pair if they prefer each other to their matched partners. Thus, a stable
matching is a perfect matching without a blocking pair.

We denote the preference lists of men by matrix M where an entry Mij is the jth ranked
woman by man mi. Similarly, matrix W is so that an entry Wij is the jth ranked man by
woman wi. Thus, a woman wi prefers man Wij to the man Wik if j < k and a man mi

prefers woman Mij to the woman Mik if j < k. The similarity parameter ∆ is the smallest
value so that the following holds for the matrix W .

Wij = Wpq ⇒ |j − q| ≤ ∆ (1)

Thus, the range in which a man is ranked by all the women is at most ∆ large.
In the distributed setting, the set M andW are the nodes and the network is a complete

bipartite graph with M and W on the opposite sides. The algorithm proceeds in sequence
of synchronous rounds. In each round, a node can either

1. Send a message to at most one neighbor and do local computations; or
2. Receive a message from at most one neighbor and do local computations.

If several messages are sent to the same node in the same round, then none are received by
the intended recipient. The messages are of size O(log n).

Let us first see that any algorithm for finding the stable matching in this model requires
Ω(n/ log n) rounds when ∆ = 0. Afterwards, we will see a sequential algorithm and its anal-
ysis which we later develop into the distributed algorithm. Finally, we show its correctness.

4 Lower Bound

Figure 1 shows sample matrices M and W for n = 5 and ∆ = 0. As ∆ = 0, the preference
lists of all the women are same. For simplicity, we assume that the man mi is ranked ith by
all women.

M =

w1 w2 w3 w4 w5

w1 w4 w5 w3 w2

w4 w3 w1 w5 w2

w5 w4 w1 w2 w3

w5 w1 w2 w3 w4

 W =

m1 m2 m3 m4 m5

m1 m2 m3 m4 m5

m1 m2 m3 m4 m5

m1 m2 m3 m4 m5

m1 m2 m3 m4 m5

Figure 1 Sample Preference Matrices for n = 5, ∆ = 0

The man m1 is ranked first by all the women. Thus, m1 must be matched to his first
preference, w1, in any stable matching. Otherwise, m1 and w1 would form a blocking pair.

The man m2 is ranked second by all the women and his most preferred woman is w1.
However, m2 cannot be matched to w1 as she must be matched to m1. On the other hand,
m2 must be matched to w4, which is his most preferred woman excluding w1. Otherwise,
m2 and w4 would form a blocking pair. We can generalize this into the following lemma.

I Lemma 1. Consider the stable matching problem with n men and n women where any
entry Wij = mj, i.e., ∆ = 0. In any stable matching, a man mj is matched to his most
preferred woman excluding the women matched to men mi, i < j.

Proof. Assume a stable matching S in which a j exists so that mj is not matched to his
most preferred women when the women matched to mi, i < j are excluded.

XX:4 Distributed Stable Matching with Similar Preference Lists

Say, that mj is matched to a woman w and w∗ is his most preferred woman excluding
the women matched to mi, i < j. Clearly, mj prefers w∗ to w. Consider the woman w∗. She
is not matched to mj by our assumption. Also, she is not matched to mi for i < j either.
Thus, w∗ prefers mj to her match mk, k > j. Hence, mj and w∗ form a blocking pair and
S is not a stable matching. J

Thus, mj should know the women matched to men mi, i < j to determine his partner.
We exploit this to show a lower bound on the number of rounds necessary to compute the
stable matching as follows. We will use the notation [1, n] for the set of integers between 1
and n inclusive.

I Lemma 2. It takes Ω(n/ log n) rounds to compute a stable matching for n men and n

women when Wij = mj, i.e., ∆ = 0.

Proof. Consider a man mk, k ∈ [1, n]. As a corollary of Lemma 1, mk is matched to
a woman Mkj , j ≤ k. Let B be the set of k − 1 highest ranked women by mk, i.e.,
B = {Mkj : j ∈ [1, k − 1]}. Let A be the set of women matched to the men ranked higher
than mk by the women, i.e., A = {wi : wi matched to mj , j < k}. Using Lemma 1, A = B

if mk is matched to Mkk. On the other hand, if mk is not matched to Mkk, then mk is
matched to a woman in set B that is not in set A and A 6= B.

It is known that Ω(n) bits must be exchanged between two parties, if each of them is
given a subset of [1, n] and they want to determine if the subsets are same [10] 1. Here, node
mk having set B determined if it was equal to set A present in the other nodes. Thus, Ω(n)
bits must be exchanged with mk. As the message size is O(log n), the algorithm must run
for Ω(n/ log n) rounds. J

Let us now see a sequential algorithm in which any man needs to propose O(∆) times to
find the stable matching. Later, we will implement this algorithm in our distributed model.

5 Sequential Algorithm

We will use the notation c(mj) to denote the smallest column number of W in which the
man mj occurs. We show sample input matrices M and W for n = 5 and ∆ = 2 in Figure 2.
For this input, c(m5) = c(m3) = 1, c(m2) = 2, c(m4) = 3 and c(m1) = 4. Also, we define
a bijective function l : [1, n] → [1, n] so that c(mj) < c(mk) ⇒ l(j) < l(k). As the function
l is bijective, l−1 is defined as well. For example, following is an assignment of l and l−1

given the preference matrix W in Figure 2: l(5) = 1, l(3) = 2, l(2) = 3, l(4) = 4, l(1) = 5
and l−1(1) = 5, l−1(2) = 3, l−1(3) = 2, l−1(4) = 4, l−1(5) = 1.

M =

w1 w5 w4 w3 w2

w4 w3 w1 w5 w2

w1 w4 w5 w3 w2

w5 w4 w2 w1 w3

w1 w2 w3 w4 w5

 W =

m5 m3 m2 m4 m1

m3 m2 m5 m1 m4

m3 m5 m4 m2 m1

m5 m2 m3 m4 m1

m5 m3 m2 m1 m4

Figure 2 Sample Preference Matrices for n = 5, ∆ = 2

1 The result also applies if the sizes of the subsets are same as in our case. As otherwise, one could
exchange the sizes in O(log n) bits and compute the result using o(n) bits.

P. Khanchandani and R. Wattenhofer XX:5

Algorithm 1 describes the sequential stable matching algorithm. The set F contains
men that are free and is initialized with all the men. The variable i is the maximum column
number so that there is a man mj with c(mj) = i that already proposed to someone.
The free man that has the smallest value assigned by function l proposes the next women
available in his list. Not all are available as some of them are deleted from his list during
the algorithm. A woman accepts a proposal if she is free or if the proposal is better than
her current partner. If it was the first proposal she accepted, then she is deleted from the
preference lists of all the men mj that have c(mj) > i + ∆.

Algorithm 1: Sequential Stable Matching: The loop at Line 3 ends after all men are
matched. If a woman w receives her first proposal (Line 6), then w is deleted from the
preference list of all men mj where c(mj) > i + ∆ (loop at Line 14).

1 F ←M;
2 i← 1;
3 while F 6= ∅ do
4 m← mj where j = l−1(min{l(k) : mk ∈ F});
5 i = max{i, c(m)};
6 m proposes to the next available (not already deleted) woman w from his

preference list;
7 if w is enaged and does not prefer m to her current partner then
8 w rejects m’s proposal;
9 else

10 if w is engaged to a less preferred partner m′ then
11 w disengages with m′;
12 F ← F ∪ {m′};
13 else // w is not engaged
14 forall j ∈ [1, n] do
15 if c(mj) > i + ∆ then
16 Delete w from mj ’s preference list;

17 w accepts m;
18 F ← F\{m};

We show an execution of the algorithm in Table 1. It can be checked that the final
matching is indeed a stable matching. Also note that no more than three proposals (∆ + 1)
are required for any man mj . Let us now analyze the algorithm to see if we can generalize
these observations.

6 Analysis of the Sequential Algorithm

It is rather easy to show that the algorithm always maintains a matching, i.e., each node is
matched to at most one neighbor.

I Lemma 3. Algorithm 1 always maintains a matching.

Proof. A woman is never matched to more than one man as whenever she accepts a proposal,
she always disengages with her current partner (if any). A man sends a proposal only if he
is in set F . Initially, F contains all the men which are free. Whenever a man is accepted, he

XX:6 Distributed Stable Matching with Similar Preference Lists

F Propose i Delete Matching
M m5 → w1 1 M11 {(m5, w1)}

M\m5 m3 → w1 1 {(m5, w1)}
M\m5 m3 → w4 1 M13 {(m5, w1), (m3, w4)}

M\{m5, m3} m2 → w4 2 {(m5, w1), (m2, w4)}
M\{m5, m2} m3 → w5 2 {(m5, w1), (m2, w4), (m3, w5)}

{m1, m4} m4 → w5 3 {(m5, w1), (m2, w4), (m3, w5)}
{m1, m4} m4 → w4 3 {(m5, w1), (m2, w4), (m3, w5)}
{m1, m4} m4 → w2 3 {(m5, w1), (m2, w4), (m3, w5), (m4, w2)}

{m1} m1 → w5 4 {(m5, w1), (m2, w4), (m3, w5), (m4, w2)}
{m1} m1 → w3 4 {(m5, w1), (m2, w4), (m3, w5), (m4, w2), (m1, w3)}

Table 1 An execution of Algorithm 1 on preference matrices of Figure 2. We use the following
definition of function l: l(5) = 1, l(3) = 2, l(2) = 3, l(4) = 4 and l(1) = 5. Thus, we choose a
free man in Line 4 that occurs earliest in the following list: m5, m3, m2, m4, m1. We show the
change in variables during the subsequent iterations of the loop at Line 3. The column ‘F ’ shows
the value of the variable F at the start of the iteration. The column ‘Propose’ is the proposal made
during the iteration. The column i shows the value of variable i just before entries from preference
lists are deleted. The column ‘Delete’ shows entries of M deleted during the iteration. The column
‘Matching’ is the matching at the end of the iteration.

is removed from F and whenever a man is disengaged, he is added to F . Thus, a matched
man never sends a proposal and a man is matched to at most one woman. J

However, it is not clear that the algorithm computes a perfect matching as the loop
of Line 3 may not terminate. We show that this does not happen using contradiction as
follows.

I Lemma 4. Algorithm 1 computes a perfect matching.

Proof. If the algorithm terminates, then none of the men are free. Using Lemma 3 the
statement holds. Thus, we now only need to show that the algorithm terminates.

Assume that the algorithm does not terminate. Then, there is a man m that has ex-
hausted his preference list and is unmatched. Now, there are two possibilities for each
woman w in m’s preference list. First: m proposed to w and got rejected or disengaged
later. Second: m did not propose to w as she was already deleted from m’s preference list.
In either case, w would still be matched as w never rejects a proposal if she is free and only
accepts better proposals if already matched. This means that n women are matched to at
most n− 1 other men (excluding m). Using Lemma 3, this is a contradiction. J

And now that we have a perfect matching upon termination, we can assume a blocking
pair in that perfect matching and show that such a pair does not exist. We introduce the
notation W[a,b][x,y] to denote the set of elements in the sub-matrix of W formed between
rows a, b inclusive and columns x, y inclusive. We will also use the shorthand ∗ to denote
the range [1, n] and a to denote the single element range [a, a].

I Lemma 5. The matching computed by Algorithm 1 is a stable matching.

Proof. We know from Lemma 4 that the algorithm terminates in a perfect matching. As-
sume that m and w′ form a blocking pair and w′ prefers m to her final match m′.

Now, either m did or did not propose to w′. If m proposed to w′, then it got rejected or
disengaged later and w′ prefers m′ to m, a contradiction. If m did not propose to w′, then

P. Khanchandani and R. Wattenhofer XX:7

w′ was removed from m’s preference list. Say, w′ was matched to m′′ and i = p when she
was removed. Then, we conclude that c(m) > p + ∆. Also, c(m′′) ≤ p as m′′ is matched to
w′ when i = p. Consequently, m′′ /∈ W∗[p+∆+1,n] due to (1). Thus, w′ prefers m′′ to m. As
w′ only accepts better proposals in the future and m′′ was her first match, she also prefers
m′ to m, a contradiction. J

There is an interesting property of this algorithm, namely, no man proposes more than
3∆ + 1 times. We will first show a bound on the number of men up to a certain number of
columns of W . Later, we use this bound to show this property.

I Lemma 6. The total number of men in W∗[1,j] is at least j and at most j + ∆.

Proof. The elements of any given row i ∈ [1, n] of W are all different and thus they are
different in a given range [1, j]. Thus, we have |Wi[1,j]| = j and |W∗[1,j]| ≥ j.

If a man m ∈ W∗[1,j], then (1) implies that m /∈ W∗[j+∆+1,n]. As m occurs in every
row of W , m ∈ Wi[1,j+∆] for i ∈ [1, n]. Thus, W∗[1,j] ⊆ Wi[1,j+∆] for i ∈ [1, n] and we have
|W∗[1,j]| ≤ (j + ∆)− 1 + 1 = j + ∆. J

Now, we can use the above lemma to bound the number of proposals that are made by
a man.

I Lemma 7. The maximum number of proposals made by a man in Algorithm 1 is 3∆ + 1.

Proof. Let m be some man and say that c(m) = p. Consider the first time t when all the
men mj with c(mj) ≤ p−∆− 1 are matched. When i > p−∆− 1 for the first time, then
all the men mj with c(mj) ≤ p−∆− 1 are already matched. Thus, i ≤ p−∆− 1 at time
t. Note that the set of men mj with c(mj) ≤ p − ∆ − 1 is same as W∗[1,p−∆−1]. Using
Lemma 6, this set is at least p−∆− 1 in size. Thus, at least p−∆− 1 free women received
proposals when i ≤ p−∆− 1. As c(m) = p > (p−∆− 1) + ∆, at least p−∆− 1 women
were deleted from m’s preference list.

At time t, let D(m) be the set of men matched to the women deleted from m’s preference
list. As i ≤ p−∆− 1 at time t,

m′ ∈ D(m)⇒ m′ ∈W∗[1,p−∆−1] . (2)

Let R(m) be the set of men that are ranked better than m at least once by some woman.
Thus, we have D(m) ⊆ R(m). Say that m makes x proposals in total. Then, m was rejected
or disengaged x − 1 times due to a man from R(m). As a woman only accepts better
proposals in future, there are at least |D(m)|+ (x− 1) women that are matched to men in
R(m) when algorithm terminates. Thus,

|D(m)|+ (x− 1) ≤ |R(m)|
(p−∆− 1) + (x− 1) ≤ |R(m)| ((2))

p−∆ + x− 2 ≤ |W∗[1,p+∆]\m| ((1))
p−∆ + x− 2 ≤ |W∗[1,p+∆]| − 1 (c(m) = p)
p−∆ + x− 2 ≤ p + 2∆− 1 (Lemma 6)

x ≤ 3∆ + 1 .

J

Let us now use our analysis to build a distributed version of the algorithm.

XX:8 Distributed Stable Matching with Similar Preference Lists

7 Distributed Algorithm

Before describing the distributed algorithm, we will compute some quantities that will give
us some useful abstractions. Let us first compute ∆ at every node in M. We let r(wi, m) to
be the rank assigned by wi to m ∈M, i.e., Wip = m for p = r(wi, m).

I Lemma 8. All nodes mj ∈M know r(wi, mj) for all i ∈ [1, n] after the following procedure
is repeated for p ∈ [0, n−1]: for k ∈ [1, n], wk sends r(wk, m(k+p) mod n+1) to m(k+p) mod n+1
in round p.

Proof. Consider the nodes wa and wb where a 6= b. In any given round p the expression
(a+p) mod n+1 6= (b+p) mod n+1. Thus, messages sent by wa and wb in round p are sent
to different nodes and received by them consequently. Also, the expression (a+p) mod n+1
covers every value in the range [1, n] for a given a when p covers the range [0, n− 1]. Thus,
all nodes wa ∈W send r(wa, mk) for k ∈ [1, n]. J

Now, using the previous lemma each node mj ∈M can compute the value of ∆.

I Lemma 9. In O(n) rounds, each node mj ∈M can compute the value of ∆.

Proof. Using Lemma 8, any node mj can compute the set Rj = {r(wi, mj) : i ∈ [1, n]}.
Thus, mj can compute Rmax

j = max Rj , Rmin
j = min Rj and ∆j = Rmax

j −Rmin
j . Now in n

rounds, each node mj can send ∆j to w1. Then, w1 can compute ∆ = max{∆j : j ∈ [1, n]}
and send it to all nodes mj in another n rounds. J

Let us also compute the function c at the nodes M, i.e., each node m ∈M computes the
set {c(mj) : j ∈ [1, n]}. This function can be used to compute functions such as l locally
that would be useful for distributed algorithm design.

I Lemma 10. In O(n) rounds, each node mj ∈M can compute the function c.

Proof. Using Lemma 8, each node mj ∈M can compute the set Rj = {r(wi, mj) : i ∈ [1, n]}.
Thus, mj can compute c(mj) = min Rj .

We define a circular path P of nodes from M so that the next node of a node mj is
mj mod n+1. Each node mj already knows vj = 〈mj , c(mj)〉. Now, in 2 rounds each node
mj ∈ P can send vj to next node on P by forwarding it through wj mod n+1. If this is done
n− 1 times, each value vj reaches all the other n− 1 nodes on path P and each node in M
stores the complete function c. J

I Corollary 11. In O(n) rounds, each node mj ∈M can compute the function l.

Proof. Using Lemma 10, each node mj ∈M computes the function c in O(n) rounds. Now,
l can computed locally by each node using the function c and a deterministic tie-breaking
for nodes mj that have same value of c(mj). J

Once the nodes M know the functions c and l, they can also compute the following
functions locally.

1. We define the sequence L as the nodes M arranged in ascending order of values assigned
by function l. The value of Next(i) is j so that the node mj is next to the node mi in
L. Similarly, the value of Prev(i) is j so that the node mj occurs just before mi in L.
We use ⊥ to point past end or before start of L. Formally,

Next(i) =
{

l−1(l(i) + 1) if l(i) < n− 1,

⊥ otherwise

P. Khanchandani and R. Wattenhofer XX:9

and

Prev(i) =
{

l−1(l(i)− 1) if l(i) > 1,

⊥ otherwise .

2. Consider the sequence L. We call a node mj a pivot if mj is first node in L or
c(mj) > c(mPrev(j)). If a node mj is a pivot, then F (j) points to itself. Otherwise,
F (j) points to the next pivot node in L (⊥ if there is no next pivot in L). Formally,

F (i) =

i if i = l−1(min{l(j) : c(mj) = c(mi)}),
l−1(min{l(j) : c(mj) > c(mi)}) if {l(j) : c(mj) > c(mi)} 6= ∅,
⊥ otherwise .

3. If mi is a pivot node, the value of Wait(i) is the number of men mj that have c(mj) = c(mi).
Otherwise, it is zero.

Wait(i) =
{
|{mj : c(mj) = c(mi)}| if i = l−1(min{l(j) : c(mj) = c(mi)}),
0 otherwise

Our goal is to design a distributed algorithm that simulates the sequential algorithm in
constant number of rounds per proposal. The broad idea of the algorithm can be explained
as follows. The algorithm matches men on the left side of sequence L and simultaneously
deletes elements from the preference lists of men on the right side of sequence L. As the
algorithm proceeds, the left part of sequence L consisting of matched men grows. The
function F is used to pass on the deletion information from the first part to the second part.
The function Wait is used to ensure that before a proposal is made, deletion of elements
from the preference lists of men until the next pivot is finished. The functions Next and
Prev are used to put the nodes into sequence L initially.

The precise description is in Algorithm 2 for a node mi and in Algorithm 3 for a node wi.
The variable counter increments by 1 in each round. The list of unmatched men as per their
order in the sequence L is maintained by the variables next and prev. The variable match
stores the current partner (⊥ if none). The algorithm proceeds in phases. Each phase lasts
eight rounds. A proposal is only sent in the first six rounds of the phase (counter mod 8 < 6)
where as the deletion of women from the preference lists occurs in the last two rounds of
the phase (counter mod 8 ≥ 6). If a free woman receives a proposal, the initiation of her
deletion from the preference lists also occurs during the first six rounds. The variable D

contains the woman that should be checked for deletion in the next round and is updated
during the last two rounds of the phase.

Let us now check if the distributed algorithm achieves its goal of simulating the sequential
algorithm in a constant number of rounds per proposal.

8 Analysis of the Distributed Algorithm

Let us establish some helpful notations first. Xt
i is the value of the variable X stored by

node mi at the start of round t ≥ 0 (loop at Line 4 when counter = t). X̂t
i is the value of

the variable X stored by node wi at the start of round t. The notation p(t) represents the
number of 〈propose〉 messages sent until round t starts. DM (t) is the matching stored by
the variables matcht

i for i ∈ [1, n] at the start of round t. Similarly, D̂M (t) is the matching
stored by the variables m̂atch

t

i for i ∈ [1, n] at the start of round t. SM (q) is the matching

XX:10 Distributed Stable Matching with Similar Preference Lists

Algorithm 2: The algorithm executed by a node mi to compute its match.
1 next ← Next(i), prev ← Prev(i);
2 wait ←Wait(i), match ← ⊥;
3 D ← ⊥, r ← ⊥, accepted ← false;
4 for counter ← 0 to 8(3∆ + 2)n− 1 do
5 if counter mod 8 = 0 then
6 if match = ⊥ and prev = ⊥ then
7 if wait > 0 then
8 wait ← wait − 1;
9 else

10 Send 〈propose〉 to next woman wj available in prefrence list;

11 else if counter mod 8 = 1 then
12 if Received 〈accept, x〉 from wj then
13 r ← x;
14 match ← j;
15 accepted ← true;

16 else if counter mod 8 = 2 and accepted = true then
17 Send 〈SetPrev, r〉 to wnext if next 6= ⊥;
18 else if counter mod 8 = 3 then
19 if Received 〈SetPrev, r〉 then
20 prev ← r;

21 else if counter mod 8 = 4 and accepted = true then
22 if r = ⊥ and next 6= ⊥ and F (next) 6= ⊥ then
23 Send 〈SetD, (wmatch, c(mPrev(next)) + ∆)〉 to wF (next);
24 else
25 Send 〈SetNext, next〉 to wr if r 6= ⊥;
26 next ← ⊥;
27 accepted ← false;
28 else if counter mod 8 = 5 then
29 if Received 〈SetD, x〉 then
30 D ← x;
31 if Received 〈SetNext, x〉 then
32 next ← x;
33 match ← ⊥;

34 else if counter mod 8 = 6 and D 6= ⊥ then
35 Say D = (wj , x);
36 Remove wj from preference list if c(mi) > x;
37 Send 〈SetD, D〉 to wNext(i) if Next(i) 6= ⊥;
38 D ← ⊥;
39 else // counter mod 8 = 7
40 if Received 〈SetD, x〉 then
41 D ← x;

P. Khanchandani and R. Wattenhofer XX:11

Algorithm 3: The algorithm executed by a node wi to compute its match.
1 match ← ⊥;
2 if Received 〈propose〉 from mj then
3 if match = ⊥ or mj ranked higher than mmatch then
4 Send 〈accept, match〉 to mj in the next round;
5 match ← j;

6 if Received a message X other than 〈propose〉 then
7 Forward X to mi in the next round;

computed by Algorithm 1 after q proposals are sent. Given a tuple D = (a, b), D.1 = a and
D.2 = b. The notation i(w) represents the value of i in Algorithm 1 when w ∈ W receives
its first proposal. Consider the sequence of values waitt

i for a given t and i ∈ [1, n] in the
same order as L. fw(t) is j so that waitt

j is the first positive element of the sequence (⊥ if
all waitt

i ≤ 0). We define the following invariants Inv(t) where t ≥ 0 is the first round of
a phase, i.e., t = 8k for k ∈ [0, (3∆ + 2)n − 1]. Note that the algorithm terminates after
8(3∆ + 2) rounds. For convenience, however, we will use the start of round e = 8(3∆ + 2)
to refer the invariants just after the last round.

1. At most one 〈propose〉 message is sent in a phase. If the qth proposal in the sequential
algorithm is sent by m to w, then the qth 〈propose〉message is sent by m to w for q ≤ p(t).
Moreover, DM (t) = D̂M (t) = SM(p(t)).

2. If mi is matched or matcht
i 6= ⊥, then prevt

i = nextt
i = ⊥. Otherwise, the value nextt

i

points to the first unmatched node after mi in the sequence L (⊥ if it does not exists).
Similarly, the value prevt

i points to the last unmatched node before mi in the sequence
L (⊥ if it does not exists). Formally, we have the following for matcht

i = ⊥.

nextt
i =

{
l−1(min{l(j) : l(j) > l(i), matcht

j = ⊥}) if {l(j) : l(j) > l(i), matcht
j = ⊥} 6= ∅,

⊥ otherwise

prevt
i =

{
l−1(max{l(j) : l(j) < l(i), matcht

j = ⊥}) if {l(j) : l(j) < l(i), matcht
j = ⊥} 6= ∅,

⊥ otherwise.

3. If m̂atch
t

i 6= ⊥, then Dt
j .1 = wi for at most one j. If such j exists, then Dt

j .2 = i(wi)+∆.
Also, mk has deleted wi from its preference list if c(mk) > i(wi) + ∆ and l(k) < l(j).
If there is no j so that Dt

j .1 = wi, then mk has deleted wi from its preference list if
c(mk) > i(wi) + ∆.

4. Dt
i = ⊥ for the following nodes mi.

mi ∈

{
{mi : l(i) ≤ l(fw(t)) + Wait(fw(t))− waitt

fw(t)} if fw(t) 6= ⊥,

M if fw(t) = ⊥

5. Let mi be the node so that matcht
i = ⊥ and prevt

i = ⊥. If mi sends the message
〈propose〉 in round t and nextt

i 6= ⊥, then the nodes mj with l(j) ≥ l(nextt
i) have not

sent a 〈propose〉 message until round t and waitt
j = Wait(j).

For brevity, we will refer to the individual invariants as Inv(t).1, Inv(t).2 and so on. We
can easily show the following assuming that the above invariants are true.

XX:12 Distributed Stable Matching with Similar Preference Lists

I Lemma 12. If Inv(t) holds for all t = 8k where k ≥ 0, then there is a k ≤ (3∆ + 2)
for which matcht

i 6= ⊥ for all i ∈ [1, n] and Algorithm 2, Algorithm 3 terminate in a stable
matching.

Proof. Consider the start of phase in round r when matchr
j = ⊥ for some j. Using Inv(r).2,

there is a unique i for which matchr
i = ⊥ and prevr

i = ⊥. Now, either waitr+1
i = waitr

i − 1
or mi sends a 〈propose〉 message. As Σn

i=1Wait(i) = n, there are at most n phases where
waitr

i > 0. This leaves at least (3∆ + 2)n−n = (3∆ + 1)n phases in which 〈propose〉 can be
sent. Using Inv(r).1 and Lemma 7, these are sufficient until everyone is matched in a round
y = 8k for k ≤ (3∆ + 2).

Note that the sequential algorithm terminates as soon as all the men are matched. Using
Lemma 5, SM (p(y)) = DM (y) = D̂M (y) is a stable matching. The matching remains the
same until termination as no further 〈propose〉 messages are sent. J

Now, we only need to show that Inv(t) holds. We first give the following helper lemma
that gives the changes during the last two rounds of the phase.

I Lemma 13. Let t = 8k for k ∈ [0, (3∆+2)n−1] be the first round of a phase. If Dt+6
j 6= ⊥,

Prev(j) 6= ⊥, then Dt+8
j = Dt+6

Prev(j).

Proof. If Dt+6
j 6= ⊥, Dt+6

k 6= ⊥, Next(j) 6= ⊥ and Next(k) 6= ⊥ for j 6= k, then nodes
mj , mk send 〈SetD, Dt+6

j 〉 and 〈SetD, Dt+6
k 〉 respectively to wNext(j) and wNext(k) in round

t + 6. If j 6= k, then Next(j) 6= Next(k) by definition of function Next. Thus, these messages
are received by the nodes wNext(j) and wNext(k) which forward the message to mNext(j) and
mNext(k) in round t+7. Upon receiving the message, the nodes mNext(j) and mNext(k) simply
set their D to Dt+6

j , Dt+6
k respectively as received in the message. Thus, if mj receives a

message in round t + 7, then Dt+8
j = Dt+6

Prev(j). If mj does not receive a message in round
t + 7, then Dt+6

Prev(j) = ⊥ and Dt+8
j = Dt+7

j = ⊥ as well. J

We will first show the base case of induction and later the induction step.

I Lemma 14. Inv(0) holds.

Proof. Inv(0).1 Both DM (0) and D̂M (0) are empty matchings by initialization which is
same as SM (p(0)).

Inv(0).2 The initialization values Next(i) and Prev(i) satisfy the invariant for i ∈ [1, n].

Inv(0).3 By initialization, m̂atch
0
i = ⊥ for all i ∈ [1, n]. As nodes start with complete

preference lists (without any deleted entries), the invariant holds.
Inv(0).4 By definition of Wait we have wait0

a = Wait(a) > 0 where a = l−1(1). As
D0

a = ⊥ by initialization, the invariant follows.
Inv(0).5 By initialization, wait0

a = Wait(a) > 0 where a = l−1(1) and propose is not sent
in the first round. Thus, invariant holds as precondition is not true. J

I Lemma 15. If Inv(t) holds for t = 8k, k ∈ [0, (3∆ + 2)n− 1] and there exists i ∈ [1, n] so
that matcht

i = ⊥, then Inv(t + 8) holds.

Proof. Using Inv(t).2, there is exactly one man mi so that matcht
i = ⊥ and prevt

i = ⊥. To
show Inv(t + 8) we consider two cases: waitt

i ≯ 0 and waitt
i > 0.

Inv(t + 8).1, Inv(t + 8).2 when waitt
i ≯ 0 As waitt

i ≯ 0, mi sends a 〈propose〉 message
to a woman wq. Using Inv(t).1, the set of unmatched men are the unmatched men in the
matching SM (p(t)). Say that the (p(t) + 1)th proposal in the sequential algorithm is sent by

P. Khanchandani and R. Wattenhofer XX:13

m to w. Using Inv(t).2, mi = m and all the men mj with l(j) < l(i) are matched. Thus, the
men mj , l(j) < l(i) have sent their first 〈propose〉 message in round q (say) and waitq

j ≯ 0.
As the variable wait is never incremented, waitt

j ≯ 0 for l(j) < l(i). Using Inv(t).4 and the
assumption waitt

i ≯ 0, Dt
j = ⊥ for l(j) ≤ l(i). Then, we can use Inv(t).3 to conclude that a

woman w′ is deleted from mi’s preference list if w′ is matched and c(mi) > i(w′) + ∆. Note
that a woman w′ is also deleted from m’s preference list when m sends a proposal in the
sequential algorithm if w′ is matched and c(m) > i(w′) + ∆. Thus, we have w = wq.

As no other messages are sent in round t, 〈propose〉 message is received by wq. As in the
sequential algorithm, wq accepts the proposal if it is better. If wq does not reply to 〈propose〉
message, then no change to variables match, next and prev are done and both Inv(t + 8).1,
Inv(t + 8).2 hold. If wq replies with 〈accept, x〉 message, then we have the following cases
depending on the values of x and nextt

i.
Case (a): x = ⊥, nextt

i = ⊥ The changes to the variables match, next and prev until the
end of the phase are as follows.

1. m̂atch
t+2
q = i as wq updates its match variable in round t + 1.

2. matcht+2
i = q as mi receives 〈accept, x〉 in round t + 1.

3. nextt+5
i = ⊥ as mi sets the variable in round t + 4.

Thus,

1. m̂atch
t+8
q = i,

2. matcht+8
i = q 6= ⊥,

3. nextt+8
i = ⊥, and

4. prevt+8
i = ⊥ as prevt

i = ⊥ by assumption.

So Inv(t + 8).1, Inv(t + 8).2 hold in this case.
Case (b): x = ⊥, nextt

i 6= ⊥ The changes to the variables match, next and prev until the
end of the phase are as follows.

1. m̂atch
t+2
q = i as wq updates its match variable in round t + 1.

2. matcht+2
i = q as mi receives 〈accept, x〉 in round t + 1.

3. prevt+4
a = ⊥ where a = nextt

i as mi sends 〈SetPrev,⊥〉 to wa in round t + 2 which
forwards it to ma in round t + 3.

4. nextt+5
i = ⊥ as mi sets the variable in round t + 4.

Thus,

1. m̂atch
t+8
q = i,

2. matcht+8
i = q 6= ⊥,

3. nextt+8
i = ⊥,

4. prevt+8
i = ⊥ as prevt

i = ⊥ by assumption, and
5. prevt+8

a = ⊥ where a = nextt
i.

So Inv(t + 8).1, Inv(t + 8).2 hold in this case.
Case (c): x 6= ⊥, nextt

i = ⊥ The changes to the variables match, next and prev until the
end of the phase are as follows.

1. m̂atch
t+2
q = i as wq updates its match variable in round t + 1.

2. matcht+2
i = q as mi receives 〈accept, x〉 in round t + 1.

3. nextt+5
i = ⊥ as mi sets the variable in round t + 4.

XX:14 Distributed Stable Matching with Similar Preference Lists

4. nextt+6
r = ⊥ and matcht+6

r = ⊥, where r = x as mi sends 〈SetNext,⊥〉 to wr in round
t + 4 which forwards it to mr in round t + 5.

Thus, we have the following for r = x.

1. m̂atch
t+8
q = i,

2. matcht+8
i = q 6= ⊥, nextt+8

i = ⊥, prevt+8
i = ⊥ as before,

3. nextt+8
r = ⊥, matcht+8

r = ⊥, and
4. prevt+8

r = ⊥ as matcht
r 6= ⊥ by assumption, so prevt

r = ⊥ by Inv(t).2.

As before, Inv(t + 8).1 holds in this case as well. As nextt
i = ⊥, mr is the only unmatched

man left and Inv(t + 8).2 also holds.
Case (d): x 6= ⊥, nextt

i 6= ⊥ The changes to the variables match, next and prev until the
end of the phase are as follows.

1. m̂atch
t+2
q = i as wq updates its match variable in round t + 1.

2. matcht+2
i = q as mi receives 〈accept, x〉 in round t + 1.

3. prevt+4
a = r where a = nextt

i and r = x as mi sends 〈SetPrev, r〉 to wa in round t + 2
which forwards it to ma in round t + 3.

4. nextt+5
i = ⊥ as mi sets the variable in round t + 4.

5. nextt+6
r = a and matcht+6

r = ⊥, where a = nextt
i and r = x as mi sends 〈SetNext, a〉 to

wr in round t + 4 which forwards it to mr in round t + 5.

Thus, we have the following for r = x and a = nextt
i.

1. m̂atch
t+8
q = i,

2. matcht+8
i = q 6= ⊥, nextt+8

i = ⊥, prevt+8
i = ⊥ as before,

3. prevt+8
r = ⊥, matcht+8

r = ⊥ as before, and
4. nextt+8

r = a.

Using Inv(t).5, l(r) < l(a) and these changes are sufficient for Inv(t + 8).2 to hold. Also,
Inv(t + 8).1 holds as well.

Inv(t + 8).3 when waitt
i ≯ 0 The invariant needs to be checked only when the value of

variable D changes. This only happens upon receiving the message 〈SetD, x〉.
If the node mi receives 〈accept, y〉 in round t + 1 with y 6= ⊥, then 〈SetD, x〉 is only sent

in round t + 6 by a node mj if Dt+6
j 6= ⊥. Using Lemma 13, if m̂atch

t

a 6= ⊥, Dt
l .1 = wa

and Next(l) 6= ⊥, then Dt+8
Next(l).1 = wa. Using Inv(t).3, we only need to check deletion of

wa from ml’s list. Before ml sends 〈SetD, x〉, it deletes Dt
l .1 = wa if c(ml) > Dt

l .2. Using
Inv(t).3, we have Dt

l .2 = i(wa) + ∆ and Inv(t + 8).3 holds.
If the node mi receives 〈accept,⊥〉 in round t + 1 from wq, then 〈SetD, x〉 is only

sent in rounds t + 4 and t + 6. In round t + 4, mi sends 〈SetD, x〉 to wF (a) where
a = nextt+4

i and x = (wq, c(mPrev(a)) + ∆). Using Inv(t).5, all nodes mj with l(j) ≥ l(a)
never sent a 〈propose〉 message before and all the other nodes mk already sent a 〈propose〉
message as they are matched. Using Inv(t).1 and Inv(t + 8).1, i(wq) = max{c(mj) :
mj sent 〈propose〉 until round (t+4)} = c(mPrev(a)). If ma is a pivot node, then F (a) = a by
definition and c(mF (a)) = min{c(mj) : c(mj) > i(wq)} ≤ min{c(mj) : c(mj) + ∆ > i(wq)}.
If ma is not a pivot node, then c(ma) = c(mPrev(a)) = i(wq) and again c(mF (a)) =
min{c(mj) : c(mj) > i(wq)} ≤ min{c(mj) : c(mj) + ∆ > i(wq)}. Therefore, l(p) ≥ l(F (a))
if c(mp) > i(wq) + ∆. Now we use Lemma 13 and Inv(t).3 as before to conclude that
Inv(t + 8).3 holds after 〈SetD, x〉 is sent in round t + 6.

P. Khanchandani and R. Wattenhofer XX:15

Inv(t + 8).4 when waitt
i ≯ 0 If ma for a = nextt

i 6= ⊥ is a pivot node, then F (a) = a and
Wait(a) > 0 using definition of Wait. Using Inv(t).5, we conclude waitt

a = Wait(a) > 0.
As all nodes mj with l(j) < l(a) sent a 〈propose〉 message at least once, waitt

j ≯ 0. Thus,
a = F (a) = fw(t) if ma is a pivot node. If ma for a = nextt

i 6= ⊥ is not a pivot node, then
Wait(k) = 0 for l(a) ≤ l(k) < l(F (a)) using definition of Wait. As before waitt

j ≯ 0 for all
nodes mj with l(j) < l(a). Using Inv(t).5, we conclude that waitt

F (a) = Wait(F (a)) > 0.
Thus, we conclude that F (a) = fw(t) irrespective of whether ma is a pivot node or not.

Using Inv(t).4, we conclude Dt
j = ⊥ for l(j) ≤ l(a). As wait is not changed in this phase,

Inv(t + 8).4 holds if Dt+8
j = ⊥ for l(j) ≤ l(a). In round t + 4, mi may send 〈SetD, x〉 to wa

which then forwards it to ma in round t + 5 so Dt+6
a 6= ⊥. Using Lemma 13, we again have

Dt+8
j = ⊥ for l(j) ≤ l(a).
If nextt

i = ⊥, then all nodes mk, k ∈ [1, n] already sent a 〈propose〉 message at least once.
Thus, waitt

k ≯ 0. Using Inv(t).4, Dt
k = ⊥. As no 〈SetD, x〉 message is sent until round t + 8

starts, Dt+8
k = ⊥ as well.

Inv(t + 8).5 when waitt
i ≯ 0 Using Inv(t).5, the nodes mj with l(j) ≥ l(a) have not sent

a 〈propose〉 message until round t for a = nextt
i 6= ⊥. Thus, if a node mk is matched, then

l(k) < l(a).
Now, if mi receives 〈accept, x〉 in round t + 1 with x 6= ⊥, then matcht+8

r = ⊥ for some r

so that l(r) < l(a). Using Inv(t + 8).2, only mr is the node that satisfies matcht+8
r = ⊥ and

prevt+8
r = ⊥. Using Inv(t + 8).2, we also conclude that nextt+8

r = a. The nodes mj with
l(j) ≥ l(a) do not send a 〈propose〉 message in this phase nor change their wait variables.
Using Inv(t).5, the nodes mj with l(j) ≥ l(a) satisfy waitt

j = Wait(j). Thus, Inv(t + 8).5
holds if a node mr is rejected in this phase.

If mi receives 〈accept, x〉 in round t + 1 with x = ⊥, then using Inv(t + 8).2 we conclude
that ma is the only node that satisfies matcht+8

a = ⊥ and prevt+8
a = ⊥. The nodes mj

with l(j) ≥ l(a) do not change their match variables in this phase, do not send a 〈propose〉
message in this phase and do not change their wait variables in this phase. Using Inv(t).5,
the nodes mj with l(j) ≥ l(a) satisfy waitt+8

j = Wait(j). In round t + 8, only ma may send
a 〈propose〉 message Thus, if nextt+8

a 6= ⊥, then the nodes mj with l(j) ≥ l(nextt+8
a) have

not sent a 〈propose〉 message until round t + 8 and have waitt+8
j = Wait(j).

If mi does not receive a message from wq in round t + 1, then none of the nodes change
their match, prev, next or wait variables. Also, only mi may send a 〈propose〉 message in
round t + 8. Using Inv(t).5, the invariant also follows when mi does not receive a message
from wq in round t + 1.

Inv(t + 8) when waitt
i > 0 In this case, mi decrements its wait variable instead of sending

a 〈propose〉 message. As a result, for all nodes mj we have nextt+8
j = nextt

j , prevt+8
j = prevt

j

and matcht+8
j = matcht

j . Thus, there is nothing to check for Inv(t + 8).1 and Inv(t + 8).2.
Using Lemma 13, Inv(t+8).4 holds as well because waitt+8

i = waitt
i−1. Verifying Inv(t+8).3

in this case is same as verifying it when the 〈propose〉 message sent by mi is replied with an
〈accept, x〉 where x 6= ⊥.

We consider two cases to check for Inv(t + 8).5. First: if waitt
i > 1, then waitt+8

i > 0.
Thus, the message 〈propose〉 will not be sent in round t+8 and nothing needs to be checked.
Second: if waitt

i = 1, then waitt+8
i = 0. Thus, the node mi never sent a 〈propose〉 message

until round t as otherwise waitt
i ≯ 0. Also, no node mj with l(j) ≥ l(i) sent a 〈propose〉

message as otherwise mi must have sent 〈propose〉 message at least once. Thus, no mj with
l(j) > l(i) ever got matched and prevt′

j 6= ⊥ for the first round t′ of any phase where t′ ≤ t.
Thus, waitt+8

j = Wait(j) for l(j) > l(i). As mi sends 〈propose〉 in round t + 8, we conclude
that Inv(t + 8).5 holds. J

XX:16 Distributed Stable Matching with Similar Preference Lists

I Theorem 16. Algorithm 2 and Algorithm 3 compute a stable matching where each node
needs O(n(∆ + 1)) messages of size O(log n).

Proof. Using Lemma 14, Lemma 15 and Lemma 12, each node computes its partner in a
stable matching in O(n(∆ + 1)) rounds. As a node receives at most one message of size
O(log n) per round, the statement follows. J

9 Conclusion and Open Problems

We considered the distributed version of stable matching where preference lists of one set
of participants are almost similar. Given the non-negative similarity parameter ∆ ≤ n− 1,
any node can compute its partner in a stable matching by receiving O(n(∆ + 1)) values.
Also, there is always a node that must receive Ω(n/ log n) values.

It still remains to find out if the above algorithm is optimal (up to a logarithmic factor)
if ∆ is not constant. Furthermore, it may also be interesting to have an algorithm that uses
O(1) sized messages instead of O(log n) sized messages.

References
1 Nir Amira, Ran Giladi, and Zvi Lotker. Distributed Weighted Stable Marriage Problem. In

17th International Colloquium on Structural Information and Communication Complexity
(SIROCCO), Sirince, Turkey, June 2010.

2 Ismel Brito and Pedro Meseguer. Distributed Stable Matching Problems. In 11th Inter-
national Conference on Principles and Practice of Constraint Programming (CP), Sitges,
Spain, October 2005.

3 Ismel Brito and Pedro Meseguer. Distributed stable matching problems with ties and
incomplete lists. In 12th International Conference on Principles and Practice of Constraint
Programming (CP), Nantes, France, September 2006.

4 Patrik Floréen, Petteri Kaski, Valentin Polishchuk, and Jukka Suomela. Almost Stable
Matchings by Truncating the Gale–Shapley Algorithm. Algorithmica, September 2010.

5 D. Gale and L. S. Shapley. College Admissions and the Stability of Marriage. The American
Mathematical Monthly, January 1962.

6 Dan Gusfield and Robert W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. The MIT Press, 1989.

7 Robert W. Irving, David F. Manlove, and Sandy Scott. The Stable Marriage Problem with
Master Preference Lists. Discrete Applied Mathematics, August 2008.

8 Deepak Kapur and Mukkai S. Krishnamoorthy. Worst-case Choice for the Stable Marriage
Problem. Information Processing Letters, July 1985.

9 Alex Kipnis and Boaz Patt-Shamir. A Note on Distributed Stable Matching. In 29th
IEEE International Conference on Distributed Computing Systems (ICDCS), Montreal,
QC, Canada, June 2009.

10 Eyal Kushilevitz. Communication Complexity. In Advances in Computers, volume 44.
Elsevier, 1997.

11 Rafail Ostrovsky and Will Rosenbaum. Fast Distributed Almost Stable Matchings. In
34th ACM Symposium on Principles of Distributed Computing (PODC), Donostia-San
Sebastián, Spain, July 2015.

12 Michael J. Quinn. A Note on Two Parallel Algorithms to Solve the Stable Marriage Prob-
lem. BIT Numerical Mathematics, September 1985.

13 S. S. Tseng and R. C. T. Lee. A Parallel Algorithm to Solve the Stable Marriage Problem.
BIT Numerical Mathematics, September 1984.

	Introduction
	Related Work
	Model
	Lower Bound
	Sequential Algorithm
	Analysis of the Sequential Algorithm
	Distributed Algorithm
	Analysis of the Distributed Algorithm
	Conclusion and Open Problems

